TW201911588A - Solar cell and manufacturing method thereof - Google Patents

Solar cell and manufacturing method thereof Download PDF

Info

Publication number
TW201911588A
TW201911588A TW107125181A TW107125181A TW201911588A TW 201911588 A TW201911588 A TW 201911588A TW 107125181 A TW107125181 A TW 107125181A TW 107125181 A TW107125181 A TW 107125181A TW 201911588 A TW201911588 A TW 201911588A
Authority
TW
Taiwan
Prior art keywords
layer
impurity
solar cell
film
concentration
Prior art date
Application number
TW107125181A
Other languages
Chinese (zh)
Inventor
西村邦彦
綿引達郎
屋敷保聡
森岡孝之
時岡秀忠
Original Assignee
日商三菱電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱電機股份有限公司 filed Critical 日商三菱電機股份有限公司
Publication of TW201911588A publication Critical patent/TW201911588A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

An objective of the present invention is to provide a technique capable of increasing the open circuit voltage of the solar cell. A solar cell includes a semiconductor layer, a first impurity layer, a tunnel layer containing oxygen, a second impurity layer, and an electrode. The tunnel layer is disposed between the semiconductor layer and the first impurity layer, the second impurity layer is disposed between the semiconductor layer and the tunnel layer, and the electrode is connected to the first impurity layer. The tunnel layer and the first impurity layer contain the same impurity as the impurity of the second impurity layer, and the concentration of the impurity of the tunnel layer is higher than the concentration of each of the first impurity layer and the second impurity layer.

Description

太陽能電池及其製造方法  Solar cell and method of manufacturing same  

本發明係有關太陽能電池及其製造方法 The invention relates to a solar cell and a method of manufacturing the same

在作為典型上的太陽能電池方面,乃有結晶系的矽太陽能電池。結晶系的矽太陽能電池係使用單晶矽或多晶矽的基板,特別是使用有單晶矽基板的太陽能電池係具有較高的轉換效率。於結晶系矽太陽能電池中,為了其開路電壓(也稱為「斷路電壓」)的提升,乃廣泛應用鈍化(passivation)技術。具體而言,係於基板表面形成非常薄的氧化膜,並於其上配設矽摻雜層。該較薄的氧化膜係作為穿隧(tunnel)氧化物層而發揮功能。藉由穿隧氧化物層形成的能帶障壁層(band barrier layer)與摻雜層所構成的電場效果,而使少數的載子(carrier)被斥回基板側。藉此,由於少數的載子的再結合被抑制,所以能夠獲得超過700mV之較高的開路電壓。相對於此,因多數載子的輸送係藉由穿隧效果而可順利地進行,故可避免起因於穿隧氧化物層所造成的串聯電阻的增大。由以上說明,藉由鈍化技術能夠兼具較高的開路電壓與填充因數。 In terms of a typical solar cell, there is a crystalline solar cell. A crystalline solar cell is a substrate using single crystal germanium or polycrystalline germanium, and in particular, a solar cell using a single crystal germanium substrate has high conversion efficiency. In the crystallization solar cell, a passivation technique is widely used for the improvement of the open circuit voltage (also referred to as "open circuit voltage"). Specifically, a very thin oxide film is formed on the surface of the substrate, and an antimony doped layer is disposed thereon. The thin oxide film functions as a tunnel oxide layer. A small number of carriers are repelled back to the substrate side by the electric field effect of the band barrier layer formed by the tunnel oxide layer and the doped layer. Thereby, since the recombination of a small number of carriers is suppressed, a higher open circuit voltage exceeding 700 mV can be obtained. On the other hand, since the transport of the majority carriers can be smoothly performed by the tunneling effect, the increase in the series resistance due to the tunneling oxide layer can be avoided. From the above description, a high open circuit voltage and a fill factor can be achieved by the passivation technique.

非專利文獻1所揭示的技術,係依序將穿隧氧化物層及摻磷矽層形成於n型矽基板的背面之後,以大於600℃小於1000℃的溫度進行熱處理。其後,於摻磷矽層上整面直接形成背面電極。在作為該電極的形成上,係將Ti/Pd/Ag之晶種層(seed layer)予以熱蒸著之後進行鍍銀。 The technique disclosed in Non-Patent Document 1 sequentially forms a tunneling oxide layer and a phosphorus-doped germanium layer on the back surface of the n-type germanium substrate, and then heat-treats at a temperature of more than 600 ° C and less than 1000 ° C. Thereafter, the back electrode is directly formed on the entire surface of the phosphorus doped layer. As a formation of the electrode, a seed layer of Ti/Pd/Ag is thermally evaporated, and then silver plating is performed.

專利文獻1揭示有包含於射極區域等導電型區域之複數個部分夾著穿隧氧化物層的構成。依據如此的構成,可達到將再結合最小化,並且提升與電極之電性連接的特性。 Patent Document 1 discloses a configuration in which a plurality of portions included in a conductive type region such as an emitter region sandwich a tunnel oxide layer. According to such a configuration, it is possible to minimize the recombination and improve the electrical connection with the electrodes.

(先前技術文獻)  (previous technical literature)   (專利文獻)  (Patent Literature)  

專利文獻1:日本特開2014-204128號公報 Patent Document 1: Japanese Laid-Open Patent Publication No. 2014-204128

(非專利文獻)  (Non-patent literature)  

非專利文獻1:F.Feldmann et al., “Passivated rear contacts for high-efficiency n-type Si Solar Cells providing high interface passivation quality and excellent transport characteristics”, Solar Energy Materials & Solar Cells 120, (2014), p.270-274 Non-Patent Document 1: F. Feldmann et al., "Passivated rear contacts for high-efficiency n-type Si Solar Cells providing high interface passivation quality and excellent transport characteristics", Solar Energy Materials & Solar Cells 120, (2014), p .270-274

然而,非專利文獻1所揭示之技術,係使 用蒸著法及鍍敷法而於與穿隧氧化物層一同構成穿隧接合的摻雜層上形成用以收集光電流的電極。但是,該種技術在基板與穿隧氧化物層之間的界面存在再結合位準的情形時,會有開路電壓降低之虞。 However, the technique disclosed in Non-Patent Document 1 uses an evaporation method and a plating method to form an electrode for collecting a photocurrent on a doped layer which is tunnel-engaged together with a tunnel oxide layer. However, in such a technique, when there is a recombination level at the interface between the substrate and the tunneling oxide layer, there is a possibility that the open circuit voltage is lowered.

另一方面,如專利文獻1所示,包含於導電型區域之複數個部分夾著穿隧氧化物層的構成中,藉由基板與穿隧氧化物層之間之低濃度的摻雜層而產生電場效應。藉由該電場效應,會使場數載子遠離基板與穿隧氧化物層之間的界面的位準,所以會改善開路電壓。然而,難以確保於低濃度之摻雜層中的摻雜濃度的穩定化及面內均一性。而且,低濃度摻雜層的摻雜濃度過高時,奧杰復合(Auger recombination)會增加而開路電壓會降低,反之,低濃度摻雜層的摻雜濃度過低時,電場效果弱,界面再結合會增加而開路電壓會降低。因此,在無法達到低濃度摻雜層之摻雜濃度的穩定化的構成中,存在有無法維持較高開路電壓的問題。 On the other hand, as shown in Patent Document 1, a plurality of portions included in the conductive type region sandwich the tunnel oxide layer, and a low concentration doping layer between the substrate and the tunnel oxide layer is used. Generate an electric field effect. By this electric field effect, the field number carrier is kept away from the level of the interface between the substrate and the tunneling oxide layer, so the open circuit voltage is improved. However, it is difficult to ensure the stabilization of the doping concentration and the in-plane uniformity in the doped layer of a low concentration. Moreover, when the doping concentration of the low-concentration doped layer is too high, the Auger recombination increases and the open circuit voltage decreases. Conversely, when the doping concentration of the low-concentration doped layer is too low, the electric field effect is weak, and the interface The recombination will increase and the open circuit voltage will decrease. Therefore, in the configuration in which the doping concentration of the low-concentration doping layer cannot be stabilized, there is a problem that the high open circuit voltage cannot be maintained.

本發明即是鑒於上述習知問題而完成者,目的在於提供一種能夠提高開路電壓的技術。 The present invention has been made in view of the above conventional problems, and an object thereof is to provide a technique capable of increasing an open circuit voltage.

本發明之太陽能電池,係具備:半導體層;第一雜質層;穿隧層,係配設於前述半導體層與前述第一雜質層之間且含有氧;第二雜質層,係配設於前述半導體層與前述穿隧層之間;以及電極,係連接於前述第一雜質層;前述穿隧層及前述第一雜質層係含有與前述第二雜質 層之雜質相同的雜質,前述穿隧層之雜質的濃度係比前述第一雜質層及前述第二雜質層之各者的雜質的濃度還高。 The solar cell of the present invention includes: a semiconductor layer; a first impurity layer; a tunneling layer disposed between the semiconductor layer and the first impurity layer and containing oxygen; and a second impurity layer disposed in the foregoing Between the semiconductor layer and the tunneling layer; and an electrode connected to the first impurity layer; the tunneling layer and the first impurity layer containing the same impurity as the impurity of the second impurity layer, the tunneling layer The concentration of the impurities is higher than the concentration of the impurities of each of the first impurity layer and the second impurity layer.

依據本發明,穿隧層及第一雜質層係含有與第二雜質層之雜質相同的雜質,穿隧層之雜質的濃度比第一雜質層及第二雜質層之各者的雜質的濃度還高。依據此構成,由於能夠將第二雜質層之雜質的濃度予以均勻化,所以能夠提高開路電壓。 According to the invention, the tunneling layer and the first impurity layer contain the same impurities as the impurities of the second impurity layer, and the concentration of the impurities in the tunneling layer is greater than the concentration of the impurities in each of the first impurity layer and the second impurity layer. high. According to this configuration, since the concentration of the impurities of the second impurity layer can be made uniform, the open circuit voltage can be increased.

藉由以下詳細的說明與所附圖式而會更加明白本發明之目的、特徵、樣態及優點。 The object, features, aspects and advantages of the present invention will become more apparent from the aspects of the appended claims.

100‧‧‧半導體層 100‧‧‧Semiconductor layer

101‧‧‧雜質擴散源 101‧‧‧ impurity diffusion source

102‧‧‧NSG膜 102‧‧‧NSG film

103‧‧‧雜質擴散層 103‧‧‧ impurity diffusion layer

104‧‧‧穿隧氧化物層 104‧‧‧ Tunneling oxide layer

105‧‧‧非晶矽層 105‧‧‧Amorphous layer

108‧‧‧介電體層 108‧‧‧ dielectric layer

109‧‧‧反射防止膜 109‧‧‧Anti-reflection film

110‧‧‧受光面電極 110‧‧‧Photometric surface electrode

110G‧‧‧柵電極 110G‧‧‧ gate electrode

111‧‧‧背面電極 111‧‧‧Back electrode

111G‧‧‧柵電極 111G‧‧‧ gate electrode

114‧‧‧穿隧氧化物層 114‧‧‧ Tunneling oxide layer

115‧‧‧結晶系薄膜矽層 115‧‧‧ Crystalline film layer

116‧‧‧摻雜層 116‧‧‧Doped layer

117‧‧‧保護膜 117‧‧‧Protective film

110B‧‧‧匯流排電極 110B‧‧‧ bus bar electrode

120‧‧‧單晶矽基板 120‧‧‧ Single crystal germanium substrate

120A‧‧‧受光面 120A‧‧‧Glossy surface

120B‧‧‧背面 120B‧‧‧Back

第1圖係概略地例示實施形態1之太陽能電池之構成的俯視圖。 Fig. 1 is a plan view schematically showing a configuration of a solar cell of the first embodiment.

第2圖係概略地例示實施形態1之太陽能電池之構成的剖面圖。 Fig. 2 is a cross-sectional view schematically showing the configuration of a solar cell of the first embodiment.

第3圖係例示實施形態1之太陽能電池之製造方法的流程圖。 Fig. 3 is a flow chart showing a method of manufacturing the solar cell of the first embodiment.

第4圖係例示實施形態1之太陽能電池之製造方法的剖面圖。 Fig. 4 is a cross-sectional view showing a method of manufacturing the solar cell of the first embodiment.

第5圖係例示實施形態1之太陽能電池之製造方法的剖面圖。 Fig. 5 is a cross-sectional view showing a method of manufacturing the solar cell of the first embodiment.

第6圖係例示實施形態1之太陽能電池之製造方法的剖面圖。 Fig. 6 is a cross-sectional view showing a method of manufacturing the solar cell of the first embodiment.

第7圖係例示實施形態1之太陽能電池之製造方法的剖面圖。 Fig. 7 is a cross-sectional view showing a method of manufacturing the solar cell of the first embodiment.

第8圖係例示實施形態1之太陽能電池之製造方法的剖面圖。 Fig. 8 is a cross-sectional view showing a method of manufacturing the solar cell of the first embodiment.

第9圖係例示實施形態1之太陽能電池之製造方法的剖面圖。 Fig. 9 is a cross-sectional view showing a method of manufacturing the solar cell of the first embodiment.

第10圖係例示太陽能電池之摻雜層之薄片電阻(sheet resistance)與開路電壓之關係的圖。 Fig. 10 is a view showing the relationship between the sheet resistance of the doped layer of the solar cell and the open circuit voltage.

第11圖係例示太陽能電池之摻雜層之薄片電阻的圖。 Fig. 11 is a view showing the sheet resistance of the doped layer of the solar cell.

第12圖係例示實施形態1之太陽能電池之開路電壓的圖。 Fig. 12 is a view showing an open circuit voltage of the solar cell of the first embodiment.

第13圖係概略地例示實施形態2之太陽能電池之構成的剖面圖。 Fig. 13 is a cross-sectional view schematically showing the configuration of a solar cell of the second embodiment.

第14圖係例示實施形態2之太陽能電池之製造方法的流程圖。 Fig. 14 is a flow chart showing a method of manufacturing the solar cell of the second embodiment.

第15圖係例示實施形態2之太陽能電池之製造方法的剖面圖。 Fig. 15 is a cross-sectional view showing a method of manufacturing a solar cell of the second embodiment.

第16圖係例示實施形態2之太陽能電池之製造方法的剖面圖。 Fig. 16 is a cross-sectional view showing a method of manufacturing a solar cell of the second embodiment.

第17圖係例示實施形態2之太陽能電池之開路電壓的圖。 Fig. 17 is a view showing an open circuit voltage of the solar cell of the second embodiment.

以下,一面參照所附圖式來說明本發明之 實施形態。此外,圖式係概略性地顯示者,不同的圖式所各別顯示之圖像的大小與位置的相互關係不一定為正確的記載,而是可適切變更而得者。再者,以下的說明中,對於同樣的構成元件則賦予相同的符號,該等構成元件的名稱與功能也相同。其結果,會有省略該等構成元件之詳細的說明的情形。又,在所記載的說明中,會有使用表示「上」、「下」、「側」、「底」、「表」或「背」等特定的位置及方向的用語的情形,該等用語係為了便於容易理解實施形態的內容而使用者,與實際使用時的位置及方向並無關。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the drawings are schematically displayed, and the relationship between the size and the position of the image displayed by each of the different drawings is not necessarily correctly described, but may be appropriately changed. In the following description, the same components are denoted by the same reference numerals, and the names and functions of the components are the same. As a result, a detailed description of the constituent elements will be omitted. In addition, in the description, there are cases where a specific position and direction such as "upper", "lower", "side", "bottom", "table", or "back" are used. In order to facilitate the easy understanding of the contents of the embodiment, the user is not related to the position and direction at the time of actual use.

<實施形態1>  <Embodiment 1>  

以下說明本發明之實施形態1之太陽能電池及太陽能電池的製造方法。 Hereinafter, a method of manufacturing a solar cell and a solar cell according to Embodiment 1 of the present invention will be described.

<針對太陽能電池的構成>  <For the composition of solar cells>  

第1圖係概略地例示實施形態1之太陽能電池之構成的俯視圖。第2圖係第1圖中的A-A’剖面圖。 Fig. 1 is a plan view schematically showing a configuration of a solar cell of the first embodiment. Fig. 2 is a cross-sectional view taken along line A-A' in Fig. 1.

在說明本發明之實施形態1之太陽能電池之詳細的製造方法之前,首先針對該太陽能電池之構成及製造方法的概要進行說明。本實施形態1之太陽能電池如第1圖及第2圖所示,係將具有受光面120A與背面120B的n型單晶矽基板120作為結晶系之半導體基板使用。 Before explaining the detailed manufacturing method of the solar cell according to the first embodiment of the present invention, an outline of the configuration and manufacturing method of the solar cell will be described. As shown in FIGS. 1 and 2, the solar cell of the first embodiment is a semiconductor substrate in which an n-type single crystal germanium substrate 120 having a light receiving surface 120A and a rear surface 120B is used as a crystal system.

如第2圖所示,本實施形態1之太陽能電池係具有形成在單晶矽基板120上之各式各樣的構成元件。 具體而言,第2圖的太陽能電池係具備:n型的半導體層100、p型的雜質擴散層103、介電體層108、反射防止膜109、受光面電極110、屬於電極的背面電極111、含有氧及n型摻雜物(雜質)之屬於穿隧層的穿隧氧化物層114、屬於第一雜質層之n型的結晶系薄膜矽層115,以及屬於第二雜質層之n型的摻雜層116。 As shown in Fig. 2, the solar cell of the first embodiment has various constituent elements formed on the single crystal germanium substrate 120. Specifically, the solar cell of FIG. 2 includes an n-type semiconductor layer 100, a p-type impurity diffusion layer 103, a dielectric layer 108, an anti-reflection film 109, a light-receiving surface electrode 110, and a back surface electrode 111 belonging to an electrode. a tunneling oxide layer 114 belonging to the tunneling layer containing oxygen and an n-type dopant (impurity), an n-type crystalline thin film layer 115 belonging to the first impurity layer, and an n-type belonging to the second impurity layer Doped layer 116.

穿隧氧化物層114係設於半導體層100與結晶系薄膜矽層115之間。穿隧氧化物層114如後述係從形成在單晶矽基板120之背面120B的穿隧氧化物層104(第6圖)所形成。結晶系薄膜矽層115如後述係從形成在穿隧氧化物層104的下表面且含有n型摻雜物之n型的非晶矽層105(第6圖)所形成。 The tunnel oxide layer 114 is provided between the semiconductor layer 100 and the crystalline thin film layer 115. The tunnel oxide layer 114 is formed from the tunnel oxide layer 104 (FIG. 6) formed on the back surface 120B of the single crystal germanium substrate 120 as will be described later. The crystalline thin film germanium layer 115 is formed from an n-type amorphous germanium layer 105 (Fig. 6) formed on the lower surface of the tunnel oxide layer 104 and containing an n-type dopant, as will be described later.

例如,藉由將非晶矽層105所含有的n型摻雜物予以活化,並且進行使非晶矽層105之一部分或整體結晶化的熱處理,而形成結晶系薄膜矽層115。此時,藉由非晶矽層105所含有的n型摻雜物往穿隧氧化物層104移動或擴散,而形成含有n型摻雜物的穿隧氧化物層114。 For example, the crystal-based thin film layer 115 is formed by activating the n-type dopant contained in the amorphous germanium layer 105 and performing heat treatment for crystallizing a part or the whole of the amorphous germanium layer 105. At this time, the n-type dopant contained in the amorphous germanium layer 105 is moved or diffused to the tunnel oxide layer 104 to form a tunnel oxide layer 114 containing an n-type dopant.

摻雜層116係配設於半導體層100與穿隧氧化物層114之間。穿隧氧化物層114係含有與摻雜層116之摻雜物相同的摻雜物,結晶系薄膜矽層115係含有與摻雜層116之摻雜物相同的摻雜物。如此一來,結晶系薄膜矽層115之摻雜物濃度係比穿隧氧化物層114之摻雜物濃度還低,穿隧氧化物層114之摻雜物濃度係比摻雜層116 之摻雜物濃度還高。再者,摻雜層116之摻雜物濃度係比結晶系薄膜矽層115之摻雜物濃度還低。 The doped layer 116 is disposed between the semiconductor layer 100 and the tunnel oxide layer 114. The tunneling oxide layer 114 contains the same dopant as the dopant of the doped layer 116, and the crystalline thin film germanium layer 115 contains the same dopant as the dopant of the doped layer 116. As a result, the dopant concentration of the crystalline thin film layer 115 is lower than the dopant concentration of the tunnel oxide layer 114, and the dopant concentration of the tunnel oxide layer 114 is more than that of the doped layer 116. The concentration of debris is also high. Furthermore, the dopant concentration of the doped layer 116 is lower than the dopant concentration of the crystalline thin film germanium layer 115.

於上述穿隧氧化物層114等的形成後,藉由進行熱處理而使穿隧氧化物層114之n型摻雜物往單晶矽基板120移動及擴散。藉此,上述的摻雜層116會形成在單晶矽基板120與穿隧氧化物層114之交界部分。此外,在單晶矽基板120之中摻雜層116以外的部分係大致成為半導體層100。以上的內容換言之,藉由使穿隧氧化物層114與單晶矽基板120鄰接形成,使穿隧氧化物層114的摻雜物熱擴散至與單晶矽基板120,而在單晶矽基板120之中與穿隧氧化物層114鄰接的部分形成摻雜層116,其以外的部分形成半導體層100。 After the formation of the tunnel oxide layer 114 or the like, the n-type dopant of the tunnel oxide layer 114 is moved and diffused to the single crystal germanium substrate 120 by heat treatment. Thereby, the doping layer 116 described above is formed at a boundary portion between the single crystal germanium substrate 120 and the tunnel oxide layer 114. Further, a portion other than the doped layer 116 among the single crystal germanium substrates 120 is substantially the semiconductor layer 100. In other words, by forming the tunneling oxide layer 114 adjacent to the single crystal germanium substrate 120, the dopant of the tunneling oxide layer 114 is thermally diffused to the single crystal germanium substrate 120, and the single crystal germanium substrate is formed. A portion of the portion 120 adjacent to the tunneling oxide layer 114 is formed with a doped layer 116, and a portion other than the portion is formed with the semiconductor layer 100.

依據以上方式所構成的本實施形態1之太陽能電池,具有穿隧氧化物層114、結晶系薄膜矽層115及摻雜層116的積層構造。依據如此的構成,藉由穿隧氧化物層114形成的能帶障壁及摻雜層116所構成的電場效應,由於能夠將少數載子留存於半導體層100內,所以能夠抑制少數載子的復合(也稱為「再結合」),結果能夠提高開路電壓。此外,能夠提高多數載子的收集效率。 The solar cell of the first embodiment configured as described above has a laminated structure of the tunneling oxide layer 114, the crystalline thin film layer 115, and the doping layer 116. According to such a configuration, the electric field effect of the energy barrier layer and the doping layer 116 formed by the tunnel oxide layer 114 can retain a minority carrier in the semiconductor layer 100, thereby suppressing the recombination of minority carriers. (Also known as "recombination"), the result is an increase in the open circuit voltage. In addition, the collection efficiency of most carriers can be improved.

其次,針對第2圖之太陽能電池之殘留的構成元件進行說明。於單晶矽基板120之受光面120A側,亦即在半導體層100的上側依序配設有雜質擴散層103、介電體層108及反射防止膜109。具有柵電極110G與匯流排電極110B(第1圖)的受光面電極110,以經由介電體層 108及反射防止膜109之貫穿孔而從反射防止膜109突出的方式配設於雜質擴散層103的上表面。相對於此,具有柵電極111G與未圖示的匯流排電極的背面電極111,以從結晶系薄膜矽層115突出的方式配設於結晶系薄膜矽層115的下表面。 Next, the constituent elements remaining in the solar cell of Fig. 2 will be described. The impurity diffusion layer 103, the dielectric layer 108, and the anti-reflection film 109 are disposed on the light-receiving surface 120A side of the single crystal germanium substrate 120, that is, on the upper side of the semiconductor layer 100. The light-receiving surface electrode 110 having the gate electrode 110G and the bus bar electrode 110B ( FIG. 1 ) is disposed on the impurity diffusion layer 103 so as to protrude from the anti-reflection film 109 through the through holes of the dielectric layer 108 and the anti-reflection film 109 . Upper surface. On the other hand, the back surface electrode 111 having the gate electrode 111G and the bus bar electrode (not shown) is disposed on the lower surface of the crystal thin film layer 115 so as to protrude from the crystal thin film layer 115.

穿隧氧化物層114不含有摻雜物,或穿隧氧化物層114之摻雜物濃度比摻雜層116之摻雜物濃度還低時,摻雜層116之摻雜物濃度成為不均勻。因此,會有開路電壓降低,太陽能電池特性降低之虞。 When the tunneling oxide layer 114 does not contain a dopant, or the dopant concentration of the tunneling oxide layer 114 is lower than the dopant concentration of the doping layer 116, the dopant concentration of the doping layer 116 becomes uneven. . Therefore, there is a possibility that the open circuit voltage is lowered and the solar cell characteristics are lowered.

對此,如以上所述本實施形態1之太陽能電池的製造方法,係含有摻雜物的穿隧氧化物層114成為用以形成摻雜層116的摻雜物供給源,而穿隧氧化物層114之摻雜物濃度比摻雜層116之摻雜物濃度還高。藉此,能夠使摻雜層116的摻雜物濃度以低濃度而均勻化。其結果,如之後詳細地說明的方式,能夠獲得較高的開路電壓,能夠提高太陽能電池特性。 On the other hand, as described above, in the method of manufacturing a solar cell according to the first embodiment, the tunneling oxide layer 114 containing a dopant serves as a dopant supply source for forming the doping layer 116, and the tunneling oxide is formed. The dopant concentration of layer 114 is also higher than the dopant concentration of doped layer 116. Thereby, the dopant concentration of the doping layer 116 can be made uniform at a low concentration. As a result, as will be described in detail later, a high open circuit voltage can be obtained, and solar cell characteristics can be improved.

<製造方法>  <Manufacturing method>  

以下一面參照第3圖至第9圖一面詳細地說明本實施形態1之太陽能電池的製造方法。第3圖係例示實施形態1之太陽能電池之製造方法的流程圖。此外,第4圖至第9圖係例示本實施形態1之太陽能電池之製造方法的剖面圖。 Hereinafter, a method of manufacturing the solar cell of the first embodiment will be described in detail with reference to FIGS. 3 to 9. Fig. 3 is a flow chart showing a method of manufacturing the solar cell of the first embodiment. In addition, FIG. 4 to FIG. 9 are cross-sectional views illustrating a method of manufacturing the solar cell of the first embodiment.

<步驟S1>  <Step S1>  

首先,如第4圖所例示準備單晶矽基板120。單晶矽基板120係使用以線鋸等進行的機械性切斷法而將矽鑄錠(silicon ingot)切斷及切片所製造。如此地製造的單晶矽基板120的表面會有被污染或殘留傷痕的情形。 First, the single crystal germanium substrate 120 is prepared as illustrated in Fig. 4 . The single crystal germanium substrate 120 is produced by cutting and slicing a silicon ingot using a mechanical cutting method by a wire saw or the like. The surface of the single crystal germanium substrate 120 thus manufactured may be contaminated or left with a flaw.

藉由使用氫氧化鈉溶液等鹼性溶液與添加劑的濕式蝕刻處理,去除單晶矽基板120之表面的污染等,且將被稱為織構(texture)構造之未圖示之微小的凹凸構造形成於該表面。 By the wet etching treatment using an alkaline solution such as a sodium hydroxide solution and an additive, contamination of the surface of the single crystal germanium substrate 120 or the like is removed, and a minute unevenness (not shown) called a texture structure is used. A structure is formed on the surface.

藉由單晶矽基板120之表面的微小的凹凸構造,射入單晶矽基板120的光會在該表面多重反射。因此,能夠降低光的反射損失。此外,因光路長度的增加而使吸收光增大的結果,可期待短路電流的提升。 The light incident on the single crystal germanium substrate 120 is multi-reflected on the surface by the minute uneven structure on the surface of the single crystal germanium substrate 120. Therefore, the reflection loss of light can be reduced. Further, as a result of an increase in the absorption light due to an increase in the length of the optical path, an increase in the short-circuit current can be expected.

形成織構構造之後,例如進行將以過氧化氫為基礎藥液再加上鹼或酸所得的濃厚藥液在高溫中使用的洗淨方法之RCA洗淨、SPM(Sulfuric Acid Hydrogen Peroxide Mixture,硫酸過氧化氫混合物)洗淨或HPM(Hydrochloric Acid Hydrogen Peroxide Mixture,鹽酸過氧化氫混合物)洗淨等,而將附著於單晶矽基板120之表面的有機物或金屬污染所造成的附著物予以去除。 After the texture structure is formed, for example, RCA cleaning, SPM (Sulfuric Acid Hydrogen Peroxide Mixture, Sulphuric Acid) is used for a cleaning method in which a thick chemical solution obtained by adding a base or a solution of hydrogen peroxide to a base or an acid is used at a high temperature. The hydrogen peroxide mixture is washed or washed with HPM (Hydrochloric Acid Hydrogen Peroxide Mixture), and the deposits caused by organic substances or metal contamination adhering to the surface of the single crystal germanium substrate 120 are removed.

<步驟S2>  <Step S2>  

其次,如第4圖所例示,單晶矽基板120之受光面120A形成p型的雜質擴散源101及雜質擴散層103。 Next, as illustrated in FIG. 4, the light-receiving surface 120A of the single crystal germanium substrate 120 forms a p-type impurity diffusion source 101 and an impurity diffusion layer 103.

例如藉由使用BBr3的氣相反應,或使用B2H6的大氣壓化學氣相沈積(Atmospheric Pressure Chemical Vapor Deposition,亦即APCVD)法等氣相法,而於單晶矽基板120上形成硼摻雜矽玻璃(硼矽玻璃:Boron Silicate Glass:BSG)膜作為雜質擴散源101。其後,藉由在擴散爐中使雜質擴散源101中的硼熱擴散至單晶矽基板120,而形成雜質擴散層103。 Boron is formed on the single crystal germanium substrate 120, for example, by a gas phase reaction using BBr 3 or a vapor phase method using an atmospheric pressure chemical vapor deposition (APCVD) method such as B 2 H 6 . A doped glass (Boron Silicate Glass: BSG) film is used as the impurity diffusion source 101. Thereafter, the impurity diffusion layer 103 is formed by thermally diffusing boron in the impurity diffusion source 101 to the single crystal germanium substrate 120 in a diffusion furnace.

此外,也可藉由離子注入而將硼打入單晶矽基板120的表面,然後在擴散爐中將硼予以熱擴散,藉此形成雜質擴散層103,以取代進行上述的形成。此情形下,所形成之雜質擴散層103的薄片電阻能夠設為50Ω/sq以上且未滿150Ω/sq。薄片電阻係考量在擴散層內的少數載子的復合、光吸收以及與電極的接觸電阻等而設計。 Further, boron may be driven into the surface of the single crystal germanium substrate 120 by ion implantation, and then boron may be thermally diffused in a diffusion furnace, thereby forming the impurity diffusion layer 103 instead of the above-described formation. In this case, the sheet resistance of the impurity diffusion layer 103 formed can be set to 50 Ω/sq or more and less than 150 Ω/sq. The sheet resistance is designed in consideration of the recombination of minority carriers in the diffusion layer, light absorption, and contact resistance with electrodes.

如上所述,形成由BSG膜所構成之雜質擴散源101時使用APCVD的情形下,BSG膜係主要形成在單晶矽基板120的受光面120A。但是,此情形下,BSG膜會有些許繞入而形成於單晶矽基板120的端面以及單晶矽基板120的背面120B。因此,在形成BSG膜之後,最好是例如藉由使用0.5%以上且1.0%以下的氟酸來去除繞入在單晶矽基板120的端面以及單晶矽基板120的背面之不需要的BSG膜。 As described above, when APCVD is used to form the impurity diffusion source 101 composed of the BSG film, the BSG film is mainly formed on the light receiving surface 120A of the single crystal germanium substrate 120. However, in this case, the BSG film is slightly entangled and formed on the end face of the single crystal germanium substrate 120 and the back surface 120B of the single crystal germanium substrate 120. Therefore, after the BSG film is formed, it is preferable to remove the unnecessary BSG which is wound around the end face of the single crystal germanium substrate 120 and the back surface of the single crystal germanium substrate 120 by using, for example, 0.5% or more and 1.0% or less of hydrofluoric acid. membrane.

此外,為了保護BSG膜以避免受氟酸影響,也可在使用氟酸之前,於該BSG膜的上表面形成由熱氧化 膜或氮化膜所構成的障壁層。然後,以氟酸來去除形成在單晶矽基板120之背面120B的BSG膜,或以氟酸或氫氧化鈉等處理劑來一面一面地去除形成在單晶矽基板120之端面的BSG膜。 Further, in order to protect the BSG film from being affected by hydrofluoric acid, a barrier layer composed of a thermal oxide film or a nitride film may be formed on the upper surface of the BSG film before the use of hydrofluoric acid. Then, the BSG film formed on the back surface 120B of the single crystal germanium substrate 120 is removed by hydrofluoric acid, or the BSG film formed on the end surface of the single crystal germanium substrate 120 is removed side by side with a treating agent such as hydrofluoric acid or sodium hydroxide.

上述的氮化膜係能夠使用例如電漿CVD法來形成,而該電漿CVD法係使用矽烷氣體、氮氣、或氨氣等。該氮化膜等障壁層係於用於後述的摻雜物活性化之熱處理時也作為障壁層來發揮作用。因此,形成氮化膜等障壁層時,其厚度係以形成例如50nm以上的厚度為佳。 The above-described nitride film can be formed by, for example, a plasma CVD method using decane gas, nitrogen gas, ammonia gas or the like. The barrier layer such as the nitride film also functions as a barrier layer when it is used for heat treatment for activating dopants to be described later. Therefore, when a barrier layer such as a nitride film is formed, the thickness thereof is preferably, for example, 50 nm or more.

此外,屬於雜質擴散源101之BSG膜的厚度為例如30nm以上且未滿150。當屬於雜質擴散源101之BSG膜的厚度過薄時,就變得無法發揮作為p型雜質之擴散源的作用。相對於此,當屬於雜質擴散源101之BSG膜的厚度過厚時,就難以形成BSG膜及去除不需要的BSG膜。 Further, the thickness of the BSG film belonging to the impurity diffusion source 101 is, for example, 30 nm or more and less than 150. When the thickness of the BSG film belonging to the impurity diffusion source 101 is too thin, it becomes impossible to function as a diffusion source of the p-type impurity. On the other hand, when the thickness of the BSG film belonging to the impurity diffusion source 101 is too thick, it is difficult to form the BSG film and remove the unnecessary BSG film.

如第4圖所例示,形成雜質擴散源101之後,係以將作為介電體膜之無摻雜矽玻璃(Non doped Silicate Glass:NSG)膜102形成於雜質擴散源101上為佳。 As illustrated in FIG. 4, after the impurity diffusion source 101 is formed, it is preferable to form the non-doped silica glass (NSG) film 102 as a dielectric film on the impurity diffusion source 101.

該NSG膜102發揮覆蓋層(cap layer)的作用,會抑制由BSG膜所構成之雜質擴散源101中的硼脫離至氣相中。藉此,雜質擴散源101之硼會有效地擴散至單晶矽基板120。再者,NSG膜102係於用於後述的非晶矽層105(第6圖)之摻雜物活化之熱處理時也作為障壁層來發揮作用。 The NSG film 102 functions as a cap layer, and suppresses the detachment of boron in the impurity diffusion source 101 composed of the BSG film into the gas phase. Thereby, boron of the impurity diffusion source 101 is efficiently diffused to the single crystal germanium substrate 120. Further, the NSG film 102 also functions as a barrier layer when it is used for heat treatment for dopant activation of the amorphous germanium layer 105 (Fig. 6) to be described later.

NSG膜102的膜厚係例如100nm以上且未滿500nm。當NSG膜102的厚度過薄時,就變得無法發揮作為覆蓋層的作用,或無法發揮作為擴散障壁層的作用。相對於此,當NSG102膜的厚度過厚時,就難以形成NSG膜及去除不需要的NSG膜。 The film thickness of the NSG film 102 is, for example, 100 nm or more and less than 500 nm. When the thickness of the NSG film 102 is too thin, it does not function as a coating layer or functions as a diffusion barrier layer. On the other hand, when the thickness of the NSG102 film is too thick, it is difficult to form an NSG film and remove an unnecessary NSG film.

<步驟S3>  <Step S3>  

其次,如第5圖所示例,於單晶矽基板120的背面120B形成穿隧氧化物層104。 Next, as shown in FIG. 5, a tunnel oxide layer 104 is formed on the back surface 120B of the single crystal germanium substrate 120.

例如能夠使用矽氧化膜或氧化鋁膜等介電體材料來作為穿隧氧化物層104的材料。矽氧化膜的形成係例如藉由將單晶矽基板120的背面120B浸漬於臭氧水的方式來進行。此情形下,係要控制臭氧濃度及浸漬時間以獲得所希望之厚度的氧化膜。 For example, a dielectric material such as a tantalum oxide film or an aluminum oxide film can be used as the material of the tunnel oxide layer 104. The formation of the tantalum oxide film is performed, for example, by immersing the back surface 120B of the single crystal germanium substrate 120 in ozone water. In this case, it is necessary to control the ozone concentration and the immersion time to obtain an oxide film of a desired thickness.

矽氧化膜的形成,除了上述方法之外,也能夠使用熱氧化、硝酸氧化、電漿化學氣相沈積(Plasma Enhanced Chemical Vapor Deposition:PECVD)法、原子層沈積(Atomic Layer Deposition:ALD)法、紫外線(UV)照射法、或臭氧照射法等方法。 In addition to the above methods, the formation of the tantalum oxide film can also be performed by thermal oxidation, nitric acid oxidation, plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (Atomic Layer Deposition: ALD), A method such as an ultraviolet (UV) irradiation method or an ozone irradiation method.

穿隧氧化物層104的膜厚係例如0.5nm以上且未滿5nm。穿隧氧化物層104之膜厚過薄時,不僅多數載子且少數載子亦會通過穿隧氧化物層104。其結果,因復合的增加而會使開路電壓降低。另一方面,當穿隧氧化物層104之膜厚過厚時,多數載子的穿隧輸送會被妨礙。 結果,因串聯電阻增加而使電性特性劣化。 The film thickness of the tunneling oxide layer 104 is, for example, 0.5 nm or more and less than 5 nm. When the film thickness of the tunnel oxide layer 104 is too thin, not only a majority of carriers but also a few carriers pass through the oxide layer 104. As a result, the open circuit voltage is lowered due to an increase in recombination. On the other hand, when the film thickness of the tunnel oxide layer 104 is too thick, the tunneling of most carriers is hindered. As a result, electrical characteristics are deteriorated due to an increase in series resistance.

<步驟S4>  <Step S4>  

其次,如第6圖所例示,於穿隧氧化物層104的下面形成n型的非晶矽層105。藉由使用SiH4或PH3之PECVD法等化學氣相沈積法,形成摻雜有磷的非晶矽層105。 Next, as illustrated in FIG. 6, an n-type amorphous germanium layer 105 is formed under the tunnel oxide layer 104. The amorphous germanium layer 105 doped with phosphorus is formed by a chemical vapor deposition method such as PECVD using SiH 4 or PH 3 .

非晶矽層105的膜厚例如為5nm以上且未滿100nm。當非晶矽層105的膜厚過薄,電場效果就會變弱。其結果,穿隧接合層中的電性電阻增大,且少數載子的排斥效果也變小,因此,非晶矽層105的特性會劣化。相對於此,當非晶矽層105的膜厚過厚,熱變形會變大。結果,與非晶矽層105之膜厚為正確的範圍時相比較,矽層的鈍化效果降低。 The film thickness of the amorphous germanium layer 105 is, for example, 5 nm or more and less than 100 nm. When the film thickness of the amorphous germanium layer 105 is too thin, the electric field effect becomes weak. As a result, the electrical resistance in the tunnel junction layer increases, and the repulsive effect of a minority carrier becomes small, so that the characteristics of the amorphous germanium layer 105 are deteriorated. On the other hand, when the film thickness of the amorphous germanium layer 105 is too thick, thermal deformation becomes large. As a result, the passivation effect of the ruthenium layer is lowered as compared with the case where the film thickness of the amorphous ruthenium layer 105 is in the correct range.

<步驟S5>  <Step S5>  

其後,將第6圖所例示的構造予以熱處理而獲得第7圖所例示的構造。針對熱處理之一例進行說明時,係將進行過到此為止之步驟的單晶矽基板120設置於橫型石英爐內,導入氮氣,升溫至800℃為止,維持溫度1分鐘之後降溫至700℃,再維持溫度30分鐘。之後降溫至室溫為止並從石英爐取出。在保持800℃的期間,非晶矽層105的一部分或整體會結晶化而形成結晶系薄膜矽層115。結晶系薄膜矽層115的膜厚例如為5nm以上且未滿100nm。在保持800℃的期間,因非晶矽層105中的n型摻雜物進行 活化而使薄片電阻降低。與此並行的是,非晶矽層105所含有的n型摻雜物會擴散至穿隧氧化物層104中,而形成含有摻雜物的穿隧氧化物層114。 Thereafter, the structure illustrated in Fig. 6 is heat-treated to obtain the structure illustrated in Fig. 7. In the case of an example of the heat treatment, the single crystal germanium substrate 120 subjected to the above steps is placed in a horizontal quartz furnace, nitrogen gas is introduced, the temperature is raised to 800 ° C, and the temperature is maintained for 1 minute, and then the temperature is lowered to 700 ° C. The temperature was maintained for another 30 minutes. After that, the temperature was lowered to room temperature and taken out from the quartz furnace. While maintaining the temperature of 800 ° C, a part or the whole of the amorphous germanium layer 105 is crystallized to form a crystalline thin film layer 115. The film thickness of the crystal thin film ruthenium layer 115 is, for example, 5 nm or more and less than 100 nm. While maintaining the temperature of 800 °C, the n-type dopant in the amorphous germanium layer 105 is activated to lower the sheet resistance. In parallel with this, the n-type dopant contained in the amorphous germanium layer 105 diffuses into the tunnel oxide layer 104 to form a tunneling oxide layer 114 containing the dopant.

再接著,在保持700℃的期間,穿隧氧化物層114中的n型摻雜物以低濃度擴散至單晶矽基板120,而形成摻雜層116。 Then, while maintaining the temperature of 700 ° C, the n-type dopant in the tunnel oxide layer 114 is diffused to the single crystal germanium substrate 120 at a low concentration to form the doped layer 116.

本實施形態1中,摻雜層116中的摻雜物濃度比穿隧氧化物層114中的摻雜物濃度還低。如以上所述,藉由低濃度的n型摻雜物從穿隧氧化物層114往摻雜層116的擴散,能夠提升摻雜層116之n型摻雜物濃度的均勻性。 In the first embodiment, the dopant concentration in the doped layer 116 is lower than the dopant concentration in the tunnel oxide layer 114. As described above, the uniformity of the n-type dopant concentration of the doped layer 116 can be improved by diffusion of the low concentration n-type dopant from the tunneling oxide layer 114 to the doped layer 116.

以上雖已顯示了熱處理條件之一例,惟不限定於此而也能夠以其他的條件來實施。其中,熱處理時的保持溫度係依據以下記載的理由而在400℃以上且未滿900℃為佳。 Although an example of the heat treatment conditions has been described above, it is not limited thereto, and it can be carried out under other conditions. Among them, the holding temperature at the time of heat treatment is preferably 400 ° C or more and less than 900 ° C for the reasons described below.

當熱處理溫度過低時,無法充分地促進非晶矽層105的結晶化,無法充分地形成結晶系薄膜矽層115。結果,於背面120B的電場效果降低,無法獲得較高的鈍化效果。再者,由於非晶矽層105具有相對較高的電阻,會有妨礙多數載子輸送之虞。熱處理溫度超過400℃時,氫開始從非晶矽層105中脫離,會促進結晶化。 When the heat treatment temperature is too low, the crystallization of the amorphous ruthenium layer 105 cannot be sufficiently promoted, and the crystal thin film ruthenium layer 115 cannot be sufficiently formed. As a result, the electric field effect on the back surface 120B is lowered, and a high passivation effect cannot be obtained. Furthermore, since the amorphous germanium layer 105 has a relatively high electrical resistance, there is a tendency to hinder the transport of most carriers. When the heat treatment temperature exceeds 400 ° C, hydrogen starts to be detached from the amorphous ruthenium layer 105, which promotes crystallization.

熱處理溫度過低時,除了上述問題外也會產生其他的問題。亦即,會產生n型摻雜物不會充分地從非晶矽層105往穿隧氧化物層104移動的問題。此情形下, 由於穿隧氧化物層104難以發揮作為用以形成摻雜層116之摻雜物供給源的功能,所以無法形成摻雜層116。 When the heat treatment temperature is too low, other problems may occur in addition to the above problems. That is, there is a problem that the n-type dopant does not sufficiently move from the amorphous germanium layer 105 to the tunnel oxide layer 104. In this case, since the tunnel oxide layer 104 is difficult to function as a dopant supply source for forming the doping layer 116, the doping layer 116 cannot be formed.

另一方面,當熱處理溫度達到如超過900℃之過高時,鈍化效果明顯地開始降低。結果,開路電壓降低。此乃由於藉由高溫的熱處理,n型摻雜物會從穿隧氧化物層114過剩地擴散至單晶矽基板120,摻雜層116的摻雜濃度變得過高而使少數載子的復合會增加之故。 On the other hand, when the heat treatment temperature is too high, such as more than 900 ° C, the passivation effect starts to decrease remarkably. As a result, the open circuit voltage is lowered. This is because the n-type dopant is excessively diffused from the tunneling oxide layer 114 to the single crystal germanium substrate 120 by the heat treatment at a high temperature, and the doping concentration of the doping layer 116 becomes too high to make the minority carrier Compounding will increase.

此外,結晶系薄膜矽層115、穿隧氧化物層114及摻雜層116的形成方法,並不限定於上述的方法。例如,也可在形成非摻雜(本徵)非晶矽層之後,摻雜n型摻雜物並使之擴散以形成結晶系薄膜矽層115。具體而言,於步驟S4藉由使用SiH4的PECVD法等化學氣相沈積法,形成非晶矽層。其後,於步驟S5,藉由使用POCl3的氣相反應及熱擴散或磷之注入及熱擴散,而使屬於n型摻雜物之磷擴散至非摻雜非晶矽層中。也可藉由進行熱處理,來形成結晶系薄膜矽層115、穿隧氧化物層114及摻雜層116。 Further, the method of forming the crystal thin film germanium layer 115, the tunneling oxide layer 114, and the doping layer 116 is not limited to the above method. For example, after forming the undoped (intrinsic) amorphous germanium layer, the n-type dopant may be doped and diffused to form a crystalline thin film germanium layer 115. Specifically, in step S4, an amorphous germanium layer is formed by a chemical vapor deposition method such as PECVD using SiH 4 . Thereafter, in step S5, phosphorus belonging to the n-type dopant is diffused into the non-doped amorphous germanium layer by gas phase reaction and thermal diffusion of POCl 3 or phosphorus implantation and thermal diffusion. The crystal thin film layer 115, the tunnel oxide layer 114, and the doping layer 116 may be formed by heat treatment.

此外,就其他的形成方法而言,結晶系薄膜矽層115也可藉由使用SiH4及PH3等的化學氣相沈積(Low Pressure Chemical Vapor Deposition,亦即LPCVD)法,而以一個步驟來形成。此情形下,能夠不經過非晶矽層105的形成,而以例如500℃以上的溫度進行結晶系薄膜矽層115的成膜。此外,結晶系薄膜矽層115之成膜後的熱處理只要因應需要來進行即可。 In addition, in other formation methods, the crystalline thin film layer 115 can also be processed in one step by using a Low Pressure Chemical Vapor Deposition (LPCVD) method such as SiH 4 or PH 3 . form. In this case, the formation of the crystalline thin film layer 115 can be performed at a temperature of, for example, 500 ° C or higher without passing through the formation of the amorphous germanium layer 105. Further, the heat treatment after the film formation of the crystalline thin film layer 115 may be carried out as needed.

再者,就其他的形成方法而言,也可藉由在剛形成穿隧氧化物層104之後,進行使用POCl3的氣相反應及熱擴散或磷之注入及熱擴散,藉此形成穿隧氧化物層114。此外,也能夠以形成非晶矽層105之後進行熱處理的方式形成結晶系薄膜矽層115,並且使屬於n型摻雜物的磷從穿隧氧化物層114擴散至單晶矽基板120來形成摻雜層116。 Furthermore, in other formation methods, tunneling can be performed by using a gas phase reaction and thermal diffusion of POCl 3 or phosphorus implantation and thermal diffusion immediately after the tunnel oxide layer 104 is formed. Oxide layer 114. Further, it is also possible to form the crystalline thin film layer 115 in a manner of performing heat treatment after forming the amorphous germanium layer 105, and diffuse phosphorus belonging to the n-type dopant from the tunnel oxide layer 114 to the single crystal germanium substrate 120 to form. Doped layer 116.

再者,就其他的形成方法而言,也可在形成穿隧氧化物層104之前,藉由使用POCl3的氣相反應及熱擴散或磷之注入及熱擴散,而形成某程度之摻雜層116。 Furthermore, in other formation methods, a certain degree of doping may be formed by gas phase reaction and thermal diffusion of POCl 3 or phosphorus implantation and thermal diffusion before forming the tunnel oxide layer 104. Layer 116.

<步驟S6>  <Step S6>  

其次,如第8圖所例示,使用氟酸而完全地去除形成在單晶矽基板120之受光面120A之屬於雜質擴散源101的BSG膜及NSG膜102,而使p型雜質擴散層103露出。本步驟S6係也可在步驟S5之熱處理步驟前進行。 Next, as illustrated in Fig. 8, the BSG film and the NSG film 102 belonging to the impurity diffusion source 101 formed on the light-receiving surface 120A of the single crystal germanium substrate 120 are completely removed by using hydrofluoric acid, and the p-type impurity diffusion layer 103 is exposed. . This step S6 can also be performed before the heat treatment step of step S5.

於步驟S5之前進行步驟S6的情形,能夠防止在步驟S5之熱處理時硼從屬於雜質擴散源101之BSG膜擴散至環境氣體中,防止該硼附著於非晶矽層105,並且防止擴散至非晶矽層105內。然而,此情形下,在步驟S5之熱處理時,屬於n型摻雜物的磷有可能會從非晶矽層105擴散至環境氣體中,並擴散至p型雜質擴散層103中。 In the case where step S6 is performed before step S5, it is possible to prevent boron from diffusing into the ambient gas from the BSG film belonging to the impurity diffusion source 101 at the heat treatment of step S5, preventing the boron from adhering to the amorphous germanium layer 105, and preventing diffusion to non-distribution. Inside the wafer layer 105. However, in this case, at the heat treatment of step S5, phosphorus belonging to the n-type dopant may diffuse from the amorphous germanium layer 105 into the ambient gas and diffuse into the p-type impurity diffusion layer 103.

如本實施形態1所示,屬於雜質擴散源101之BSG膜的上表面形成有屬於覆蓋層的NSG膜102時,雜質擴散源101之硼擴散至非晶矽層105中的可能性比非晶矽層105的磷擴散至雜質擴散層103中的可能性還低。因此,在如此的情形下,較佳為在步驟S5之熱處理後,進行去除屬於雜質擴散源101之BSG膜及NSG膜102的步驟S6。 As shown in the first embodiment, when the NSG film 102 belonging to the cover layer is formed on the upper surface of the BSG film belonging to the impurity diffusion source 101, the possibility that the boron of the impurity diffusion source 101 diffuses into the amorphous germanium layer 105 is more amorphous. The possibility that the phosphorus of the germanium layer 105 diffuses into the impurity diffusion layer 103 is also low. Therefore, in such a case, it is preferable to perform the step S6 of removing the BSG film and the NSG film 102 belonging to the impurity diffusion source 101 after the heat treatment in the step S5.

<步驟S7>  <Step S7>  

其次,如第9圖所例示,於單晶矽基板120的受光面120A亦即雜質擴散層103的上表面形成介電體層108,於介電體層108的上表面形成反射防止膜109。 Next, as illustrated in FIG. 9, the dielectric layer 108 is formed on the upper surface of the impurity diffusion layer 103, which is the light receiving surface 120A of the single crystal germanium substrate 120, and the antireflection film 109 is formed on the upper surface of the dielectric layer 108.

能夠使用例如氧化矽膜等氧化膜作為介電體層108。此外,能夠使用例如藉由原子層沈積(Atomic Layer Deposition:ALD)法、或CVD法形成的氧化鋁膜等介電體層作為介電體層108。特別是,由於氧化鋁膜具有負的固定電荷,所以對於p型之雜質擴散層103能夠發揮優異的鈍化效果。介電體層108的膜厚例如為2nm以上且未滿50nm。 As the dielectric layer 108, an oxide film such as a hafnium oxide film can be used. Further, as the dielectric layer 108, a dielectric layer such as an aluminum oxide film formed by an atomic layer deposition (ALD) method or a CVD method can be used. In particular, since the aluminum oxide film has a negative fixed charge, the p-type impurity diffusion layer 103 can exhibit an excellent passivation effect. The film thickness of the dielectric layer 108 is, for example, 2 nm or more and less than 50 nm.

使用例如藉由電漿CVD法形成的氮化矽膜作為形成在介電體層108之上表面的反射防止膜109。反射防止膜109的膜厚係設計成對應介電體層108之厚度的膜厚,且為對於太陽光頻譜最適合的膜厚,例如30nm以上且未滿80nm左右的膜厚。 A tantalum nitride film formed by, for example, a plasma CVD method is used as the anti-reflection film 109 formed on the upper surface of the dielectric layer 108. The film thickness of the anti-reflection film 109 is designed to correspond to the film thickness of the thickness of the dielectric layer 108, and is a film thickness which is most suitable for the solar spectrum, for example, a film thickness of 30 nm or more and less than 80 nm.

<步驟S8>  <Step S8>  

最後,於單晶矽基板120之受光面120A形成受光面電極110。此外,於結晶系薄膜矽層115的下表面形成背面電極111。藉此,形成第1圖及第2圖所例示的太陽能電池。 Finally, the light-receiving surface electrode 110 is formed on the light-receiving surface 120A of the single crystal germanium substrate 120. Further, a back surface electrode 111 is formed on the lower surface of the crystal thin film layer 115. Thereby, the solar cell exemplified in FIGS. 1 and 2 is formed.

在受光面電極110的形成方面,係例如藉由網版印刷法等塗布法而將含有金屬粒子及玻璃粒子的糊塗布於反射防止膜109之上表面上而形成梳子形圖案狀。然後,藉由使其乾燥而形成受光面電極110。玻璃粒子的含有量相對於金屬粒子的重量係0.5重量百分比以上且10.0重量百分比以下,較佳為1.0重量百分比以上且13.0重量百分比以下。 In the formation of the light-receiving surface electrode 110, a paste containing metal particles and glass particles is applied onto the upper surface of the anti-reflection film 109 by a coating method such as a screen printing method to form a comb-like pattern. Then, the light-receiving surface electrode 110 is formed by drying it. The content of the glass particles is 0.5% by weight or more and 10.0% by weight or less, preferably 1.0% by weight or more and 13.0% by weight or less based on the weight of the metal particles.

上述糊的乾燥係例如在200℃的乾燥爐中進行10分鐘左右。乾燥後,以800℃左右的高溫將受光面電極110予以熱處理而燒成。此時,在受光面120A側藉由燒成而使受光面電極110內的玻璃粒子蝕刻反射防止膜109及介電體層108。藉此,露出雜質擴散層103的貫穿孔形成於反射防止膜109及介電體層108,受光面電極110透過該貫穿孔而電性連接於雜質擴散層103。 The drying of the above paste is carried out, for example, in a drying oven at 200 ° C for about 10 minutes. After drying, the light-receiving surface electrode 110 is heat-treated at a high temperature of about 800 ° C to be fired. At this time, the glass particles in the light-receiving surface electrode 110 are etched into the anti-reflection film 109 and the dielectric layer 108 by firing on the light-receiving surface 120A side. Thereby, the through holes exposing the impurity diffusion layer 103 are formed on the anti-reflection film 109 and the dielectric layer 108, and the light-receiving surface electrode 110 is electrically connected to the impurity diffusion layer 103 through the through-hole.

在背面電極111的形成方面,係例如藉由網版印刷法等塗布法而將不含有玻璃粒子而含有金屬粒子的糊塗布於結晶系薄膜矽層115之下表面而形成梳子形圖案狀,將其乾燥並予以高溫燒成。藉此,形成電性連接於結 晶系薄膜矽層115的背面電極111。此外,糊的乾燥及高溫燒成也可與受光面電極110之乾燥及高溫燒成同時實施。再者,背面電極111也可不藉由網版印刷而藉由金屬薄膜的濺鍍法來形成,也可以鍍敷法來形成。 In the formation of the back surface electrode 111, a paste containing metal particles, which does not contain glass particles, is applied to the lower surface of the crystal film layer 115 to form a comb-like pattern, for example, by a coating method such as a screen printing method. It is dried and fired at a high temperature. Thereby, the back surface electrode 111 electrically connected to the crystalline thin film layer 115 is formed. Further, the drying of the paste and the high-temperature firing may be carried out simultaneously with the drying of the light-receiving surface electrode 110 and the high-temperature firing. Further, the back surface electrode 111 may be formed by a sputtering method using a metal thin film without screen printing, or may be formed by a plating method.

為了實現背面電極111與結晶系薄膜矽層115之間成為接觸電阻較低的連接,只要提高結晶系薄膜矽層115內的摻雜物濃度即可。例如,將結晶系薄膜矽層結晶系薄膜矽層115內的摻雜物濃度設成1×1020(atm/cm3)以上即可。 In order to achieve a low contact resistance between the back electrode 111 and the crystalline thin film layer 115, the dopant concentration in the crystalline thin film layer 115 may be increased. For example, the dopant concentration in the crystalline thin film 系 layer crystal thin film layer 115 may be set to 1 × 10 20 (atm/cm 3 ) or more.

針對摻雜層116,降低摻雜物濃度的方式能夠抑制少數載子在摻雜層116的復合,而能夠獲得較高的Voc。反之,一旦將摻雜層116的摻雜物濃度設成能夠實現與電極之接觸電阻較低之連接程度的高濃度,亦即1×1020(atm/cm3)以上時,則形成穿隧氧化物層114就變得沒有意義。因此,摻雜層116的摻雜物濃度係設成比結晶系薄膜矽層115的摻雜物濃度還低。 For the doped layer 116, the manner of reducing the dopant concentration can suppress the recombination of a minority carrier at the doped layer 116, and a higher Voc can be obtained. On the other hand, once the dopant concentration of the doping layer 116 is set to a high concentration capable of achieving a low degree of contact with the electrode, that is, 1×10 20 (atm/cm 3 ) or more, tunneling is formed. The oxide layer 114 becomes meaningless. Therefore, the dopant concentration of the doped layer 116 is set to be lower than the dopant concentration of the crystalline thin film germanium layer 115.

<實施形態1之總結>  <Summary of Embodiment 1>  

與本實施形態1之太陽能電池之相關的太陽能電池(以下也有記載為「相關的太陽能電池」的情形)的製造方法(以下也有記載為「相關的製造方法」的情形),可為例如以下所示者。亦即,就相關的製造方法而言,考慮有下述方法:在形成穿隧氧化物層104之前,藉由使用了POCL3的熱擴散及藉由氟酸所構成的洗淨來完全地形成n型摻雜 層116,接著,形成穿隧氧化物層104及非晶矽層105之後,以600℃熱處理30分鐘而將非晶矽層變化成結晶系薄膜矽層115。在此說明,雖然在產生電場方面摻雜層116為必須,但是當摻雜層116的摻雜物濃度過高時,由於復合會增加,所以相關的製造方法係使摻雜層116的摻雜物濃度稍有降低。 In the case of the solar cell of the solar cell of the first embodiment (hereinafter referred to as "the case of the related solar cell") (hereinafter referred to as "the related manufacturing method"), for example, the following may be used. Shower. That is, in terms of the related manufacturing method, a method is considered in which the formation of the tunneling oxide layer 104 is completely formed by thermal diffusion using POCL 3 and washing by fluoric acid. After the n-type doped layer 116 is formed, the tunnel oxide layer 104 and the amorphous germanium layer 105 are formed, and then the amorphous germanium layer is changed into the crystalline thin film germanium layer 115 by heat treatment at 600 ° C for 30 minutes. It is explained herein that although the doping layer 116 is necessary in terms of generating an electric field, when the dopant concentration of the doping layer 116 is too high, since the recombination is increased, the related manufacturing method is to dope the doping layer 116. The concentration of the substance is slightly lowered.

第10圖係顯示使摻雜層116之薄片電阻變化時之太陽能電池單元之開路電壓Voc的變化之圖。在薄片電阻為230Ω/sq時Voc成為最高。該第10圖雖係例示太陽能電池單元之摻雜層116之薄片電阻的面內平均值與開路電壓Voc的關係,惟可預料到該薄片電阻具有面內分布時,在離開230Ω/sq之薄片電阻的區域,開路電壓Voc降低。因此,期盼薄片電阻在面內均一地成為230Ω/sq。 Fig. 10 is a graph showing changes in the open circuit voltage Voc of the solar cell when the sheet resistance of the doped layer 116 is changed. Voc becomes the highest when the sheet resistance is 230 Ω/sq. This Fig. 10 is a view showing the relationship between the in-plane average value of the sheet resistance of the doped layer 116 of the solar battery cell and the open circuit voltage Voc, but it is expected that the sheet resistance has an in-plane distribution when leaving the sheet of 230 Ω/sq. In the region of the resistor, the open circuit voltage Voc is lowered. Therefore, it is expected that the sheet resistance is uniformly 230 Ω/sq in the plane.

第11圖係針對相關的太陽能電池及本實施形態之太陽能電池,顯示摻雜層116之薄片電阻之面內平均值、面內最大值、面內最小值之關係的圖。在形成背面側的摻雜層、穿隧氧化物層、結晶系薄膜矽層之後,測定面內25處的薄片電阻,並圖示平均值(第11圖的棒狀圖)、最大值(第11圖的max)、最小值(第11圖的min)。相關的製造方法係薄片電阻的最大值為370Ω/sq,可看到在薄片電阻大幅較高的區域,亦即磷的擴散量非常少的區域。此乃由於在成為摻雜層116之薄片電阻為如超過200Ω/sq之高電阻(低磷濃度)的擴散條件下,POCL3蒸氣不易到達單晶矽基板120之一部分的區域之故。 Fig. 11 is a view showing the relationship between the in-plane average value, the in-plane maximum value, and the in-plane minimum value of the sheet resistance of the doped layer 116 for the related solar cell and the solar cell of the present embodiment. After forming the doped layer, the tunneling oxide layer, and the crystalline thin film layer on the back side, the sheet resistance at 25 in-plane is measured, and the average value (bar graph of FIG. 11) and the maximum value are shown. 11) max), minimum value (min of Fig. 11). The related manufacturing method is that the maximum value of the sheet resistance is 370 Ω/sq, and it can be seen that the sheet resistance is significantly higher, that is, a region where the amount of diffusion of phosphorus is very small. This is because the POCL 3 vapor does not easily reach a portion of the single crystal germanium substrate 120 under the diffusion condition that the sheet resistance of the doped layer 116 is a high resistance (low phosphorus concentration) of more than 200 Ω/sq.

相對於此,本實施形態1之製造方法,係抑制薄片電阻的最大值。此乃由於穿隧氧化物層104內的磷成為擴散源,磷會均勻地供給至單晶矽基板120,不會發生部分的薄片電阻較高的區域之故。 On the other hand, in the manufacturing method of the first embodiment, the maximum value of the sheet resistance is suppressed. This is because phosphorus in the tunnel oxide layer 104 serves as a diffusion source, and phosphorus is uniformly supplied to the single crystal germanium substrate 120, and a portion having a high sheet resistance does not occur.

第12圖係顯示相關的太陽能電池之開路電壓Voc與本實施形態1之太陽能電池之開路電壓Voc比較後的結果之圖。依據本實施形態1之製造方法,能夠使摻雜層116之摻雜物濃度及薄片電阻均勻化,結果能夠獲得開路電壓Voc比相關的太陽能電池高例如4mV左右的太陽能電池。 Fig. 12 is a view showing the results of comparison between the open circuit voltage Voc of the solar cell of the related art and the open circuit voltage Voc of the solar cell of the first embodiment. According to the manufacturing method of the first embodiment, the dopant concentration and the sheet resistance of the doping layer 116 can be made uniform, and as a result, a solar cell having an open circuit voltage Voc higher than the related solar cell of, for example, about 4 mV can be obtained.

依據本實施形態1,摻雜層116的摻雜物濃度比結晶系薄膜矽層115之摻雜物濃度還低。藉此,由於能夠抑制少數載子於摻雜層116及其界面復合,所以能夠提高開路電壓。 According to the first embodiment, the dopant concentration of the doped layer 116 is lower than the dopant concentration of the crystalline thin film layer 115. Thereby, since the minority carrier can be suppressed from being recombined in the doping layer 116 and its interface, the open circuit voltage can be increased.

<實施形態2>  <Embodiment 2>  

第13圖係概略地例示實施形態2之太陽能電池之構成的剖面圖。本實施形態2之太陽能電池在以下的點與實施形態1之太陽能電池(第2圖)不同。 Fig. 13 is a cross-sectional view schematically showing the configuration of a solar cell of the second embodiment. The solar cell of the second embodiment differs from the solar cell of the first embodiment (Fig. 2) in the following points.

追加了屬於介電體膜的保護膜117,保護膜117係配設於結晶系薄膜矽層115之與半導體層100相反側之面。背面電極111係經由設置在保護膜117、結晶系薄膜矽層115及穿隧氧化物層114之貫穿孔而連接於摻雜層116。摻雜層116的厚度係比結晶系薄膜矽層115的厚 度還大。 A protective film 117 belonging to the dielectric film is added, and the protective film 117 is disposed on the surface of the crystalline thin film layer 115 opposite to the semiconductor layer 100. The back surface electrode 111 is connected to the doping layer 116 via a through hole provided in the protective film 117, the crystalline thin film layer 115, and the tunneling oxide layer 114. The thickness of the doped layer 116 is greater than the thickness of the crystalline thin film layer 115.

<製造方法>  <Manufacturing method>  

以下一面參照第14圖至第16圖來詳細說明本實施形態2之太陽能電池的製造方法。第14圖係例示實施形態2之太陽能電池之製造方法的流程圖。再者,第15圖及第16圖係例示本實施形態2之太陽能電池之製造方法的剖面圖。 Hereinafter, a method of manufacturing a solar cell according to the second embodiment will be described in detail with reference to Figs. 14 to 16. Fig. 14 is a flow chart showing a method of manufacturing the solar cell of the second embodiment. In addition, Fig. 15 and Fig. 16 are cross-sectional views showing a method of manufacturing the solar cell of the second embodiment.

以下主要說明在本實施形態2之太陽能電池的製造方法中,與實施形態1之太陽能電池的製造方法不同的部分。 In the method for producing a solar cell according to the second embodiment, a portion different from the method for producing a solar cell according to the first embodiment will be mainly described below.

<步驟S11至S14>  <Steps S11 to S14>  

在步驟S11至S14,進行與第3圖所示之步驟S1至S4相同的步驟。 In steps S11 to S14, the same steps as steps S1 to S4 shown in Fig. 3 are performed.

<步驟S15>  <Step S15>  

以步驟S14形成第6圖所示的構造之後,於本步驟S15藉由進行與步驟S5相同的熱處理,獲得第7圖所例示的構造。針對熱處理之一例進行說明,係將進行過到此為止之步驟的單晶矽基板120設置於橫型石英爐內,導入氮氣,升溫至800℃為止,維持溫度1分鐘之後降溫至750℃,再維持溫度30分鐘。之後降溫至室溫為止並從石英爐取出。在保持800℃的期間,非晶矽層105的一部分或整體會結 晶化而形成結晶系薄膜矽層115。結晶系薄膜矽層115的膜厚例如為5nm以上且未滿100nm。在保持800℃的期間,因非晶矽層105中的n型摻雜物活化而使薄片電阻降低。與此並行的是,非晶矽層105所含有的n型摻雜物會擴散至穿隧氧化物層104中,而形成含有摻雜物的穿隧氧化物層114。 After the structure shown in FIG. 6 is formed in step S14, the structure illustrated in FIG. 7 is obtained by performing the same heat treatment as that in step S5 in this step S15. In one example of the heat treatment, the single crystal germanium substrate 120 subjected to the above steps is placed in a horizontal quartz furnace, nitrogen gas is introduced, the temperature is raised to 800 ° C, and the temperature is maintained for 1 minute, and then the temperature is lowered to 750 ° C. Maintain the temperature for 30 minutes. After that, the temperature was lowered to room temperature and taken out from the quartz furnace. While maintaining the temperature at 800 °C, a part or the whole of the amorphous germanium layer 105 is crystallized to form a crystalline thin film layer 115. The film thickness of the crystal thin film ruthenium layer 115 is, for example, 5 nm or more and less than 100 nm. While maintaining the temperature of 800 ° C, the sheet resistance is lowered by the activation of the n-type dopant in the amorphous germanium layer 105. In parallel with this, the n-type dopant contained in the amorphous germanium layer 105 diffuses into the tunnel oxide layer 104 to form a tunneling oxide layer 114 containing the dopant.

再接著,在保持750℃的期間,穿隧氧化物層114中的n型摻雜物以低濃度擴散至單晶矽基板120,而形成摻雜層116。 Then, while maintaining 750 ° C, the n-type dopant in the tunnel oxide layer 114 is diffused to the single crystal germanium substrate 120 at a low concentration to form the doped layer 116.

本實施形態2中,係於熱處理中保持750℃的方式,使得摻雜層116的厚度比結晶系薄膜矽層115的厚度還厚。如此的構成雖然係能以經過上述說明的熱處理的方式來形成,惟也能使用上述說明的熱處理以外的方法。摻雜層116的厚度比結晶系薄膜矽層115的厚度還厚的意義,以及與背面電極的關係將一併於後述。 In the second embodiment, the thickness of the doped layer 116 is made thicker than the thickness of the crystalline thin film layer 115 by maintaining the temperature at 750 °C. Such a configuration can be formed by the heat treatment described above, but a method other than the heat treatment described above can be used. The thickness of the doped layer 116 is thicker than the thickness of the crystalline thin film layer 115, and the relationship with the back electrode will be described later.

<步驟S16至S17>  <Steps S16 to S17>  

其次,於步驟S16,藉由進行與第3圖所示的步驟S6同樣的步驟,可獲得與第8圖所例示之構造同樣的構造。然後,於步驟S17,藉由進行與第3圖所示的步驟S7同樣的步驟,可獲得與第9圖所例示之構造同樣的構造。 Next, in step S16, by performing the same steps as step S6 shown in Fig. 3, the same structure as that exemplified in Fig. 8 can be obtained. Then, in step S17, by performing the same steps as step S7 shown in Fig. 3, the same configuration as that exemplified in Fig. 9 can be obtained.

<步驟S18>  <Step S18>  

其次,如第15圖所例示,於單晶矽基板120之背面 120B側的結晶系薄膜矽層115的下表面形成保護膜117。保護膜117的材料係例如氮化矽、氧化矽、氮氧化矽、非晶矽、微晶矽或矽化物等。保護膜117係期望為硬度比結晶系薄膜矽層115還高者。此係為了在接下來的步驟中於進行將背面電極的材料網版印刷至保護膜117上之步驟時,保護結晶系薄膜矽層115避免因與網版的接觸或摩擦等所造成的實質損傷。 Next, as illustrated in Fig. 15, a protective film 117 is formed on the lower surface of the crystal thin film layer 115 on the back surface 120B side of the single crystal germanium substrate 120. The material of the protective film 117 is, for example, tantalum nitride, hafnium oxide, tantalum oxynitride, amorphous germanium, microcrystalline germanium or telluride or the like. The protective film 117 is desirably higher in hardness than the crystalline film thin layer 115. In order to perform the step of screen printing the material of the back electrode onto the protective film 117 in the next step, the crystalline film layer 115 is protected from substantial damage caused by contact with the screen or friction. .

此外,當保護膜117中含有充分的氫時,電極燒成時該氫會脫離。如此一來,結晶系薄膜矽層115中的懸鍵(dangling bond)以及穿隧氧化物層114與摻雜層116之間的界面的懸鍵,會因從保護膜117中脫離的氫而被終結。結果,可提升結晶系薄膜矽層115的鈍化效果以及穿隧氧化物層114的鈍化效果。因此,期盼為保護膜117中的氫濃度比結晶系薄膜矽層115中的氫濃度還高。 Further, when the protective film 117 contains sufficient hydrogen, the hydrogen is detached when the electrode is fired. As a result, the dangling bond in the crystalline thin film layer 115 and the dangling bond at the interface between the tunnel oxide layer 114 and the doped layer 116 are caused by hydrogen detached from the protective film 117. End. As a result, the passivation effect of the crystalline film thin layer 115 and the passivation effect of the tunnel oxide layer 114 can be improved. Therefore, it is expected that the hydrogen concentration in the protective film 117 is higher than the hydrogen concentration in the crystalline film thin layer 115.

<步驗S19>  <Step S19>  

其次,如第16圖所示,於單晶矽基板120之受光面120A側的反射防止膜109的上表面形成受光面電極110的材料。再者,於保護膜117的下表面形成背面電極111的材料。例如,藉由藉由網版印刷法等塗布法,將含有金屬粒子及玻璃粒子的糊分別塗布於反射防止膜109的上表面以及保護膜117的下表面。然後,以在例如200℃的乾燥爐中乾燥10分鐘之後,以800℃的高溫進行熱處理,並且予以燒成的方式,形成第13圖所例示之受光面電極110、 背面電極111及太陽能電池。 Next, as shown in FIG. 16, the material of the light-receiving surface electrode 110 is formed on the upper surface of the anti-reflection film 109 on the light-receiving surface 120A side of the single crystal germanium substrate 120. Further, a material of the back surface electrode 111 is formed on the lower surface of the protective film 117. For example, a paste containing metal particles and glass particles is applied to the upper surface of the anti-reflection film 109 and the lower surface of the protective film 117 by a coating method such as a screen printing method. Then, after drying in a drying oven of, for example, 200 ° C for 10 minutes, heat treatment is performed at a high temperature of 800 ° C, and firing is performed to form the light-receiving surface electrode 110, the back surface electrode 111, and the solar cell exemplified in FIG.

本實施形態2中,背面電極111係貫穿保護膜117而連接於結晶系薄膜矽層115。保護膜117的貫穿係應用燒穿(fire-through)效果。亦即,應用了背面電極111中所含有的玻璃粒子在電極燒成中將保護膜117予以部分地蝕刻並貫穿,而使背面電極111連接於結晶系薄膜矽層115的效果。同樣地,在電極燒成中,背面電極111中所含有的玻璃粒子也會將結晶系薄膜矽層115及穿隧氧化物層114予以部分地蝕刻並貫穿,而使背面電極111連接於摻雜層116。 In the second embodiment, the back surface electrode 111 is connected to the crystal thin film layer 115 through the protective film 117. The penetration of the protective film 117 applies a fire-through effect. In other words, the glass particles contained in the back surface electrode 111 are used to partially etch and penetrate the protective film 117 during electrode firing, thereby connecting the back surface electrode 111 to the crystalline film thin layer 115. Similarly, in the electrode firing, the glass particles contained in the back surface electrode 111 partially etch and penetrate the crystalline film thin layer 115 and the tunnel oxide layer 114, and the back surface electrode 111 is connected to the doping. Layer 116.

<實施形態2之總結>  <Summary of Embodiment 2>  

首先,針對摻雜層116的厚度比結晶系薄膜矽層115的厚度還厚的意義進行說明。上述的燒穿效果方面,一般而言,玻璃粒子所造成的蝕刻的深度係包含參差不齊的情況。由於該參差不齊,本來背面電極111要達到結晶系薄膜矽層115的部分、要達到穿隧氧化物層104的部分、要達到摻雜層116的部分以及要達到半導體層100的部分成為混合的狀態。若是背面電極111有達到半導體層100的部分,則在背面電極111與半導體層100之間的界面就會形成非常多的缺陷位準,在半導體層100內生成的少數載子會因缺陷位準而消滅,而使開路電壓Voc降低。 First, the significance of the thickness of the doped layer 116 being thicker than the thickness of the crystalline thin film layer 115 will be described. In terms of the above-described burn-through effect, in general, the depth of etching by the glass particles is uneven. Due to the unevenness, the portion of the back surface electrode 111 to reach the crystalline thin film layer 115, the portion to reach the tunnel oxide layer 104, the portion to reach the doped layer 116, and the portion to reach the semiconductor layer 100 become a mixture. status. If the back surface electrode 111 has a portion reaching the semiconductor layer 100, a very large number of defect levels are formed at the interface between the back surface electrode 111 and the semiconductor layer 100, and a minority carrier generated in the semiconductor layer 100 may be defective due to the defect level. And extinguished, and the open circuit voltage Voc is lowered.

因此,本實施形態2中,係將摻雜層116的厚度設成比結晶系薄膜矽層115還厚。依據如此的構成, 可調節成玻璃粒子所造成的蝕刻的前端部分會成為在摻雜層116內。藉此,由於能夠抑制背面電極111達到半導體層100,所以能夠抑制開路電壓Voc的降低。 Therefore, in the second embodiment, the thickness of the doping layer 116 is made thicker than the crystalline thin film layer 115. According to such a configuration, the tip end portion of the etching which can be adjusted by the glass particles becomes in the doped layer 116. Thereby, since the back surface electrode 111 can be suppressed from reaching the semiconductor layer 100, the fall of the open circuit voltage Voc can be suppressed.

此外,在摻雜層116連接背面電極111的部分也會在界面形成缺陷位準。然而,於摻雜層116內部形成有因摻雜物所造成的內部電場,在半導體層100內部所生成的少數載子會受到來自該內部電場的排斥力而不會接近界面的缺陷位準。因此,少數載子的消滅較少,可減少開路電壓Voc的降低。 Further, a portion where the doping layer 116 is connected to the back surface electrode 111 also forms a defect level at the interface. However, an internal electric field due to the dopant is formed inside the doped layer 116, and a minority carrier generated inside the semiconductor layer 100 is subjected to a repulsive force from the internal electric field without approaching the defect level of the interface. Therefore, the elimination of a few carriers is less, and the reduction of the open circuit voltage Voc can be reduced.

第17圖係相關的太陽能電池的開路電壓Voc與本實施形態2之太陽能電池的開路電壓Voc比較後的結果之圖。依據本實施形態2之太陽能電池,可獲得保護膜117的保護效果以及抑制在界面之少數載子消滅的效果,因此,能夠將開路電壓Voc比相關的太陽能電池更提高例如7mV左右。 Fig. 17 is a graph showing the results of comparison between the open circuit voltage Voc of the solar cell and the open circuit voltage Voc of the solar cell of the second embodiment. According to the solar cell of the second embodiment, the protective effect of the protective film 117 and the effect of suppressing the elimination of a small number of carriers at the interface can be obtained. Therefore, the open circuit voltage Voc can be increased by, for example, about 7 mV.

依據本實施形態2,背面電極111透過設於保護膜117、結晶系薄膜矽層115及穿隧氧化物層114的貫穿孔而與摻雜層116連接。藉此,能夠穩定降低接觸電阻,因此,能夠提高FF及填充因數。 According to the second embodiment, the back surface electrode 111 is connected to the doping layer 116 through the through holes provided in the protective film 117, the crystal thin film layer 115, and the tunnel oxide layer 114. Thereby, the contact resistance can be stably reduced, and therefore, the FF and the fill factor can be improved.

此外,此外,本發明可於其發明的範圍內自由地組合各實施形態,或適宜地將各實施形態予以變形、省略。 Further, the present invention can be freely combined with the respective embodiments within the scope of the invention, or the embodiments can be modified and omitted as appropriate.

以上已詳細說明了本發明,而上述的發明係在所有的態樣中的例示,本發明並不被其等所限定。可 解讀為在不脫離本發明的範圍的情形下可被設想有未被例示之無數的形態變化例。 The invention has been described in detail above, and the invention described above is exemplified in all aspects, and the invention is not limited thereto. It can be understood that there are numerous morphological variations that are not illustrated, without departing from the scope of the invention.

Claims (7)

一種太陽能電池,係具備:半導體層;第一雜質層;穿隧層,係配設於前述半導體層與前述第一雜質層之間且含有氧;第二雜質層,係配設於前述半導體層與前述穿隧層之間;以及電極,係連接於前述第一雜質層;前述穿隧層及前述第一雜質層係含有與前述第二雜質層之雜質相同的雜質,前述穿隧層之雜質的濃度係比前述第一雜質層及前述第二雜質層之各者的雜質的濃度還高。  A solar cell comprising: a semiconductor layer; a first impurity layer; a tunneling layer disposed between the semiconductor layer and the first impurity layer and containing oxygen; and a second impurity layer disposed on the semiconductor layer And the electrode is connected to the first impurity layer; the tunneling layer and the first impurity layer contain the same impurity as the impurity of the second impurity layer, and the impurity of the tunneling layer The concentration is higher than the concentration of the impurities of each of the first impurity layer and the second impurity layer.   如申請專利範圍第1項所述之太陽能電池,其中,前述第二雜質層的雜質的濃度係比前述第一雜質層的雜質的濃度還低。  The solar cell according to claim 1, wherein the concentration of the impurity of the second impurity layer is lower than the concentration of the impurity of the first impurity layer.   如申請專利範圍第1項或第2項所述之太陽能電池,其中,前述電極係含有玻璃粒子。  The solar cell according to claim 1 or 2, wherein the electrode contains glass particles.   如申請專利範圍第1項或第2項所述之太陽能電池,其中,前述電極係透過設於前述第一雜質層及前述穿隧層的貫穿孔而連接於前述第二雜質層。  The solar cell according to claim 1 or 2, wherein the electrode is connected to the second impurity layer through a through hole provided in the first impurity layer and the tunneling layer.   如申請專利範圍第1項或第2項所述之太陽能電池,其 中,前述第二雜質層的厚度係比前述第一雜質層的厚度還厚。  The solar cell according to claim 1 or 2, wherein the thickness of the second impurity layer is thicker than the thickness of the first impurity layer.   如申請專利範圍第1項或第2項所述之太陽能電池,更具備介電體膜,該介電體膜係配設於前述第一雜質層之與前述半導體層相反側的面。  The solar cell according to claim 1 or 2, further comprising a dielectric film disposed on a surface of the first impurity layer opposite to the semiconductor layer.   一種太陽能電池的製造方法,係申請專利範圍第1項或第2項所述之太陽能電池的製造方法,包含:使前述穿隧層隣接形成於半導體基板,將前述穿隧層之雜質熱擴散至前述半導體基板,藉此,於前述半導體基板之中隣接前述穿隧層的部分形成前述第二雜質層,於除此以外的部分形成前述半導體層。  A method of manufacturing a solar cell according to the first or second aspect of the invention, comprising: forming the tunneling layer adjacent to the semiconductor substrate, and thermally diffusing impurities of the tunneling layer to In the semiconductor substrate, the second impurity layer is formed in a portion of the semiconductor substrate adjacent to the tunneling layer, and the semiconductor layer is formed in a portion other than the semiconductor layer.  
TW107125181A 2017-07-28 2018-07-20 Solar cell and manufacturing method thereof TW201911588A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-146534 2017-07-28
JP2017146534 2017-07-28
PCT/JP2018/015220 WO2019021545A1 (en) 2017-07-28 2018-04-11 Solar cell and method for manufacturing same
??PCT/JP2018/015220 2018-04-11

Publications (1)

Publication Number Publication Date
TW201911588A true TW201911588A (en) 2019-03-16

Family

ID=65040505

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107125181A TW201911588A (en) 2017-07-28 2018-07-20 Solar cell and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JPWO2019021545A1 (en)
TW (1) TW201911588A (en)
WO (1) WO2019021545A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705574B (en) * 2019-07-24 2020-09-21 財團法人金屬工業研究發展中心 Solar cell structure and method of manufacturing the same
CN114709277A (en) * 2022-05-31 2022-07-05 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843349B (en) 2020-10-30 2023-06-23 浙江晶科能源有限公司 Solar cell
CN112466961B (en) 2020-11-19 2024-05-10 晶科绿能(上海)管理有限公司 Solar cell and method for manufacturing same
CN112635592A (en) * 2020-12-23 2021-04-09 泰州隆基乐叶光伏科技有限公司 Solar cell and manufacturing method thereof
CN113921626A (en) * 2021-09-30 2022-01-11 泰州隆基乐叶光伏科技有限公司 Manufacturing method of back contact battery
CN116722049A (en) * 2022-04-11 2023-09-08 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module
CN116364794A (en) 2022-04-11 2023-06-30 浙江晶科能源有限公司 Solar cell, photovoltaic module and preparation method of solar cell

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2787541B1 (en) * 2013-04-03 2022-08-31 LG Electronics, Inc. Solar cell
JP2015185715A (en) * 2014-03-25 2015-10-22 パナソニックIpマネジメント株式会社 photovoltaic device
JP6456279B2 (en) * 2015-01-29 2019-01-23 三菱電機株式会社 Manufacturing method of solar cell
KR102272433B1 (en) * 2015-06-30 2021-07-05 엘지전자 주식회사 Solar cell and method of manufacturing the same
US9911873B2 (en) * 2015-08-11 2018-03-06 Alliance For Sustainable Energy, Llc Hydrogenation of passivated contacts
JP6198996B1 (en) * 2016-01-13 2017-09-20 三菱電機株式会社 Solar cell and method for producing solar cell
JP6257847B1 (en) * 2016-03-23 2018-01-10 三菱電機株式会社 Manufacturing method of solar cell
WO2018025643A1 (en) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 Solar cell and method for producing solar cell
CN109844962A (en) * 2016-09-27 2019-06-04 松下知识产权经营株式会社 The manufacturing method of solar energy monocell and solar energy monocell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705574B (en) * 2019-07-24 2020-09-21 財團法人金屬工業研究發展中心 Solar cell structure and method of manufacturing the same
CN114709277A (en) * 2022-05-31 2022-07-05 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module

Also Published As

Publication number Publication date
JPWO2019021545A1 (en) 2019-11-07
WO2019021545A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
TW201911588A (en) Solar cell and manufacturing method thereof
TWI459577B (en) Method of manufacturing crystalline silicon solar cells with improved surface passivation
JP5649580B2 (en) Manufacturing method of solar cell
JP5456168B2 (en) Method for manufacturing photoelectric conversion device
JP6392385B2 (en) Manufacturing method of solar cell
US20080241987A1 (en) Method for fabricating a silicon solar cell structure having silicon nitride layers
TWI580058B (en) Solar cell
US20140014175A1 (en) Solar cell element and solar cell module
JP2008533730A (en) Photovoltaic cell with thick silicon oxide and silicon nitride protective layer and its fabrication
KR102120147B1 (en) Solar cell and method of manufacturing the same
JP6003791B2 (en) Manufacturing method of solar cell
JP2020129666A (en) Relative dopant concentration level in solar cell
JP6537722B2 (en) PHOTOVOLTAIC DEVICE AND METHOD FOR MANUFACTURING THE SAME
TWI650872B (en) Solar cell and its manufacturing method, solar cell module and solar cell power generation system
US20190305171A1 (en) Method of manufacturing solar cell
TW201611309A (en) Passivation of light-receiving surfaces of solar cells
JP6559326B2 (en) Manufacturing method of solar cell
KR100995654B1 (en) Solar cell and method for manufacturing the same
JP5316491B2 (en) Manufacturing method of solar cell
KR20170090989A (en) Method for fabricating a solar cell
JPH0918037A (en) Method of manufacturing solar battery element
JP2015156511A (en) Method of manufacturing solar cell, and solar cell