TW201806168A - N-type bifacial solar cell - Google Patents

N-type bifacial solar cell Download PDF

Info

Publication number
TW201806168A
TW201806168A TW105125761A TW105125761A TW201806168A TW 201806168 A TW201806168 A TW 201806168A TW 105125761 A TW105125761 A TW 105125761A TW 105125761 A TW105125761 A TW 105125761A TW 201806168 A TW201806168 A TW 201806168A
Authority
TW
Taiwan
Prior art keywords
layer
type
solar cell
back surface
electric field
Prior art date
Application number
TW105125761A
Other languages
Chinese (zh)
Other versions
TWI652832B (en
Inventor
林佳龍
Original Assignee
英穩達科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英穩達科技股份有限公司 filed Critical 英穩達科技股份有限公司
Priority to TW105125761A priority Critical patent/TWI652832B/en
Publication of TW201806168A publication Critical patent/TW201806168A/en
Application granted granted Critical
Publication of TWI652832B publication Critical patent/TWI652832B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The instant disclosure provides an n-type bifacial solar cell comprising an n-type substrate, a p-type front emitter layer, an n-type back surface field layer, front and rear function layers, at least one tunnel layer, at least one front electrode and at least one rear electrode. The p-type front emitter layer and the n-type back surface field layer are disposed on the upper surface and the lower surface of the n-type substrate respectively, and the front and rear function layers are disposed on the p-type front emitter layer and the n-type back surface field layer. The tunnel layer is disposed at least one of between the p-type front emitter layer and the front function layer, and between the n-type back surface field layer and the rear function layer. The front and rear electrodes are punched through the front and rear function layers respectively for being electrically connected to the p-type front emitter layer and the n-type back surface field layer via carrier tunneling through the tunnel layer.

Description

n型雙面太陽能電池 N-type double-sided solar cell

本發明涉及一種太陽能電池,特別是涉及一種n型雙面太陽能電池。 The present invention relates to a solar cell, and more particularly to an n-type double-sided solar cell.

一般而言,現有的n型雙面太陽能電池的結構包括正面射極(通常為p型)、背面電場(通常為n型)、鈍化層結構以及電極結構。正面射極以及背面電場可透過對n型矽基板進行摻雜,或是沈積經摻雜的矽薄膜等方式來形成。鈍化層結構分別設置於n型雙面太陽能電池的正面以及背面,用以直接鈍化正面射極以及背面電場,且鈍化層結構可同時具有抗反射的功能。電極結構包括分別直接接觸正面射極以及背面電場的正面電極以及背面電極,其等藉由金屬膠燒結(metal paste fire through)或以介電層開孔等方式穿過鈍化層結構後進行電鍍。因此,位於電極下方的鈍化層結構被破壞,導致電極結構與矽材料之間發生金屬誘導再結合(metal induced recombination)現象,進而大幅限制了n型雙面太陽能電池的效能。 In general, the structure of an existing n-type double-sided solar cell includes a front emitter (typically p-type), a back surface electric field (typically n-type), a passivation layer structure, and an electrode structure. The front emitter and the back surface electric field can be formed by doping the n-type germanium substrate or depositing a doped germanium film. The passivation layer structures are respectively disposed on the front surface and the back surface of the n-type double-sided solar cell to directly passivate the front emitter and the back surface electric field, and the passivation layer structure can simultaneously have an anti-reflection function. The electrode structure includes a front electrode and a back electrode which are directly in contact with the front surface and the back surface electric field, respectively, and are subjected to electroplating by passing through the passivation layer structure by metal paste fire through or dielectric layer opening or the like. Therefore, the structure of the passivation layer under the electrode is broken, resulting in metal induced recombination between the electrode structure and the germanium material, thereby greatly limiting the performance of the n-type double-sided solar cell.

針對前述課題,業界已研發一種穿隧氧化物鈍化接觸型(Tunnel Oxide passivated contact,TOPCon)太陽能電池結構,其以由穿隧氧化物以及重摻雜矽薄膜所構成的鈍化接觸結構來取代原先的整面摻雜背表面區域(full area doped back surface region)。具體來說,在鈍化接觸結構中,穿隧氧化物層形成於矽基板的表面,而重摻雜矽薄膜(即背電場層)可透過電漿輔助化學氣相沈積(PECVD)覆蓋於穿隧氧化物層的表面。藉此,TOPCon 太陽能電池結構可結合現有異質接面結構以及傳統多晶矽接面結構的優點,即,具有高載子選擇性以及高溫度穩定性。 In response to the above problems, the industry has developed a tunnel oxide passivated contact (TOPCon) solar cell structure, which replaces the original with a passivation contact structure composed of tunneling oxide and heavily doped germanium film. Full area doped back surface region. Specifically, in the passivation contact structure, a tunneling oxide layer is formed on the surface of the germanium substrate, and the heavily doped germanium film (ie, the back electric field layer) can be covered by tunneling through plasma assisted chemical vapor deposition (PECVD). The surface of the oxide layer. With this, TOPCon The solar cell structure can combine the advantages of existing heterojunction structures as well as conventional polycrystalline junction structures, namely, high carrier selectivity and high temperature stability.

然而,在前述TOPCon太陽能電池結構中,由於在背面電場層與矽基材之間設置有穿隧氧化物層,即,太陽能電池的背面結構由內向外依序包括矽基材、穿隧氧化物層以及重摻雜矽薄膜,相較於現有的n型雙面太陽能電池的製程,TOPCon太陽能電池的製程必須針對現有製程的順序作出調整。具體來說,必須先於矽基材表面形成穿隧氧化物層,再於穿隧氧化物層的表面透過沈積形成重摻雜矽薄膜。如此一來,為製造TOPCon太陽能電池,需要採用有別於現有的n型雙面太陽能電池的製程及設備,造成生產成本的上升。 However, in the foregoing TOPCon solar cell structure, since a tunneling oxide layer is disposed between the back surface electric field layer and the germanium substrate, that is, the back surface structure of the solar cell sequentially includes a germanium substrate and a tunneling oxide from the inside to the outside. The layer and the heavily doped germanium film, compared to the existing n-type double-sided solar cell process, the TOPCon solar cell process must be adjusted for the order of the existing process. Specifically, a tunneling oxide layer must be formed on the surface of the germanium substrate, and a heavily doped germanium film is formed by deposition on the surface of the tunnel oxide layer. As a result, in order to manufacture the TOPCon solar cell, it is necessary to adopt a process and equipment different from the existing n-type double-sided solar cell, resulting in an increase in production cost.

再者,在TOPCon太陽能電池結構中,重摻雜矽薄膜是在穿隧氧化物層被形成後才被形成於穿隧氧化物層上。具體而言,重摻雜是在矽薄膜生成中以in-situ方式進行,或是在矽薄膜生成後以ex-situ方式藉由離子擴散或氣體擴散形成。然而,無論以何種方式進行重摻雜製程,在製程中必須精確控制重摻雜程序的條件及參數,以避免穿隧氧化物層受到破壞。舉例而言,需要避免摻雜物(Dopant)穿過穿隧氧化物層,或後續高溫擴散製程破壞穿隧氧化物層鈍化能力。因此,現有的TOPCon太陽能電池結構仍有製程難度高、製程可靠度低等缺點。另外,TOPCon太陽能電池結構中,重摻雜矽薄膜因具有吸光特性而將會阻擋光線進入太陽能電池本體,因此,實務上其僅適用於太陽能電池的背面結構。 Furthermore, in the TOPCon solar cell structure, the heavily doped germanium film is formed on the tunnel oxide layer after the tunnel oxide layer is formed. Specifically, heavy doping is carried out in an in-situ manner in the formation of a hafnium film, or in an ex-situ manner by ion diffusion or gas diffusion after the formation of a hafnium film. However, no matter how the heavy doping process is performed, the conditions and parameters of the heavy doping process must be precisely controlled in the process to avoid damage to the tunnel oxide layer. For example, it is desirable to avoid dopants (Dopant) from passing through the tunneling oxide layer, or subsequent high temperature diffusion processes to disrupt the tunneling oxide layer passivation capability. Therefore, the existing TOPCon solar cell structure still has the disadvantages of high process difficulty and low process reliability. In addition, in the TOPCon solar cell structure, the heavily doped germanium film will block light from entering the solar cell body due to its light absorbing property, and therefore, it is practically applicable only to the back surface structure of the solar cell.

因此,仍有需要提供一種的解決方案,以在未大幅增加製程複雜度的前提下降低由金屬誘導再結合現象對n型雙面太陽能電池的效能所造成的影響,藉此確保n型雙面太陽能電池的轉換效率。 Therefore, there is still a need to provide a solution to reduce the effect of metal induced recombination on the performance of an n-type double-sided solar cell without substantially increasing the complexity of the process, thereby ensuring n-type double sided Solar cell conversion efficiency.

為了解決上述技術問題,根據本發明之其中一種方案,提供 一種n型雙面太陽能電池,其包含一n型矽基板、一p型正面射極層、一n型背面電場層、一正面功能層、一背面功能層、至少一穿隧層、至少一正面電極以及至少一背面電極。矽基板具有一上表面以及一下表面,而p型正面射極層及n型背面電場層分別設置於n型矽基板的上表面上以及下表面上。正面功能層以及背面功能層分別設置於p型正面射極層以及所述n型背面電場層的表面上。至少一穿隧層設置於p型正面射極層與正面功能層之間以及設置於n型背面電場層與背面功能層之間兩種狀態之至少其中一種。正面電極穿過正面功能層,經由穿隧層以電性連接於p型正面射極層,背面電極穿過背面功能層,經由穿隧層以電性連接於n型背面電場層。 In order to solve the above technical problem, according to one of the solutions of the present invention, An n-type double-sided solar cell comprising an n-type germanium substrate, a p-type front emitter layer, an n-type back surface field layer, a front functional layer, a back functional layer, at least one tunneling layer, and at least one front surface An electrode and at least one back electrode. The germanium substrate has an upper surface and a lower surface, and the p-type front emitter layer and the n-type back surface electric field layer are respectively disposed on the upper surface and the lower surface of the n-type germanium substrate. The front functional layer and the back functional layer are respectively disposed on the surface of the p-type front emitter layer and the n-type back surface electric field layer. At least one tunneling layer is disposed between the p-type front emitter layer and the front functional layer and at least one of two states disposed between the n-type back surface electric field layer and the back surface functional layer. The front electrode passes through the front functional layer, is electrically connected to the p-type front emitter layer via the tunneling layer, the back electrode passes through the back surface functional layer, and is electrically connected to the n-type back surface electric field layer via the tunneling layer.

本發明的主要技術手段在於,透過“在p型正面射極層與正面功能層之間”,以及“在n型背面電場層與背面功能層之間”兩種狀態之至少其中一種的位置設置穿隧層,可以在不改變現有的n型雙面太陽能電池的製程順序上,達到避免電極結構金屬與形成正面射極層以及背面電場層直接接觸,因而避免金屬誘導再結合現象的發生,進而提升太陽能電池的壽命以及轉換效能。 The main technical means of the present invention is to pass the position setting of at least one of "between the p-type front emitter layer and the front functional layer" and "between the n-type back surface electric field layer and the back functional layer". The tunneling layer can avoid direct contact between the electrode structure metal and the front emitter layer and the back surface electric field layer without changing the existing n-type double-sided solar cell processing sequence, thereby avoiding the occurrence of metal induced recombination. Improve the life of solar cells and conversion efficiency.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,然而所提供的附圖僅提供參考與說明用,並非用來對本發明加以限制者。 For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings.

S‧‧‧雙面太陽能電池 S‧‧‧Double-sided solar cells

1‧‧‧n型矽基板 1‧‧‧n type test substrate

11‧‧‧上表面 11‧‧‧ upper surface

12‧‧‧下表面 12‧‧‧ Lower surface

2‧‧‧p型正面射極層 2‧‧‧p type front emitter layer

3‧‧‧n型背面電場層 3‧‧‧n type back electric field layer

4‧‧‧正面功能層 4‧‧‧ Positive functional layer

5‧‧‧背面功能層 5‧‧‧Back functional layer

6‧‧‧正面電極 6‧‧‧Front electrode

7‧‧‧背面電極 7‧‧‧Back electrode

8‧‧‧穿隧層 8‧‧‧Through tunnel

圖1為本發明其中一實施例所提供的n型雙面太陽能電池的剖面示意圖;圖2為發明另一實施例所提供的n型雙面太陽能電池的剖面示意圖;以及圖3為發明再一實施例所提供的n型雙面太陽能電池的剖面示意圖。 1 is a schematic cross-sectional view of an n-type double-sided solar cell according to an embodiment of the present invention; FIG. 2 is a cross-sectional view of an n-type double-sided solar cell according to another embodiment of the present invention; and FIG. A schematic cross-sectional view of an n-type double-sided solar cell provided by the embodiment.

以下是通過特定的具體實例來說明本發明所公開有關“n型雙面太陽能電池”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與功效。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節亦可基於不同觀點與應用,在不悖離本發明的精神下進行各種修飾與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,先予敘明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的技術範疇。 The embodiments of the "n-type double-sided solar cell" disclosed in the present invention are described below by specific specific examples, and those skilled in the art can understand the advantages and effects of the present invention from the contents disclosed in the specification. The present invention can be implemented or applied in various other specific embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention. In addition, the drawings of the present invention are merely illustrative and are not intended to be described in terms of actual dimensions. The following embodiments will further explain the related technical content of the present invention, but the disclosure is not intended to limit the technical scope of the present invention.

首先,請參閱圖1。圖1為本發明其中一實施例所提供的n型雙面太陽能電池的剖面示意圖。本發明實施例所提供的n型雙面太陽能電池S包含n型矽基板1、p型正面射極層2、n型背面電場層3、正面功能層4、背面功能層5、正面電極6、背面電極7,以及穿隧層8。 First, please refer to Figure 1. 1 is a schematic cross-sectional view of an n-type double-sided solar cell according to an embodiment of the present invention. The n-type double-sided solar cell S provided by the embodiment of the invention comprises an n-type germanium substrate 1, a p-type front emitter layer 2, an n-type back surface electric field layer 3, a front functional layer 4, a back functional layer 5, a front electrode 6, The back electrode 7, and the tunneling layer 8.

再者,如圖1所示,n型矽基板1具有上表面11及下表面12。在本發明實施例中,上表面11的方向定義為n型雙面太陽能電池S的正面,而下表面12的方向定義為n型雙面太陽能電池S的背面。由於本發明實施例所提供的n型雙面太陽能電池S可雙面受光,其正面與背面皆為受光面。 Furthermore, as shown in FIG. 1, the n-type germanium substrate 1 has an upper surface 11 and a lower surface 12. In the embodiment of the present invention, the direction of the upper surface 11 is defined as the front surface of the n-type double-sided solar cell S, and the direction of the lower surface 12 is defined as the back surface of the n-type double-sided solar cell S. Since the n-type double-sided solar cell S provided by the embodiment of the present invention can receive light on both sides, both the front side and the back side are light receiving surfaces.

另外,p型正面射極層2以及n型背面電場層3分別設置於n型矽基板1的上表面11以及下表面12上。p型正面射極層2可由多種方式形成。舉例而言,可透過擴散方式將p型正面射極層2形成於n型矽基板1的上表面11。藉由擴散方式(例如,高溫擴散製程)形成p型正面射極層2後,上表面11成為p型正面射極層2以及未被摻雜的n型矽基板1的介面。或是,p型正面射極層2是利用常壓式氣相沉積法(Atmospheric pressure chemical vapor deposition,APCVD)來形成。另外,p型正面射極層2亦可利用離子佈植來形成。舉例而言,p型正面射極層2是經硼摻雜的射極層。 Further, the p-type front emitter layer 2 and the n-type back surface electric field layer 3 are respectively provided on the upper surface 11 and the lower surface 12 of the n-type germanium substrate 1. The p-type front emitter layer 2 can be formed in a variety of ways. For example, the p-type front emitter layer 2 can be formed on the upper surface 11 of the n-type germanium substrate 1 by diffusion. After the p-type front emitter layer 2 is formed by a diffusion method (for example, a high-temperature diffusion process), the upper surface 11 serves as an interface between the p-type front emitter layer 2 and the undoped n-type germanium substrate 1. Alternatively, the p-type front emitter layer 2 is formed by Atmospheric pressure chemical vapor deposition (APCVD). Further, the p-type front emitter layer 2 can also be formed by ion implantation. For example, the p-type front emitter layer 2 is a boron doped emitter layer.

此外,如同p型正面射極層2,n型背面電場層3可利用氣體擴散、離子佈植、氣相沉積法或是其他摻雜方式來形成。舉例而言,n型背面電場層3為摻雜磷的電場層。於本發明中,p型正面射極層2以及n型背面電場層3的形成方式不在此限制。 Further, like the p-type front emitter layer 2, the n-type back surface electric field layer 3 can be formed by gas diffusion, ion implantation, vapor deposition, or other doping methods. For example, the n-type back surface electric field layer 3 is an electric field layer doped with phosphorus. In the present invention, the formation manner of the p-type front emitter layer 2 and the n-type back surface electric field layer 3 is not limited thereto.

再者,正面功能層4設置於p型正面射極層2的表面上,而背面功能層5設置於n型背面電場層3的表面上。正面功能層4以及背面功能層5是由選自於由矽氧化物(SiOx)、氮氧化矽(SiON)、氧化鋁(AlOx)、氮化鋁(AlN)、氮化矽(SiNx)及其等的組合所組成之群組的材料所形成。於本發明中,形成正面功能層4以及背面功能層5的方式並未加以限制。在n型雙面太陽能電池S的正面及背面上分別設置功能層可以對p型正面射極層2及n型背面電場層3的材料進行鈍化,並發揮抗反射的效果。 Furthermore, the front functional layer 4 is disposed on the surface of the p-type front emitter layer 2, and the back functional layer 5 is disposed on the surface of the n-type back surface electric field layer 3. The front functional layer 4 and the back functional layer 5 are selected from the group consisting of cerium oxide (SiO x ), cerium oxynitride (SiON), aluminum oxide (AlO x ), aluminum nitride (AlN), and tantalum nitride (SiN x ). And a combination of materials such as a combination of materials. In the present invention, the manner in which the front functional layer 4 and the back functional layer 5 are formed is not limited. A functional layer is provided on the front surface and the back surface of the n-type double-sided solar cell S to passivate the material of the p-type front emitter layer 2 and the n-type back surface field layer 3, and to exhibit an anti-reflection effect.

具體而言,在其中一實施例中,正面功能層4以及背面功能層5可分別為同時發揮鈍化及抗反射功能的材料層。此時,正面功能層4及背面功能層5是由前述材料所製成,而正面功能層4為一正面材料層,而背面功能層5為一背面材料層,且正面材料層以及背面材料層都同時具有鈍化及抗反射的效果。或是,在其他的實施例中,正面功能層4包含一正面鈍化層(未繪示)以及一正面抗反射塗層(未繪示),而背面功能層5包含一背面鈍化層(未繪示)以及一背面抗反射塗層(未繪示)。在此情況下,正面及背面鈍化層與正面及背面抗反射塗層是分別發揮鈍化及抗反射的效果。綜上所述,正面功能層4以及背面功能層5可為單層材料結構,或是為包含不同材料層的疊層結構。 Specifically, in one embodiment, the front functional layer 4 and the back functional layer 5 may each be a material layer that simultaneously functions as a passivation and anti-reflection function. At this time, the front functional layer 4 and the back functional layer 5 are made of the foregoing materials, and the front functional layer 4 is a front material layer, and the back functional layer 5 is a back material layer, and the front material layer and the back material layer. Both have passivation and anti-reflection effects. Alternatively, in other embodiments, the front functional layer 4 includes a front passivation layer (not shown) and a front anti-reflective coating (not shown), and the back functional layer 5 includes a back passivation layer (not shown). Shown) and a back anti-reflective coating (not shown). In this case, the front and back passivation layers and the front and back anti-reflective coatings each have a passivation and anti-reflection effect. In summary, the front functional layer 4 and the back functional layer 5 may be a single layer material structure or a laminated structure including different material layers.

詳細而言,前述抗反射塗層以及鈍化層可在相同製程程序中使用不同材料依序形成。當太陽能電池S包含有第一抗反射塗層以及第二抗反射塗層時,第一抗反射塗層共形地形成於正面鈍化層上。相似地,第二抗反射塗層共形地形成於背面鈍化層上。第一及第二抗反射塗層是用於降低光子的反射量以增加太陽能電池 S的效能。或是,藉由選用抗反射塗層的材料,抗反射塗層亦可達到鈍化載子複合區的效果。 In detail, the aforementioned anti-reflective coating and passivation layer may be sequentially formed using different materials in the same process procedure. When the solar cell S comprises a first anti-reflective coating and a second anti-reflective coating, the first anti-reflective coating is conformally formed on the front passivation layer. Similarly, a second anti-reflective coating is conformally formed on the back passivation layer. The first and second anti-reflective coatings are used to reduce the amount of photon reflection to increase the solar cell The effectiveness of S. Alternatively, the anti-reflective coating can also achieve the effect of passivating the carrier recombination zone by selecting an anti-reflective coating material.

舉例而言,第一抗反射塗層及第二抗反射塗層可由選自於由下列所組成之群組的材料所形成:氮化矽(Silicon nitride)、二氧化鈦(TiO2)、氧化銦錫(ITO)、透明導電氧化物、二氧化矽(SiO2)、氮氧化矽(SiNx:H)及其等的組合。另外,第一及第二抗反射塗層可由,例如,常壓式氣相沉積法、熱氧化法(Thermal oxidation)而形成。然而,用於形成第一及第二抗反射塗層的材料及方法不在此限制。 For example, the first anti-reflective coating and the second anti-reflective coating may be formed of a material selected from the group consisting of: silicon nitride, titanium dioxide (TiO 2 ), indium tin oxide. (ITO), a transparent conductive oxide, cerium oxide (SiO 2 ), cerium oxynitride (SiNx: H), and the like. In addition, the first and second anti-reflective coatings may be formed by, for example, atmospheric pressure vapor deposition, thermal oxidation. However, materials and methods for forming the first and second anti-reflective coatings are not limited thereto.

另外,正面電極6以及背面電極7分別形成於正面功能層4以及背面功能層5上。正面電極6穿過正面功能層4,且經由穿隧層以電性連接於p型正面射極層2;而背面電極7穿過背面功能層5,且經由穿隧層以電性連接於n型背面電場層3。舉例而言,在形成正面電極7以及背面電極8之前,可透過開孔製程於正面功能層4及/或背面功能層5的表面上形成通孔,使得後續所形成的正面電極6以及背面電極7的材料可通過前述通孔而電性連接於p型正面射極層2及n型背面電場層3。開孔製程的技術手段包括雷射開孔、使用蝕刻膠(Etching paste)及形成蝕刻阻擋層(Etching mask)等,然而本發明並不在此限制。 Further, the front electrode 6 and the back electrode 7 are formed on the front functional layer 4 and the back functional layer 5, respectively. The front electrode 6 passes through the front functional layer 4 and is electrically connected to the p-type front emitter layer 2 via the tunneling layer; the back surface electrode 7 passes through the back surface functional layer 5, and is electrically connected to the n through the tunneling layer. Type back surface electric field layer 3. For example, before the front surface electrode 7 and the back surface electrode 8 are formed, a through hole may be formed on the surface of the front functional layer 4 and/or the back surface functional layer 5 through the opening process, so that the subsequently formed front electrode 6 and back surface electrode The material of 7 can be electrically connected to the p-type front emitter layer 2 and the n-type back surface electric field layer 3 through the through holes. The technical means of the opening process include laser opening, use of an Etching paste, and formation of an etching mask, etc., but the invention is not limited thereto.

承上述,舉例而言,正面電極6以及背面電極7可為柵狀電極結構並具有作為匯流排(Bus bar)的主電極結構及作為指狀電極(Finger)的次電極結構。正面電極6及背面電極7可透過網印、蒸鍍、濺鍍或者電鍍所形成。然而,本發明不在此限制。正面電極6及背面電極7可由網印金屬膠形成,舉例而言,用於形成正面電極6及背面電極7的金屬膠可包含銀、鋁、銅等及其混和物。正面電極6以及背面電極7可由電鍍形成,舉例而言,透過電鍍鈦/鈀/銀等金屬層或者電鍍鎳/銅/銀/錫等金屬層及其任意堆疊金屬層而形成。正面電極6及背面電極7可由蒸鍍或濺鍍形成,舉 例而言,形成銀、鋁等金屬層。值得注意的是,本發明實施例所提供的n型雙面太陽能電池S還包含穿隧層8。在圖1所示的實施例中,穿隧層8設置於n型背面電場層3與背面功能層5之間。因此,背面電極7是穿過背面功能層5,而受穿隧層8的阻隔,以與n型背面電場層3相互隔離。穿隧層8對本發明實施例所提供的n型雙面太陽能電池S有重要的效果。具體來說,穿隧層8可以避免穿過背面功能層5的背面電極7與n型背面電場層3直接接觸。然而,在利用太陽能電池進行光電轉換的過程中,電子或載子仍可穿越穿隧層8,因此,背面電極7與n型背面電場層3之間雖無直接地物理接觸,背面電極7仍然與n型背面電場層3以載子穿隧效應形成電性連接。 In the above, for example, the front electrode 6 and the back electrode 7 may have a grid electrode structure and have a main electrode structure as a bus bar and a sub-electrode structure as a finger electrode. The front electrode 6 and the back electrode 7 can be formed by screen printing, vapor deposition, sputtering, or electroplating. However, the invention is not limited thereto. The front electrode 6 and the back electrode 7 may be formed of a screen printing metal paste. For example, the metal paste for forming the front electrode 6 and the back electrode 7 may include silver, aluminum, copper, or the like and a mixture thereof. The front electrode 6 and the back electrode 7 may be formed by plating, for example, by plating a metal layer such as titanium/palladium/silver or plating a metal layer such as nickel/copper/silver/tin and any stacked metal layer. The front electrode 6 and the back electrode 7 may be formed by evaporation or sputtering. For example, a metal layer such as silver or aluminum is formed. It should be noted that the n-type double-sided solar cell S provided by the embodiment of the present invention further includes a tunneling layer 8. In the embodiment shown in FIG. 1, the tunneling layer 8 is disposed between the n-type back surface electric field layer 3 and the back surface functional layer 5. Therefore, the back surface electrode 7 passes through the back surface functional layer 5 and is blocked by the tunneling layer 8 to be isolated from the n-type back surface electric field layer 3. The tunneling layer 8 has an important effect on the n-type double-sided solar cell S provided by the embodiment of the present invention. Specifically, the tunneling layer 8 can avoid direct contact with the n-type back surface electric field layer 3 through the back surface electrode 7 of the back surface functional layer 5. However, in the process of photoelectric conversion using a solar cell, electrons or carriers can still pass through the tunneling layer 8, and therefore, although there is no direct physical contact between the back surface electrode 7 and the n-type back surface electric field layer 3, the back surface electrode 7 remains The n-type back surface electric field layer 3 is electrically connected by a carrier tunneling effect.

承上述,藉由穿隧層8的設計,本發明實施例所提供的n型雙面太陽能電池S的金屬製背面電極7與構成n型背面電場層3的以矽為主的材料(silicon-based material)之間因為沒有物理性接觸,不僅避免了發生金屬誘導再結合,同時穿隧層8亦提供電性連接及良好的鈍化效果。因此,本發明實施例所提供的n型雙面太陽能電池S可具有優異的轉換效能。 The metal back surface electrode 7 of the n-type double-sided solar cell S and the silicon-based material constituting the n-type back surface electric field layer 3 are provided by the design of the tunneling layer 8. Because there is no physical contact between the based materials, not only metal induced recombination is avoided, but also the tunneling layer 8 provides electrical connection and good passivation effect. Therefore, the n-type double-sided solar cell S provided by the embodiment of the present invention can have excellent conversion performance.

舉例而言,穿隧層8是由矽氧化物(SiOx)、鋁氧化物(AlOx)或其等的疊層結構所形成。穿隧層8的厚度亦須被控制,若其厚度過薄,其用以鈍化背面電極7與n型背面電場層3之間金屬誘導再結合現象的效能會被降低,而若其厚度過厚,將對載子穿隧效應造成不利的影響。因此,穿隧層8的厚度較佳為介於0.5至16奈米之間,最佳介於1至4奈米之間。其中穿隧層8可以為矽氧化物,且透過溼式化學法(Wet-chemical method)或紫外光/臭氧生長法(UV/O3 growth)來形成;或是,穿隧層8可以為鋁氧化物,且可以透過原子層化學氣相沉積(ALD method)來形成。然而,本發明並不在此限制。 For example, the tunneling layer 8 is formed of a stacked structure of tantalum oxide (SiO x ), aluminum oxide (AlO x ), or the like. The thickness of the tunneling layer 8 must also be controlled. If the thickness is too thin, the effectiveness of the metal-induced recombination between the back surface electrode 7 and the n-type back surface electric field layer 3 is lowered, and if the thickness is too thick, the thickness is too thick. Will adversely affect the carrier tunneling effect. Therefore, the thickness of the tunneling layer 8 is preferably between 0.5 and 16 nm, preferably between 1 and 4 nm. The tunneling layer 8 may be a tantalum oxide and formed by a Wet-chemical method or a UV/O 3 growth method; or, the tunneling layer 8 may be aluminum. Oxide, and can be formed by atomic layer chemical vapor deposition (ALD method). However, the invention is not limited thereto.

接下來,將以由鋁氧化物(AlOx)所形成的穿隧層8為例, 說明由鋁氧化物對以n型矽為主的材料產生鈍化效果的機制。鋁氧化物對n型矽可產生場效鈍化(Field-effect passivation)效果。鋁氧化物層及其與n型矽的介面處的高密度負電荷(介於1012-1013cm-2)足以在接近n型矽表面處形成強烈的倒轉電場(Field Inversion)。此區的倒轉電場對於具有低摻雜濃度的n型矽有很好的表面鈍化效果。對於具有中度摻雜濃度的n型矽,帶負電荷的鋁氧化物層仍然可在接近n型矽表面處形成微弱的倒轉電場。因此,雖然對於具有中度摻雜濃度的n型矽,使用鋁氧化物層所獲致的鈍化效果未如對於具有低摻雜濃度的n型矽來得好,鋁氧化物仍是足以產生鈍化效果。 Next, a tunneling layer 8 formed of aluminum oxide (AlO x ) will be taken as an example to illustrate a mechanism by which aluminum oxide has a passivation effect on a material mainly composed of n-type germanium. Aluminum oxide can produce field-effect passivation effects on n-type germanium. The high density negative charge (between 10 12 -10 13 cm -2 ) at the interface of the aluminum oxide layer and its n-type germanium is sufficient to form a strong inversion electric field near the surface of the n-type germanium. The inverted electric field in this region has a good surface passivation effect for n-type germanium with a low doping concentration. For n-type germanium with a moderate doping concentration, the negatively charged aluminum oxide layer can still form a weak inverted electric field near the n-type germanium surface. Therefore, although for the n-type germanium having a moderate doping concentration, the passivation effect obtained by using the aluminum oxide layer is not as good as that of the n-type germanium having a low doping concentration, and the aluminum oxide is still sufficient to produce a passivation effect.

承上述,使用鋁氧化物所形成的穿隧層8對n型雙面太陽能電池S中載子的生命期(Lifetime)是有顯著的影響,卻不會影響射極結構或電場結構與電極之間的歐姆接觸(Ohmic Contact)。舉例而言,藉由使用鋁氧化物層作為穿隧層8,與未使用任何穿隧層的太陽能電池相比,n型雙面太陽能電池S中載子的生命期可增加大約3倍。 In view of the above, the tunneling layer 8 formed using aluminum oxide has a significant effect on the lifetime of the carrier in the n-type double-sided solar cell S, but does not affect the structure of the emitter or the structure of the electric field and the electrode. Ohmic Contact. For example, by using an aluminum oxide layer as the tunneling layer 8, the lifetime of the carrier in the n-type double-sided solar cell S can be increased by about three times compared to a solar cell that does not use any tunneling layer.

接下來,請參照圖2。圖2為本發明另一實施例所提供的n型雙面太陽能電池的剖面示意圖。將圖2與圖1比較可知,圖1與圖2之間的差別在於穿隧層8的設置位置不同。圖2中穿隧層8設置於p型正面射極層2與正面功能層4之間。因此,正面電極6是經由穿隧層8的阻隔,以與p型正面射極層相互隔離。具體來說,穿隧層8可以避免穿過正面功能層4的正面電極6與p型正面射極層2直接接觸。然而,在利用太陽能電池進行光電轉換的過程中,電子或載子仍可穿越穿隧層8,因此,正面電極6與p型正面射極層2之間雖無直接地物理接觸,正面電極6仍然與p型正面射極層2以載子穿隧效應形成電性連接。 Next, please refer to Figure 2. 2 is a cross-sectional view of an n-type double-sided solar cell according to another embodiment of the present invention. Comparing FIG. 2 with FIG. 1, it can be seen that the difference between FIG. 1 and FIG. 2 is that the arrangement positions of the tunneling layers 8 are different. The tunneling layer 8 is disposed between the p-type front emitter layer 2 and the front functional layer 4 in FIG. Therefore, the front electrode 6 is blocked by the tunneling layer 8 to be isolated from the p-type front emitter layer. In particular, the tunneling layer 8 can avoid direct contact between the front side electrode 6 passing through the front functional layer 4 and the p-type front emitter layer 2. However, in the process of photoelectric conversion using a solar cell, electrons or carriers can still pass through the tunneling layer 8, and therefore, there is no direct physical contact between the front electrode 6 and the p-type front emitter layer 2, and the front electrode 6 The electrical connection is still formed with the p-type front emitter layer 2 by the carrier tunneling effect.

圖2中所示的n型雙面太陽能電池S的結構中,穿隧層8以外的其他結構皆與圖1中所示相同。因此,針對其他結構,即n 型矽基板、p型正面射極層2、n型背面電場層3、正面功能層4、背面功能層5、正面電極6,以及背面電極7的詳細內容,在此不再次說明。 In the structure of the n-type double-sided solar cell S shown in Fig. 2, the structure other than the tunneling layer 8 is the same as that shown in Fig. 1. Therefore, for other structures, ie n The details of the germanium substrate, the p-type front emitter layer 2, the n-type back surface electric field layer 3, the front functional layer 4, the back surface functional layer 5, the front surface electrode 6, and the back surface electrode 7 will not be described again.

最後,請參閱圖3。圖3為發明再一實施例所提供的n型雙面太陽能電池的剖面示意圖。 Finally, please refer to Figure 3. 3 is a schematic cross-sectional view showing an n-type double-sided solar cell according to still another embodiment of the present invention.

將圖3與圖1以及圖2比較可知,圖3與圖1以及2之間的差別在於穿隧層8的設置位置。具體來說,圖1中穿隧層8設置於n型背面電場層3與背面功能層5之間,圖2中穿隧層8設置於p型正面射極層2與正面功能層4之間,而圖3的n型背面電場層3與背面功能層5之間,以及p型正面射極層2與正面功能層4之間各自設置有穿隧層8。換句話說,於圖3所示的實施例中,n型雙面太陽能電池S的正反面都設置有穿隧層8。圖3穿隧層8的製造方法、材料的選用以及其與其他結構的相互關係皆如針對圖1以及圖2所示者相同,再此不再次說明。另外,圖3中所示的n型雙面太陽能電池S的結構中,穿隧層8以外的其他結構皆與圖1以及圖2中所示相同。因此,針對其他結構,即n型矽基板、p型正面射極層2、n型背面電場層3、正面功能層4、背面功能層5、正面電極6,以及背面電極7的詳細內容,在此不再次說明。 Comparing FIG. 3 with FIG. 1 and FIG. 2, the difference between FIG. 3 and FIGS. 1 and 2 is the installation position of the tunneling layer 8. Specifically, the tunneling layer 8 is disposed between the n-type back surface electric field layer 3 and the back surface functional layer 5 in FIG. 1, and the tunneling layer 8 is disposed between the p-type front emitter layer 2 and the front functional layer 4 in FIG. The tunneling layer 8 is provided between the n-type back surface electric field layer 3 and the back surface functional layer 5 of FIG. 3 and between the p-type front emitter layer 2 and the front functional layer 4. In other words, in the embodiment shown in FIG. 3, the front and back surfaces of the n-type double-sided solar cell S are provided with a tunneling layer 8. 3, the manufacturing method of the tunneling layer 8, the selection of materials, and the relationship with other structures are the same as those shown in FIG. 1 and FIG. 2, and will not be described again. In addition, in the structure of the n-type double-sided solar cell S shown in FIG. 3, other structures than the tunneling layer 8 are the same as those shown in FIGS. 1 and 2. Therefore, for the other structures, that is, the details of the n-type germanium substrate, the p-type front emitter layer 2, the n-type back surface electric field layer 3, the front functional layer 4, the back functional layer 5, the front surface electrode 6, and the back surface electrode 7, This is not explained again.

綜上所述,本發明的有益效果在於,本發明實施例所提供的n型雙面太陽能電池,其可通過“在p型正面射極層與正面功能層之間”,以及“在n型背面電場層與背面功能層之間”兩種狀態之至少其中一種的位置設置穿隧層,可以在不改變現有的n型雙面太陽能電池的製程順序上,達到避免用於形成電極結構的金屬與形成正面射極層已及背面電場層的矽材料直接接觸而造成金屬誘導再結合現象,進而提升太陽能電池的壽命以及轉換效能。 In summary, the present invention has an advantageous effect that the n-type double-sided solar cell provided by the embodiment of the present invention can pass “between the p-type front emitter layer and the front functional layer” and “in the n-type”. The tunneling layer is disposed at a position of at least one of the two states between the back electric field layer and the back surface functional layer, and the metal used for forming the electrode structure can be avoided without changing the processing sequence of the existing n-type double-sided solar cell. Direct contact with the tantalum material forming the front emitter layer and the back surface electric field layer causes metal induced recombination, thereby improving the life and conversion efficiency of the solar cell.

具體來說,本發明實施例所提供的雙面太陽能電池可以利用各種現有的技術(即,不限於沈積技術)而在矽基材上方或矽基 材內形成經摻雜的射極結構或電場結構,再於前述射極結構或電場結構上形成氧化物層作為穿隧層。相較於現有的TOPCon太陽能電池結構的製程,本發明可以透過難度較低、可靠度較高的製程來形成雙面太陽能電池,亦可克服現有的TOPCon太陽能電池結構僅能用於太陽能電池背面的缺點。 In particular, the double-sided solar cell provided by the embodiments of the present invention can utilize a variety of existing technologies (ie, not limited to deposition techniques) above or below the germanium substrate. A doped emitter structure or an electric field structure is formed in the material, and an oxide layer is formed on the emitter structure or the electric field structure as a tunneling layer. Compared with the existing TOPCon solar cell structure process, the present invention can form a double-sided solar cell through a less difficult and highly reliable process, and can overcome the existing TOPCon solar cell structure and can only be used on the back side of the solar cell. Disadvantages.

以上所述僅為本發明的較佳可行實施例,非因此侷限本發明的專利範圍,故舉凡運用本發明說明書及附圖內容所做的等效技術變化,均包含於本發明的保護範圍內。 The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, equivalent technical changes made by using the present specification and the contents of the drawings are included in the protection scope of the present invention. .

S‧‧‧雙面太陽能電池 S‧‧‧Double-sided solar cells

1‧‧‧n型矽基板 1‧‧‧n type test substrate

11‧‧‧上表面 11‧‧‧ upper surface

12‧‧‧下表面 12‧‧‧ Lower surface

2‧‧‧p型正面射極層 2‧‧‧p type front emitter layer

3‧‧‧n型背面電場層 3‧‧‧n type back electric field layer

4‧‧‧正面功能層 4‧‧‧ Positive functional layer

5‧‧‧背面功能層 5‧‧‧Back functional layer

6‧‧‧正面電極 6‧‧‧Front electrode

7‧‧‧背面電極 7‧‧‧Back electrode

8‧‧‧穿隧層 8‧‧‧Through tunnel

Claims (11)

一種n型雙面太陽能電池,其包含:一n型矽基板,其具有一上表面以及一下表面;一p型正面射極層,其設置於所述n型矽基板的所述上表面上;一n型背面電場層,其設置於所述n型矽基板的所述下表面上;一正面功能層,其設置於所述p型正面射極層的表面上;一背面功能層,其設置於所述n型背面電場層的表面上;至少一穿隧層,其設置於所述p型正面射極層與所述正面功能層之間以及設置於所述n型背面電場層與所述背面功能層之間兩種狀態之至少其中一種;至少一正面電極,至少一所述正面電極穿過所述正面功能層以電性連接於所述p型正面射極層;以及至少一背面電極,至少一所述背面電極穿過所述背面功能層以電性連接於所述n型背面電場層。 An n-type double-sided solar cell comprising: an n-type germanium substrate having an upper surface and a lower surface; a p-type front emitter layer disposed on the upper surface of the n-type germanium substrate; An n-type back surface electric field layer disposed on the lower surface of the n-type germanium substrate; a front functional layer disposed on a surface of the p-type front emitter layer; and a back functional layer disposed On the surface of the n-type back surface electric field layer; at least one tunneling layer disposed between the p-type front emitter layer and the front functional layer and disposed on the n-type back surface electric field layer and At least one of two states between the back functional layers; at least one front electrode, at least one of the front electrodes passing through the front functional layer to be electrically connected to the p-type front emitter layer; and at least one back electrode And at least one of the back electrodes passes through the back surface functional layer to be electrically connected to the n-type back surface electric field layer. 如請求項1所述的n型雙面太陽能電池,其中,至少一所述穿隧層設置於所述n型背面電場層與所述背面功能層之間,且至少一所述背面電極藉由至少一所述穿隧層的阻隔,以與所述n型背面電場層相互隔離。 The n-type double-sided solar cell of claim 1, wherein at least one of the tunneling layers is disposed between the n-type back surface electric field layer and the back surface functional layer, and at least one of the back electrodes is A barrier of at least one of the tunneling layers is isolated from the n-type back surface electric field layer. 如請求項1所述的n型雙面太陽能電池,其中,至少一所述穿隧層設置於所述p型正面射極層與所述正面功能層之間,且至少一所述正面電極藉由至少一所述穿隧層的阻隔,以與所述p型正面射極層相互隔離。 The n-type double-sided solar cell of claim 1, wherein at least one of the tunneling layers is disposed between the p-type front emitter layer and the front functional layer, and at least one of the front electrodes Blocking from at least one of the tunneling layers to be isolated from the p-type front emitter layer. 如請求項1所述的n型雙面太陽能電池,其中,至少一所述穿隧層設置於所述p型正面射極層與所述正面功能層之間,且至少一所述正面電極藉由至少一所述穿隧層的阻隔,以與所述p型正面射極層相互隔離;其中,至少一所述穿隧層設置於所述n型背面電場層與所述背面功能層之間,且至少一所述背面電 極藉由至少一所述穿隧層的阻隔,以與所述n型背面電場層相互隔離。 The n-type double-sided solar cell of claim 1, wherein at least one of the tunneling layers is disposed between the p-type front emitter layer and the front functional layer, and at least one of the front electrodes Blocking from at least one of the tunneling layers to be isolated from the p-type front emitter layer; wherein at least one of the tunneling layers is disposed between the n-type back surface electric field layer and the back functional layer And at least one of the backsides The barrier layer is separated from the n-type back surface electric field by at least one of the tunneling layers. 如請求項1所述的n型雙面太陽能電池,其中,至少一所述穿隧層是由矽氧化物、鋁氧化物或其等的疊層結構所形成。 The n-type double-sided solar cell according to claim 1, wherein at least one of the tunneling layers is formed of a stacked structure of tantalum oxide, aluminum oxide or the like. 如請求項1所述的n型雙面太陽能電池,其中,所述正面功能層為一同時具有鈍化以及抗反射功能的正面材料層,而所述背面功能層為一同時具有鈍化以及抗反射功能的背面材料層。 The n-type double-sided solar cell according to claim 1, wherein the front functional layer is a front material layer having both passivation and anti-reflection functions, and the back functional layer has both passivation and anti-reflection functions. The back layer of material. 如請求項1所述的n型雙面太陽能電池,其中,所述正面功能層包含一正面鈍化層以及形成於所述正面鈍化層上的一第一抗反射塗層,所述正面鈍化層以及所述第一抗反射塗層裸露至少一所述正面電極,所述背面功能層包含一背面鈍化層以及形成於所述背面鈍化層上的一第二抗反射塗層,所述背面鈍化層以及所述第二抗反射塗層裸露至少一所述背面電極。 The n-type double-sided solar cell of claim 1, wherein the front functional layer comprises a front passivation layer and a first anti-reflective coating formed on the front passivation layer, the front passivation layer and The first anti-reflective coating exposes at least one of the front electrodes, and the back functional layer comprises a back passivation layer and a second anti-reflective coating formed on the back passivation layer, the back passivation layer and The second anti-reflective coating exposes at least one of the back electrodes. 如請求項1所述的n型雙面太陽能電池,其中,所述正面功能層以及所述背面功能層是由選自於由矽氧化物、氮化矽、氮氧化矽、氧化鋁、氮化鋁及其等的組合所組成之群組的材料所形成。 The n-type double-sided solar cell according to claim 1, wherein the front functional layer and the back functional layer are selected from the group consisting of niobium oxide, tantalum nitride, hafnium oxynitride, aluminum oxide, and nitriding. A material composed of a group of aluminum and the like is formed. 如請求項1所述的n型雙面太陽能電池,其中,所述p型正面射極層以及所述n型背面電場層是透過氣體擴散、離子佈植或者常壓式氣相沉積所形成。 The n-type double-sided solar cell according to claim 1, wherein the p-type front emitter layer and the n-type back surface electric field layer are formed by gas diffusion, ion implantation or atmospheric vapor deposition. 如請求項1所述的n型雙面太陽能電池,其中,至少一所述正面電極以及至少一所述背面電極是由一金屬膠或一金屬層所形成,所述金屬膠包含銀、鋁、銅或及其等的混和物,而所述金屬層包含鈦、鈀、銀、鎳、銅、錫、鋁或其等的組合。 The n-type double-sided solar cell according to claim 1, wherein at least one of the front electrode and at least one of the back electrodes are formed of a metal glue or a metal layer, and the metal glue comprises silver, aluminum, A mixture of copper or the like, and the metal layer comprises a combination of titanium, palladium, silver, nickel, copper, tin, aluminum, or the like. 如請求項10所述的n型雙面太陽能電池,其中,多個所述正面電極以及多個所述背面電極是透過網印、蒸鍍、濺鍍或者電鍍所形成。 The n-type double-sided solar cell according to claim 10, wherein the plurality of the front electrodes and the plurality of the back electrodes are formed by screen printing, vapor deposition, sputtering, or electroplating.
TW105125761A 2016-08-12 2016-08-12 n-TYPE BIFACIAL SOLAR CELL TWI652832B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105125761A TWI652832B (en) 2016-08-12 2016-08-12 n-TYPE BIFACIAL SOLAR CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105125761A TWI652832B (en) 2016-08-12 2016-08-12 n-TYPE BIFACIAL SOLAR CELL

Publications (2)

Publication Number Publication Date
TW201806168A true TW201806168A (en) 2018-02-16
TWI652832B TWI652832B (en) 2019-03-01

Family

ID=62014266

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105125761A TWI652832B (en) 2016-08-12 2016-08-12 n-TYPE BIFACIAL SOLAR CELL

Country Status (1)

Country Link
TW (1) TWI652832B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705574B (en) * 2019-07-24 2020-09-21 財團法人金屬工業研究發展中心 Solar cell structure and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110139231A1 (en) 2010-08-25 2011-06-16 Daniel Meier Back junction solar cell with selective front surface field
CN102856328B (en) 2012-10-10 2015-06-10 友达光电股份有限公司 Solar battery and manufacturing method of same
CN204303826U (en) 2014-11-19 2015-04-29 上海神舟新能源发展有限公司 A kind of high-efficiency N-type double-side solar cell
TWM511126U (en) 2015-06-09 2015-10-21 Neo Solar Power Corp Solar cell with cell edge collection structure
CN105489671A (en) 2015-12-28 2016-04-13 苏州中来光伏新材股份有限公司 N-type double-sided solar cell and preparation method thereof
CN105762234B (en) 2016-04-27 2017-12-29 中国科学院宁波材料技术与工程研究所 A kind of tunnel oxide passivation contact solar cell and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705574B (en) * 2019-07-24 2020-09-21 財團法人金屬工業研究發展中心 Solar cell structure and method of manufacturing the same

Also Published As

Publication number Publication date
TWI652832B (en) 2019-03-01

Similar Documents

Publication Publication Date Title
US9508875B2 (en) Solar cell and method for manufacturing the same
US8525018B2 (en) Solar cell
JP6106403B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
US9130078B2 (en) Solar cell and method for manufacturing the same
US9991401B2 (en) Solar cell and method for manufacturing the same
JP6722117B2 (en) Passivation of light receiving surface of solar cell using crystalline silicon
CN114038921B (en) Solar cell and photovoltaic module
KR101768907B1 (en) Method of fabricating Solar Cell
TWM606270U (en) Tunnel oxide passivated contact solar cell
TWI652832B (en) n-TYPE BIFACIAL SOLAR CELL
CN113875025A (en) Solar cell and method for manufacturing solar cell
US20130127005A1 (en) Photovoltaic device and method of manufacturing the same
TWI619260B (en) N-type rear emitter bifacial solar cell
KR102118905B1 (en) Solar cell including a tunnel oxide layer and method of manufacturing the same
JP7445053B1 (en) Solar cells and their manufacturing methods, photovoltaic modules
TWI718803B (en) Electrode structure and solar cell structure
TWI678814B (en) Solar cell and method for fabricating the same
CN108565298B (en) Solar cell
TWI645572B (en) A method for fabricating crystalline silicon wafer based solar cells with local back fields
JP6238803B2 (en) Photoelectric conversion element
US20180158968A1 (en) Solar cell and method of manufacturing the same
CN116404051A (en) Back contact solar cell, manufacturing method thereof and photovoltaic module
TW202107720A (en) Solar cell, and surface passivation structure and surface passivation method thereof
CN115863456A (en) perovskite/TOPCon tandem solar cell
CN111063744A (en) Solar cell and method for producing a solar cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees