JPWO2017042862A1 - Solar cell manufacturing method and solar cell - Google Patents

Solar cell manufacturing method and solar cell Download PDF

Info

Publication number
JPWO2017042862A1
JPWO2017042862A1 JP2017538487A JP2017538487A JPWO2017042862A1 JP WO2017042862 A1 JPWO2017042862 A1 JP WO2017042862A1 JP 2017538487 A JP2017538487 A JP 2017538487A JP 2017538487 A JP2017538487 A JP 2017538487A JP WO2017042862 A1 JPWO2017042862 A1 JP WO2017042862A1
Authority
JP
Japan
Prior art keywords
back surface
solar cell
diffusion
heat treatment
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017538487A
Other languages
Japanese (ja)
Other versions
JP6440853B2 (en
Inventor
篤郎 濱
篤郎 濱
邦彦 西村
邦彦 西村
慎也 西村
慎也 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017042862A1 publication Critical patent/JPWO2017042862A1/en
Application granted granted Critical
Publication of JP6440853B2 publication Critical patent/JP6440853B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

固相拡散源を成膜後、続いて熱処理による不純物拡散を行うに際し、裏面に不純物が混入するのを抑制し、キャリア寿命の長い太陽電池の製造方法を得ることを目的とし、受光面1Aおよび裏面1Bを有するn型単結晶シリコン基板1の受光面1Aに固相拡散源であるBSG膜2を成膜する工程と、n型単結晶シリコン基板1を加熱し、BSG膜2から、第2導電型の不純物であるボロンを拡散させ、p型拡散層7を形成する熱処理工程とを含み、熱処理工程に先立ち、裏面1Bに成膜されたボロン含有生成物4、酸化シリコン含有生成物5などの固相拡散源を除去する工程を含む。In order to obtain a method for manufacturing a solar cell having a long carrier life by suppressing the contamination of impurities on the back surface when performing impurity diffusion by heat treatment after film formation of the solid phase diffusion source, the light receiving surface 1A and A step of forming a BSG film 2 as a solid phase diffusion source on the light-receiving surface 1A of the n-type single crystal silicon substrate 1 having the back surface 1B, and heating the n-type single crystal silicon substrate 1 from the BSG film 2 A boron-containing product 4 formed on the back surface 1B prior to the heat treatment step, a silicon oxide-containing product 5, and the like. Removing the solid phase diffusion source.

Description

本発明は、太陽電池の製造方法および太陽電池に係り、特に光電変換効率の向上に関する。   The present invention relates to a method for manufacturing a solar cell and a solar cell, and particularly relates to an improvement in photoelectric conversion efficiency.

従来、太陽電池においては、一例を特許文献1に示すように、光入射面である受光面、あるいは受光面と逆面である裏面への不純物拡散方法としてCVD法などを用いて拡散源を成膜した後、基板と拡散源となる膜とを窒素雰囲気中で加熱し不純物を基板内に拡散させる方法が開示されている。   Conventionally, in a solar cell, as shown in Patent Document 1, for example, a diffusion source is formed using a CVD method or the like as a method for diffusing impurities to a light receiving surface that is a light incident surface or a back surface that is opposite to the light receiving surface. A method is disclosed in which after the film is formed, the substrate and the film serving as a diffusion source are heated in a nitrogen atmosphere to diffuse impurities into the substrate.

特開2004−247364号公報JP 2004-247364 A

しかしながら、上記特許文献1に示される太陽電池の製造方法にあっては、リンシリケートガラス(PSG:Phosphorus Silicate Glass)膜、あるいはボロンシリケートガラス(BSG:Boron Silicate Glass)膜を基板上に成膜した後に窒素雰囲気行う中で不純物拡散のための熱処理を行っている。このため、成膜時に基板裏面にリンあるいはボロンなどの不純物が回り込み、付着した生成物から、裏面への不純物拡散も同時に生じるため意図しない裏面への不純物の混入が発生するという問題があった。不純物の混入は太陽電池のキャリア寿命の低下を招くことになる。   However, in the method for manufacturing a solar cell disclosed in Patent Document 1, a phosphorous silicate glass (PSG) film or a boron silicate glass (BSG) film is formed on a substrate. Heat treatment for impurity diffusion is performed in a nitrogen atmosphere later. For this reason, there is a problem in that impurities such as phosphorus or boron circulate on the back surface of the substrate during film formation, and impurities diffuse to the back surface simultaneously from the attached product, so that impurities are unintentionally mixed into the back surface. Impurity contamination leads to a reduction in the carrier life of the solar cell.

本発明は、上記に鑑みてなされたものであって、固相拡散源を成膜後、続いて熱処理による不純物拡散を行うに際し、裏面に不純物が混入するのを抑制し、キャリア寿命の長い太陽電池を得ることを目的としている。   The present invention has been made in view of the above, and after forming a solid phase diffusion source, when impurities are diffused by heat treatment, impurities are prevented from being mixed into the back surface, so that a solar with a long carrier life can be obtained. The purpose is to obtain a battery.

本発明は、上述した課題を解決し、目的を達成するために、第1および第2主面を有する第1導電型の半導体基板の、第1主面に固相拡散源を成膜する工程と、半導体基板を加熱し、固相拡散源から、第2導電型の不純物を拡散させ、第2導電型の拡散層を形成する熱処理工程とを含む太陽電池の製造方法において、熱処理工程に先立ち、第2主面に成膜された固相拡散源を除去する工程を含む。   In order to solve the above-described problems and achieve the object, the present invention provides a process for forming a solid phase diffusion source on a first main surface of a first conductivity type semiconductor substrate having first and second main surfaces. And a heat treatment step of heating the semiconductor substrate, diffusing impurities of the second conductivity type from the solid phase diffusion source, and forming a diffusion layer of the second conductivity type, prior to the heat treatment step And a step of removing the solid phase diffusion source formed on the second main surface.

本発明によれば、固相拡散源を成膜後、続いて熱処理による不純物拡散を行うに際し、裏面への不純物の混入を防止し太陽電池のキャリア寿命の向上をはかることができるという効果を奏功する。   According to the present invention, after the solid phase diffusion source is formed, when impurities are diffused by heat treatment, it is possible to prevent impurities from being mixed into the back surface and improve the carrier life of the solar cell. To do.

実施の形態1にかかる太陽電池の製造方法を示すフローチャート1 is a flowchart showing a method for manufacturing a solar cell according to a first embodiment. (a)から(d)は、実施の形態1にかかる太陽電池の製造方法を示す工程断面図(A) to (d) is a process cross-sectional view illustrating the method for manufacturing the solar cell according to the first embodiment. (a)から(d)は、実施の形態1にかかる太陽電池の製造方法を示す工程断面図(A) to (d) is a process cross-sectional view illustrating the method for manufacturing the solar cell according to the first embodiment. 実施の形態1にかかる太陽電池の製造工程における熱処理工程の炉内の温度と環境状態についてのタイムチャートを示す説明図Explanatory drawing which shows the time chart about the temperature in a furnace and environmental state of the heat treatment process in the manufacturing process of the solar cell concerning Embodiment 1. FIG. (a)および(b)は、実施の形態1の方法においてBSG膜とシリコン酸化膜の形成時に部分的に成膜不良部が生じた時のn型単結晶シリコン基板の断面を示す図(A) And (b) is a figure which shows the cross section of an n-type single crystal silicon substrate when the film-forming defect part arises partially at the time of formation of a BSG film and a silicon oxide film in the method of Embodiment 1. 実施の形態2にかかる太陽電池の製造方法を示すフローチャートA flowchart which shows the manufacturing method of the solar cell concerning Embodiment 2. FIG. 実施の形態2にかかる太陽電池の製造工程の要部を示す工程断面図Process sectional drawing which shows the principal part of the manufacturing process of the solar cell concerning Embodiment 2 実施の形態1および実施の形態2に示す太陽電池の製造方法に対し、加熱処理の際に、拡散工程で用いられる拡散炉へのシリコン基板の投入方法の一例を示す図The figure which shows an example of the injection | throwing-in method of the silicon substrate to the diffusion furnace used at the time of a heat processing with respect to the manufacturing method of the solar cell shown in Embodiment 1 and Embodiment 2

以下に、本発明にかかる太陽電池の製造方法および太陽電池の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではなく、その要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため各層あるいは各部材の縮尺が現実と異なる場合があり、各図面間においても同様である。また、平面図であっても、図面を見易くするためにハッチングを付す場合がある。   Below, the manufacturing method of the solar cell concerning this invention and embodiment of a solar cell are described in detail based on drawing. In addition, this invention is not limited by this embodiment, In the range which does not deviate from the summary, it can change suitably. In the drawings shown below, the scale of each layer or each member may be different from the actual for easy understanding, and the same applies to the drawings. Further, even a plan view may be hatched to make the drawing easy to see.

実施の形態1.
図1は、本発明にかかる太陽電池の製造方法の実施の形態1を示す製造工程のフローチャートであり、図2(a)から(d)および図3(a)から(d)は、実施の形態1にかかる太陽電池の製造方法を示す工程断面図である。図2(a)から(d)は、本発明にかかる太陽電池の製造方法のうち、図1中に示す炉内での連続処理における太陽電池基板の変化を示す断面図である。図3(a)から(d)は本実施の形態1の製造工程中の、図2(a)から(d)に示す熱処理に続く工程での太陽電池の断面の変化を示す模式図である。図4は、炉内の温度と環境状態についてのタイムチャートを示す説明図である。
Embodiment 1 FIG.
FIG. 1 is a flowchart of a manufacturing process showing Embodiment 1 of a method for manufacturing a solar cell according to the present invention. FIGS. 2 (a) to (d) and FIGS. 3 (a) to (d) FIG. 10 is a process cross-sectional view illustrating the solar cell manufacturing method according to the first embodiment. 2 (a) to 2 (d) are cross-sectional views showing changes in the solar cell substrate in the continuous processing in the furnace shown in FIG. 1 in the method for manufacturing a solar cell according to the present invention. 3 (a) to 3 (d) are schematic views showing changes in the cross section of the solar cell in the process following the heat treatment shown in FIGS. 2 (a) to 2 (d) during the manufacturing process of the first embodiment. . FIG. 4 is an explanatory diagram showing a time chart regarding the temperature in the furnace and the environmental state.

本実施の形態1にかかる太陽電池の製造方法は、拡散層形成のための熱処理工程において、熱処理工程に先立ち、第2主面に成膜された固相拡散源を除去する工程を含むことを特徴とするものである。   The solar cell manufacturing method according to the first embodiment includes a step of removing the solid phase diffusion source formed on the second main surface prior to the heat treatment step in the heat treatment step for forming the diffusion layer. It is a feature.

つまり本実施の形態では、加熱工程により固相拡散源から不純物拡散を行う工程に先立ち、第2主面に成膜された固相拡散源を除去する工程を含むため、半導体基板の固相拡散源を成膜した面と反対側の面に固相拡散材料が回りこみ付着するが、この固相拡散源を除去してから熱処理を行うことで、付着物からの不純物が基板に拡散されるのを回避するようにしたものである。   In other words, the present embodiment includes a step of removing the solid phase diffusion source formed on the second main surface prior to the step of diffusing impurities from the solid phase diffusion source by the heating step. The solid-phase diffusion material wraps around and adheres to the surface opposite to the surface on which the source is deposited. By removing the solid-phase diffusion source and then performing heat treatment, impurities from the deposit are diffused into the substrate. This is intended to avoid this.

実施の形態1にかかる太陽電池は、受光面1Aとなる第1の主面と裏面1Bとなる第2の主面をもつ第1導電型の半導体基板としてのn型単結晶シリコン基板1を用いる。図1、図2(a)から(d)、図3(a)から(d)および図4を用いて製造方法を説明する。まず、ダメージ層除去ステップS101で、表面のウエハスライス時に生じた汚染あるいはダメージを、例えば1wt%以上10wt%未満の水酸化ナトリウムを溶解させたアルカリ溶液、に浸漬させて除去した後、n型単結晶シリコン基板1の受光面1Aに、例えば0.1%以上10%未満のアルカリ溶液中にイソプロピルアルコールあるいはカプリル酸等の添加剤を加えて溶液に浸漬させて反射防止構造を得るための凹凸であるテクスチャを形成する。なお、スライス汚染およびダメージの除去と、テクスチャの形成は同時にあるいは個別に行ってもよい。テクスチャの形成は受光面のみならず裏面にも形成してもよい。図2および図3においては理解を容易にするためテクスチャは図示せず、受光面、裏面共に平坦面として示す。   The solar cell according to the first embodiment uses an n-type single crystal silicon substrate 1 as a first conductivity type semiconductor substrate having a first main surface serving as a light receiving surface 1A and a second main surface serving as a back surface 1B. . The manufacturing method will be described with reference to FIGS. 1, 2A to 2D, FIGS. 3A to 3D, and FIG. First, in the damaged layer removing step S101, contamination or damage caused during wafer slicing on the surface is removed by immersing in an alkaline solution in which, for example, 1 wt% or more and less than 10 wt% sodium hydroxide is dissolved, and then the n-type single layer is removed. An unevenness for obtaining an antireflection structure by adding an additive such as isopropyl alcohol or caprylic acid in an alkaline solution of 0.1% or more and less than 10% to the light receiving surface 1A of the crystalline silicon substrate 1, for example. A certain texture is formed. The removal of slice contamination and damage and the formation of texture may be performed simultaneously or individually. The texture may be formed not only on the light receiving surface but also on the back surface. 2 and 3, the texture is not shown for easy understanding, and both the light receiving surface and the back surface are shown as flat surfaces.

次に、成膜前洗浄ステップS102でn型単結晶シリコン基板1の表面を洗浄する。該洗浄工程には、例えば、RCA洗浄と呼ばれる、硫酸と過酸化水素の混合溶液と、フッ化水素酸水溶液と、アンモニアと過酸化水素の混合溶液と、塩酸と過酸化水素の混合溶液、とを組み合わせた有機物と金属と酸化膜とを除去する工程、あるいは、例えばテクスチャ形成方法によってはフッ化水素酸水溶液のみの酸化膜除去工程、が用いられる。また、洗浄液についても、洗浄液の種類の内、一つまたは複数を選択したり、またあるいは、フッ化水素酸と過酸化水素水の混合溶液、あるいはオゾンを含有させた水を含めて選択しても良い。   Next, the surface of the n-type single crystal silicon substrate 1 is cleaned in a pre-deposition cleaning step S102. In the cleaning step, for example, a mixed solution of sulfuric acid and hydrogen peroxide, a hydrofluoric acid aqueous solution, a mixed solution of ammonia and hydrogen peroxide, a mixed solution of hydrochloric acid and hydrogen peroxide, called RCA cleaning, A step of removing an organic material, a metal, and an oxide film combined with each other, or a step of removing an oxide film using only a hydrofluoric acid aqueous solution is used depending on, for example, a texture forming method. As for the cleaning solution, select one or more of the types of cleaning solutions, or select a cleaning solution including a mixed solution of hydrofluoric acid and hydrogen peroxide, or water containing ozone. Also good.

なお各々の処理液自体が、他への汚染、あるいは意図せぬ反応の原因とならない様、また装置外に取り出した後の安全確保の為、各々の中間あるいは乾燥前の段階などで、純水などによる水洗を行う。   In addition, in order to ensure that each processing solution itself does not cause contamination to others or unintended reactions, and to ensure safety after removal from the equipment, it is necessary to use pure water at each intermediate or pre-drying stage. Wash with water.

上記洗浄工程に引き続き、固相拡散源の受光面1A側への成膜ステップS103で、図2(a)に示すように、n型単結晶シリコン基板1の受光面1Aに固相拡散源、例えばボロンを含有する酸化膜であるボロンシリケートガラス(BSG)膜2が成膜される。成膜には、例えば減圧CVD(Chemical Vapor Deposition)、常圧CVD、が用いられる。なお前述の成膜工程の際にn型単結晶シリコン基板1の裏面1Bに成膜ガスの回り込みによってボロン含有生成物4が付着する。続いてBSG膜2の上部に熱処理時にキャップとなる膜、例えば、シリコン酸化膜3が形成される。シリコン酸化膜3はBSG膜2同様に減圧CVD、常圧CVDなどの成膜工程によって成膜されるものが工程の連続性からして好ましい。シリコン酸化膜3成膜時もBSG膜2成膜時と同様に、裏面1Bに成膜ガスが回り込み酸化シリコン含有生成物5が付着する。   Subsequent to the cleaning step, in the film forming step S103 on the light receiving surface 1A side of the solid phase diffusion source, as shown in FIG. For example, a boron silicate glass (BSG) film 2 which is an oxide film containing boron is formed. For film formation, for example, low pressure CVD (Chemical Vapor Deposition) or atmospheric pressure CVD is used. Note that the boron-containing product 4 adheres to the back surface 1B of the n-type single crystal silicon substrate 1 by the wrapping of the film forming gas during the film forming process described above. Subsequently, a film that becomes a cap at the time of heat treatment, for example, a silicon oxide film 3 is formed on the BSG film 2. The silicon oxide film 3 is preferably formed by a film forming process such as low pressure CVD or atmospheric pressure CVD like the BSG film 2 in view of the continuity of the process. When the silicon oxide film 3 is formed, as in the case of forming the BSG film 2, the film forming gas flows around the back surface 1B and the silicon oxide-containing product 5 adheres.

裏面の固相拡散源除去ステップS104で、図2(b)に示すように、裏面1B側の固相拡散源を除去する。ここではn型単結晶シリコン基板1の裏面1B側の固相拡散源を除去する。つまり、BSG膜2とシリコン酸化膜3の成膜の後、裏面1B側のボロン含有生成物4および酸化シリコン含有生成物5を除去する。除去は例えばフッ酸水溶液を用いた溶解によりおこなうが、ボロン含有生成物4はBSG膜2と、酸化シリコン含有生成物5はシリコン酸化膜3と本質的に同様の物質である為、例えば片面エッチング装置を用いて、フッ酸水溶液に裏面1B側のみを接触させてボロン含有生成物4および酸化シリコン含有生成物5を除去するのが望ましい。片面エッチング装置の一例として、エッチング面を下にして下側からエッチング液を吹き付ける装置あるいは、片面のみをエッチング液に浸漬する構造をもつエッチング装置などを用いることで片面エッチングが実現可能である。   In the back surface solid phase diffusion source removal step S104, as shown in FIG. 2B, the back surface 1B side solid phase diffusion source is removed. Here, the solid phase diffusion source on the back surface 1B side of the n-type single crystal silicon substrate 1 is removed. That is, after the formation of the BSG film 2 and the silicon oxide film 3, the boron-containing product 4 and the silicon oxide-containing product 5 on the back surface 1B side are removed. The removal is performed, for example, by dissolution using a hydrofluoric acid aqueous solution. However, since the boron-containing product 4 is essentially the same material as the BSG film 2 and the silicon oxide-containing product 5 is, for example, single-sided etching. It is desirable to remove the boron-containing product 4 and the silicon oxide-containing product 5 by bringing the hydrofluoric acid aqueous solution into contact with only the back surface 1B side using an apparatus. As an example of a single-sided etching apparatus, single-sided etching can be realized by using an apparatus in which an etching solution is sprayed from below with an etching surface down or an etching device having a structure in which only one surface is immersed in an etching solution.

n型単結晶シリコン基板1に連続して加熱処理を施す。該加熱処理には熱処理炉が用いられる。まず熱処理炉を予熱し、不活性ガス雰囲気で熱処理を行うステップS105では、図2(c)に示すように、拡散層形成の為に不活性ガス雰囲気で熱処理を行う。   The n-type single crystal silicon substrate 1 is subjected to heat treatment continuously. A heat treatment furnace is used for the heat treatment. First, in step S105 in which the heat treatment furnace is preheated and heat treatment is performed in an inert gas atmosphere, as shown in FIG. 2C, heat treatment is performed in an inert gas atmosphere to form a diffusion layer.

次いで連続して酸素O2を含む雰囲気で熱処理を行うステップS106では、酸素O2を供給しながら熱処理を行う。該加熱処理には熱処理炉に図2(b)の段階の裏面1B側の固相拡散源を除去したn型シリコン基板1を投入し、温度と成膜雰囲気を切り替えながら、昇温、加熱、降温を行う。加熱中の雰囲気は、n型単結晶シリコン基板1を炉内に投入した後、800℃から1100℃の温度帯で任意の時間、例えば窒素、アルゴン等の不活性ガスを含む雰囲気中で加熱される工程と、続いて800℃から1100℃の温度帯で酸素を含む雰囲気中で1分から20分以下の時間加熱される工程と、に分けられる。Next, in step S106 in which heat treatment is continuously performed in an atmosphere containing oxygen O 2 , the heat treatment is performed while supplying oxygen O 2 . In the heat treatment, the n-type silicon substrate 1 from which the solid-phase diffusion source on the back surface 1B side in the stage of FIG. 2B is removed is put into a heat treatment furnace, and the temperature is increased and heated while switching the temperature and the film formation atmosphere. Lower the temperature. The atmosphere during heating is, after the n-type single crystal silicon substrate 1 is put in the furnace, heated in an atmosphere containing an inert gas such as nitrogen or argon in a temperature range of 800 ° C. to 1100 ° C. for an arbitrary time. And a step of heating in an atmosphere containing oxygen in a temperature range of 800 ° C. to 1100 ° C. for a time of 1 minute to 20 minutes or less.

まず、例えば窒素、アルゴン等の不活性ガスを含む雰囲気中で、BSG膜2からの不純物拡散が進行するような温度T、例えば800℃から1100℃、に到達させ、所望のp型拡散層7を形成する。p型拡散層7の形成が終了した後に、酸素を流入させることによって、図2(d)に示すように、p型拡散層7の形成されたn型単結晶シリコン基板1表面全体にシリコン酸化膜8を形成する。   First, in an atmosphere containing, for example, an inert gas such as nitrogen or argon, a temperature T at which impurity diffusion from the BSG film 2 proceeds, for example, 800 ° C. to 1100 ° C. is reached, and a desired p-type diffusion layer 7 is formed. Form. After the formation of the p-type diffusion layer 7 is completed, oxygen is allowed to flow, so that the entire surface of the n-type single crystal silicon substrate 1 on which the p-type diffusion layer 7 is formed is oxidized as shown in FIG. A film 8 is formed.

この熱処理の温度プロファイルを図4に曲線aで示す。炉内を窒素で置換して炉を予熱し、窒素雰囲気となりかつ温度T=900℃となったとき、時点t01で熱処理炉にn型単結晶シリコン基板1を投入し、時点t02まで時間t1=1分から30分維持する。時点t02で、熱処理炉に酸素を供給する。酸素を供給しつつ、上記温度Tで時点t03まで時間t2=1分から20分維持する。上記酸化工程では、熱処理炉内に投入されたn型単結晶シリコン基板1は雰囲気中に含まれる酸素によって表面が酸化される。該酸化は、受光面側はBSG膜2とシリコン酸化膜3に覆われているために、膜に覆われていない裏面側で選択的に進行する。時点t03で酸素の供給を停止し、窒素ガスを供給し窒素置換を行う。The temperature profile of this heat treatment is shown by curve a in FIG. When the inside of the furnace is replaced with nitrogen and the furnace is preheated to become a nitrogen atmosphere and the temperature T = 900 ° C., the n-type single crystal silicon substrate 1 is charged into the heat treatment furnace at time t 01 , and the time until time t 02 is reached. t 1 = 1 to 30 minutes. At the time t 02, supplying oxygen to the heat treatment furnace. While supplying oxygen, the temperature T is maintained for a time t 2 = 1 minute to 20 minutes until the time t 03 . In the oxidation step, the surface of the n-type single crystal silicon substrate 1 put in the heat treatment furnace is oxidized by oxygen contained in the atmosphere. The oxidation proceeds selectively on the back surface side not covered with the film because the light receiving surface side is covered with the BSG film 2 and the silicon oxide film 3. At time t03 , supply of oxygen is stopped, nitrogen gas is supplied, and nitrogen substitution is performed.

以上の加熱工程の後、窒素を供給しながら温度を降下させたのち時点t04で加熱処理炉からn型単結晶シリコン基板1の取出しを行い、裏面酸化膜除去ステップS107を実施し、必要に応じて裏面1B側のシリコン酸化膜8の除去を行う。図3(a)に示すように、シリコン酸化膜8が除去された後は裏面1Bが露出する。なお、裏面1Bに形成されたシリコン酸化膜8が薄い場合は除去を行わずに、続く裏面1Bへの不純物拡散を実施してもよい。After the above heating process, the temperature is lowered while supplying nitrogen, and then at time t04 , the n-type single crystal silicon substrate 1 is taken out from the heat treatment furnace, and the back surface oxide film removing step S107 is performed. Accordingly, the silicon oxide film 8 on the back surface 1B side is removed. As shown in FIG. 3A, the rear surface 1B is exposed after the silicon oxide film 8 is removed. If the silicon oxide film 8 formed on the back surface 1B is thin, the subsequent impurity diffusion to the back surface 1B may be performed without performing removal.

この後、必要に応じて裏面1Bへの不純物拡散を実施する。ここでは、例としてn型拡散層を形成するためのPOCl3ガスによるリン拡散工程を用いた場合について説明する。この工程では、n型単結晶シリコン基板1の全面に対してPOCl3ガスが熱分解してリンシリケートガラス(PSG)膜がまず成膜され、これを拡散源としてそのあとにつづく加熱工程で内部に浸透すなわち拡散される。このように、POCl3ガス雰囲気で裏面拡散を行うステップS108で、リン拡散POCl3ガス中のリンは露出した裏面1Bには速やかに拡散され、p型拡散層7が形成された受光面1A側は拡散バリアとなるシリコン酸化膜8、BSG膜2、シリコン酸化膜3が形成されているためリンの混入が防止される。この際、裏面1B側は、後述する装置を用いることで、2枚ずつの重ね合わせにより、炉の雰囲気に直接暴露されるように配置されており、PSG膜は所望の厚さに成膜される。Thereafter, impurity diffusion to the back surface 1B is performed as necessary. Here, the case of using a phosphorus diffusion step with POCl 3 gas for forming the n-type diffusion layer as an example. In this process, the POCl 3 gas is thermally decomposed on the entire surface of the n-type single crystal silicon substrate 1 to form a phosphorous silicate glass (PSG) film first, and this is used as a diffusion source and subsequently heated in the subsequent heating process. Penetrates or diffuses. Thus, in step S108 in which the back surface diffusion is performed in the POCl 3 gas atmosphere, the phosphorus in the phosphorus diffusion POCl 3 gas is quickly diffused to the exposed back surface 1B, and the light receiving surface 1A side on which the p-type diffusion layer 7 is formed. Since the silicon oxide film 8, the BSG film 2, and the silicon oxide film 3 serving as diffusion barriers are formed, the incorporation of phosphorus is prevented. At this time, the back surface 1B side is arranged so as to be directly exposed to the furnace atmosphere by superimposing two sheets by using an apparatus described later, and the PSG film is formed to a desired thickness. The

すなわち、図3(b)に示すように、リンの拡散は裏面1Bに選択的に実施され、裏面1Bにn型拡散層14が形成される。   That is, as shown in FIG. 3B, phosphorus diffusion is selectively performed on the back surface 1B, and the n-type diffusion layer 14 is formed on the back surface 1B.

なお、n型拡散層14の形成後、BSG膜2とシリコン酸化膜3及びバリアとして機能させたシリコン酸化膜8は、例えば5から25%のフッ化水素酸水溶液を用いて除去される。この際、水洗による酸化膜、一般的に自然酸化膜と呼ばれるものを、後述するパッシベーション層またはその一部として用いても良い。あるいは同じ目的で、オゾンを含む水での洗浄による酸化膜を用いても良い。   After the formation of the n-type diffusion layer 14, the BSG film 2, the silicon oxide film 3, and the silicon oxide film 8 functioning as a barrier are removed using, for example, 5 to 25% hydrofluoric acid aqueous solution. At this time, an oxide film formed by washing with water, generally called a natural oxide film, may be used as a passivation layer described later or a part thereof. Alternatively, for the same purpose, an oxide film obtained by cleaning with water containing ozone may be used.

続いてpn接合分離ステップS109では、p型拡散層7とn型拡散層14を分離する。具体的には、例えばここまでの工程を経たn型単結晶シリコン基板1を数十から数百枚積み重ね、その側面部をプラズマ放電によりエッチング処理する端面エッチングや、基板表面または裏面の側端部近傍あるいは基板側面にレーザを照射溶融して行うレーザ分離などを行うことが望ましい。   Subsequently, in the pn junction separation step S109, the p-type diffusion layer 7 and the n-type diffusion layer 14 are separated. Specifically, for example, end surface etching in which several tens to several hundreds of n-type single crystal silicon substrates 1 that have undergone the above steps are stacked and the side surfaces thereof are etched by plasma discharge, or side end portions of the substrate surface or back surface are used. It is desirable to perform laser separation or the like performed by irradiating and melting a laser near or on the side of the substrate.

以上のようにして、基板端面のカット、あるいはエッチングが行われ、図3(c)に示すように、受光面1A側にp型拡散層7、裏面1B側にn型拡散層14を備えた太陽電池基板が形成される。   The substrate end face was cut or etched as described above, and as shown in FIG. 3C, the p-type diffusion layer 7 was provided on the light receiving surface 1A side, and the n-type diffusion layer 14 was provided on the back surface 1B side. A solar cell substrate is formed.

なお、分離の状況すなわちリーク電流の大小あるいは、最終的な発電製品となるモジュール内におけるセル配列によっては、この分離工程は省略することも可能である。   Note that this separation step may be omitted depending on the state of separation, that is, the magnitude of leakage current, or the cell arrangement in the module that will be the final power generation product.

その後、裏面絶縁膜形成ステップS110では、裏面1Bに、例えばプラズマCVDを用いて窒化シリコン膜からなる裏面絶縁膜15bが形成される。なお、窒化シリコン膜とn型拡散層との間には、パッシベーション層が形成されても良い。この場合、パッシベーション層はシリコン酸化膜が望ましく、一般的な熱酸化の他、前述の様に水洗あるいはオゾン含有水の洗浄による酸化膜を用いても良い。   Thereafter, in the back surface insulating film forming step S110, the back surface insulating film 15b made of a silicon nitride film is formed on the back surface 1B by using, for example, plasma CVD. Note that a passivation layer may be formed between the silicon nitride film and the n-type diffusion layer. In this case, the passivation layer is preferably a silicon oxide film, and in addition to general thermal oxidation, an oxide film obtained by washing with water or washing with ozone-containing water as described above may be used.

続いて、反射防止膜形成ステップS111では、受光面1A側にも同様に、例えばプラズマCVDを用いた窒化シリコン膜により、受光面反射防止膜15aを形成する。なお、窒化シリコン膜とn型拡散層との間には、パッシベーション層が形成されても良い。   Subsequently, in the antireflection film forming step S111, the light receiving surface antireflection film 15a is similarly formed on the light receiving surface 1A side by using, for example, a silicon nitride film using plasma CVD. Note that a passivation layer may be formed between the silicon nitride film and the n-type diffusion layer.

この場合、パッシベーション層はシリコン酸化膜、酸化アルミニウム膜の何れか、あるいは両方の積層が望ましい。パッシベーション層にシリコン酸化膜が用いられる場合は、一般的な熱酸化の他、前述の様に水洗やオゾン含有水の洗浄による酸化膜を用いても良い。また酸化アルミニウム膜が用いられる場合は、例えばプラズマCVDあるいはALD(Atomic Layer Deposition;原子堆積法)により形成される。この場合、成膜時に内包される固定電荷がパッシベーション能力を高める効果を持つ為、より好ましい。   In this case, the passivation layer is preferably a silicon oxide film, an aluminum oxide film, or a laminate of both. When a silicon oxide film is used for the passivation layer, an oxide film obtained by washing with water or washing with ozone-containing water as described above may be used in addition to general thermal oxidation. When an aluminum oxide film is used, it is formed, for example, by plasma CVD or ALD (Atomic Layer Deposition). In this case, since the fixed charge included at the time of film-forming has the effect of improving the passivation capability, it is more preferable.

なお、受光面反射防止膜15aと裏面絶縁膜15bおよび双方のパッシベーション層の形成順については、必ずしも上記の順番のみに限定されるものではなく、上記以外の順番を適宜選択し、形成しても良い。   Note that the order of formation of the light-receiving surface antireflection film 15a, the back surface insulating film 15b, and both passivation layers is not necessarily limited to the above-described order, and the order other than the above may be appropriately selected and formed. good.

その後、図3(d)に示すように、電極形成ステップS112で、受光面1A側と裏面1B側にそれぞれ、受光面電極16aと裏面電極16bとが形成される。電極材料としては、例えば銅、銀、アルミニウム、あるいはその混合物、などが用いられる。例えば、銅、銀、アルミニウムあるいはその混合物の金属紛体と、ガラス、セラミック成分の紛体と、有機溶剤とを混ぜてペースト状にしたものを、例えばスクリーン印刷により所望の形状のパターンに形成し、乾燥および焼成することで形成される。このようにして太陽電池が完成する。   Thereafter, as shown in FIG. 3D, in the electrode forming step S112, the light receiving surface electrode 16a and the back surface electrode 16b are formed on the light receiving surface 1A side and the back surface 1B side, respectively. As the electrode material, for example, copper, silver, aluminum, or a mixture thereof is used. For example, a paste made by mixing a metal powder of copper, silver, aluminum or a mixture thereof, glass, a ceramic component powder, and an organic solvent is formed into a pattern of a desired shape by, for example, screen printing, and then dried. And formed by firing. In this way, the solar cell is completed.

以上説明してきたように、本実施の形態1の方法によれば、固相拡散源のBSG膜2とシリコン酸化膜3の形成に際し、裏面に回り込んでボロンを含む生成物が形成されても、加熱する前に除去しているため、その後の加熱によっても裏面への不純物拡散を防止できる。   As described above, according to the method of the first embodiment, even when the BSG film 2 and the silicon oxide film 3 of the solid phase diffusion source are formed, even if a product including boron is formed around the back surface. Since it is removed before heating, impurity diffusion to the back surface can be prevented by subsequent heating.

従って、受光面と裏面に目的とする不純物以外の、逆の導電型を形成する不純物の混入あるいは、汚染物質の混入が抑制され、キャリア寿命の長い光電変換効率の高い太陽電池を得ることができる。   Therefore, it is possible to obtain a solar cell with a long carrier life and high photoelectric conversion efficiency, which is prevented from mixing impurities other than the target impurity on the light receiving surface and the back surface, or contamination of contaminants that form the opposite conductivity type. .

図5(a)および図5(b)はBSG膜2とシリコン酸化膜3の形成時に部分的に成膜不良部が生じた時のn型単結晶シリコン基板1の断面図を表したものであり、それぞれ前述の製造工程における図2(b)と図2(d)に対応する図である。図5(a)に示すように、成膜不良部9は、シリコン酸化膜形成不良部9aと、BSG形成不良部9bと、BSG膜かつシリコン酸化膜形成不良部9cと、に分けられる。成膜不良部9は、p型拡散層浅化部10a,10b、そしてp型拡散層未形成部10cからなるp型拡散層形成不良部10を形成する。   FIGS. 5A and 5B are cross-sectional views of the n-type single crystal silicon substrate 1 when a defective film formation portion is partially generated during the formation of the BSG film 2 and the silicon oxide film 3. FIG. 3 is a diagram corresponding to FIG. 2B and FIG. 2D in the above-described manufacturing process. As shown in FIG. 5A, the film formation failure portion 9 is divided into a silicon oxide film formation failure portion 9a, a BSG formation failure portion 9b, and a BSG film and silicon oxide film formation failure portion 9c. The defective film formation portion 9 forms the p-type diffusion layer formation failure portion 10 including the p-type diffusion layer shallowing portions 10a and 10b and the p-type diffusion layer non-forming portion 10c.

また、裏面の固相拡散源の除去に際し、受光面1Aがエッチングされ、受光面1A側の固相拡散源が薄くなるなどの欠陥が生じる場合もある。   Further, when removing the solid phase diffusion source on the back surface, the light receiving surface 1A may be etched to cause defects such as thinning of the solid phase diffusion source on the light receiving surface 1A side.

実施の形態1では、ステップS106における不純物拡散工程後に酸素O2を含む雰囲気にて図2(d)に示すように酸化処理を実施する。このため、成膜不良部9のうち、不純物拡散がなされないほど膜が薄膜化した箇所、例えばBSG膜かつシリコン酸化膜形成不良部9cの直下のn型単結晶シリコン基板1の受光面1Aには酸素が到達し、図5(b)に示すように裏面1B同様にシリコン酸化膜8が形成される。シリコン酸化膜8は炉体あるいは雰囲気中からの汚染物質の侵入を防ぐバリアとして機能するため、熱処理中の受光面1Aの汚染が防止される。すなわち、不純物拡散後に酸素が導入されることで成膜不良部9あるいは成膜されていない箇所、例えば裏面1Bには酸化膜が形成され、汚染物質の侵入を防止できるようになる。また、不純物拡散が行われる箇所についても不純物拡散が行われた後の酸素導入によりシリコン酸化膜8が形成される。In the first embodiment, after the impurity diffusion step in step S106, an oxidation process is performed in an atmosphere containing oxygen O 2 as shown in FIG. For this reason, a portion of the film formation failure portion 9 where the film is thinned so that impurity diffusion is not performed, for example, the light receiving surface 1A of the n-type single crystal silicon substrate 1 immediately below the BSG film and the silicon oxide film formation failure portion 9c. Oxygen reaches, and as shown in FIG. 5B, a silicon oxide film 8 is formed in the same manner as the back surface 1B. Since the silicon oxide film 8 functions as a barrier that prevents entry of contaminants from the furnace body or atmosphere, contamination of the light receiving surface 1A during heat treatment is prevented. That is, when oxygen is introduced after impurity diffusion, an oxide film is formed on the defective film portion 9 or a portion where no film is formed, for example, the back surface 1B, so that entry of contaminants can be prevented. In addition, the silicon oxide film 8 is formed by introducing oxygen after the impurity diffusion is performed at the location where the impurity diffusion is performed.

シリコン酸化膜8はn型拡散層14の形成の際、受光面1A側へのn型不純物の進入を防ぐバリアの一部として機能する。その厚さは5nm以上10nm以下が望ましい。5nm未満では後の工程でバリアとしての機能が乏しくなり、10nm以上ではバリア機能が大きくなる事が逆に働き、裏面1B側のn型拡散層が良好に形成されない危険性が増大する。裏面1B側へのn型不純物の不純物拡散工程において、受光面1A側にはn型不純物が拡散されないようにし、裏面1B側について良好にn型拡散層が形成されるために、受光面1A側の拡散工程後に実行される酸化工程は重要である。酸化の進行を制御し、シリコン酸化膜8の膜厚を5nm以上10nm以下に制御することで、拡散リークを低減し高効率の太陽電池を得ることができる。   When the n-type diffusion layer 14 is formed, the silicon oxide film 8 functions as a part of a barrier that prevents n-type impurities from entering the light receiving surface 1A. The thickness is desirably 5 nm or more and 10 nm or less. If it is less than 5 nm, the function as a barrier is poor in a later step, and if it is 10 nm or more, the increase in the barrier function works conversely, increasing the risk that the n-type diffusion layer on the back surface 1B side will not be well formed. In the impurity diffusion step of the n-type impurity to the back surface 1B side, the n-type impurity is prevented from diffusing on the light receiving surface 1A side, and the n-type diffusion layer is favorably formed on the back surface 1B side. The oxidation step performed after the diffusion step is important. By controlling the progress of oxidation and controlling the film thickness of the silicon oxide film 8 to 5 nm or more and 10 nm or less, diffusion leakage can be reduced and a highly efficient solar cell can be obtained.

また、この酸化工程でできるシリコン酸化膜は膜厚だけでなく膜質も重要であるが、800℃を超える拡散による熱処理後に酸素を導入することで実施されるため、ち密な膜質となっており、バリア性の高い膜となっている。このため、膜厚を5nm以上10nm以下に制御することで、裏面酸化膜除去ステップS107を省略することができる。つまりそのままで、受光面1A側へのn型不純物の進入を防ぐ一方で、裏面1B側へのn型不純物の拡散性を高めることができる。なお、裏面1Bの拡散に先立ち、裏面1Bのシリコン酸化膜8を除去する場合は、上限は10nmよりも厚くてもよい。   In addition, the silicon oxide film formed by this oxidation process is important not only for the film thickness but also for the film quality, but since it is implemented by introducing oxygen after heat treatment by diffusion exceeding 800 ° C., it has a dense film quality. It is a highly barrier film. For this reason, the back surface oxide film removal step S107 can be omitted by controlling the film thickness to 5 nm or more and 10 nm or less. That is, as it is, it is possible to improve the diffusibility of the n-type impurity to the back surface 1B side while preventing the n-type impurity from entering the light receiving surface 1A side. In the case where the silicon oxide film 8 on the back surface 1B is removed prior to the diffusion of the back surface 1B, the upper limit may be thicker than 10 nm.

なお、酸素を含む雰囲気は窒素あるいはアルゴンに代表される不活性ガスに酸素を10%から100%の流量比率で混合したものである。酸素が10%以下の場合はn型単結晶シリコン基板1表面の酸化速度が遅いため効果が得られ難く、かつn型単結晶シリコン基板1の、炉内の投入位置による酸化膜のムラあるいは基板表面の酸化膜ムラができ好ましくない。酸素を100%としてもよいが、酸化速度はn型単結晶シリコン基板1内部への酸素の拡散に律速されることと、酸素の流量比が大きくなるにつれ、酸化速度が増大するため、酸化工程の時間を短時間に制限する必要が出てくる。このため、好ましくは、15%から、炉内での酸素分布ムラを避けるための余裕分の酸素、例えば40%、を含んだ雰囲気中で加熱するのが良い。   Note that the atmosphere containing oxygen is a mixture of oxygen and an inert gas typified by nitrogen or argon at a flow rate ratio of 10% to 100%. When oxygen is 10% or less, the oxidation rate on the surface of the n-type single crystal silicon substrate 1 is slow, so that it is difficult to obtain the effect. Unevenness of the oxide film on the surface can occur, which is not preferable. Although oxygen may be 100%, the oxidation rate is limited by the diffusion of oxygen into the n-type single crystal silicon substrate 1, and the oxidation rate increases as the oxygen flow rate ratio increases. It is necessary to limit the time to a short time. For this reason, it is preferable to heat in an atmosphere containing oxygen from a margin of 15% to avoid oxygen distribution unevenness in the furnace, for example, 40%.

なお、スライスダメージの除去工程と、テクスチャの形成工程と、洗浄処理工程とは、実施の形態1の工程を説明するために用いた例であり、これらに限定されるものではなく、どのような工程が用いられてもよく、上記工程に制限されるものではない。同様に、裏面のn型拡散層14の形成工程と、pn接合の分離工程と、受光面反射防止膜15aと裏面絶縁膜15bの形成工程と、受光面電極16aと裏面電極16bの形成工程についても、どのような工程が用いられてもよく、上記工程に制限されるものではない。加えてn型拡散層14の形成工程から電極16の形成工程までは太陽電池として機能するのであれば適宜順序を入れ替えてもよく、記載の順序に制限されるものではない。   Note that the slice damage removing process, the texture forming process, and the cleaning process are examples used to describe the process of the first embodiment, and are not limited to these. A process may be used and is not limited to the above process. Similarly, the back surface n-type diffusion layer 14 forming step, the pn junction separation step, the light receiving surface antireflection film 15a and the back surface insulating film 15b forming step, and the light receiving surface electrode 16a and the back electrode 16b forming step. However, any process may be used and is not limited to the above process. In addition, the order from the step of forming the n-type diffusion layer 14 to the step of forming the electrode 16 may be appropriately changed as long as it functions as a solar cell, and is not limited to the order described.

また、説明のためにn型単結晶シリコン基板1と、固相拡散源にBSG膜2と、裏面1Bにリン拡散によるn型拡散層14とを用いたが、かかる構成に制限されるものでもない。太陽電池として機能するのであれば、基板については、多結晶シリコン基板、シリコンカーバイドなど他のシリコン系結晶基板を用いてもよく、導電型についてもp型の基板を用いてもよい。さらに固相拡散源はリンシリケートガラス(PSG)のようなn型の拡散層を形成する不純物を含むものを用いても良い。固相拡散源と逆面の拡散にはボロンのようなp型の拡散層を形成する不純物を用いてもよい。以上のように基板についても、受光面と裏面に形成する拡散層についても、p型、n型の何れを形成するか、および拡散層を形成する不純物元素は、適宜選択可能である。   Further, for the sake of explanation, the n-type single crystal silicon substrate 1, the BSG film 2 as the solid phase diffusion source, and the n-type diffusion layer 14 by phosphorous diffusion on the back surface 1B are used. Absent. As long as it functions as a solar cell, another silicon-based crystal substrate such as a polycrystalline silicon substrate or silicon carbide may be used as the substrate, and a p-type substrate may be used as the conductive type. Further, the solid phase diffusion source may be one containing impurities that form an n-type diffusion layer such as phosphorus silicate glass (PSG). For the diffusion opposite to the solid phase diffusion source, an impurity forming a p-type diffusion layer such as boron may be used. As described above, for the diffusion layer formed on the light receiving surface and the back surface of the substrate as well, it is possible to appropriately select the p-type or n-type and the impurity element forming the diffusion layer.

本実施の形態の太陽電池の製造方法によれば、炉内での連続熱処理ステップにおける、不活性ガス雰囲気で熱処理を行うステップS105の最後の一定時間、拡散温度に維持したまま酸素を拡散炉に導入することで、拡散を進めつつ酸化を実施することができる。つまり拡散炉に供給するガスの切替のみで、酸化が可能となり、工数の増大なしにシリコン酸化膜8を形成でき、シリコン酸化膜8裏面拡散時の受光面1A側への拡散バリアとして有効に作用する。また高温酸化による酸化膜であるため、膜質の良好な酸化膜を得ることができる。裏面の固相拡散源の除去に際し、受光面1Aがエッチングされ、受光面1A側の固相拡散源が薄くなるなどの欠陥が生じている場合も、このシリコン酸化膜8の存在により、受光面1A側のバリア性が向上し、裏面拡散の際の不純物の導入が防止される。   According to the method for manufacturing a solar cell of the present embodiment, oxygen is supplied to the diffusion furnace while maintaining the diffusion temperature for the last certain time in step S105 of performing the heat treatment in an inert gas atmosphere in the continuous heat treatment step in the furnace. By introducing it, oxidation can be carried out while promoting diffusion. In other words, the oxidation can be performed only by switching the gas supplied to the diffusion furnace, the silicon oxide film 8 can be formed without increasing the number of steps, and effectively acts as a diffusion barrier to the light receiving surface 1A side when the back surface of the silicon oxide film 8 is diffused. To do. Further, since the oxide film is formed by high-temperature oxidation, an oxide film with good film quality can be obtained. When removing the solid-phase diffusion source on the back surface, the light-receiving surface 1A is etched and a defect such as thinning of the solid-phase diffusion source on the light-receiving surface 1A side occurs. The barrier property on the 1A side is improved, and the introduction of impurities during back surface diffusion is prevented.

以上のようにして、受光面と裏面に目的とする不純物以外の、逆の導電型を形成する不純物の混入あるいは、汚染物質の混入が抑制され、キャリア寿命が長く光電変換効率の高い太陽電池が実現される。   As described above, a solar cell having a long carrier life and a high photoelectric conversion efficiency can be obtained by suppressing the mixing of impurities other than the intended impurity on the light receiving surface and the back surface, or the mixing of impurities that form the opposite conductivity type or contamination. Realized.

以上のようにして形成された太陽電池は、裏面1B側の第1導電型拡散層における第1導電型の不純物濃度は、第2導電型の不純物が形成されていない面に形成されるため、第1導電型の不純物の濃度は常に第1導電型拡散層全域において、第2導電型の不純物の濃度より高いため、第2導電型の不純物の影響を受けずに所望の第1導電型の不純物濃度を得ることができる。つまり裏面1B側より入射する反射光が効果的に発電に寄与することができるため、両面受光型太陽電池の特性を向上させることが可能となる。   In the solar cell formed as described above, the first conductivity type impurity concentration in the first conductivity type diffusion layer on the back surface 1B side is formed on the surface where the second conductivity type impurity is not formed. Since the concentration of the first conductivity type impurity is always higher than the concentration of the second conductivity type impurity in the entire region of the first conductivity type diffusion layer, the desired first conductivity type impurity is not affected by the second conductivity type impurity. Impurity concentration can be obtained. That is, since the reflected light incident from the back surface 1B side can effectively contribute to power generation, the characteristics of the double-sided light receiving solar cell can be improved.

実施の形態2.
実施の形態2にかかる太陽電池の製造方法は、実施の形態1に示した太陽電池の製造方法に対し、受光面側、裏面側の何れかまたは両方に、部分的な高濃度拡散層を形成する。裏面側の酸化膜除去工程とリン拡散工程を除き同一であるため、実施の形態1を参照することとして詳細な説明は省略する。
Embodiment 2. FIG.
In the solar cell manufacturing method according to the second embodiment, a partial high-concentration diffusion layer is formed on either or both of the light-receiving surface side and the back surface side as compared with the solar cell manufacturing method shown in the first embodiment. To do. Since it is the same except for the oxide film removal step on the back side and the phosphorus diffusion step, detailed description is omitted as referring to the first embodiment.

図6は、実施の形態2にかかる太陽電池の製造方法に関し、熱処理からpn接合の分離工程までを示すフローチャートである。図7(a)および図7(b)は、n型の不純物拡散工程中のn型単結晶シリコン基板1の断面の変化を表す模式図である。以下、図6および図7を用いて説明する。   FIG. 6 is a flowchart showing a process from the heat treatment to the pn junction separation process in the solar cell manufacturing method according to the second embodiment. FIG. 7A and FIG. 7B are schematic views showing changes in the cross section of the n-type single crystal silicon substrate 1 during the n-type impurity diffusion step. Hereinafter, a description will be given with reference to FIGS. 6 and 7.

実施の形態2にかかる太陽電池の製造方法では、p型拡散層7を形成するための熱処理工程であるステップS104,105,106を実施した後、連続して、図7(a)に示すように、固相拡散源の裏面側への成膜ステップS108a、熱処理工程である裏面拡散ステップS108bが実施される。ここでは、n型の導電型を示す不純物を高濃度、例えばリンを1×1020個/cm3以上含む拡散源17を裏面1Bのシリコン酸化膜8上に形成する。こののち、拡散源17形成後に、上記裏面拡散ステップS108bである、n型単結晶シリコン基板1には実施の形態1の裏面拡散ステップS108と同様、POCl3ガス雰囲気中で熱処理が施される。拡散源17からの不純物拡散は例えば、800℃から1000℃の温度で実施される。In the method for manufacturing the solar cell according to the second embodiment, after performing steps S104, 105, and 106, which are heat treatment steps for forming the p-type diffusion layer 7, as shown in FIG. In addition, a film forming step S108a on the back surface side of the solid phase diffusion source and a back surface diffusion step S108b which is a heat treatment step are performed. Here, a diffusion source 17 containing an n-type conductivity impurity at a high concentration, for example, 1 × 10 20 / cm 3 or more of phosphorus is formed on the silicon oxide film 8 on the back surface 1B. Thereafter, after the formation of the diffusion source 17, the n-type single crystal silicon substrate 1, which is the back surface diffusion step S108b, is subjected to heat treatment in a POCl 3 gas atmosphere as in the back surface diffusion step S108 of the first embodiment. Impurity diffusion from the diffusion source 17 is performed at a temperature of 800 ° C. to 1000 ° C., for example.

拡散源直下には裏面1Bに形成されたシリコン酸化膜8が存在しているが、その厚さは5nmから10nmと薄く、また拡散源17の不純物濃度は高濃度であるため、n型拡散層の形成にその影響が及ぶことはない。この部分の拡散源17は、POCl3ガスの熱分解により形成されるリンシリケートガラス(PSG)膜より形成されており、拡散源17と接触しているn型単結晶シリコン基板1内には不純物が拡散し高濃度のn型拡散層18が形成される。拡散源17に覆われていない領域にはn型拡散層18よりも低濃度のn型拡散層20が形成される。Although the silicon oxide film 8 formed on the back surface 1B exists immediately under the diffusion source, its thickness is as thin as 5 to 10 nm, and the impurity concentration of the diffusion source 17 is high. It will not affect its formation. The diffusion source 17 in this portion is formed of a phosphorous silicate glass (PSG) film formed by thermal decomposition of POCl 3 gas, and impurities are contained in the n-type single crystal silicon substrate 1 in contact with the diffusion source 17. Is diffused to form a high-concentration n-type diffusion layer 18. An n-type diffusion layer 20 having a lower concentration than the n-type diffusion layer 18 is formed in a region not covered with the diffusion source 17.

そしてpn接合分離ステップS109を経て、図1に示した裏面絶縁膜形成ステップS110、反射防止膜形成ステップS111、電極形成ステップS112が実施される。   Then, after the pn junction separation step S109, the back surface insulating film forming step S110, the antireflection film forming step S111, and the electrode forming step S112 shown in FIG. 1 are performed.

一方、拡散源17直下以外の領域のn型単結晶シリコン基板1は拡散源17から雰囲気中に脱離した不純物が付着するが、拡散源17自身の不純物濃度と比較すると濃度あるいは総量が低く、n型単結晶シリコン基板1の表面に形成された酸化膜を通過する事ができない。   On the other hand, the n-type single crystal silicon substrate 1 in a region other than directly under the diffusion source 17 is attached with impurities desorbed from the diffusion source 17 into the atmosphere, but its concentration or total amount is lower than the impurity concentration of the diffusion source 17 itself. It cannot pass through the oxide film formed on the surface of n-type single crystal silicon substrate 1.

したがって実施の形態2によれば、拡散層に2段階の濃度をもつ構造を形成する事が出来る。両者の配分を適切にとると、拡散源17直下以外の領域はより低濃度に抑える事が出来る為、より高効率の太陽電池が実現される。   Therefore, according to the second embodiment, a structure having two levels of concentration can be formed in the diffusion layer. If the distribution of the two is appropriately performed, the region other than the region directly below the diffusion source 17 can be suppressed to a lower concentration, so that a more efficient solar cell is realized.

以上のように、固相拡散源を形成する工程は、第2主面である裏面1Bに選択的に形成し、この固相拡散源17であるPSG膜からの拡散により、第1導電型であるn型拡散層20を形成する工程である。   As described above, the step of forming the solid phase diffusion source is selectively formed on the back surface 1B that is the second main surface, and the first conductivity type is formed by diffusion from the PSG film that is the solid phase diffusion source 17. This is a step of forming a certain n-type diffusion layer 20.

したがって実施の形態2によれば、裏面1Bの酸化膜除去工程を製造方法から除くことができるようになり、n型単結晶シリコン基板1に形成されるシリコン酸化膜8に影響を与えること無くn型不純物の拡散工程までを終了することができる。   Therefore, according to the second embodiment, the oxide film removing step on the back surface 1B can be removed from the manufacturing method, and n can be performed without affecting the silicon oxide film 8 formed on the n-type single crystal silicon substrate 1. The process up to the diffusion process of the type impurities can be completed.

なお、第1導電型の拡散層であるn型拡散層を形成する工程は、n型単結晶シリコン基板1の第2主面である裏面1Bに1×1020個/cm3以上の不純物を含む拡散源を形成するものである。この方法により、拡散源が接触している部位にシリコン酸化膜が存在していたとしても不純物拡散層を形成することができn型単結晶シリコン基板1の裏面1Bのシリコン酸化膜8を除去する工程を省略することができる。加えて太陽電池基板であるn型単結晶シリコン基板1の表面全域がシリコン酸化膜8で覆われたまま拡散源からの拡散が実施されるため、拡散源から雰囲気中に放出される不純物がn型単結晶シリコン基板1に付着したとしても基板内部に拡散されることがない。In the step of forming the n-type diffusion layer which is the first conductivity type diffusion layer, impurities of 1 × 10 20 / cm 3 or more are applied to the back surface 1B which is the second main surface of the n-type single crystal silicon substrate 1. It forms a diffusion source containing. By this method, an impurity diffusion layer can be formed even if a silicon oxide film is present at a portion in contact with the diffusion source, and the silicon oxide film 8 on the back surface 1B of the n-type single crystal silicon substrate 1 is removed. The process can be omitted. In addition, since the diffusion from the diffusion source is performed while the entire surface of the n-type single crystal silicon substrate 1 that is a solar cell substrate is covered with the silicon oxide film 8, impurities released from the diffusion source into the atmosphere are n. Even if it adheres to the type single crystal silicon substrate 1, it does not diffuse inside the substrate.

以上のように、実施の形態2にかかる太陽電池の製造方法によれば、裏面の酸化膜除去工程が不要となるため、p型とn型の不純物が隣接するリークパスの形成が防止され、ダイオード特性の優れた太陽電池が実現される。   As described above, according to the method for manufacturing the solar cell according to the second embodiment, the step of removing the oxide film on the back surface is not required, so that the formation of a leak path in which p-type and n-type impurities are adjacent to each other can be prevented. A solar cell with excellent characteristics is realized.

なお、実施の形態1および実施の形態2に示す太陽電池の製造方法に対し、加熱処理の際に、拡散工程で用いられる拡散炉へのシリコン基板の投入方法の一例を図8に示す。片面への不純物拡散を行うために、熱処理炉への基板の投入方法を示す図である。   Note that FIG. 8 illustrates an example of a method for introducing a silicon substrate into a diffusion furnace used in a diffusion process in the heat treatment for the solar cell manufacturing method described in Embodiments 1 and 2. It is a figure which shows the injection | throwing-in method of the board | substrate to a heat processing furnace in order to perform the impurity diffusion to one side.

加熱炉200に対してボート201に載置したn型単結晶シリコン基板1を投入し、熱拡散を行うものである。受光面側のp層拡散層、裏面側のn層拡散層の何れかまたは両方を形成するに際し、加熱炉200に対して図8に示す様にn型単結晶シリコン基板1の2枚を重ね合せて1組として投入し、加熱する。p層拡散層の形成の場合は裏面側を、n層拡散層形成の場合は受光面側を、それぞれ合わせ面として2枚1組として加熱する。   The n-type single crystal silicon substrate 1 placed on the boat 201 is loaded into the heating furnace 200 to perform thermal diffusion. When forming either or both of the p-layer diffusion layer on the light-receiving surface side and the n-layer diffusion layer on the back surface side, two sheets of the n-type single crystal silicon substrate 1 are stacked on the heating furnace 200 as shown in FIG. Add them together as a set and heat. In the case of forming the p-layer diffusion layer, the back surface side is heated, and in the case of the n-layer diffusion layer formation, the light-receiving surface side is heated as a pair of two, respectively.

合わせ面にした面は、その形態の特徴から、加熱中の雰囲気への接触が制限され、成膜された固相拡散源からの離脱分あるいはリンシリケートガラス(PSG)膜の付着が抑制される。これにより、p層拡散加熱の場合は裏面、n層拡散加熱の場合は受光面の望まない不純物からの浸透を更に抑制する事が出来る。従って、更にリーク電流の少ない高品質の太陽電池が実現される。   Due to the characteristics of the shape of the mating surfaces, contact with the atmosphere during heating is limited, and the separation from the formed solid phase diffusion source or adhesion of the phosphorous silicate glass (PSG) film is suppressed. . Thereby, in the case of p layer diffusion heating, the penetration from the undesired impurities on the back surface and in the case of n layer diffusion heating can be further suppressed. Therefore, a high-quality solar cell with less leakage current is realized.

本実施の形態では、熱処理工程後、形成した拡散層とは異なる導電型拡散層を形成する工程における、保護膜としてのシリコン酸化膜の一部を除去している。従って平易なガスによる不純物拡散を使用できるようになり、酸化膜除去部以外は膜が残存するため不純物が混入しリークパスが形成されるのを防止することができる。   In the present embodiment, after the heat treatment step, a part of the silicon oxide film as a protective film in the step of forming a conductive diffusion layer different from the formed diffusion layer is removed. Accordingly, it becomes possible to use impurity diffusion by a simple gas, and since the film remains except for the oxide film removal portion, it is possible to prevent the entry of impurities and the formation of a leak path.

以上説明してきたように、実施の形態1および2では、固相拡散源となる、不純物を含む膜を成膜した後に、裏面側の拡散源を除去した後熱処理を行うことで裏面の生成物からの不純物拡散を防止するための製造工程を示すものである。具体的には熱処理の際に、通例の熱処理では窒素、アルゴンなどの不活性ガスを用いて処理を実施するところを、後で、酸素を流入させた雰囲気中で熱処理を実施し、2段熱処理を実施する。酸素の供給は、固相拡散源の膜から不純物を拡散させる酸素を含まない雰囲気の熱処理の後に実施する。すわなち、炉投入後に触れる酸素によって基板裏面の生成物と基板界面に拡散バリアとしての酸化膜が形成され、酸素の供給が止められた中で成膜物から不純物拡散が実施され、成膜面のみに不純物が拡散される。そして熱処理最後に流入させる酸素によって固相拡散源の成膜面にも酸化膜が形成され、続いて実施される別種の拡散に対してのバリアとしての機能が付加される。この方法によって成膜面にのみ不純物を拡散させることができる。   As described above, in the first and second embodiments, after forming a film containing an impurity serving as a solid phase diffusion source, the diffusion source on the back side is removed, and then the heat treatment is performed to remove the product on the back side. The manufacturing process for preventing the impurity diffusion from is shown. Specifically, in the case of the heat treatment, in the usual heat treatment, the treatment is performed using an inert gas such as nitrogen or argon, and then the heat treatment is performed in an atmosphere in which oxygen is introduced to perform a two-stage heat treatment. To implement. The supply of oxygen is performed after a heat treatment in an atmosphere not containing oxygen for diffusing impurities from the film of the solid phase diffusion source. In other words, the oxygen touched after furnace entry forms an oxide film as a diffusion barrier on the substrate backside with the product on the backside of the substrate. Impurity diffusion is performed from the film while the supply of oxygen is stopped. Impurities are diffused only on the surface. An oxide film is also formed on the film-forming surface of the solid-phase diffusion source by oxygen introduced at the end of the heat treatment, and a function as a barrier against another type of diffusion performed subsequently is added. By this method, impurities can be diffused only on the film formation surface.

なお、拡散工程後の酸化工程は、実施の形態1で図4を用いて説明したように、拡散のための熱処理工程の最後の必要時間だけ、酸素を導入することで実施してもよいし、熱処理工程後の降温工程で必要時間だけ、酸素を導入してもよい。また、拡散炉の温度を一旦常温まで降下させた後、酸化熱処理工程を実施してもよい。   Note that the oxidation step after the diffusion step may be performed by introducing oxygen only for the last necessary time of the heat treatment step for diffusion, as described in Embodiment 1 with reference to FIG. In addition, oxygen may be introduced for a necessary time in the temperature lowering step after the heat treatment step. In addition, after the temperature of the diffusion furnace is once lowered to room temperature, an oxidation heat treatment step may be performed.

また実施の形態1から2において、不純物拡散を行うための熱処理工程における温度は、拡散すべき不純物の種類によって決定され、適宜変更可能である。また拡散雰囲気についても、不純物の種類により、拡散速度を制御するために、水素雰囲気などの還元性雰囲気とすることも可能であり、適宜調整可能である。   In Embodiments 1 and 2, the temperature in the heat treatment step for impurity diffusion is determined by the type of impurity to be diffused and can be changed as appropriate. Also, the diffusion atmosphere can be a reducing atmosphere such as a hydrogen atmosphere in order to control the diffusion rate depending on the type of impurities, and can be adjusted as appropriate.

また、実施の形態1,2では、半導体基板としてn型単結晶シリコン基板を用いたが、p型単結晶シリコン基板をはじめ、p型およびn型多結晶シリコン基板など、他の結晶系シリコン基板あるいは、シリコンカーバイドSiCなどのシリコン化合物をはじめとする化合物半導体を用いた拡散層の形成にも適用可能であることはいうまでもない。そして半導体基板の導電型に対応して第1および第2導電型の不純物もそれぞれ、決まることになるが、不純物の種類については、n型不純物である、リン、ヒ素、p型不純物であるボロン、ガリウムの他にも通例の不純物が適用可能であることはいうまでもない。   In the first and second embodiments, an n-type single crystal silicon substrate is used as a semiconductor substrate. However, other crystal silicon substrates such as a p-type single crystal silicon substrate, p-type and n-type polycrystalline silicon substrates, and the like. Alternatively, it goes without saying that the present invention can also be applied to the formation of a diffusion layer using a compound semiconductor including a silicon compound such as silicon carbide SiC. The impurities of the first and second conductivity types are also determined in accordance with the conductivity type of the semiconductor substrate. The types of impurities are n-type impurities such as phosphorus, arsenic, and p-type impurities. Needless to say, the usual impurities other than gallium are applicable.

本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態およびその変形は、発明の範囲に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope of the invention, and also included in the invention described in the claims and the equivalents thereof.

1 n型単結晶シリコン基板、1A 受光面、1B 裏面、2 BSG膜、3 シリコン酸化膜、4 ボロン含有生成物、5 酸化シリコン含有生成物、7 p型拡散層、8 シリコン酸化膜、9 成膜不良部、9a シリコン酸化膜形成不良部、9b BSG形成不良部、9c BSG膜かつシリコン酸化膜形成不良部、10 p型拡散層形成不良部、10a,10b p型拡散層浅化部、10c p型拡散層未形成部、14 n型拡散層、15a 受光面反射防止膜、15b 裏面絶縁膜、16 電極、16a 受光面電極、16b 裏面電極、17 拡散源、18 n型拡散層、200 加熱炉、201 ボート。   1 n-type single crystal silicon substrate, 1A light-receiving surface, 1B back surface, 2 BSG film, 3 silicon oxide film, 4 boron-containing product, 5 silicon oxide-containing product, 7 p-type diffusion layer, 8 silicon oxide film, 9 composition Film failure portion, 9a Silicon oxide film formation failure portion, 9b BSG formation failure portion, 9c BSG film and silicon oxide film formation failure portion, 10 p-type diffusion layer formation failure portion, 10a, 10b p-type diffusion layer shallowening portion, 10c p-type diffusion layer non-formed portion, 14 n-type diffusion layer, 15a light-receiving surface antireflection film, 15b back surface insulating film, 16 electrodes, 16a light-receiving surface electrode, 16b back surface electrode, 17 diffusion source, 18 n-type diffusion layer, 200 heating Furnace, 201 boats.

しかしながら、上記特許文献1に示される太陽電池の製造方法にあっては、リンシリケートガラス(PSG:Phosphorus Silicate Glass)膜、あるいはボロンシリケートガラス(BSG:Boron Silicate Glass)膜を基板上に成膜した後に窒素雰囲気中で不純物拡散のための熱処理を行っている。このため、成膜時に基板裏面にリンあるいはボロンなどの不純物が回り込み、付着した生成物から、裏面への不純物拡散も同時に生じるため意図しない裏面への不純物の混入が発生するという問題があった。不純物の混入は太陽電池のキャリア寿命の低下を招くことになる。 However, in the method for manufacturing a solar cell disclosed in Patent Document 1, a phosphorous silicate glass (PSG) film or a boron silicate glass (BSG) film is formed on a substrate. It is subjected to a heat treatment for impurity diffusion in a nitrogen Kiri囲care after. For this reason, there is a problem in that impurities such as phosphorus or boron circulate on the back surface of the substrate during film formation, and impurities diffuse to the back surface simultaneously from the attached product, so that impurities are unintentionally mixed into the back surface. Impurity contamination leads to a reduction in the carrier life of the solar cell.

本発明は、上述した課題を解決し、目的を達成するために、第1および第2主面を有する第1導電型の半導体基板の第1主面にCVD法により固相拡散源を成膜する工程と、半導体基板を加熱し、固相拡散源から、第2導電型の不純物を拡散させ、第2導電型の拡散層を形成する熱処理工程とを含む太陽電池の製造方法において、熱処理工程に先立ち、第2主面に成膜された固相拡散源を除去する工程を含む。 In order to solve the above-described problems and achieve the object, the present invention forms a solid phase diffusion source on the first main surface of the first conductivity type semiconductor substrate having the first and second main surfaces by the CVD method. And a heat treatment step of heating the semiconductor substrate, diffusing impurities of the second conductivity type from the solid phase diffusion source, and forming a diffusion layer of the second conductivity type. Prior to the step, a step of removing the solid phase diffusion source formed on the second main surface is included.

実施の形態1にかかる太陽電池は、受光面1Aとなる第1の主面と裏面1Bとなる第2の主面をもつ第1導電型の半導体基板としてのn型単結晶シリコン基板1を用いる。図1、図2(a)から(d)、図3(a)から(d)および図4を用いて製造方法を説明する。まず、ダメージ層除去ステップS101で、インゴットをウエハスライスする時にウエハの表面に生じた汚染あるいはダメージを、例えば1wt%以上10wt%未満の水酸化ナトリウムを溶解させたアルカリ溶液、に浸漬させて除去した後、n型単結晶シリコン基板1の受光面1Aに、例えば0.1%以上10%未満のアルカリ溶液中にイソプロピルアルコールあるいはカプリル酸等の添加剤を加えて溶液に浸漬させて反射防止構造を得るための凹凸であるテクスチャを形成する。なお、スライス汚染およびダメージの除去と、テクスチャの形成は同時にあるいは個別に行ってもよい。テクスチャの形成は受光面のみならず裏面にも形成してもよい。図2および図3においては理解を容易にするためテクスチャは図示せず、受光面、裏面共に平坦面として示す。 The solar cell according to the first embodiment uses an n-type single crystal silicon substrate 1 as a first conductivity type semiconductor substrate having a first main surface serving as a light receiving surface 1A and a second main surface serving as a back surface 1B. . The manufacturing method will be described with reference to FIGS. 1, 2A to 2D, FIGS. 3A to 3D, and FIG. First, damage layer removal step S101, and the contamination or damage that sometimes occurs on the surface of the wafer slicing the ingot into wafers, for example, an alkali was dissolved sodium hydroxide of less than 1 wt% or more 10 wt% solution, was immersed in removing After that, an antireflection structure is formed by adding an additive such as isopropyl alcohol or caprylic acid in an alkaline solution of 0.1% or more and less than 10% to the light receiving surface 1A of the n-type single crystal silicon substrate 1 and immersing it in the solution. The texture which is the unevenness | corrugation for obtaining is formed. The removal of slice contamination and damage and the formation of texture may be performed simultaneously or individually. The texture may be formed not only on the light receiving surface but also on the back surface. 2 and 3, the texture is not shown for easy understanding, and both the light receiving surface and the back surface are shown as flat surfaces.

図6は、実施の形態2にかかる太陽電池の製造方法に関し、裏面の固相拡散源の除去処理からpn接合の分離工程までを示すフローチャートである。図7(a)および図7(b)は、n型の不純物拡散工程中のn型単結晶シリコン基板1の断面の変化を表す模式図である。以下、図6および図7を用いて説明する。 FIG. 6 is a flowchart showing the process from the removal process of the solid phase diffusion source on the back surface to the separation process of the pn junction in the method for manufacturing the solar cell according to the second embodiment. FIG. 7A and FIG. 7B are schematic views showing changes in the cross section of the n-type single crystal silicon substrate 1 during the n-type impurity diffusion step. Hereinafter, a description will be given with reference to FIGS. 6 and 7.

実施の形態2にかかる太陽電池の製造方法では、p型拡散層7を形成するための処理工程であるステップS104,105,106を実施した後、連続して、図7(a)に示すように、固相拡散源の裏面側への成膜ステップS108a、熱処理工程である裏面拡散ステップS108bが実施される。ここでは、n型の導電型を示す不純物を高濃度、例えばリンを1×1020個/cm3以上含む拡散源17を裏面1Bのシリコン酸化膜8上に形成する。こののち、拡散源17形成後に、上記裏面拡散ステップS108bである、n型単結晶シリコン基板1には実施の形態1の裏面拡散ステップS108と同様、POCl3ガス雰囲気中で熱処理が施される。拡散源17からの不純物拡散は例えば、800℃から1000℃の温度で実施される。 The method of manufacturing a solar cell according to the second embodiment, after performing the step S104,105,106 is more punished Polytechnic for forming a p-type diffusion layer 7, sequentially shown in FIGS. 7 (a) As described above, the film forming step S108a on the back surface side of the solid phase diffusion source and the back surface diffusion step S108b which is a heat treatment step are performed. Here, a diffusion source 17 containing an n-type conductivity impurity at a high concentration, for example, 1 × 10 20 / cm 3 or more of phosphorus is formed on the silicon oxide film 8 on the back surface 1B. Thereafter, after the formation of the diffusion source 17, the n-type single crystal silicon substrate 1, which is the back surface diffusion step S108b, is subjected to heat treatment in a POCl 3 gas atmosphere as in the back surface diffusion step S108 of the first embodiment. Impurity diffusion from the diffusion source 17 is performed at a temperature of 800 ° C. to 1000 ° C., for example.

Claims (7)

第1および第2主面を有する第1導電型の半導体基板に固相拡散源を成膜する工程と、
前記半導体基板を加熱し、前記固相拡散源から、第2導電型の不純物を拡散させ、第2導電型の拡散層を形成する熱処理工程とを含み、
前記熱処理工程に先立ち、
前記第2主面に成膜された前記固相拡散源を除去する工程を含むことを特徴とする太陽電池の製造方法。
Forming a solid phase diffusion source on a first conductivity type semiconductor substrate having first and second main surfaces;
Heating the semiconductor substrate, diffusing impurities of the second conductivity type from the solid phase diffusion source, and forming a diffusion layer of the second conductivity type,
Prior to the heat treatment step,
A method for manufacturing a solar cell, comprising a step of removing the solid phase diffusion source formed on the second main surface.
前記熱処理工程後、酸素含有雰囲気中で連続して加熱し酸化膜を形成する酸化熱処理工程を含むことを特徴とする請求項1に記載の太陽電池の製造方法。   2. The method of manufacturing a solar cell according to claim 1, further comprising an oxidation heat treatment step of forming an oxide film by continuously heating in an oxygen-containing atmosphere after the heat treatment step. 前記酸化熱処理工程は、膜厚5nm以上10nm以下の酸化膜を成膜する工程であることを特徴とする請求項2に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 2, wherein the oxidation heat treatment step is a step of forming an oxide film having a thickness of 5 nm to 10 nm. 前記熱処理工程は、前記半導体基板を2枚重ねとし、前記第1主面を外側に、前記第2主面を合わせ面側とし、重ね合わせた状態で実施することを特徴とする請求項1から3のいずれか1項に記載の太陽電池の製造方法。   2. The heat treatment step is performed in a state in which the two semiconductor substrates are stacked, the first main surface is on the outer side, and the second main surface is on the mating surface side, and are stacked. 4. The method for producing a solar cell according to any one of 3 above. 前記第2導電型の拡散層を形成する工程は、前記第2主面の一部に選択的に前記固相拡散源を形成する工程を含むことを特徴とする請求項1から4のいずれか1項に記載の太陽電池の製造方法。   5. The step of forming a diffusion layer of the second conductivity type includes a step of selectively forming the solid phase diffusion source on a part of the second main surface. 2. A method for producing a solar cell according to item 1. 前記第2導電型の拡散層を形成する工程は、前記酸化熱処理工程で形成された酸化膜を前記第2主面に残留させたまま、前記酸化膜を介して前記第2主面に選択的に前記固相拡散源を形成する工程を含むことを特徴とする請求項1から5のいずれか1項に記載の太陽電池の製造方法。   The step of forming the diffusion layer of the second conductivity type is selectively performed on the second main surface through the oxide film while the oxide film formed in the oxidation heat treatment step remains on the second main surface. The method for producing a solar cell according to claim 1, further comprising a step of forming the solid phase diffusion source. 第1および第2主面を有する第1導電型の半導体基板と、
前記第1主面に形成された第2導電型の不純物拡散層と、
前記第2主面に形成された第1導電型の不純物拡散層とを含み、
前記第2主面上の第1導電型の不純物拡散層の濃度は全域において第2導電型の不純物拡散層の濃度より高いことを特徴とする太陽電池。
A first conductivity type semiconductor substrate having first and second main surfaces;
An impurity diffusion layer of a second conductivity type formed on the first main surface;
An impurity diffusion layer of a first conductivity type formed on the second main surface,
The concentration of the first conductivity type impurity diffusion layer on the second main surface is higher than the concentration of the second conductivity type impurity diffusion layer in the entire region.
JP2017538487A 2015-09-07 2015-09-07 Manufacturing method of solar cell Expired - Fee Related JP6440853B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075335 WO2017042862A1 (en) 2015-09-07 2015-09-07 Solar cell manufacturing method and solar cell

Publications (2)

Publication Number Publication Date
JPWO2017042862A1 true JPWO2017042862A1 (en) 2018-01-25
JP6440853B2 JP6440853B2 (en) 2018-12-19

Family

ID=58239282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017538487A Expired - Fee Related JP6440853B2 (en) 2015-09-07 2015-09-07 Manufacturing method of solar cell

Country Status (4)

Country Link
JP (1) JP6440853B2 (en)
CN (1) CN107851681A (en)
TW (1) TWI654773B (en)
WO (1) WO2017042862A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201903851A (en) * 2017-06-13 2019-01-16 日商東京應化工業股份有限公司 Manufacturing method of tantalum substrate for solar cell element
CN110459642B (en) * 2018-11-06 2021-07-20 协鑫集成科技股份有限公司 Passivated contact cell and method of making same
CN110137306A (en) * 2019-05-08 2019-08-16 苏州联诺太阳能科技有限公司 A kind of chemical etching method of the battery with transparent conductive oxide film
CN114792745B (en) * 2022-06-24 2023-05-23 山东芯源微电子有限公司 Efficient doping method for solar power generation substrate wire area

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173208A (en) * 1996-12-10 1998-06-26 Sharp Corp Manufacture of solar cell
US20010050170A1 (en) * 2000-01-06 2001-12-13 Rune Woie Method and apparatus for downhole production zone
JP2011061020A (en) * 2009-09-10 2011-03-24 Sharp Corp Back contact solar cell element, and method of manufacturing the same
JP2012049424A (en) * 2010-08-30 2012-03-08 Shin Etsu Chem Co Ltd Solar cell and method of manufacturing the same
WO2015087472A1 (en) * 2013-12-13 2015-06-18 信越化学工業株式会社 Production method for solar cells and solar cell obtained by said production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296103A (en) * 2012-02-29 2013-09-11 日本琵维吉咨询株式会社 Solar cell unit and manufacturing method thereof
NL2010116C2 (en) * 2013-01-11 2014-07-15 Stichting Energie Method of providing a boron doped region in a substrate and a solar cell using such a substrate.
CN103996744A (en) * 2014-05-23 2014-08-20 奥特斯维能源(太仓)有限公司 Method for manufacturing PERT crystalline silicon solar battery by adopting novel doping mode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173208A (en) * 1996-12-10 1998-06-26 Sharp Corp Manufacture of solar cell
US20010050170A1 (en) * 2000-01-06 2001-12-13 Rune Woie Method and apparatus for downhole production zone
JP2011061020A (en) * 2009-09-10 2011-03-24 Sharp Corp Back contact solar cell element, and method of manufacturing the same
JP2012049424A (en) * 2010-08-30 2012-03-08 Shin Etsu Chem Co Ltd Solar cell and method of manufacturing the same
WO2015087472A1 (en) * 2013-12-13 2015-06-18 信越化学工業株式会社 Production method for solar cells and solar cell obtained by said production method

Also Published As

Publication number Publication date
TWI654773B (en) 2019-03-21
CN107851681A (en) 2018-03-27
TW201721898A (en) 2017-06-16
JP6440853B2 (en) 2018-12-19
WO2017042862A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
KR101241617B1 (en) Solar cell and method of manufacturing the same
JP6246744B2 (en) Method for manufacturing solar battery cell
US20110272020A1 (en) Solar cell and method for producing a solar cell from a silicon substrate
JP6440853B2 (en) Manufacturing method of solar cell
TWI641154B (en) Solar cell and solar cell manufacturing method
WO2009131111A1 (en) Solar cell manufacturing method, solar cell manufacturing apparatus, and solar cell
TW201911588A (en) Solar cell and manufacturing method thereof
TW201806173A (en) Solar cell with doped polysilicon surface areas and method for manufacturing thereof
JP2014220276A (en) Method of manufacturing solar cell and solar cell
WO2010110106A1 (en) Method of producing photoelectric conversion element, and photoelectric conversion element
CN116741877A (en) TBC battery preparation method and TBC battery
JP6125114B2 (en) Manufacturing method of solar cell
JP5830143B1 (en) Method for manufacturing solar battery cell
JP6688244B2 (en) High efficiency solar cell manufacturing method and solar cell manufacturing system
JP6559326B2 (en) Manufacturing method of solar cell
TWI606601B (en) Sonar cell and a method of fabricaitng sonar cell
JP4832727B2 (en) Solar cell manufacturing method and solar cell
JP6239156B2 (en) Manufacturing method of solar cell
KR20100061122A (en) Manufacturing method of wafer
KR101065592B1 (en) Method of manufacturing a solar cell
CN117691000A (en) Preparation method of solar cell, solar cell and photovoltaic module
JP2015109361A (en) Method of manufacturing solar cell
JP2014072202A (en) Photoelectric conversion element and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181120

R150 Certificate of patent or registration of utility model

Ref document number: 6440853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees