TWI705574B - Solar cell structure and method of manufacturing the same - Google Patents

Solar cell structure and method of manufacturing the same Download PDF

Info

Publication number
TWI705574B
TWI705574B TW108126240A TW108126240A TWI705574B TW I705574 B TWI705574 B TW I705574B TW 108126240 A TW108126240 A TW 108126240A TW 108126240 A TW108126240 A TW 108126240A TW I705574 B TWI705574 B TW I705574B
Authority
TW
Taiwan
Prior art keywords
crystalline silicon
silicon layer
layer
doped crystalline
semiconductor substrate
Prior art date
Application number
TW108126240A
Other languages
Chinese (zh)
Other versions
TW202105752A (en
Inventor
田偉辰
洪政源
葉昌鑫
吳以德
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW108126240A priority Critical patent/TWI705574B/en
Application granted granted Critical
Publication of TWI705574B publication Critical patent/TWI705574B/en
Publication of TW202105752A publication Critical patent/TW202105752A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A solar cell structure includes a semiconductor substrate, a passivation layer, a tunneling layer and a doped crystalline silicon layer. The semiconductor substrate has opposite first side and second side. The passivation layer is at the first side of the semiconductor substrate. The tunneling layer is at the second side of the semiconductor substrate. The doped crystalline silicon layer is at the side of the tunneling layer far away from the semiconductor substrate. The doped crystalline silicon layer includes polysilicon crystals, and the crystallinity of the doped crystalline silicon layer is about 50% to 90%.

Description

太陽能電池結構及其製作方法 Solar cell structure and manufacturing method thereof

本發明是有關於一種太陽能電池結構及其製作方法,且特別是一種具有多晶矽晶體之太陽能電池結構及其製作方法。 The invention relates to a solar cell structure and a manufacturing method thereof, and particularly a solar cell structure with polycrystalline silicon crystals and a manufacturing method thereof.

在半導體相關產業中,鈍化結構與製程是不可或缺的重要結構與製程。以太陽能電池產業為例,傳統背電場(back surface field;BSF)太陽能電池,射極與背電極鈍化(Passivated emitter and rear cell;PERC)太陽能電池、異質接面薄本質層(heterojunction with intrinsic thin layer;HIT)太陽能電池、或是穿隧氧化物鈍化接觸(tunnel oxide passivated contact;TOPcon)太陽能電池等均具有鈍化層。舉例而言,高效矽基太陽能電池結構所採用的摻雜結晶矽層是藉由高溫製程來製作,導致影響穿隧層品質而降低產品效能及良率。 In the semiconductor-related industries, passivation structures and processes are indispensable and important structures and processes. Take the solar cell industry as an example. Traditional back surface field (BSF) solar cells, Passivated emitter and rear cell (PERC) solar cells, heterojunction with intrinsic thin layer ; HIT) solar cells, or tunnel oxide passivated contact (tunnel oxide passivated contact; TOPcon) solar cells, etc. all have a passivation layer. For example, the doped crystalline silicon layer used in the high-efficiency silicon-based solar cell structure is produced by a high-temperature process, which affects the quality of the tunnel layer and reduces product performance and yield.

本發明之一目的在於提供一種太陽能電池結構,其相較於習知太陽能電池結構具有較高的暗喻開路電壓 (implied open-circuit voltage)和載子生命週期,使得整體效能因而提升。本發明之另一目的在於提供一種此太陽能電池結構的製作方法。 One object of the present invention is to provide a solar cell structure, which has a higher metaphorical open circuit voltage than the conventional solar cell structure (implied open-circuit voltage) and carrier life cycle, so that the overall performance is improved. Another object of the present invention is to provide a manufacturing method of the solar cell structure.

根據上述目的,本發明提出一種太陽能電池結構,其包含半導體基板、鈍化層、穿隧層和摻雜結晶矽層。半導體基板具有相對之第一側和第二側。鈍化層位於半導體基板的第一側。穿隧層位於半導體基板的第二側。摻雜結晶矽層位於穿隧層之遠離該半導體基板的側邊,其包含多晶矽晶體,且其結晶度為50%~90%。 According to the above objective, the present invention provides a solar cell structure, which includes a semiconductor substrate, a passivation layer, a tunneling layer and a doped crystalline silicon layer. The semiconductor substrate has opposite first and second sides. The passivation layer is located on the first side of the semiconductor substrate. The tunneling layer is located on the second side of the semiconductor substrate. The doped crystalline silicon layer is located on the side of the tunneling layer far away from the semiconductor substrate. It contains polycrystalline silicon crystals and has a crystallinity of 50% to 90%.

依據本發明之一實施例,上述摻雜結晶矽層包含互相堆疊之第一次摻雜結晶矽層和第二次摻雜結晶矽層,第一次摻雜結晶矽層位於上述穿隧層與第二次摻雜結晶矽層之間,且第二次摻雜結晶矽層之摻雜濃度大於第一次摻雜結晶矽層之摻雜濃度。 According to an embodiment of the present invention, the doped crystalline silicon layer includes a first doped crystalline silicon layer and a second doped crystalline silicon layer stacked on each other, and the first doped crystalline silicon layer is located between the tunnel layer and the Between the second doped crystalline silicon layers, and the doping concentration of the second doped crystalline silicon layer is greater than that of the first doped crystalline silicon layer.

依據本發明之又一實施例,上述第一次摻雜結晶矽層之摻雜濃度約為1013個/立方公分至1017個/立方公分,且上述第二次摻雜結晶矽層之摻雜濃度約為1017個/立方公分至1021個/立方公分。 According to another embodiment of the present invention, the doping concentration of the first doped crystalline silicon layer is about 10 13 / cm ^ 3 to 10 17 / cm ^ 3, and the doping concentration of the second doped crystalline silicon layer The impurity concentration is about 10 17 /cm ^ 3 to 10 21 /cm ^ 3.

依據本發明之又一實施例,上述第一次摻雜結晶矽層與上述第二次摻雜結晶矽層之每一者的厚度約為10奈米(nm)至50奈米。 According to another embodiment of the present invention, the thickness of each of the first doped crystalline silicon layer and the second doped crystalline silicon layer is about 10 nanometers (nm) to 50 nanometers.

依據本發明之又一實施例,上述鈍化層的材料為氧化鋁、氧化鈦、氧化鋯、氧化鉿、氮化矽或上述組合。 According to another embodiment of the present invention, the material of the passivation layer is aluminum oxide, titanium oxide, zirconium oxide, hafnium oxide, silicon nitride, or a combination of the foregoing.

依據本發明之又一實施例,上述穿隧層之厚度約為0.1奈米至3奈米。 According to another embodiment of the present invention, the thickness of the tunnel layer is about 0.1 nanometers to 3 nanometers.

依據本發明之又一實施例,上述摻雜結晶矽層的厚度約為20奈米至100奈米。 According to another embodiment of the present invention, the thickness of the doped crystalline silicon layer is about 20 nanometers to 100 nanometers.

根據上述目的,本發明另提出一種製作太陽能電池結構的方法,其包含:提供半導體基板;透過高溫氧化或化學氣相沉積方式,在半導體基板之第一側形成穿隧層;藉由第一沉積製程,在穿隧層之遠離半導體基板的一側形成摻雜結晶矽層,其包含多晶矽晶體,且其結晶度為50%~90%;以及藉由第二沉積製程,在半導體基板之相對於第一側的第二側形成鈍化層。 According to the above objective, the present invention further provides a method for fabricating a solar cell structure, which includes: providing a semiconductor substrate; forming a tunnel layer on the first side of the semiconductor substrate through high temperature oxidation or chemical vapor deposition; In the process, a doped crystalline silicon layer is formed on the side of the tunneling layer away from the semiconductor substrate, which contains polysilicon crystals and has a crystallinity of 50%~90%; and by the second deposition process, the semiconductor substrate is opposite to The second side of the first side forms a passivation layer.

依據本發明之又一實施例,在上述穿隧層之遠離上述半導體基板的一側形成上述摻雜結晶矽層包含:在上述穿隧層之遠離上述半導體基板的一側形成第一次摻雜結晶矽層,其摻雜濃度約為1013個/立方公分至1017個/立方公分;以及在第一次摻雜結晶矽層之遠離上述穿隧層的一側形成第二次摻雜結晶矽層,其摻雜濃度約為1017個/立方公分至1021個/立方公分。 According to another embodiment of the present invention, forming the doped crystalline silicon layer on the side of the tunneling layer away from the semiconductor substrate includes: forming a first doping on the side of the tunneling layer away from the semiconductor substrate The doping concentration of the crystalline silicon layer is about 10 13 /cm ^3 to 10 17 /cm ^ 3; and the second doping crystal is formed on the side of the first doped crystalline silicon layer away from the tunnel layer The doping concentration of the silicon layer is about 10 17 /cm ^ 3 to 10 21 /cm ^ 3.

依據本發明之又一實施例,上述第一沉積製程包含形成第一次摻雜結晶矽層與第二次摻雜結晶矽層,其中第二次摻雜結晶矽層的製程氣體相對於第一次摻雜結晶矽層的製程氣體增加摻雜物的反應氣體。 According to another embodiment of the present invention, the above-mentioned first deposition process includes forming a first doped crystalline silicon layer and a second doped crystalline silicon layer, wherein the process gas of the second doped crystalline silicon layer is relative to the first doped crystalline silicon layer. The process gas of the sub-doped crystalline silicon layer increases the reaction gas of the dopant.

100‧‧‧太陽能電池結構 100‧‧‧Solar cell structure

102‧‧‧半導體基板 102‧‧‧Semiconductor substrate

102A‧‧‧第一側 102A‧‧‧First side

102B‧‧‧第二側 102B‧‧‧Second side

104‧‧‧穿隧層 104‧‧‧Tunnel layer

106‧‧‧摻雜結晶矽層 106‧‧‧Doped crystalline silicon layer

106A‧‧‧第一次摻雜結晶矽層 106A‧‧‧First doped crystalline silicon layer

106B‧‧‧第二次摻雜結晶矽層 106B‧‧‧Second doping of crystalline silicon layer

108、110‧‧‧鈍化層 108、110‧‧‧Passivation layer

112‧‧‧抗反射層 112‧‧‧Anti-reflective layer

114、116‧‧‧電極層 114、116‧‧‧electrode layer

300‧‧‧方法 300‧‧‧Method

S302、S304、S306、S308‧‧‧步驟 S302, S304, S306, S308‧‧‧Step

T106、T106A、T106B‧‧‧厚度 T 106 , T 106A , T 106B ‧‧‧Thickness

為了更完整了解實施例及其優點,現參照結合所附圖式所做之下列描述,其中:〔圖1〕為為本發明實施例之太陽能電池結構的剖視圖; 〔圖2〕為〔圖1〕之太陽能電池結構的局部剖視圖;以及〔圖3〕為本發明實施例之製作太陽能電池結構之方法的流程圖。 In order to fully understand the embodiments and their advantages, now refer to the following description in conjunction with the accompanying drawings, in which: [FIG. 1] is a cross-sectional view of the solar cell structure of an embodiment of the present invention; [FIG. 2] is a partial cross-sectional view of the solar cell structure of [FIG. 1]; and [FIG. 3] is a flowchart of a method of manufacturing a solar cell structure according to an embodiment of the present invention.

以下仔細討論本發明的實施例。然而,可以理解的是,實施例提供許多可應用的發明概念,其可實施於各式各樣的特定內容中。所討論之特定實施例僅供說明,並非用以限定本發明之範圍。 The embodiments of the present invention are discussed in detail below. However, it is understandable that the embodiments provide many applicable inventive concepts, which can be implemented in various specific contents. The specific embodiments discussed are for illustration only, and are not intended to limit the scope of the invention.

可被理解的是,雖然在本文可使用「第一」、「第二」等用語來描述各種元件、零件、區域和/或部分,但此些用語不應限制此些元件、零件、區域和/或部分。此些用語僅用以區別一元件、零件、區域和/或部分與另一元件、零件、區域和/或部分。 It can be understood that although terms such as "first" and "second" may be used herein to describe various elements, parts, regions, and/or parts, these terms should not limit these elements, parts, regions, and / Or part. These terms are only used to distinguish one element, part, region and/or part from another element, part, region and/or part.

在本文中所使用的用語僅是為了描述特定實施例,非用以限制申請專利範圍。除非另有限制,否則單數形式的「一」或「該」用語也可用來表示複數形式。此外,空間相對性用語的使用是為了說明元件在使用或操作時的不同方位,而不只限於圖式所繪示的方向。元件也可以其他方式定向(旋轉90度或在其他方向),而在此使用的空間相對性描述也可以相同方式解讀。 The terms used in this text are only for describing specific embodiments and not for limiting the scope of patent applications. Unless otherwise restricted, the term "one" or "the" in the singular form can also be used to indicate the plural form. In addition, the use of the terms of spatial relativity is to describe the different orientations of the components during use or operation, and is not limited to the directions shown in the drawings. Elements can also be oriented in other ways (rotated by 90 degrees or in other directions), and the spatial relativity description used here can also be interpreted in the same way.

請參照圖1,圖1為本發明實施例之太陽能電池結構100的剖視圖。如圖1所示,太陽能電池結構100為穿隧氧化物鈍化接觸型(tunnel oxide passivated contact; TOPcon)太陽能電池結構,且其包含半導體基板102、穿隧層104、摻雜結晶矽層106、鈍化層108、110、抗反射層112和電極層114、116。 Please refer to FIG. 1, which is a cross-sectional view of a solar cell structure 100 according to an embodiment of the present invention. As shown in FIG. 1, the solar cell structure 100 is a tunnel oxide passivated contact (tunnel oxide passivated contact; TOPcon) solar cell structure, and it includes a semiconductor substrate 102, a tunneling layer 104, a doped crystalline silicon layer 106, a passivation layer 108, 110, an anti-reflection layer 112, and an electrode layer 114, 116.

依據太陽能電池結構100的應用,半導體基板102可以是N型摻雜結晶矽基板或P型摻雜結晶矽基板。穿隧層104是藉由射頻電漿設備對半導體基板102的第一側102A進行表面處理,在半導體基板102的第一側102A形成穿隧層104。穿隧層104可以是氧化矽薄膜,其厚度可約為0.1奈米(nm)至3奈米,且其缺陷密度可實質低於1011個/平方公分。摻雜結晶矽層106位於穿隧層104之遠離半導體基板102的一側。摻雜結晶矽層106可包含單晶矽晶體和/或多晶矽晶體,其厚度T106可約為20奈米至100奈米,且其結晶度可約為50%至90%,以降低與電極層114之間的界面阻抗及避免破壞穿隧層104。此外,對應半導體基板102的類型,摻雜結晶矽層106可以是N型摻雜結晶矽層或P型摻雜結晶矽層。舉例而言,若是半導體基板102為N型摻雜結晶矽基板,則摻雜結晶矽層106可以是N+型摻雜結晶矽層。 According to the application of the solar cell structure 100, the semiconductor substrate 102 may be an N-type doped crystalline silicon substrate or a P-type doped crystalline silicon substrate. The tunneling layer 104 is surface-treated on the first side 102A of the semiconductor substrate 102 by a radio frequency plasma equipment, and the tunneling layer 104 is formed on the first side 102A of the semiconductor substrate 102. The tunnel layer 104 may be a silicon oxide film, the thickness of which may be about 0.1 nanometer (nm) to 3 nanometers, and the defect density may be substantially lower than 10 11 /cm². The doped crystalline silicon layer 106 is located on the side of the tunnel layer 104 away from the semiconductor substrate 102. The doped crystalline silicon layer 106 may include monocrystalline silicon crystals and/or polycrystalline silicon crystals, and its thickness T 106 may be about 20 nanometers to 100 nanometers, and its crystallinity may be about 50% to 90% to reduce contact with the electrode The interface resistance between the layers 114 and avoid damage to the tunnel layer 104. In addition, corresponding to the type of the semiconductor substrate 102, the doped crystalline silicon layer 106 may be an N-type doped crystalline silicon layer or a P-type doped crystalline silicon layer. For example, if the semiconductor substrate 102 is an N-type doped crystalline silicon substrate, the doped crystalline silicon layer 106 may be an N+ type doped crystalline silicon layer.

鈍化層108、110和抗反射層112是依序堆疊在半導體基板102的第二側102B上。每一鈍化層108、110的材料可以是氧化鋁、氧化鈦、氧化鋯、氧化鉿、氮化矽、上述組合或其他合適的材料。舉例而言,鈍化層108、110可以分別是氧化鋁層和氧化矽層。抗反射層112的材料可以是氮化矽、氧化矽、氮氧化矽、氧化鋁、氧化鈦、上述組合或其他合適的材料。 The passivation layers 108 and 110 and the anti-reflection layer 112 are sequentially stacked on the second side 102B of the semiconductor substrate 102. The material of each passivation layer 108, 110 can be aluminum oxide, titanium oxide, zirconium oxide, hafnium oxide, silicon nitride, a combination of the foregoing, or other suitable materials. For example, the passivation layers 108 and 110 may be an aluminum oxide layer and a silicon oxide layer, respectively. The material of the anti-reflective layer 112 can be silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, titanium oxide, a combination of the above, or other suitable materials.

電極層114、116分別位於摻雜結晶矽層106之遠離穿隧層104的一側和半導體基板102的第二側102A,其中電極層116向上延伸且貫穿鈍化層108、110和抗反射層112。電極層114、116的材料可以是銀、銅、鋁、上述組合或其他合適的金屬或導電材料。在一些實施例中,電極層114為透明導電氧化層,其材料可以是氧化銦錫(indium tin oxide;ITO)、氧化銦鋅(indium zinc oxide;IZO)或其他合適的透明導電材料。 The electrode layers 114, 116 are respectively located on the side of the doped crystalline silicon layer 106 away from the tunneling layer 104 and the second side 102A of the semiconductor substrate 102, wherein the electrode layer 116 extends upward and penetrates the passivation layers 108, 110 and the anti-reflection layer 112 . The material of the electrode layers 114 and 116 may be silver, copper, aluminum, a combination of the above, or other suitable metals or conductive materials. In some embodiments, the electrode layer 114 is a transparent conductive oxide layer, and its material may be indium tin oxide (ITO), indium zinc oxide (IZO) or other suitable transparent conductive materials.

圖2為圖1之太陽能電池結構100的局部剖視圖。如圖2所示,摻雜結晶矽層106包含上下堆疊的第一次摻雜結晶矽層106A以及第二次摻雜結晶矽層106B,其中第一次摻雜結晶矽層106A位於穿隧層104之遠離半導體基板102的一側,而第二次摻雜結晶矽層106B位於第一次摻雜結晶矽層106A之遠離穿隧層104的一側。以半導體基板102實施為N型摻雜結晶矽基板為例,第一次摻雜結晶矽層106A、第二次摻雜結晶矽層106B可均由多晶矽形成且具有N型摻雜物,例如磷、砷、銻和/或其他相似的摻雜物。第二次摻雜結晶矽層106B的摻雜濃度大於第一次摻雜結晶矽層106A的摻雜濃度。由於第一次摻雜結晶矽層106A鄰近於穿隧層104,具有較低的摻雜濃度的第一次摻雜結晶矽層106A可以避免摻雜物擴散至穿隧層104,如此可提升穿隧層104的可靠度。此外,第二次摻雜結晶矽層106B鄰近於電極層114,如此具有較高的摻雜濃度的第二次摻雜結晶矽層106B可以增加與電極層114的歐姆接觸(ohmic contact)的效果。在一些實施例中,第一次摻雜結晶矽層106A的摻雜濃度約為1013個/立方公分至1017個/立方公分。而第二次摻雜結晶矽層106B的摻雜濃度約為1017個/立方公分至1021個/立方公分。此外,在一些實施例中,第一次摻雜結晶矽層106A與第二次摻雜結晶矽層106B的厚度T106A、T106B個別約為10奈米至50奈米。厚度T106A與厚度T106B可相同或不同。第一次摻雜結晶矽層106A與第二次摻雜結晶矽層106B的界定可以用摻雜濃度的多寡判斷。在一實施例中,摻雜結晶矽層106與摻雜濃度的關係圖中,摻雜結晶矽層106在x軸座標上,左邊為鄰近穿隧層104,右邊為鄰近於電極層114,摻雜濃度在y軸座標。第一次摻雜結晶矽層106A與第二次摻雜結晶矽層106B之界面,則位於摻雜濃度變化最大的區間中的中間摻雜濃度所對應的位置。 FIG. 2 is a partial cross-sectional view of the solar cell structure 100 of FIG. 1. As shown in FIG. 2, the doped crystalline silicon layer 106 includes a first doped crystalline silicon layer 106A and a second doped crystalline silicon layer 106B stacked on top of each other, wherein the first doped crystalline silicon layer 106A is located in the tunnel layer The side of 104 is away from the semiconductor substrate 102, and the second doped crystalline silicon layer 106B is on the side of the first doped crystalline silicon layer 106A away from the tunnel layer 104. Taking the implementation of the semiconductor substrate 102 as an N-type doped crystalline silicon substrate as an example, the first doped crystalline silicon layer 106A and the second doped crystalline silicon layer 106B may both be formed of polycrystalline silicon and have N-type dopants, such as phosphorus. , Arsenic, antimony and/or other similar dopants. The doping concentration of the second doped crystalline silicon layer 106B is greater than the doping concentration of the first doped crystalline silicon layer 106A. Since the first doped crystalline silicon layer 106A is adjacent to the tunneling layer 104, the first doped crystalline silicon layer 106A with a lower doping concentration can prevent the dopants from diffusing into the tunneling layer 104, thus improving the penetration The reliability of the tunnel layer 104. In addition, the second doped crystalline silicon layer 106B is adjacent to the electrode layer 114, so that the second doped crystalline silicon layer 106B with a higher doping concentration can increase the effect of ohmic contact with the electrode layer 114 . In some embodiments, the doping concentration of the first doped crystalline silicon layer 106A is about 10 13 /cm ^ 3 to 10 17 /cm ^ 3. The doping concentration of the second doped crystalline silicon layer 106B is about 10 17 /cm ^ 3 to 10 21 /cm ^ 3. In addition, in some embodiments, the thicknesses T 106A and T 106B of the first doped crystalline silicon layer 106A and the second doped crystalline silicon layer 106B are about 10 nm to 50 nm, respectively. The thickness T 106A and the thickness T 106B may be the same or different. The definition of the first doped crystalline silicon layer 106A and the second doped crystalline silicon layer 106B can be determined by the amount of doping concentration. In one embodiment, in the graph of the relationship between the doped crystalline silicon layer 106 and the doping concentration, the doped crystalline silicon layer 106 is on the x-axis coordinate. The left side is adjacent to the tunnel layer 104, and the right side is adjacent to the electrode layer 114. The impurity concentration is on the y-axis coordinate. The interface between the first doped crystalline silicon layer 106A and the second doped crystalline silicon layer 106B is located at the position corresponding to the intermediate doping concentration in the interval where the doping concentration changes the most.

在一些實施例中,摻雜結晶矽層106可具有三個或三個以上的次摻雜結晶矽層,且此些次摻雜結晶矽層的摻雜濃度關係可以如階梯狀,往遠離穿隧層104的方向上遞減。此些次摻雜結晶矽層的厚度彼此可以相同或不同。而在其他實施例中,摻雜結晶矽層106可具有連續性的摻雜濃度變化,且其摻雜濃度可在逐漸遠離穿隧層104的方向上遞減;在接近與穿隧層104的接面之摻雜濃度約為1013個/立方公分至1017個/立方公分,而在接近與導電層114的接面之摻雜濃度約為1017個/立方公分至1021個/立方公分。 In some embodiments, the doped crystalline silicon layer 106 may have three or more sub-doped crystalline silicon layers, and the doping concentration relationship of these sub-doped crystalline silicon layers may be stepwise, farther away The direction of the tunnel layer 104 decreases. The thickness of these sub-doped crystalline silicon layers can be the same or different from each other. In other embodiments, the doped crystalline silicon layer 106 may have a continuous doping concentration change, and its doping concentration may gradually decrease in the direction away from the tunneling layer 104; near the junction with the tunneling layer 104 The doping concentration of the surface is about 10 13 / cm ^ 3 to 10 17 / cm ^ 3, and the doping concentration near the interface with the conductive layer 114 is about 10 17 / cm ^ 3 to 10 21 / cm ^ 3 .

相較於習知太陽能電池結構,本發明之太陽能電池結構的暗喻開路電壓(implied open-circuit voltage) 可達700毫伏(mV)以上,且其載子生命週期(lifetime)可提升至1600微秒以上,故整體效能可提升至少5%。此外,本發明之太陽能電池結構亦可提升穿隧氧化物鈍化接觸型太陽能電池結構的光電轉換效率至24%以上。 Compared with the conventional solar cell structure, the implied open-circuit voltage of the solar cell structure of the present invention It can reach more than 700 millivolts (mV), and its carrier lifetime can be increased to more than 1600 microseconds, so the overall performance can be increased by at least 5%. In addition, the solar cell structure of the present invention can also increase the photoelectric conversion efficiency of the tunnel oxide passivation contact solar cell structure to more than 24%.

圖3為本發明實施例之製作太陽能電池結構之方法300的流程圖。為方便說明,以下方法300之各步驟的敘述係以形成圖1和圖2之太陽能電池結構100為例,但本發明並不限於此,其亦可用於形成其他太陽能電池結構或是相似的半導體結構。 3 is a flowchart of a method 300 for manufacturing a solar cell structure according to an embodiment of the present invention. For the convenience of description, the following description of the steps of the method 300 is based on the formation of the solar cell structure 100 of FIGS. 1 and 2 as an example, but the present invention is not limited to this, and it can also be used to form other solar cell structures or similar semiconductors. structure.

在方法300中,首先進行步驟S302,提供半導體基板102。依據各設計需求,半導體基板102可以是P型摻雜結晶矽基板或N型摻雜結晶矽基板。 In the method 300, step S302 is first performed to provide the semiconductor substrate 102. According to various design requirements, the semiconductor substrate 102 may be a P-type doped crystalline silicon substrate or an N-type doped crystalline silicon substrate.

接著,進行步驟S304,在半導體基板102的第一側102A形成穿隧層104。穿隧層104可利用高溫氧化或化學氣相沉積方式。在一實施例中,穿隧層104是藉由使用射頻電漿設備以化學氣相沉積形成。若是提供的半導體基板102為矽基板,且射頻電漿設備通入的製程氣體為氧氣、臭氧或其他由氧原子組成的氣體,則電漿態的氧離子將與半導體基板102的表面上斷鍵的矽原子結合為氧化矽,藉以形成氧化矽薄膜(即穿隧層104)。由射頻電漿設備所形成的氧化矽薄膜,其厚度可約為0.1奈米至3奈米,且其缺陷密度可實質低於1011個/平方公分。 Next, step S304 is performed to form a tunnel layer 104 on the first side 102A of the semiconductor substrate 102. The tunneling layer 104 can use high temperature oxidation or chemical vapor deposition. In one embodiment, the tunnel layer 104 is formed by chemical vapor deposition using radio frequency plasma equipment. If the semiconductor substrate 102 provided is a silicon substrate, and the process gas introduced by the RF plasma equipment is oxygen, ozone or other gases composed of oxygen atoms, the plasma oxygen ions will break bonds with the surface of the semiconductor substrate 102 The silicon atoms are combined into silicon oxide, thereby forming a silicon oxide film (ie, tunnel layer 104). The thickness of the silicon oxide film formed by the radio frequency plasma equipment can be about 0.1 nm to 3 nm, and the defect density can be substantially lower than 10 11 /cm².

之後,進行步驟S306,在穿隧層104之遠離半導體基板102的一側形成摻雜結晶矽層106。摻雜結晶矽層 106可經由進行化學氣相沉積(chemical vapor deposition;CVD)製程,例如電漿輔助化學氣相沉積(plasma enhanced chemical vapor deposition;PECVD)製程,在穿隧層104上形成,其厚度可約為20奈米至100奈米。在形成摻雜結晶矽層106的化學氣相沉積製程中,製程壓力可約為400托(torr)、射頻功率可約為30毫瓦/平方公分(mW/cm2)、且半導體基板102的溫度可約為攝氏300度。摻雜結晶矽層106可包含單晶矽晶體或多晶矽晶體。在化學氣相沉積製程完成後,可再接著進行退火製程,以在摻雜結晶矽層106中形成多晶矽晶體,且使得摻雜結晶矽層106的結晶度大約為50%至90%。此外,對應半導體基板102的類型,摻雜結晶矽層106可以是N型摻雜結晶矽層或P型摻雜結晶矽層。舉例而言,若是半導體基板102為N型摻雜結晶矽基板,則摻雜結晶矽層106可以是N+型摻雜結晶矽層。 After that, step S306 is performed to form a doped crystalline silicon layer 106 on the side of the tunnel layer 104 away from the semiconductor substrate 102. The doped crystalline silicon layer 106 may be formed on the tunnel layer 104 by performing a chemical vapor deposition (CVD) process, such as a plasma enhanced chemical vapor deposition (PECVD) process, which The thickness can be about 20 nanometers to 100 nanometers. In the chemical vapor deposition process for forming the doped crystalline silicon layer 106, the process pressure can be about 400 Torr, the RF power can be about 30 milliwatts/cm² (mW/cm 2 ), and the semiconductor substrate 102 The temperature can be about 300 degrees Celsius. The doped crystalline silicon layer 106 may include single crystal silicon crystal or polycrystalline silicon crystal. After the chemical vapor deposition process is completed, an annealing process can be followed to form polysilicon crystals in the doped crystalline silicon layer 106, and the crystallinity of the doped crystalline silicon layer 106 is about 50% to 90%. In addition, corresponding to the type of the semiconductor substrate 102, the doped crystalline silicon layer 106 may be an N-type doped crystalline silicon layer or a P-type doped crystalline silicon layer. For example, if the semiconductor substrate 102 is an N-type doped crystalline silicon substrate, the doped crystalline silicon layer 106 may be an N+ type doped crystalline silicon layer.

進一步地,形成的摻雜結晶矽層106包含上下堆疊的第一次摻雜結晶矽層106A以及第二次摻雜結晶矽層106B,其中第一次摻雜結晶矽層106A位於穿隧層104之遠離半導體基板102的一側,而第二次摻雜結晶矽層106B位於第一次摻雜結晶矽層106A之遠離穿隧層104的一側。以半導體基板102實施為N型摻雜結晶矽基板為例,第一次摻雜結晶矽層106A與第二次摻雜結晶矽層106B可均具有多晶矽晶體且均具有N型摻雜物,例如磷、砷、銻和/或其他相似的摻雜物。在形成第一次摻雜結晶矽層106A的期間, 用於化學氣相沉積製程的製程氣體可以是矽甲烷和氫氣,而在形成第二次摻雜結晶矽層106B的期間,用於化學氣相沉積製程的製程氣體除了矽甲烷和氫氣之外,增加摻雜物的反應氣體,例如:磷化氫。使得第一次摻雜結晶矽層106A的摻雜濃度大於第二次摻雜結晶矽層106B的摻雜濃度。在一些實施例中,第一次摻雜結晶矽層106A的摻雜濃度約為1017個/立方公分至1021個/立方公分,而第二次摻雜結晶矽層106B的摻雜濃度約為1013個/立方公分至1017個/立方公分。藉由控制化學氣相沉積製程的進行時間,第一次摻雜結晶矽層106A與第二次摻雜結晶矽層106B各別的厚度可約為10奈米至50奈米。 Further, the formed doped crystalline silicon layer 106 includes a first doped crystalline silicon layer 106A and a second doped crystalline silicon layer 106B stacked on top of each other, wherein the first doped crystalline silicon layer 106A is located in the tunnel layer 104 The side away from the semiconductor substrate 102, and the second doped crystalline silicon layer 106B is located on the side away from the tunnel layer 104 of the first doped crystalline silicon layer 106A. Taking the semiconductor substrate 102 implemented as an N-type doped crystalline silicon substrate as an example, the first doped crystalline silicon layer 106A and the second doped crystalline silicon layer 106B may both have polysilicon crystals and both have N-type dopants, for example Phosphorus, arsenic, antimony and/or other similar dopants. During the formation of the first doped crystalline silicon layer 106A, the process gas used in the chemical vapor deposition process can be silyl methane and hydrogen, and during the formation of the second doped crystalline silicon layer 106B, the chemical gas is used In addition to silyl methane and hydrogen, the process gas of the phase deposition process is a reaction gas that adds dopants, such as phosphine. The doping concentration of the first doped crystalline silicon layer 106A is greater than the doping concentration of the second doped crystalline silicon layer 106B. In some embodiments, the doping concentration of the first doping crystalline silicon layer 106A is about 10 17 /cm ^ 3 to 10 21 /cm ^ 3, and the doping concentration of the second doping crystalline silicon layer 106B is about It ranges from 10 13 pieces/cm ^3 to 10 17 pieces/cm ^3. By controlling the time of the chemical vapor deposition process, the thickness of the first doped crystalline silicon layer 106A and the second doped crystalline silicon layer 106B can be about 10 nm to 50 nm.

在一些實施例中,形成的摻雜結晶矽層106可具有三個或三個以上的次摻雜結晶矽層,且藉由調整形成次摻雜結晶矽層所進行之化學氣相沉積製程的製程氣體,此些次摻雜結晶矽層的摻雜濃度關係可以是在逐漸遠離穿隧層104的方向上遞減。而在其他實施例中,藉由適當的控制化學氣相沉積製程,形成的摻雜結晶矽層106可具有連續性的摻雜濃度變化,且其摻雜濃度可在逐漸遠離穿隧層104的方向上遞減。 In some embodiments, the formed doped crystalline silicon layer 106 may have three or more sub-doped crystalline silicon layers, and the chemical vapor deposition process for forming the sub-doped crystalline silicon layer may be adjusted by For the process gas, the doping concentration relationship of the sub-doped crystalline silicon layer may decrease gradually in the direction away from the tunnel layer 104. In other embodiments, by appropriately controlling the chemical vapor deposition process, the formed doped crystalline silicon layer 106 can have a continuous doping concentration change, and its doping concentration can gradually move away from the tunnel layer 104. Decrease in direction.

形成摻雜結晶矽層106後,接著進行步驟S308,在半導體基板102的第二側102B(即半導體基板102之遠離穿隧層104的一側)形成鈍化層108。鈍化層108可經由進行化學氣相沉積製程、物理氣相沉積(physical vapor deposition;PVD)製程或原子層沉積(atomic layer deposition;ALD)製程在半導體基板102上形成。鈍化層108的材料可以是氧化鋁、氧化鈦、氧化鋯、氧化鉿、氮化矽、上述組合或其他合適的材料。 After the doped crystalline silicon layer 106 is formed, step S308 is then performed to form a passivation layer 108 on the second side 102B of the semiconductor substrate 102 (that is, the side of the semiconductor substrate 102 away from the tunnel layer 104). The passivation layer 108 can be performed by a chemical vapor deposition process, a physical vapor deposition (PVD) process, or an atomic layer deposition (atomic layer deposition) process. The deposition; ALD) process is formed on the semiconductor substrate 102. The material of the passivation layer 108 may be aluminum oxide, titanium oxide, zirconium oxide, hafnium oxide, silicon nitride, a combination of the above, or other suitable materials.

步驟S308完成後,可依據半導體結構的類型,接著進行後續對應步驟。以太陽能電池結構100為例,可接著再進行化學氣相沉積製程、物理氣相沉積製程或原子層沉積製程,在鈍化層108上形成鈍化層110。同樣地,鈍化層110可由氧化鋁、氧化鈦、氧化鋯、氧化鉿、氮化矽、上述組合或其他合適的材料形成。之後,進行沉積製程或塗佈製程,在鈍化層110上形成抗反射層112。抗反射層112可由氮化矽、氧化矽、氮氧化矽、氧化鋁、氧化鈦、上述組合或其他合適的材料形成。接著,進行蒸鍍、濺鍍或電鍍製程,以分別在摻雜結晶矽層106和半導體基板102的第二側102B上形成電極層114、116。在形成電極層116前,可先進行蝕刻製程,以在鈍化層108、110和抗反射層112上形成缺口,且接著在缺口中形成電極層116。電極層114、116可由銀、銅、鋁、上述組合或其他的金屬或導電材料形成。在其他實施例中,電極層114、116也可藉由網印方式形成。 After step S308 is completed, the subsequent corresponding steps can be performed according to the type of semiconductor structure. Taking the solar cell structure 100 as an example, a chemical vapor deposition process, a physical vapor deposition process, or an atomic layer deposition process can be followed to form a passivation layer 110 on the passivation layer 108. Similarly, the passivation layer 110 may be formed of aluminum oxide, titanium oxide, zirconium oxide, hafnium oxide, silicon nitride, a combination of the above, or other suitable materials. After that, a deposition process or a coating process is performed to form an anti-reflection layer 112 on the passivation layer 110. The anti-reflective layer 112 may be formed of silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, titanium oxide, a combination of the above, or other suitable materials. Then, an evaporation, sputtering or electroplating process is performed to form electrode layers 114 and 116 on the doped crystalline silicon layer 106 and the second side 102B of the semiconductor substrate 102, respectively. Before forming the electrode layer 116, an etching process may be performed to form notches on the passivation layers 108, 110 and the anti-reflection layer 112, and then the electrode layer 116 is formed in the notches. The electrode layers 114 and 116 may be formed of silver, copper, aluminum, a combination of the above, or other metals or conductive materials. In other embodiments, the electrode layers 114 and 116 can also be formed by screen printing.

在一些實施例中,若是電極層114由金屬材料形成,則可先在穿隧層104之遠離半導體基板的一側上依序形成摻雜矽薄膜和金屬材料薄膜後,接著再進行退火製程,以同時形成摻雜結晶矽層106和金屬層114。 In some embodiments, if the electrode layer 114 is formed of a metal material, a doped silicon film and a metal material film may be sequentially formed on the side of the tunnel layer 104 away from the semiconductor substrate, and then an annealing process may be performed. To form the doped crystalline silicon layer 106 and the metal layer 114 at the same time.

本發明實施例之製作太陽能電池結構之方法的優點至少在於,藉由控制摻雜結晶矽層中的摻雜濃度,可避 免穿隧層的品質在高溫製程中受到影響,進而確保產品的效能及良率。 The advantage of the method of fabricating the solar cell structure of the embodiment of the present invention is at least that by controlling the doping concentration in the doped crystalline silicon layer, it can avoid The quality of the tunnel-free layer is affected by the high-temperature manufacturing process, thereby ensuring product performance and yield.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

100‧‧‧太陽能電池結構 100‧‧‧Solar cell structure

102‧‧‧半導體基板 102‧‧‧Semiconductor substrate

102A‧‧‧第一側 102A‧‧‧First side

102B‧‧‧第二側 102B‧‧‧Second side

104‧‧‧穿隧層 104‧‧‧Tunnel layer

106‧‧‧摻雜結晶矽層 106‧‧‧Doped crystalline silicon layer

108、110‧‧‧鈍化層 108、110‧‧‧Passivation layer

112‧‧‧抗反射層 112‧‧‧Anti-reflective layer

114、116‧‧‧電極層 114、116‧‧‧electrode layer

T106‧‧‧厚度 T 106 ‧‧‧Thickness

Claims (9)

一種太陽能電池結構,包含:一半導體基板,具有相對之一第一側和一第二側;一鈍化層,位於該半導體基板之第一側;一穿隧層,位於該半導體基板之第二側;以及一摻雜結晶矽層,位於該穿隧層之遠離該半導體基板的一側邊,該摻雜結晶矽層包含多晶矽晶體,該摻雜結晶矽層之結晶度為50%~90%,且該摻雜結晶矽層的厚度約為20奈米至100奈米。 A solar cell structure includes: a semiconductor substrate having a first side and a second side opposite to each other; a passivation layer located on the first side of the semiconductor substrate; a tunnel layer located on the second side of the semiconductor substrate And a doped crystalline silicon layer located on the side of the tunneling layer away from the semiconductor substrate, the doped crystalline silicon layer includes polycrystalline silicon crystals, and the crystallinity of the doped crystalline silicon layer is 50% to 90%, And the thickness of the doped crystalline silicon layer is about 20 nanometers to 100 nanometers. 如申請專利範圍第1項所述之太陽能電池結構,其中該摻雜結晶矽層包含互相堆疊之一第一次摻雜結晶矽層和一第二次摻雜結晶矽層,該第一次摻雜結晶矽層位於該穿隧層與該第二次摻雜結晶矽層之間,且該第二次摻雜結晶矽層之摻雜濃度大於該第一次摻雜結晶矽層之摻雜濃度。 According to the solar cell structure described in claim 1, wherein the doped crystalline silicon layer includes a first doped crystalline silicon layer and a second doped crystalline silicon layer stacked on each other, the first doped crystalline silicon layer The heterocrystalline silicon layer is located between the tunneling layer and the second doped crystalline silicon layer, and the doping concentration of the second doped crystalline silicon layer is greater than that of the first doped crystalline silicon layer . 如申請專利範圍第2項所述之太陽能電池結構,其中該第一次摻雜結晶矽層之摻雜濃度約為1013個/立方公分至1017個/立方公分,且該第二次摻雜結晶矽層之摻雜濃度約為1017個/立方公分至1021個/立方公分。 For the solar cell structure described in item 2 of the scope of patent application, the doping concentration of the first doped crystalline silicon layer is about 10 13 /cm ^ 3 to 10 17 /cm ^ 3, and the second doping The doping concentration of the heterocrystalline silicon layer is about 10 17 /cm ^ 3 to 10 21 /cm ^ 3. 如申請專利範圍第2項所述之太陽能電池結構,其中該第一次摻雜結晶矽層與該第二次摻雜結晶矽層之每一者的厚度約為10奈米(nm)至50奈米。 The solar cell structure according to the second item of the patent application, wherein the thickness of each of the first doped crystalline silicon layer and the second doped crystalline silicon layer is about 10 nanometers (nm) to 50 Nano. 如申請專利範圍第1項所述之太陽能電池結構,其中該鈍化層的材料為氧化鋁、氧化鈦、氧化鋯、氧化鉿、氮化矽或上述組合。 According to the solar cell structure described in item 1 of the scope of patent application, the material of the passivation layer is aluminum oxide, titanium oxide, zirconium oxide, hafnium oxide, silicon nitride or a combination of the above. 如申請專利範圍第1項所述之太陽能電池結構,其中該穿隧層之厚度約為0.1奈米至3奈米。 According to the solar cell structure described in claim 1, wherein the thickness of the tunneling layer is about 0.1 nanometer to 3 nanometers. 一種製作太陽能電池結構之方法,包含:提供一半導體基板;透過高溫氧化或化學氣相沉積方式,在該半導體基板之一第一側形成一穿隧層;藉由一第一沉積製程,在該穿隧層之遠離該半導體基板的一側形成一摻雜結晶矽層,其中該摻雜結晶矽層包含多晶矽晶體,該摻雜結晶矽層之結晶度為50%~90%,且該摻雜結晶矽層的厚度約為20奈米至100奈米;以及藉由一第二沉積製程,在該半導體基板之相對於該第一側的一第二側形成一鈍化層。 A method for manufacturing a solar cell structure includes: providing a semiconductor substrate; forming a tunnel layer on a first side of the semiconductor substrate through high-temperature oxidation or chemical vapor deposition; and using a first deposition process in the A doped crystalline silicon layer is formed on the side of the tunneling layer away from the semiconductor substrate, wherein the doped crystalline silicon layer includes polycrystalline silicon crystals, the crystallinity of the doped crystalline silicon layer is 50%~90%, and the doping The thickness of the crystalline silicon layer is about 20 nanometers to 100 nanometers; and a passivation layer is formed on a second side of the semiconductor substrate opposite to the first side by a second deposition process. 如申請專利範圍第7項所述之方法,其中在該穿隧層之遠離該半導體基板的一側形成該摻雜結晶矽層包含:在該穿隧層之遠離該半導體基板的一側形成一第一次摻雜結晶矽層,其中該第一次摻雜結晶矽層之摻雜濃度約為1013個/立方公分至1017個/立方公分;以及 在該第一次摻雜結晶矽層之遠離該穿隧層的一側形成一第二次摻雜結晶矽層,其中該第二次摻雜結晶矽層之摻雜濃度約為1017個/立方公分至1021個/立方公分。 According to the method of claim 7, wherein forming the doped crystalline silicon layer on the side of the tunneling layer away from the semiconductor substrate includes: forming a layer on the side of the tunneling layer away from the semiconductor substrate Doping the crystalline silicon layer for the first time, wherein the doping concentration of the first doping crystalline silicon layer is about 10 13 /cm ^ 3 to 10 17 /cm ^ 3; and in the first doping of the crystalline silicon layer A second doped crystalline silicon layer is formed on the side away from the tunneling layer, wherein the doping concentration of the second doped crystalline silicon layer is about 10 17 /cm ^ 3 to 10 21 /cm ^ 3. 如申請專利範圍第7項所述之方法,其中該第一沉積製程包含形成一第一次摻雜結晶矽層與一第二次摻雜結晶矽層,其中該第二次摻雜結晶矽層的製程氣體相對於該第一次摻雜結晶矽層的製程氣體增加摻雜物的反應氣體。 The method according to claim 7, wherein the first deposition process includes forming a first doped crystalline silicon layer and a second doped crystalline silicon layer, wherein the second doped crystalline silicon layer Compared with the process gas of the first doping of the crystalline silicon layer, the process gas increases the reaction gas of the dopant.
TW108126240A 2019-07-24 2019-07-24 Solar cell structure and method of manufacturing the same TWI705574B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108126240A TWI705574B (en) 2019-07-24 2019-07-24 Solar cell structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108126240A TWI705574B (en) 2019-07-24 2019-07-24 Solar cell structure and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI705574B true TWI705574B (en) 2020-09-21
TW202105752A TW202105752A (en) 2021-02-01

Family

ID=74091508

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108126240A TWI705574B (en) 2019-07-24 2019-07-24 Solar cell structure and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI705574B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741814B (en) * 2020-09-28 2021-10-01 財團法人金屬工業研究發展中心 Solar cell with passivation layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130298973A1 (en) * 2012-05-14 2013-11-14 Silevo, Inc. Tunneling-junction solar cell with shallow counter doping layer in the substrate
TW201624742A (en) * 2014-09-05 2016-07-01 太陽電子公司 Improved front contact heterojunction process
US20170098722A1 (en) * 2015-10-01 2017-04-06 Lg Electronics Inc. Solar cell
TW201806168A (en) * 2016-08-12 2018-02-16 英穩達科技股份有限公司 N-type bifacial solar cell
JP2018037680A (en) * 2014-01-29 2018-03-08 エルジー エレクトロニクス インコーポレイティド Solar cell and method for manufacturing the same
TW201817018A (en) * 2016-10-26 2018-05-01 財團法人工業技術研究院 Solar cell
TW201911588A (en) * 2017-07-28 2019-03-16 日商三菱電機股份有限公司 Solar cell and manufacturing method thereof
US20190140117A1 (en) * 2014-06-10 2019-05-09 Lg Electronics Inc. Solar cell and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130298973A1 (en) * 2012-05-14 2013-11-14 Silevo, Inc. Tunneling-junction solar cell with shallow counter doping layer in the substrate
JP2018037680A (en) * 2014-01-29 2018-03-08 エルジー エレクトロニクス インコーポレイティド Solar cell and method for manufacturing the same
US20190140117A1 (en) * 2014-06-10 2019-05-09 Lg Electronics Inc. Solar cell and method for manufacturing the same
TW201624742A (en) * 2014-09-05 2016-07-01 太陽電子公司 Improved front contact heterojunction process
US20170098722A1 (en) * 2015-10-01 2017-04-06 Lg Electronics Inc. Solar cell
TW201806168A (en) * 2016-08-12 2018-02-16 英穩達科技股份有限公司 N-type bifacial solar cell
TW201817018A (en) * 2016-10-26 2018-05-01 財團法人工業技術研究院 Solar cell
TW201911588A (en) * 2017-07-28 2019-03-16 日商三菱電機股份有限公司 Solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
TW202105752A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
US10707367B2 (en) Contact for silicon heterojunction solar cells
US20230197877A1 (en) Solar cell having an emitter region with wide bandgap semiconductor material
CN103119727B (en) The manufacture method of photoelectric conversion device
US11721783B2 (en) Solar cell and method for manufacturing the same
TWI746424B (en) Improved front contact heterojunction process for fabricating solar cells and solar cells thereof
US20100186802A1 (en) Hit solar cell structure
WO2009094578A2 (en) Improved hit solar cell structure
US8124502B2 (en) Semiconductor device manufacturing method, semiconductor device and semiconductor device manufacturing installation
Tao et al. 730 mV implied Voc enabled by tunnel oxide passivated contact with PECVD grown and crystallized n+ polycrystalline Si
CN108963013A (en) Solar battery and its manufacturing method
EP3104417B1 (en) Method of manufacturing a protective film for a solar cell
TWM606270U (en) Tunnel oxide passivated contact solar cell
Khokhar et al. Improving passivation properties using a nano-crystalline silicon oxide layer for high-efficiency TOPCon cells
JP2014049675A (en) Solar cell and method of manufacturing the same
CN112447867A (en) Solar cell structure and manufacturing method thereof
TWI705574B (en) Solar cell structure and method of manufacturing the same
CN114744050B (en) Solar cell and photovoltaic module
CN112133769A (en) Solar cell and method for manufacturing same
CN114335236A (en) Passivated contact battery and preparation method thereof, and passivated contact structure and preparation device thereof
KR20200125067A (en) Manufacturing method of heterojunction solar cell
WO2021246865A1 (en) Methodology for efficient hole transport layer using transition metal oxides
CN1407603A (en) Crystal silicon film semiconductor device and its manufacture, and photoelectric device
TWI717930B (en) Silicon-based solar cell and method of manufacturing the same
TWI701841B (en) Solar cell, and surface passivation structure and surface passivation method thereof
JP5398772B2 (en) Photovoltaic device, manufacturing method thereof, and photovoltaic module