JPWO2017013816A1 - 照明装置、照明方法、及びそれを用いた映像投射装置 - Google Patents

照明装置、照明方法、及びそれを用いた映像投射装置 Download PDF

Info

Publication number
JPWO2017013816A1
JPWO2017013816A1 JP2017529434A JP2017529434A JPWO2017013816A1 JP WO2017013816 A1 JPWO2017013816 A1 JP WO2017013816A1 JP 2017529434 A JP2017529434 A JP 2017529434A JP 2017529434 A JP2017529434 A JP 2017529434A JP WO2017013816 A1 JPWO2017013816 A1 JP WO2017013816A1
Authority
JP
Japan
Prior art keywords
light
light source
lens
illumination
optical integrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017529434A
Other languages
English (en)
Inventor
川村 友人
友人 川村
誠治 村田
誠治 村田
竜志 鵜飼
竜志 鵜飼
寿行 高岩
寿行 高岩
黒田 敏裕
敏裕 黒田
大地 酒井
大地 酒井
裕 川上
裕 川上
俊輝 中村
俊輝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2017013816A1 publication Critical patent/JPWO2017013816A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lenses (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

効率の高い照明装置、照明方法と、それを用いた映像投射装置を提供することを目的とする。
上記目的を達成するために、光源と、光源からの光を集光して出射する集光体とを備えた照明装置であって、集光体は、光源側の入射面と、光を出射する出射面と、入射面と出射面の間にある側面とを有し、側面は、入射面から出射面に向けて、光源中心からその発光面と直交する方向の光軸からの距離が大きくなる湾曲面であり、湾曲面の形状が異なる複数の湾曲面形状を有するように構成する。また、光源と、光源からの光を内面反射により均質化させる光積分器と、光積分器から出射する光を略平行な光に変換するレンズと、レンズの外側に配置され光積分器からの光を略平行な光に変換する反射放物面とを備えた照明装置であって、レンズの光積分器側の面を、反射放物面の光積分器と反対側にあるレンズ光軸方向の端よりも光積分器側に配置した構成とする。

Description

本発明は、光を所定の領域に照明する照明装置、照明方法と、それを用いた映像投射装置に関するものである。
面発光(LED、OLED)の光源を用いる照明器具やプロジェクタ、ヘッドマウントディスプレイなどの映像投射装置では、所望の領域に光源からの光を効率良く伝達させる照明装置が必要である。また、消費電力の観点から、照明装置において光の伝達効率が重要な要因となる。
本技術分野の背景技術として、照明装置に関して、特開2011-165351号公報(特許文献1)や、特開2012−145904号公報(特許文献2)には、LEDからの光を外部に出射するため、光軸中心に対して内側の光に対してはレンズ機能を有し、外側の光に対してはリフレクタ機能を有した集光体(レンズ)を用いた照明器具用の照明装置が記載されている。
また、映像投射装置に関して、特開2004−258666号公報(特許文献3)には、プロジェクタ用途の照明装置として、ランプからの光をリフレクタで集光し、均質性を向上するためのロッドレンズを用い、ロッドレンズから出射した光をレンズで、映像を生成する表示装置に照明する例が開示されている。
特開2011-165351号公報 特開2012−145904号公報 特開2004−258666号公報
近年、ヘッドマウントディスプレイ(以下HMDと記す)やヘッドアップディスプレイ(以下HUDと記す)に代表される虚像を投射する映像投射装置の開発が進められている。虚像は、人の眼のレンズ機能を利用して映像を眼底に結像させた映像である。虚像を投射する光学系は、人の瞳と映像投射装置の出射面の開口により、光の取込み角度が制限される。出射面の開口は、大きくするとその映像投射装置が巨大化してしまうため、通常、虚像を投射する映像投射装置では、小型化とするために光の取込み角度は小さくなる。
しかるに、従来の照明装置は、光の取込み角度が大きいため、装置が大型化し、虚像を投射する映像投射装置用として適していない。すなわち、照明器具は部屋の広い範囲を照らすため、光の取込み角度が大きい。従って、特許文献1や特許文献2の照明装置は、虚像を投射するHMDやHUD等の映像投射装置としては適しておらず、光の伝達効率を高めることができない。
また、実像を映像として見せるプロジェクタにおいても、スクリーンに照明された映像を人が視認するため、光の取込み角度が大きい方が望ましい。このため、光の取込み角度を大きくすることで、明るさを高めてきた。
特許文献3のようなリフレクタの構成は、LEDなどの面発光の光源には適しておらず、効率を高めることができない。また、ロッドレンズの出口のような複数のレンズを組み合わせても、外側の光が無駄になり、効率を高めることはできない。また、複数のレンズを用いるのは、コスト面でも望ましくない。
また、特許文献1や特許文献2と、特許文献3を組み合わせたとしても、光の取込み角度の制限された虚像を投射する映像投射装置として効率の高い照明装置は実現できない。
本発明の目的は、光の利用効率の高い照明装置、照明方法と、それを用いた映像投射装置を提供することである。
上記課題を解決するために、本発明は、その一例を挙げるならば、光源と、透明な材質で形成され前記光源からの光を集光して出射するための集光体とを備えた照明装置であって、集光体は、光源側の入射面と、光を出射する出射面と、入射面と出射面の間にある側面とを有し、側面は、入射面から出射面に向けて、光源中心からその発光面と直交する方向の光軸からの距離が大きくなる湾曲面であり、湾曲面の形状が異なる複数の湾曲面形状を有するように構成する。
また、光源と、該光源から出射した光を内面反射により均質化させる透明な材質で満たされた光積分器と、光積分器から出射する光を略平行な光に変換するレンズと、レンズの光軸中心に対してレンズの外側に配置され光積分器から出射する光を略平行な光に変換する反射放物面とを備えた照明装置であって、光積分器の内部に光を散乱させる散乱素子を含有させ、レンズの光積分器側の面を、反射放物面の光積分器と反対側にあるレンズ光軸方向の端よりも光積分器側に配置した構成とする。
本発明によれば、省電力で、明るさを向上させた小型な照明装置、照明方法と、それを用いた映像投射装置を提供することができる。
実施例1における照明装置の断面図である。 実施例1における集光体の斜視図である。 実施例1における照明領域の輝度分布を説明する図である。 実施例2における照明装置の断面図である。 実施例3における集光体の斜視図である。 実施例4における照明装置の断面図である。 実施例4における複数波長光源9を説明する図である。 実施例4における光積分器の斜視図である。 実施例5における複数波長光源を説明する図である。 実施例5における光積分器の斜視図である。 実施例6における映像投射装置の断面図である。 実施例7における映像投射装置の断面図である。 実施例8における映像投射装置の断面図である。 実施例9における映像投射装置の応用例を説明する図である。 実施例10におけるHMDを説明する図である。 実施例11におけるスマートフォンを説明する図である。 実施例11におけるスマートフォンの使用シーンを説明する図である。 実施例11におけるスマートフォンのシステムを説明する図である。 実施例11におけるスマートフォンの動作フローを説明する図である。 実施例11における映像投射装置170の色調整の動作フローを説明する図である。 実施例12における照明装置の斜視図である。 実施例12における照明装置の展開図である。 実施例12における照明領域の断面図である。 実施例12におけるレンズの展開図である。 実施例12におけるリフレクタケースの斜視図である。 実施例12における光積分器から出射する光の角度分布を説明する図である。
以下、本発明の実施例を図面を用いて説明する。なお、本発明はこれにより限定されるものではない。
本実施例は、照明装置について説明する。図1は本実施例における照明装置22の断面図であり、図2は図1の照明領域3の斜め上方向から集光体1を見た斜視図である。
図1において、照明装置22は、集光体1と光源2を有して構成されている。光源2から出射した光は、集光体1で集光され、照明領域3に照明される。照明領域3は、四角形の領域であり、図2の領域23は、その照明領域3を集光体1に投影した領域を示している。照明領域3の端85は領域23の端115、端87は領域23の端117に相当する。
図2に示すように、集光体1は、透明な材質で成型された光学部品であり、光源2側の入射面5,6と、光を出射する5個の出射面7乃至11と、4個の側面12乃至15(側面14は裏側で見えないので図示していない)で形成されている。集光体1の材質として例えば、可視光領域で吸収が少ないポリカーボネートやシクロオレフィンポリマーなど、透明な材質が望ましい。もちろん、使用する光源の波長帯に拠って材質を変えても構わない。
また、入射面5,6、出射面7乃至11は、光の表面反射を防止して効率を向上する目的で、誘電体多層膜にて、反射防止膜を形成すると良い。
図1において、光源2は、面発光型の光源であり、例えば、LEDやOLEDなどが適している。ここでは、青色の光を白色に変換する蛍光体をチップ表面に塗布した白色のLEDを想定している。また光源2は、光源基板4に搭載されており、光源基板4を介して、電流を外部から供給することができる。
通常、面発光型の光源から出射した光は前方の全方位に進行する。光源2から出射した光も前方に向けて進行する。光源2の光軸は、光源中心からその発光面と直交する方向の軸(図中軸19)であり、光源2から出射した光は、光軸中心の光が最も強く、光軸中心から離れるにしたがって弱くなり、光源2の発光面と同じ方向が最も弱くなる。
光源2から出射した光は、集光体1で軸19を含む入射面5と、軸19から離れる方向の入射面5の外側に配置された入射面6に入射し、内側と外側の光に分割される。
入射面5で分割された内側の光は、出射面7にて、略平行な光に変換され照明領域3に照明される。すなわち、入射面5と出射面7は、光源2を点状の物体とした物点としたとき、出射した光を平行にするレンズ機能を有している。
このように、出射する略平行な光が多いほど、光の取込み角度の制限された虚像を投射する映像投射装置用の照明装置としての効率を高められる。
図1では、入射面5、出射面7は共に凸レンズであるが、もちろん、光源2を物点としたとき、出射した光を平行にするレンズ機能を有していれば、入射面5を凹レンズにしても構わない。
一方、入射面6で分割された外側の光は、側面12で反射して、出射面8を介して照明領域3に照明されるか、または側面13で反射して、出射面9を介して照明領域3に照明される。なお、図1には記載していないが、入射面6で分割された外側の光は、同様に側面14、15で反射して、それぞれ出射面10,11を介して照明領域3に照明される。
スネルの法則より、臨界角より大きい入射角を持つ光線は屈折率の高い媒質から屈折率の低い媒質へ進行できず、内面反射(Total Internal Reflection 以下TIRと記す)することが知られている。そのため、側面12、13に入射する光線は、TIRにより反射する。もちろん側面12乃至15をアルミや銀合金などで、反射コートしても構わない。この場合、反射コート面に接着剤で、他の部品と接合させることが可能になる。
次に、入射面6からの光が、4個の側面12乃至15と、4個の出射面8乃至11を経由する光路について説明する。
まず、入射面6、側面12、出射面8の光路について説明する。図1において、入射面6は、光源2の中心を原点とした球の形状の一部である。このため、入射面6に入射する光源2の中心から出射した光は、入射面6に対して直角であるため、角度が曲がる影響などを受けず、光源2から出射したそのままの角度で側面12に進行する。
側面12は、入射面から出射面側に向けて軸19からの距離が大きくなる湾曲面である。本実施例では、側面12は、軸20を回転軸とする楕円体17の一部である。通常、楕円体は、2個の焦点を有し、1個の焦点から出射した光線は、もう一方の焦点に結像する特性を持っている。光源2の中心と、照明領域3の端85とをその2個の焦点に設定すると、光源2から出射した光を照明領域3の端85に結像させることが可能になる。このため、側面12で反射した光線は、端85に向けて進行する。
出射面8は、端85を原点とした球の一部の形状である。出射面8に入射する光線は、端85が焦点の光であるため、出射面8に対して直角になる。このため、光は、出射面8により角度が曲がる影響などを受けず、そのままの角度で端85に進行する。
すなわち、光源2の出射する平面と同じ角度(図1において軸19と直角な方向の出射光)から、入射面5、6の境界で分割される角度までの範囲の光を所定の角度範囲(光の取込み角度制限による角度範囲、言い換えれば、光の取込み角度はFナンバーの逆数に比例するので、Fナンバーの制限による角度範囲と言っても良い)の光として、端85に照明させることができる。
このように光源2を出射する外側の光を照明領域3の端に照明することで、集光体1は、光源2の外側の光を、所定の角度範囲に制限された光として照明領域3に照明可能になる。
次に、入射面6、側面13、出射面9の光路について説明する。側面13は、側面12と同様に、軸21を回転軸とする楕円体18の一部である。楕円体18は、光源2の中心と、照明領域3の端87とをその2個の焦点に設定している。また、出射面9は、出射面8同様に、端87を原点とした球の一部の形状である。このため、光源2から出射した光は、端87に結像する。
すなわち、軸20、軸21は、光源2で交わらすことで、照明領域の両端に光源2から出射した光を結像させることができる。
同様に、入射面6、側面14、出射面10の光路と、入射面6、側面15、出射面11の光路も、側面14、側面15は、楕円体の一部であり、その楕円体は、光源2の中心と、照明領域3の端116または118とをその2個の焦点に設定しているため、光源2から出射した光は、各々、端116,118に相当する照明領域3の端に結像される。
集光体1は、図2の斜視図で示すように、出射面8乃至11はその曲面形状が異なるため、その接合部でそれぞれ境界32が発生する。同様に、側面12乃至15も形状が異なるため、その接合部にも境界32が発生する。側面や出射面の境界32は、軸19を通る平行な面で分けられていることを意味する。
以上説明したように、光源2から出射した光は、集光体1により、内側の光が照明領域3に略平行な角度で照明され、一方、外側の光は、照明領域3の両端に集光される。
また、集光体1は、面33を形成し、光源基板4と接触させ、固定する面として利用しても良い。また、フランジ16を設けて、照明装置22とその他機構との固定する面として利用しても良い。面33、フランジ16も共に有効な光線が通過しない領域に設けられており、光のロスは無いといえる。
図3は照明領域3の輝度分布を説明する図である。図3(A)は出射面7から出射した光源2の内側の光が照明された輝度分布、図3(B)は出射面8乃至11から出射した光源2の外側の光が照明された輝度分布、図3(C)は光源2から出射した内側と外側の光が照明された輝度分布を示している。図上段は、照明領域3の輝度の等高線を示したもので線が太いほど、輝度が大きいことを示す。図下段は、図上段で示した軸25に投影させた輝度26の分布を示したものである。
内側の光は、輝度分布27で示すように照明領域3の中心の輝度が大きく、外側に行くほど輝度が小さくなる。照明領域3が四角形のため、4隅の輝度が特に小さい。逆に輝度分布28で示すように、外側の光は、照明領域3の4隅だけが輝度が大きい。このため、光源2から出射した光は、輝度分布27と28の合計となり、集光体1で輝度分布29に示すように、全体の輝度を高められる。
このように、通常のレンズを用いると4隅が暗くなるが、本実施例における集光体1を用いると4隅を明るくできる。これは、通常のレンズで利用できなかった外側の光を用いることで、効率良く照明領域3を照明できるからである。
所定の光の取込み角度の制約がある虚像用の映像投射装置には、上述したように集光体1を用いて、光源2の中心の光を略平行にして、外側の光を照明領域の外から、所定角度範囲内の光を照明することで、光源2からの光を効率良く照明領域3に照明できる。
なお、上記実施例は、楕円体の2個の焦点を、光源2と、照明領域の端にする例で記載したが、例えば、焦点を少し光源2や照明領域の平面内や、軸19と平行な方向にずらしても、複数の楕円体の軸を異ならせることで、類似の効果が得られる。すなわち、回転体の軸は、光源と、照明装置の目標とする照明領域の中心と端の間を少なくとも通過すれば良い。
以上のように、本実施例は、光源と、透明な材質で形成され光源からの光を集光して出射するための集光体とを備えた照明装置であって、集光体は、光源側の入射面と、光を出射する出射面と、入射面と出射面の間にある側面とを有し、側面は、入射面から出射面に向けて、光源中心からその発光面と直交する方向の光軸からの距離が大きくなる湾曲面であり、湾曲面の形状が異なる複数の湾曲面形状を有するように構成する。
また、光源から出射した光を集光して出射する照明装置の照明方法であって、光源から出射する光を、光源中心からその発光面と直交する方向の光軸に対して直交する方向に光軸側である内側の光と光軸から離れる外側の光に分け、内側の光を照明装置の照明領域に略平行な角度で照明し、外側の光を照明領域の隅に焦点があうように集光するように構成する。
これにより、省電力で明るく小型な照明装置、照明方法と、それを用いた映像投射装置を提供することができる。
本実施例は、実施例1とは異なる構成の照明装置について説明する。本実施例における照明装置52は、照明装置22の他の例であり、集光体の側面の湾曲面を放物線にした点が異なる。
図4は本実施例における照明装置52の断面図である。図4において、照明装置52は、集光体31と光源2を有して構成されている。光源2から出射した光は、集光体31で集光され、照明領域3に照明される。
集光体31は、透明な材質で成型された光学部品であり、光源2側の入射面35,36と光を出射する5個の出射面37乃至41(図中出射面37乃至39のみ記載)、4個の側面42乃至45(図中側面42,43のみ記載)で形成されている。
また、入射面35,36、および5個の出射面37乃至41は、光の表面反射を防止して効率を向上する目的で、誘電体多層膜にて、反射防止膜を形成すると良い。
光源2から出射した光は、集光体31で軸49を含む入射面35と、軸49に対して入射面35の外側に配置された入射面36に入射し、内側と外側の光に分割される。
入射面35で分割された内側の光は、出射面37にて、略平行な光に変換され照明領域3に照明される。すなわち、入射面35と出射面37は、光源2を物点としたとき、出射した光を平行にするレンズ機能を有している。
入射面36で分割された外側の光は、側面42で反射して、出射面38を介して照明領域3に照明されるか、または側面43で反射して、出射面39を介して照明領域3に照明される。なお、図4には記載していないが、入射面36で分割された外側の光は、同様に側面44、45で反射して、それぞれ出射面40,41を介して照明領域3に照明される。
次に、入射面36からの光が、4個の側面42乃至45と、4個の出射面38乃至41を経由する光路について説明する。
まず、入射面36、側面42、出射面38の光路について説明する。入射面36は、光源2の中心を原点とした球の形状の一部である。このため、光源2から出射したそのままの角度で側面42に進行する。側面42は、入射面から出射面側に向けて軸49からの距離が大きくなる湾曲面である。本実施例では、側面42は、軸50を回転軸とする放物線47の一部であることを想定している。通常放物線は、1個の焦点を有し、その焦点から出射した光線は、平行になる特性を持っている。光源2の中心をその焦点とし、回転軸を軸50のように所定の角度に傾けると、所定の角度に傾いた光線が得られる。このため、側面42で反射した光線は、照明領域3に向けて所定の角度で進行する。
出射面38は、軸50と直交した平面である。出射面38に入射する光線は、軸50と平行な光であるため、出射面38に対して直角になる。このため、光は、出射面38により角度が曲がる影響などを受けず、そのままの角度で照明領域3に進行する。
同様に、入射面36、側面43乃至45、出射面40乃至41の光路についても、側面43乃至45は、放物線の一部であり、その放物線は、光源2の中心を焦点に設定しているため、光源2から出射した光は、各々、照明領域3に向けて所定の角度で進行する。
すなわち、外側の光は、照明領域3の両外側から所定の角度で照明されるため、内側の光を邪魔することなく、光源2の外側の光を照明領域3に照明できる。
また、集光体31も、形状が異なる出射面と側面の接合部でそれぞれ境界が発生する。
上記説明したように、光源2から出射した光は、集光体31により、内側の光が照明領域3に略平行な角度で照明され、一方、外側の光は、照明領域3の両端に照明領域3の外側から所定の角度で照明される。
なお、集光体31は、面34を形成させ、光源基板4と接触させ、固定する面として利用しても良い。また、フランジ46を設けて、照明装置52とその他機構との固定する面として利用しても良い。面34、フランジ46も共に有効な光線が通過しない領域に設けられており、光のロスは無いといえる。
所定の光の取込み角度の制約がある虚像用の映像投射装置には、上述したように集光体31を用いて、光源2の中心の光を略平行にして、外側の光を照明領域の外から、所定角度範囲内の光を照明することで、光源2からの光を効率良く照明領域3に照明できる。
本実施例は、実施例1とは異なる構成の集光体について説明する。本実施例における集光体61は、集光体1の他の例であり、照明領域が長方形の場合に適している。
図5は、本実施例における集光体61の斜視図である。図5において、集光体61は、透明な材質で成型された光学部品であり、光が入射する入射面65、66と、光を出射する5個の出射面67乃至71、4個の側面72乃至75(側面74は図示無し)で形成されている。集光体61の材質としては、図2で説明した集光体1と同様で良い。
また、入射面65、66、出射面67乃至71は、光の表面反射を防止して効率を向上する目的で、誘電体多層膜にて、反射防止膜を形成すると良い。
入射した光は、集光体61で光の中心軸を含む入射面65と、その軸に対して入射面65の外側に配置された入射面66に入射し、内側と外側の光に分割される。
入射面65で分割された内側の光は、出射面67にて、略平行な光に変換され照明領域に照明される。すなわち、入射面65と出射面67は、光源を物点としたとき、出射した光を平行にするレンズ機能を有している。集光体1と異なり集光体61の入射面65と出射面67は、縦と横で半径の異なるレンズである。このため、長方形の照明領域に効率良く光を照明できる。
なお、領域62は、照明領域を出射面側に投影した領域を図示したものである。
通常の縦横比が等しいレンズの場合、照明される光も縦横比が等しくなり、縦横比の異なる照明領域には照明されない無駄な光が発生する。このため、縦横比を変えたレンズとしたことで効率を向上することが可能になる。
また、出射する略平行な光が多いほど、光の取込み角度の制限された虚像を投射する映像投射装置用の照明装置としての効率を高められる。
入射面66で分割された外側の光は、側面72乃至75で反射して、出射面68乃至71を介して照明領域に照明される。
側面72乃至75は、入射面から出射面側に向けて軸49からの距離が大きくなる湾曲面であり、ここでは、楕円体の一部であることを想定している。各々一方の焦点を光源の中心に、もう一方の焦点を照明領域の各端に設定する。このため、光源から出射した外側の光を照明領域の端に結像させることが可能になる。
また、出射面68乃至71は、照明領域の端を原点とした球の一部の形状である。このため、側面72乃至75を反射した光は、出射面68乃至71により角度が曲がる影響などを受けず、そのままの角度で照明領域の端に進行する。
集光体61は、図5で示すように、出射面68乃至71、側面72乃至75は形状が異なるため、その接合部でそれぞれ境界32が発生する。
以上説明したように、本実施例によれば長方形の照明領域においても、光源から出射した光を効率良く集光させることができる。
なお、集光体61も、光源基板と接触させる面と、フランジ76を設けて、光源や他機構との固定する面として利用しても良い。共に有効な光線が通過しない領域に設けることで、光のロスを回避できる。
所定の光の取込み角度の制約がある虚像用の映像投射装置には、上述したように集光体61を用いて、光源2の中心の光を略平行にして、外側の光を照明領域の外から、所定角度範囲内の光を照明することで、光源2からの光を効率良く長方形の照明領域に照明できる。
本実施例は、他の構成の照明装置について説明する。図6は、本実施例における照明装置82の断面図である。図6において、照明装置82は、集光体61(実施例3で説明した集光体)と複数波長光源91を有して構成されている。複数波長光源91から出射した複数波長の光は、光積分器93に入射し均一に混色される。光積分器93を出射した光は、集光体61で集光され、照明領域83に照明される。照明領域83は、表示装置として一般的なアスペクト比16:9の長方形である。
ここで、複数波長光源91は、3種類の波長を出射する面発光型の光源であり、ここでは、赤、緑、青の波長帯の3個のチップを具備したLEDを想定している。複数波長光源91は、光源基板92に搭載されており、光源基板92を介して、電流を外部から供給することができる。
複数波長光源91の3個のチップは、異なる位置に配置される。このため、各チップの光軸が異なる。光積分器93は、その異なる光軸を一致させるために配置されている。
光積分器93を出射した光は、前述したように、集光体61で光軸95を含む内側と外側の光に分割され、集光体61により、内側の光が照明領域83に略平行な角度で照明され、一方、外側の光は、照明領域83の両端に集光される。
なお、集光体61の面90は、トンネル機構94と接触させ、そのトンネル機構94は、光源基板92と接触させ固定する。また、フランジ76は、照明装置82とその他機構との固定する面として利用しても良い。
トンネル機構94は、光積分器93を軽圧入により固定する機構を想定している。光積分器93と、トンネル機構94を接着剤で固定すると、光積分器93と接着剤の接触面での屈折率差が小さくなり、光が漏れ、光のロスが大きくなる。そのため、トンネル機構94は、接着剤を使用せずに光積分器93を固定できるため、効率が良い固定方法である。
また、トンネル機構94は、複数波長光源91を出射して光積分器93を介せず集光体61を通り照明領域83に進行する不要な光を除去できる遮光効果も有する。
また、照明装置82は、複数の波長を搭載しているため、照明領域83の色を調整することができる。
また、一般的にカラーフィルタの無い表示装置には、カラー化のため赤、緑、青の波長帯の光源が必要であり、照明装置82は、斯様な表示装置に適している。
図7は複数波長光源91を説明する図である。複数波長光源91は、赤、緑、青の波長帯の光を各々出射する第1波長光源96、第2波長光源97、第3波長光源98が、幅WLEDと高さHLEDの内側に三角形に配置されている。
集光体61の光軸(軸95)と、第1波長光源96、第2波長光源97、第3波長光源98の中心(軸99、軸100の交点)を一致させると、効率良く集光体61で光を集光できる。
また、光積分器93の面102(幅W、高さH)よりもWLEDと高さHLEDを小さく設定すると、光積分器に効率良く伝達できる。
また、光を短い距離で混色するには、光積分器93の幅W、高さHが小さいことが望ましい。このため、第1波長光源96、第2波長光源97、第3波長光源98を三角形に配置している。
図8は光積分器93の斜視図である。光積分器93は、長さL、高さH、幅Wの四角柱の形状をしており、その内部は所定の透明度の高い屈折率N1の媒質1で満たされている。また、光積分器93は、面102乃至107がある。
面102、103は、光が入射する面、または出射する面である。面104乃至107は、面102、103から入射した光をTIRにより光積分器93の内部に閉じ込める機能を有する側面である。
光積分器93の内部には、媒質1とは異なる屈折率2の透明度の高い媒質2で満たされた散乱素子101がランダムに充填されている。スネルの法則に従い、光線は、屈折率の異なる媒質を通過するときに、入射する角度とは異なる角度で出射する。散乱素子101は、その原理を用い、進行する光線の角度を変更させることで散乱させる機能を有する。屈折率1と屈折率2の差を大きくした方がスネルの法則に従い、より大きな拡散機能が得られる。
散乱素子は、球状、またはその他の形状でも構わない。汎用品である球状とすることがコスト面からは望ましい。
散乱素子を球状とした場合は、その直径が小さいほど光線の曲げられる角度が大きくなり、高い散乱性能が得られる。その直径は、入射する光線の波長より大きく、その波長の10倍以下にすることが望ましい。
散乱素子の直径が波長より小さいと、大きな散乱が得られる。しかし散乱素子に光線が当たる確立が小さくなるため、均質性を確保するため、散乱素子の充填率を増やすことになるが、効率の低下が問題となる。
逆に直径が波長の10倍以上になると、光線の変更できる角度が小さくなり、所望の混色性と均質性を得るため光積分器93を長くすることになるが、目的とする小型化に寄与できなくなる。
散乱素子を球状以外で、その散乱素子の表面に凹凸が無い場合は、概ね上記と同じことが言える。
もちろん、散乱素子の表面に波長オーダーの微細構造を設けても良い。この場合は、形状を任意にして、散乱素子の最大直径を大きくしても、大きな散乱効果が得られることが期待できる。
また、面102、103の高さH、幅Wは、入射する光線と略同等か、少なくとも取り付けの公差を考慮した最小のサイズとすることが望ましい。もちろん、面102、103の高さH、幅Wは、入射する光線と略同等とすることが最も望ましく、この場合は、取り付けの公差を考慮して、組立て時に調整すると良い。
面102、103を出射する光線の輝度は、面積に反比例する。このため、入射する光線の面積に対し、入出射面の面積を2倍にすると、輝度が半分になる。また、面積を大きくすると閉じ込めの効果が落ち、混色性能も小さくなる。このため、さらに散乱素子の充填率を増加する必要があり、効率がさらに劣化する。
逆に入射する光線より面102、103の面積を小さくすると、光線を取り込めなくなり、効率が低下する。
以上から、面102、103の面積は、入射する光線サイズと略同等にして調整するか、組立ての公差を考慮して少なくとも2倍以下に設定した方が良い。
面102、103の幅Wと高さHは、幅W>高さHと定義する。この場合、長さLは、幅Wの3倍より長くすると良い。
通常の面光源は半値半幅が60°のランバシアンの分布をしている。一般的な透明材料の屈折率を1.5とすると、スネルの法則に従えば光積分器93の内部に取り込まれた光は±35°の範囲内に分布しているといえる。35°の光線は、幅Wの3倍の長さLを進行すると、約2回反射することになる。すなわち、(式1)を満足することになる。
L×Tan35°≧2×W …(式1)
約2回反射する程度の長さがあると、散乱素子101の充填率を調整することで、混色性と均質性を満たす事ができる。
なお、幅Wの3倍を越える長さLに設定した場合は、充填率を減らす調整をすることで、混色性と均質性を満たしたままで効率を維持できる。
例えば、幅W、高さHを1mm角とした場合、長さを4mm、散乱素子101の直径を約2μm、屈折率1を1.48、屈折率2を1.58とした場合、媒質1の総体積に対する散乱素子101の媒質2の総体積を0.5%乃至1.0%の範囲に設定すると良い。
また、面102、103は、略平行にすることが望ましい。垂直に入射する光の平均角度を保ったまま光の入出射が可能となり、効率の点で望ましい。
また、面102、103とは同じ形状にすることが望ましい。TIRによる光の漏れを低減すると共に、効率のよい反射を行うことができ、ロスを低減できる。
また、散乱素子101の充填率は、光と散乱素子101の衝突する平均的な距離である平均自由行程と反比例するものであり、光の透過率は、光と散乱素子が衝突した回数分落ちるため、平均自由行程に比例すると言える。すなわち、散乱素子101の充填率は、明るさに反比例する。散乱素子101を充填しすぎると、効率が落ちるため、混色性および均質性と効率を考慮して、散乱素子101の充填率を決めると良い。
また、面104乃至107は、表面粗さを小さくすることが望ましい。表面粗さを小さくすることで面104乃至107からの漏れ光を低減し、高光量出力を可能とする。
長さ方向の表面粗さは、長さ方向と直交する方向よりも小さくすることが望ましい。これは、加工方法等(切削や成型)によって異方性のある荒れが発生しやすいが、光軸方向の表面粗さを小さくすることで、反射側面からの漏れ光を低減し、高光量出力を可能とする。
面102、103は、表面荒さを大きくしても良い。この場合、入出射面が荒れていることによって表面散乱による光の均一化が可能となる。
本実施例の光積分器は、媒質1と、媒質1とは異なる屈折率を有し、伝搬する光を散乱せしめる散乱素子(媒質2)が充填された構造であれば特に限定はないが、以下に説明する材料及び製造方法を用いることによって容易に得ることができる。
まず、媒質1の材質として、光を伝搬する観点から透明性の高い材料が選択される。本実施例ではアクリル系の光硬化樹脂を使用するが、透明度の高い材料であれば特に限定はなく、例えば、エポキシ系の熱硬化性の樹脂やアクリルやポリカーボネート等の熱可塑性樹脂や、ガラス等を使用しても良い。
光硬化性樹脂を用いると固形の媒質2を使用する際に該媒質2との混合が容易である観点、また硬化後に冷却や乾燥等の工程を必要としないため作業効率が向上する観点、所定の形状の光積分器を得られやすい観点からより好ましい。また、アクリル系の材料を使用すると透過率が高く、光の利用効率を高めることが可能となるため、より好ましい。
次に、媒質2は、媒質1中に、媒質1と異なる屈折率の粒子を混合させることによって効率良く得ることができる。媒質2の材質として、本実施例では、架橋ポリスチレン微粒子を使用するが、透明度の高い材料であれば、その他の材質のプラスチック粒子やガラス粒子等、他の材料を使用しても良い。ただし、光を散乱させるためには屈折率差があることが重要であるため、媒質1と媒質2との間で屈折率差は0.005以上あることが望ましい。0.005以上で0.015以下の範囲であると、媒質1と媒質2の比重を近接させやすくなり、媒質2を媒質1に混合させるのが容易である観点及び、効率の低下を抑えたうえで、散乱の効果も得られやすいという観点からより好ましい。ここで、媒質1と媒質2の屈折率を比較したときに、どちらの屈折率が大きくても良い。なお、本実施例における屈折率差とは、媒質1又は媒質2のうち、高屈折率である媒質1又は媒質2の屈折率と、低屈折率である材質2又は媒質1の屈折率の差分から算出される値とする。
次に、媒質2の粒径は、0.5μm以上で5μm以下の範囲であることが望ましい。これは、前述のように、粒径が小さいと光が散乱しすぎて光の取り出し効率が低下してしまい、粒径が大きいと光が散乱しにくいためである。また、粒径は略均一である方が望ましいが、90%以上の粒子が上記粒径範囲内に含まれていれば効果は得られるため問題ない。
次に、媒質1と媒質2を一体化する方法としては、例えば液状の媒質1を用意し、次いで媒質1と媒質2を混合させ、それを所定の形状に光硬化させて製造する方法がある。なお、熱プレス、射出成形、削りだし等、他の方法でも製可能である。中でも液状の媒質1を用いると、媒質2を容易に混合させることができるため、より好ましく、媒質1に媒質2を混合させた状態も液状であると、所定の形状に加工しやすいためさらに好ましい。
製品形状の作成時には、製品の高さの板を製造後に外周を切断して製品サイズにしても良いし、製品サイズの空間を持つ型を製作して、型に樹脂を流し込んで硬化させて製造しても良い。
次に、表面粗さについて説明する。本実施例の光積分器の表面粗さ(Ra;算術平均粗さ)は、側面の長さ方向では小さくすることが望ましい。これは光が側面にあたったときに側面の長さ方向で面が荒れていると、臨界角を超えて光が側面から抜けてしまうためである。長さ方向に垂直な方向では、光の伝搬に悪影響のない範囲で面が荒れていても良い。また光入射面や光出射面については、光の拡散が高まる効果が見込めるため、光の出射に悪影響のない範囲で面が荒れていても良い。以上の観点から、側面の光軸方向の表面粗さは0μm超〜2.0μmであると良い。好ましくは、0μm超〜1.0μmの範囲であるとより良く、0μm超〜0.5μmであるとさらに良い。光入射面及び光出射面の表面粗さは、上記側面の表面粗さ以上であって、0.01μm〜10μmであると良く、0.5μm〜5μmであるとより良く、0.5μm〜3μmであるとさらに良い。尚、側面の光軸に対して垂直方向の表面粗さは0μm超であって、上限は上述した光入射面及び光出射面の表面粗さで列挙した値以下であると良い。
側面の光軸(図中長さLの方向)に対して垂直方向の表面粗さは上述の範囲内で小さい方が好ましいが、加工効率の観点から任意に選択して構わない。具体的には、例えば切削加工によって側面を形成する場合、切削方向の表面粗さと、切削方向と略垂直方向の表面粗さは、前者の切削方向の表面粗さの方が小さくなる傾向にあり、加工効率の向上のために切削速度等を変化させると、特に、切削方向と略垂直方向の表面粗さが荒くなる。この場合、切削方向を光軸方向とすることによって、作業効率を維持しつつ、光の伝搬効率を保持させることが可能となる。また、成形等を利用する場合であって、かつ成形鋳型側に切削痕等の表面粗さの方向性を有する場合、表面粗さは、光積分器に転写される。この場合も同様に、光軸方向を表面粗さの小さい方向とすることによって、良好な光の伝搬効率を保持させることが可能となる。
また、媒質2に固形の粒子を用いる場合、媒質2からなる散乱素子が側面から突出することによる凸部又は/及び散乱素子が側面から脱落した跡による凹部からなる凹凸が表面荒さに寄与する程度に存在すると、上述したように側面からの光の漏れが発生する一因となる。以上のことから、さらに側面の表面粗さ(Ra)は、媒質2として導入する散乱素子の平均粒径の1/2以下であると良い。これは、光積分器の側面から散乱素子を突出させない状態又は、側面から突出する散乱素子を研磨や切断等を用いて切断し、平滑化しておくことによって実現できる。
例えば、媒質1として、日立化成(株)製ヒタロイド(登録商標)9501を使用する。これは、ウレタンアクリレート系の光硬化樹脂である。透明度の高く屈折率は1.49である。また、媒質2として、積水化成品工業(株)製テクポリマー(登録商標)SSX−302ABEを使用する。これは、架橋ポリスチレン樹脂でできた微粒子であり、形状は球形、平均直径は2μmで、全体の略95%の粒子が平均直径と0.5μm以内の差である単分散粒子である。透明度が高く屈折率は1.59である。
幅W、高さHが1.05mm、長さLが4.15mm、媒質1の総体積に対する散乱素子の媒質2の総体積を0.5%とした場合の光積分器は、以下のように製造すれば良い。まず光硬化樹脂の中に、全体の体積の0.5%の微粒子を入れ、攪拌棒にて約10分間攪拌する。攪拌後4時間以上の自然放置により、十分に脱泡する。底面および側面を金属板で囲むことにより、長さ50mm、幅7mm、深さ1.05mmの空隙を作り、そこに樹脂を流し込み、上からガラス板を被せる。このとき、内部に空気が入らないようにする。その後、ガラス越しにUVランプを照射させ、樹脂を十分に硬化させる。その後製品を取り出して、ダイサー(DAC552、株式会社ディスコ製)にて幅1.05mm、長さ4.15mに切り出す、ダイサーで側面を加工するときには、長さ方向に平行に刃を送り加工する。これは、ダイサーの加工スジが光積分器の長さ方向に沿って発生するようにして、側面の光軸方向の表面粗さを小さくし、光積分器からの光漏れを低減するためである。なお、側面は粒径;#5000のダイシングブレードを用い、回転数;30,000rpm、切削速度;0.5mm/sの条件で加工し、光入出力面は、粒径;#3000のダイシングブレードを用い、回転数;30,000rpm、切削速度;0.5mm/sの条件で加工した。側面の光軸方向の表面粗さはRa=0.3μmで、光軸垂直方向の表面粗さはRa=1.0μm、光入出力面の表面粗さはRa=2.0μmであった。
側面を金属顕微鏡で拡大して観察したところ、切削面は、媒質2が側面から突出すること無く、粒子が分断されていた。また、非切削側面は、媒質2が側面から突出すること無く、媒質1に埋め込まれていた。
光源としては、LED(OSRAM製 LTRB R8SF)を使用する。1つのLEDに赤、緑、青の3チップが搭載されたものであり、白色LEDと比較すると色再現性の向上が見込める。
以上のように、本実施例は、光源と集光体の間に、光源から出射した光を内面反射により均質化させる透明な材質で満たされた光積分器を配置させる。
これにより、照明装置82は、照明領域83において均質で色のムラが無い照明光を実現できる。また、集光体61を用いることで効率良く集光できる。また、照明領域83に照明する色を調整できるという効果がある。
本実施例は、実施例4の照明装置82の複数波長光源91と光積分器93の他の例について説明する。
図9は、本実施例における複数波長光源122を説明する図であり、図10は本実施例における光積分器123の斜視図である。
図9において、複数波長光源122は、赤、緑、青の波長帯の光を各々出射する第1波長光源96、第2波長光源97、第3波長光源98が幅WLEDと高さHLEDの内側に直線状に配置されている。そして、WLED>HLEDの関係を有する長方形としている。
また、図10において、光積分器123は、長さL、高さH、幅Wの四角柱の形状であるが、W>Hの関係を有する長方形の断面形状としている。このように、本実施例は、照明領域83に合わせて複数波長光源122と光積分器123を長方形にする。これにより、長方形の光積分器123から出射した光を照明領域83により効率良く伝達することができる。
一般的に光源の面積と、単位立方角当たりの明るさの積は、保存されることが知られている。このため、光源と、光積分器と照明領域の縦横比を合わせると、光を伝達効率が向上する。
本実施例は、映像投射装置について説明する。図11は、本実施例における映像投射装置150の断面図である。図11において、映像投射装置150には、照明装置22と、偏光素子151、154、表示装置152、投射体155を有している。なお、破線で記載した光進路156は、光線の進行を説明するのに補助するため記載した仮想線である。
光源2から出射した白色の光線は、集光体1により表示装置152の表示領域153に照明される。
光は、集光体1から、表示装置152に到達する前に、偏光素子151を進行し、所定方向の直線偏光の光に選択される。
ここで、表示装置152はカラーフィルタの付き透過型の液晶素子を想定している。表示装置152の表示領域153は映像が生成される領域を示している。
表示領域153は、画素毎に所定の偏光をその偏光とは垂直方向か平行方向かどちらかに変換する機能を有している。映像として有効にする場合は、偏光素子151で選択された方向と平行な偏光に変換する。
表示領域153を進行する映像として有効な光線と無効な光線は、偏光素子154に入射する。偏光素子154では、映像として有効な偏光の光線のみが通過し、無効な偏光の光線は吸収または反射する。
偏光素子154で映像として有効な光線だけが、投射体155に進行する。
投射体155は、投射レンズであり、表示領域153の映像をスクリーン、または人の網膜(図示無し)に拡大結像させる機能を持つ。図示では投射体155は、1枚で記載したが、投射する映像の拡大率や投射距離に応じて、さらに多くの枚数であっても構わない。
なお、投射体155は、表示装置152から遠ざかる方向と近づく方向に動かせる機構を持たせることが望ましい。このような機構により投射距離に応じて映像の結像位置を変えるフォーカス機能を備えることができる。
以上のように、本実施例は、実施例1で説明した照明装置を用いた映像投射装置であって、映像を生成する表示装置と、表示装置で生成された映像を投射する投射体を備え、集光体からの光を表示装置に照明することで、光の伝達効率の良い映像投射装置が実現できる。
本実施例は、実施例6の映像投射装置150の他の例について説明する。図12は、本実施例における映像投射装置160の断面図である。図12において、映像投射装置160には、実施例6と同様の照明装置22と、偏光分岐素子161、表示装置162、投射体165を有する。なお、破線で記載した光進路166は、光線の進行を説明するのに補助するため記載した仮想線である。
光源2から出射した白色の光線は、集光体1により表示装置162の表示領域163に照明される。
光は、集光体1から、表示装置162に到達する前に、偏光分岐素子161を進行し、所定方向の直線偏光の光に選択される。偏光分岐素子161は一般的な多層膜により偏光特性を持たせたプリズムを想定している。
表示装置162はカラーフィルタの付き反射型の液晶素子(LCOS)を想定している。表示装置162の表示領域163は映像が生成される領域を示している。
表示領域163は、画素毎に所定の偏光をその偏光とは垂直方向か平行方向かどちらかに変換する機能を有している。映像として有効にする場合は、偏光素子分岐161で選択された方向と直交な偏光に変換する。
表示領域163を進行する映像として有効な光線と無効な光線は、偏光分岐素子161に再度入射する。偏光分岐素子161では、映像として有効な偏光の光線のみが反射し、無効な偏光の光線は通過する。
偏光分岐素子161で映像として有効な光線だけが、投射体165に進行する。
投射体165は、投射レンズであり、表示領域163の映像をスクリーン、または人の網膜(図示無し)に拡大結像させる機能を持つ。図で投射体165は、1枚で記載したが、投射する映像の拡大率や投射距離に応じて、さらに多くの枚数であっても構わない。
なお、投射体165は、光学的に表示装置162から遠ざかる方向と近づく方向に動かせる機構を持たせることが望ましい。このような機構により投射距離に応じて映像の結像位置を変えるフォーカス機能を備えさせることができる。
本実施例によれば、照明装置22を用いることで、光の伝達効率の良い映像投射装置160が実現できる。
本実施例は、実施例6の映像投射装置150の他の例について説明する。
図13は、本実施例における映像投射装置170の断面図である。図13において、映像投射装置170には、照明装置82、偏光素子176、177、表示装置172、投射体178、反射体171、出射窓174、光検出器175を有している。なお、破線で記載した光進路156は、光線の進行を説明するのに補助するため記載した仮想線である。
照明装置82は、実施例4で説明した照明装置であって、複数波長光源91と光積分器93と集光体61を有している。照明装置82から出射した3個の波長の光は、偏光素子176に進行し、所定方向の直線偏光の光に選択される。
偏光素子176で所定方向の偏光に選択された光は、表示装置172に照明される。
ここで表示装置172はカラーフィルタの無い透過型の液晶素子を想定している。このため、カラーフィルタの有る液晶と比べ画素を1/3にできるため、高い解像度の映像が実現できる。表示装置172の表示領域173は映像が生成される領域を示している。なお、カラー化は、複数波長光源91にある赤、緑、青の波長帯の光を時間毎に光らせるフィールドシーケンシャルカラー技術で実現される。
表示領域173は、画素毎に所定の偏光をその偏光とは垂直方向か平行方向かどちらかに変換する機能を有している。映像として有効にする場合は、偏光素子176で選択された方向と平行な偏光に変換する。
表示領域173を進行する映像として有効な光線と無効な光線は、偏光素子177に入射する。偏光素子177では、映像として有効な偏光の光線のみが通過し、無効な偏光の光線は吸収または反射する。
偏光素子177で映像として有効な光線だけが、反射体171で反射し、投射体178に進行する。
反射体171は、映像を曲げる機能を有する。図示のようなプリズムか、単純な反射ミラーなどで実現できる。映像が歪まないよう光線の通過する面の面精度を確保することが望ましい。
投射体178は、複数枚のレンズを要する投射レンズであり、表示領域173の映像をスクリーン、または人の網膜(図示無し)に拡大結像させる機能を持つ。なお、図13では、1枚組で記載したが、投射する映像の拡大率や投射距離に応じて、さらに多くの枚数であっても構わない。
また、投射体178は、光学的に表示装置172から遠ざかる方向と近づく方向に動かせる機構を持たせることが望ましい。このような機構により投射距離に応じて映像の結像位置を変えるフォーカス機能を備えさせることができる。
投射体178を出射した光は、出射窓174を経てスクリーン、または人の網膜(図示無し)に投射される。
出射窓174は、外部から埃や水滴などが入ることを防止する機能を有する。光学的に透明な平板であり、効率のロスが減るように赤から青の領域(波長430nm〜670nmの範囲)で反射防止膜を形成することが望ましい。
また、映像投射装置170には、光検出器175が搭載されており、複数波長光源91から出射する光を検出することができる。この光検出器175により、複数波長光源91から出射する光の初期値を記憶しておいて、温度や経時劣化などで、光量が変化したときにフィードバック制御が出来る構成になっている。
なお、その他の構成として、投射体178を偏光素子177と反射体171の間に設け、偏光素子177で映像として有効な光線だけを投射体178に進行させ、投射体178を出射した光は、反射体171で反射し、出射窓174を経てスクリーン、または人の網膜に投射させるようにしても良い。
本実施例は、映像投射装置の応用例について説明する。図14は、本実施例における映像投射装置の応用例を説明する図である。図14において、図14(A)はHMD202、図14(B)は小型プロジェクタ205、図14(C)はHUD209の例を示している。
図14(A)において、HMD202は、使用者200の頭部に装着されており、HMD202の内部に搭載された映像投射装置201から使用者200の眼に映像が投射される。使用者は、空中に浮かんでいるような映像である虚像203が視認できる。
図14(B)において、小型プロジェクタ205は、内部に搭載された映像投射装置204からスクリーン207に映像206が投射される。使用者200はスクリーンに映った映像を実像として視認できる。
図14(C)において、HUD209は、内部に搭載された映像投射装置208から映像が虚像生成素子210に投射される。虚像生成素子は、一部の光を透過させ、残りを反射させるビームスプリッタの機能と、曲面構造であり、使用者200の眼に映像を直接投射することで虚像を生成するレンズ機能も有している。使用者200は、空中に浮かんでいるような映像である虚像211が視認できる。このようなHUDは、車の運転手用のアシスト機能や、デジタルサイネージなどに適用が期待されている。
いずれの装置においても、小型で、明るい映像投射装置が望まれている。本実施例で説明した映像投射装置は、小型化と、明るさの向上に寄与できる。
本実施例は、実施例6から8で説明した映像投射装置を用いたHMDについて説明する。図15は、本実施例におけるHMD202を説明する図である。図15(A)はHMD202の斜視図であり、映像投射装置212、出射窓223、投射体226を有している。図15(B)は、説明のために、映像投射装置212を透かしてその内部を示した斜視図である。映像投射装置212は、照明装置82、偏光分岐素子221、表示装置222を有する。なお、破線で記載した光進路224は、光線の進行を説明するのに補助するため記載した仮想線である。
図15(B)において、照明装置82から出射した3個の波長の光は、偏光分岐素子221に進行し、所定方向の直線偏光の光に選択される。
偏光分岐素子221で所定方向の偏光に選択された光は、表示装置222に照明される。
ここで表示装置222はカラーフィルタの無い透過型の液晶素子を想定している。このため、カラーフィルタの有る液晶と比べ画素を1/3にできるため、高い解像度の映像が実現できる。表示装置222の表示領域は映像が生成される領域を示している。なお、カラー化は、照明装置82内の複数波長光源91(図示無し)にある赤、緑、青の波長帯の光を時間毎に光らせるフィールドシーケンシャルカラー技術で実現される。
表示領域は、画素毎に所定の偏光をその偏光とは垂直方向か平行方向かどちらかに変換する機能を有している。映像として有効にする場合は、偏光分岐素子221で選択された方向と直交な偏光に変換する。
表示領域を進行する映像として有効な光線と無効な光線は、偏光分岐素子221に再入射する。偏光分岐素子221では、映像として有効な偏光の光線のみが反射し、無効な偏光の光線は通過する。
偏光分岐素子221で映像として有効な光線だけが、出射窓223を経て投射体226に進行する。
投射体226には、ホログラム225が一部に形成されており、表示領域の映像を眼に虚像を結像させる機能を持つ。
ホログラム225は、回折素子であり、入射した光の一部を反射させ、その反射した光に所定の位相を付与することができることが知られている。ホログラム225は、その位相を利用したレンズ機能がある。
なお、投射体226は、眼鏡のようなプレート形状をしており、映像投射装置212の機構に固定されている。このため、投射体226は、照明装置82を含む機構と、ホログラム225を連結させる機能を含んでいる。
また、投射体226は、ハードコートをして、油が付きにくくすると良い。
また、投射体226は、映像のコントラストを向上するため、外光の入射を抑制するための多層膜を形成しても良い。また、外光の明るさに応じて、透過率が変わるような構成であることが望ましい。このような機能は、液晶シャッターや、調光硝子などで実現できる。
出射窓223は、外部から埃や水滴などが入ることを防止する機能を有する。光学的に透明な平板であり、効率のロスが減るように赤から青の領域(波長430nm〜670nmの範囲)で反射防止膜を形成することが望ましい。
また、映像投射装置212には、光検出器を搭載し、複数波長光源91から出射する光を検出し、温度や経時劣化などで、光量が変化したときにフィードバック制御が出来る構成にしても良い。
以上のように、本実施例は、実施例1で説明した照明装置を用いた映像投射装置であって、映像を生成する表示装置と、表示装置で生成された映像を投射する投射体を備え、集光体からの光を表示装置に照明し、投射体は、虚像を使用者が視認できるように映像投射装置から投射する映像を光学的に発散させる。これにより、光の伝達効率の良い虚像を投射する映像投射装置が実現できる。
本実施例は、実施例6から8で説明した映像投射装置を用いたスマートフォンについて説明する。図16は、本実施例におけるスマートフォン251を説明する図である。図16(A)は正面図、図16(B)は側面図を示している。
図16(A)において、スマートフォン251は、表示と静電容量を利用し指で操作する2機能を持つ表示兼操作装置252、制御用の操作ボタン254、外部を撮影する撮像装置255、映像投射装置170を備えている。
また、図16(B)に示すように、映像投射装置170は、矢印257の方向へ、虚像が投射できる。なお、映像投射装置170は、投射体178、反射体171、出射窓174を有している。また、投射体178は、反射体171から遠ざかる方向と近づく方向に動かせる機構258を持たせることで、投射距離に応じて映像の結像位置を変えるフォーカス機能を備えさせることができる。
また、図16(A)に示すように、映像投射装置170は、矢印256の方向に回転できる回転機構(図示せず)を具備させ、上方や後方に映像の投射する方向を選択できると良い。
このような、モバイル用途の装置を実現するには、装置全体が小型化であるのが好ましい。また、バッテリーを持続して使用するには高い光利用効率が求められる。本実施例における映像投射装置170は、斯様なニーズを実現できる。
図17はスマートフォン251の使用シーンを説明する図である。使用者200は、スマートフォン251の出射窓174を覗き込むと、映像投射装置170で生成された虚像261を視認できる。
映像投射装置170をスマートフォン251に搭載することで、スマートフォン251の表示兼操作装置252の映像だけでなく、虚像261も同時に見ることができる。また、虚像261の大きさは、スマートフォンの表示エリアより大きくできる効果が得られる。
近年スマートフォンで大きな映像が見たいニーズがあり、映像が表示されるエリアの大型化が進んでいる。しかし、携帯性を重視して小型のスマートフォンを選択するニーズもある。本実施例におけるスマートフォン251は、小型でありながら、映像は大きくできるため、両方のニーズを満たすことができる。
また、通常のスマートフォンは指で操作できる。表示兼操作装置252上の指の動作を映像上のポインタ259として表示することで、映像261を見ながら使用者200は操作できる。この際には、表示兼操作装置252上の映像を動作させるか、映像261を動作させるかを切り替えるアイコンを表示兼操作装置252上に設けて制御しても良い。もちろん操作ボタン254による制御でも構わない。
図18はスマートフォン251のシステムを説明する図である。図18において、スマートフォン251は、光検出器175、複数波長光源91、複数波長光源を制御するための設定値を記憶させたデータテーブル269を備えた映投射装置170、コントローラ272、通信装置273、外光センサ274、センシング装置275、電力供給回路276、撮像装置255、制御回路279、映像回路271、操作ボタン254、表示兼操作装置252を備える。
通信装置273は、WiFi(登録商標)やBluetooth(登録商標)のようなインターネット上の情報や使用者200が所持している電子機器などの外部サーバ280とアクセスして外部情報を取得する機能を有している。外光センサ274は、外部の明るさを取得する機能を有している。表示兼走査装置252は、使用者200に情報を表示すると共に、指で操作する操作情報を取得する機能を有している。また、センシング装置275は、圧電素子や静電容量などの原理で加速度を検知する加速度センサやGPSなどで外部環境をセンシングする機能を有している。電力供給回路276は、バッテリーなどから電力を供給する機能を有している。撮像装置255は、カメラなどで、外界映像を取得するも機能を有している。制御回路279は、操作ボタン254や表示兼操作装置252から使用者200が操作したい情報を検知する機能を有している。映像回路271は、使用者200の操作に応じて表示兼操作装置252や映像投射装置170用に映像情報を変換する機能を有している。そして、コントローラ272は、制御回路279から得られる使用者200が操作した情報に応じて、個別の装置、回路をコントロールするメインチップである。
例えば、センシング装置275で得られた情報を元にコントローラ272は、スマートフォン251の配置されている場所を検出し外部サーバ280から周囲の情報を選択し、映像投射装置170や表示兼操作装置252を駆動して、選択した情報を映像として使用者200に表示する機能を有していても良い。
また、電源供給回路276は、コントローラ272を介し装置に必要な電力を供給する。このときコントローラ272は、必要性に応じて、必要な装置、回路にのみ電力を供給することで節電する機能を有していることが望ましい。
また、コントローラ272は、映像投射装置170内にある光検出器175からの光量情報をモニタし、複数波長光源91の出力を制御する機能を有していることが望ましい。
また、コントローラ272は、表示兼操作装置252のアイコンが操作された情報が制御回路から送られると、映像回路でポインタを映像上に表示するように操作し、映像装置170を動作させる機能も持つ。
図19はスマートフォン251の動作フローを説明する図である。ここでは、撮像装置255で撮影した映像に仮想現実感(以下ARと記す)を付与した映像を視聴する動作フローについて説明する。
図19において、使用者200がAR映像を表示兼操作装置252で入力する(図中290)。コントローラ272は、制御回路279から操作情報を入手して、必要な情報処理を行う(図中291)。また、複数波長光源91を駆動し発光させる(図中292)。光検出器175の信号を利用し、データテーブルの情報に基づき色調整を行う(図中293)。
コントローラ272は、複数波長光源91を操作すると同時に撮像装置255で外界の映像を取得する(図中297)。また、センシング装置275で使用者200の位置情報を取得し(図中301)、通信装置273で外部サーバ280から外部情報を取得する(図中302)。
コントローラ272は、映像回路271を駆動し、外部情報、外界映像情報を画像処理する(図中298)ことで、AR映像や音声を生成する(図中300)。生成されたAR映像を表示装置により映像を投射する(図中294)。そして、使用者200が映像を視聴する(図中295)。
次に、図20を用いて映像投射装置170の複数波長光源91の調整フローについて説明する。図20(A)は、色調整のフローである。
図20(A)において、まず、出荷前の初期値設定時に、映像投射装置170から出射される画像を指定の色座標になるよう複数波長光源91の赤、緑、青の波長帯の光量I0(R)、I0(G)、I0(B)をデータテーブル269に格納しておく。コントローラ272から映像投射装置170の映像投射する命令を受けると、映像投射装置170は複数波長光源91の発光を始める(図中311)。次に光検出器175で複数波長光源91の光量I1(R)、I1(G)、I1(B)を検知する(図中312)。検知した光量I1(R)、I1(G)、I1(B)と初期の光量I0(R)、I0(G)、I0(B)を比較することで指定の色座標からの誤差がないかチェックする(図中313)。
映像投射装置170が動作中である限り、色座標の誤差が無い場合は、所定の時間を置いて(図中315)、再度光検出器175で光量を検知する(図中313)調整フローを繰り返す。
LEDのような半導体光源は、温度により、出力が変化する特性がある。このため、環境の温度変化や、複数波長光源91近傍に配置された電子回路の発熱などで、複数波長光源91から出射される各色の光出力が変化する。出力が変化した場合は、誤差が補正されるように複数波長光源91内の第1波長光源96、第2波長光源97、第3波長光源98の光量を制御する(図中314)。光量の制御は、駆動電流を変える方法や、発光時間を変えるなどの方法で実現できる。
光量制御の調整が完了した後に、再度光量を検知し(図中312)所定の色になっているかをチェックする(図中313)。
このように映像投射装置170は色座標が一定の範囲を超えないようにフィードバック制御することが望ましい。
前述した光積分器93は、樹脂であることを想定している。このため、経時的劣化や、紫外線を受けるなどの劣化で、透過率が落ちることが想定される。また、複数波長光源91が経時劣化して発光する光量自体が落ちることも想定される。斯様な場合に備えて、明るさの制御を行う方法について図20(B)を用いて説明する。
図20(B)において、コントローラ272から映像投射装置170の映像投射する命令を受け、映像投射装置170は複数波長光源91の発光を始める(図中316)。次に光検出器175で複数波長光源91の光量I2(R)、I2(G)、I2(B)を検知する(図中317)。検知した光量I2(R)、I2(G)、I2(B)の加算値IT2と初期の光量I0(R)、I0(G)、I0(B)の加算値IT0を比較する(図中318)。
光量の差が所定の設定値より小さい場合は、複数波長光源91か光検出器93のどちらかが劣化したものと想定し、初期の光量I0(R)、I0(G)、I0(B)をIT2とIT0の比率に応じて初期光量の設定を光量I0‘(R)、I0‘(G)、I0‘(B)に変更してデータテーブル269の設定値を更新する(図中319)。
設定値の更新後に、再度、光検出器175で複数波長光源91の光量I2(R)、I2(G)、I2(B)を検知する(図中317)。検知した光量I2(R)、I2(G)、I2(B)の加算値IT2と初期の光量I0‘(R)、I0‘(G)、I0‘(B)の加算値IT0‘を比較する(図中318)。
光量の差が所定の設定値の範囲内であることが確認できた場合は、次に光検出器175で、光量I3(R)、I3(G)、I3(B)を検知する(図中320)。検知した光量I3(R)、I3(G)、I3(B)と再設定された初期の光量I0‘(R)、I0‘(G)、I0‘(B)を比較することで所定の色からの誤差がないかチェックする(図中321)。
映像投射装置170が動作中である限り、色座標の誤差が無い場合は、所定の時間を置いて(図中323)、再度光検出器175で光量を検知する(図中320)調整フローを繰り返す。
光量の出力に誤差がある場合は、誤差を補正するように複数波長光源91内の第1波長光源96、第2波長光源97、第3波長光源98の光量を制御する(図中322)。
光量制御の調整が完了した後に、再度光量を検知し(図中320)所定の色座標になっているかをチェックする(図中321)。経時劣化による明るさの変化は、起動時だけチェックすることで補正できるので、起動時以外は、図中320から323のフローを繰り返し制御すれば良い。
以上、図20(B)に示したように、色と明るさもモニタすることで、経時劣化による明るさ低下による色座標の調整ができなくなる不具合を回避できる。
本実施例は、実施例1から4とは異なる構成の照明装置について説明する。
図21は、本実施例における照明装置501の斜視図である。照明装置501は、レンズ502、リフレクタケース503、504、光積分器507、複数波長光源508、フレキシブル光源基板506を有して構成されている。
図22は、本実施例における照明装置501の展開図である。照明装置501の出射光側を正面としたときに、図22(A)はフレキシブル光源基板506側から見た背面図、図22(B)は側面図、図22(C1)はレンズ502側から見た正面図、図22(C2)は、レンズ502を取り外した場合の正面図を示している。図22に示すように、リフレクタケース503、504を、境界561で張り合わせ、後述するように、光源からの光を導くと共に、レンズ502を保持する。
図23は、本実施例における照明装置501の断面図であり、図21のA−A線での矢印方向から見た断面図を示している。
複数波長光源508は、前述した複数波長光源91と同様に、3個の波長を出射する面発光型の光源であり、ここでも、赤、緑、青の波長帯のチップを具備したLEDを想定している。また、フレキシブル光源基板506は、いわゆるフレキシブルプリント基板のことであり、外部との電気的な接合に利用できる。複数波長光源508は、フレキシブル光源基板506に搭載されており、フレキシブル光源基板506を介して、電流を外部から供給することができる。
複数波長光源508から出射した光は、光積分器207に入射し均一に混色される。光積分器507は、前述した光積分器93と同様に、散乱素子(図示無し)がランダムに充填されており、散乱の機能と側面による内部閉じ込めの機能により、高効率に混色させることができる。
図23に示すように、光積分器507を出射した光は、レンズ502、またはリフレクタケース503、504の反射放物面516、517を介し、図21に示す照明領域543に照明される。照明領域543は、表示装置として一般的なアスペクト比16:9の長方形を想定している。
また、リフレクタケース503、504には、各々反射放物面516、517がある。放物線をy=a×^2(ハット2)とおいた時に、反射放物面516、517は、共に同じ係数、原点を持つことを想定している。すなわち、放物線の焦点が光積分器525の出射面とし、放物線の原点が点525と設定する。このため、光積分器507から出射した光は、放物面516、517により略平行な光に変換される。
反射放物面516、517は、光を反射する面でもあり、高い反射率を実現するため誘電体多層膜で実現することが望ましい。もちろんアルミや銀などの金属コートでも良い。
図24は、レンズ502の展開図であり、正面図と側面図を示している。図24に示すように、レンズ502は、透明な材質で成型された光学的凸レンズであり、光積分器507から出射した光を略平行な光に変換する機能がある。レンズ502の入射面であるフラット面532と出射面であるレンズ面531は反射防止コートをするのが望ましい。レンズ502の焦点は、光積分器525の出射面に略一致させ、レンズ面531は、光積分器525出射面の光を効率良く略平行にできるよう非球面化することが望ましい。
また、レンズ502は、レンズを固定するために、レンズ面531の外側の一部にコバ510、511を有している。
図25は、リフレクタケース503の斜視図である。リフレクタケース503と504は同じ形状のものを面536で対称に張り合わせたものである。このため、図21、22における境界561は、張り合わせた時の境界を示すものである。
なお、リフレクタケース503、504は、少なくとも光を遮る不透明な材質が望ましい。また、軽量化を図るため、樹脂が望ましい。例えば、黒色着色したポリカーボネートなどで簡単に実現できる。
また、リフレクタケース503、504は、前述の反射放物面という光学機能だけでなく、レンズ502、光積分器507、複数波長光源508、フレキシブル光源基板506を固定するケースとしての機能も有する。
また、リフレクタケース503、504は、レンズ502用の支持機構512、514、光積分器507用の支持機構535、複数波長光源508用の支持機構537、フレキシブル光源基板506用の支持機構538を有する。
リフレクタケース503、504各々が有する支持機構512,513、514、515に前記したレンズ502のコバ510、511を介してレンズ502は固定される。すなわち、図23、25から明らかなように、反射放物面516、517を形成する空間内にレンズ502を配置し、レンズで混色した光を略平行な光に変換できなかったレンズが取りこぼした光を反射放物面516、517で略平行な光に変換するように構成している。
表示装置のアスペクト比16:9(水平:垂直)の場合は、垂直側が短い。したがって、コバ510、511はその垂直側と略平行になるように設ける。この場合、図23のように照明装置23の水平断面を見たときにレンズ502が浮いたように見える。光積分器507から出射した光のうち、レンズより出射方向側にある反射放物線516、517のエリア551、552まで有効活用できる。出射する略平行な光が多いほど、光の取込み角度の制限された虚像を投射する映像投射装置用の照明装置としての効率を高められる。
また、支持機構519は、照明装置501を他の虚像装置に搭載するときの、位置決めなどに利用するため設けている。
図26は、積分器から出射する光の横軸出射角度に対する縦軸強度を示したグラフである。縦軸は角度0の時の強度で規格化してある。通常面発光型の光源から出射した光は前方の全方位に進行する。このため、複数波長光源508から出射した光も線541に示すような前方に向けて進行する。光積分器507から出射する光は、出射角が大きい範囲の光が出射角の小さい範囲の光に変換されるため、線542で図示したように、角度の強度分布の山が狭くなる。
光積分器507を使う場合、角度の小さい光が増えるため、角度の広い光よりも角度が狭い光の効率を高めた方が照明領域543を均一にできるといえる。
このため、前述のように、レンズ502を反射放物面516、517を形成する空間内に配置する構成をとっており、角度の小さい光をレンズ502で平行光として照明領域543に取り込むと共に、逃げていく光もエリア551、552で略平行光として取り込むことで有効利用できる。つまり照明装置501は光積分器507と組み合わせた場合、より効率を高められる効果が得られる。
なお、リフレクタケースの反射放物面は、実施例1で説明したような照明領域の4隅と、光積分器507の出射面に焦点があるような楕円の形状にしても構わない。この場合、4隅の明るさの効率をより高められる。
また、レンズ502は、入射面をフラット面532、出射面をレンズ面531としたが、逆に、入射面をレンズ面、出射面をレンズ面としても良い。また、入射面、出射面を共にレンズ面としても構わない。
また、リフレクタケース503は、光積分器507用の支持機構535も反射コートすると良い。この場合、光積分器507で閉じ込めきれず漏れる光をリサイクルする効果が得られる。上記で説明したように、リフレクタケース503を分割しているため、反射放物面516と支持機構535を同時に反射コートができる効果も得られる。
以上説明したように、本実施例の照明装置は、光源(例えば複数波長光源508)と、その光源から出射した光を内面反射により均質化させる透明な材質で満たされた光積分器(例えば光積分器507)と、その光積分器から出射する光を略平行な光に変換するレンズ(例えば、レンズ502)と、そのレンズの光軸中心(破線499)に対してレンズの外側に配置され光積分器から出射する光を略平行な光に変換する反射放物面(例えば、反射放物面516、517)とを備えた照明装置であって、光積分器の内部に光を散乱させる散乱素子を含有させ、レンズの光積分器側の面(例えばフラット面532)を、反射放物面の光積分器と反対側にあるレンズ光軸方向の端(例えば面570)よりも、光積分器側に配置させる。
また、光源から出射した光を混色し、混色した光を略平行な光に変換する反射放物面とレンズを有し、光源から出射した光を集光して出射する照明装置の照明方法であって、反射放物面を形成する空間内に配置されたレンズで混色した光を略平行な光に変換できなかった光を反射放物面で略平行な光に変換するように構成する。
これにより、光源からの光を効率良く照明領域に照明できる照明装置が実現できる。
以上実施例について説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、置換をすることが可能である。
1…集光体、2…光源、3…照明領域、5,6…入射面、7,8,9,10、11…出射面、12,13,14,15…側面、22…照明装置、32…境界、91…複数波長光源、93…光積分器、94…トンネル機構、101…散乱素子、150…映像投射装置、152…表示装置、155…投射体、202…HMD、205…プロジェクタ、209…HUD、251…スマートフォン、501…照明装置、502…レンズ、503、504…リフレクタケース、507…光積分器、508…複数波長光源、516,517…反射放物面
実施例1における照明装置の断面図である。 実施例1における集光体の斜視図である。 実施例1における照明領域の輝度分布を説明する図である。 実施例2における照明装置の断面図である。 実施例3における集光体の斜視図である。 実施例4における照明装置の断面図である。 実施例4における複数波長光源91を説明する図である。 実施例4における光積分器の斜視図である。 実施例5における複数波長光源を説明する図である。 実施例5における光積分器の斜視図である。 実施例6における映像投射装置の断面図である。 実施例7における映像投射装置の断面図である。 実施例8における映像投射装置の断面図である。 実施例9における映像投射装置の応用例を説明する図である。 実施例10におけるHMDを説明する図である。 実施例11におけるスマートフォンを説明する図である。 実施例11におけるスマートフォンの使用シーンを説明する図である。 実施例11におけるスマートフォンのシステムを説明する図である。 実施例11におけるスマートフォンの動作フローを説明する図である。 実施例11における映像投射装置170の色調整の動作フローを説明する図である。 実施例12における照明装置の斜視図である。 実施例12における照明装置の展開図である。 実施例12における照明領域の断面図である。 実施例12におけるレンズの展開図である。 実施例12におけるリフレクタケースの斜視図である。 実施例12における光積分器から出射する光の角度分布を説明する図である。
次に、入射面6、側面13、出射面9の光路について説明する。側面13は、側面12と同様に、軸21を回転軸とする楕円体18の一部である。楕円体18は、光源2の中心と、照明領域3の端87とをその2個の焦点に設定している。また、出射面9は、出射面8同様に、端87を原点とした球の一部の形状である。このため、光源2から出射した光は、端87に結像する。
すなわち、軸20、軸21は、光源2で交わらすことで、照明領域の両端に光源2から出射した光を結像させることができる。
光積分器93の内部には、媒質1とは異なる屈折率N2の透明度の高い媒質2で満たされた散乱素子101がランダムに充填されている。スネルの法則に従い、光線は、屈折率の異なる媒質を通過するときに、入射する角度とは異なる角度で出射する。散乱素子101は、その原理を用い、進行する光線の角度を変更させることで散乱させる機能を有する。屈折率N1と屈折率N2の差を大きくした方がスネルの法則に従い、より大きな拡散機能が得られる。
散乱素子の直径が波長より小さいと、大きな散乱が得られる。しかし散乱素子に光線が当たる確が小さくなるため、均質性を確保するため、散乱素子の充填率を増やすことになるが、効率の低下が問題となる。
例えば、幅W、高さHを1mm角とした場合、長さを4mm、散乱素子101の直径を約2μm、屈折率N1を1.48、屈折率N2を1.58とした場合、媒質1の総体積に対する散乱素子101の媒質2の総体積を0.5%乃至1.0%の範囲に設定すると良い。
次に、媒質2は、媒質1中に、媒質1と異なる屈折率の粒子を混合させることによって効率良く得ることができる。媒質2の材質として、本実施例では、架橋ポリスチレン微粒子を使用するが、透明度の高い材料であれば、その他の材質のプラスチック粒子やガラス粒子等、他の材料を使用しても良い。ただし、光を散乱させるためには屈折率差があることが重要であるため、媒質1と媒質2との間で屈折率差は0.005以上あることが望ましい。0.005以上で0.015以下の範囲であると、媒質1と媒質2の比重を近接させやすくなり、媒質2を媒質1に混合させるのが容易である観点及び、効率の低下を抑えたうえで、散乱の効果も得られやすいという観点からより好ましい。ここで、媒質1と媒質2の屈折率を比較したときに、どちらの屈折率が大きくても良い。なお、本実施例における屈折率差とは、媒質1又は媒質2のうち、高屈折率である媒質1又は媒質2の屈折率と、低屈折率である媒質2又は媒質1の屈折率の差分から算出される値とする。
幅W、高さHが1.05mm、長さLが4.15mm、媒質1の総体積に対する散乱素子の媒質2の総体積を0.5%とした場合の光積分器は、以下のように製造すれば良い。まず光硬化樹脂の中に、全体の体積の0.5%の微粒子を入れ、攪拌棒にて約10分間攪拌する。攪拌後4時間以上の自然放置により、十分に脱泡する。底面および側面を金属板で囲むことにより、長さ50mm、幅7mm、深さ1.05mmの空隙を作り、そこに樹脂を流し込み、上からガラス板を被せる。このとき、内部に空気が入らないようにする。その後、ガラス越しにUVランプを照射させ、樹脂を十分に硬化させる。その後製品を取り出して、ダイサー(DAC552、株式会社ディスコ製)にて幅1.05mm、長さ4.15mmに切り出す、ダイサーで側面を加工するときには、長さ方向に平行に刃を送り加工する。これは、ダイサーの加工スジが光積分器の長さ方向に沿って発生するようにして、側面の光軸方向の表面粗さを小さくし、光積分器からの光漏れを低減するためである。なお、側面は粒径;#5000のダイシングブレードを用い、回転数;30,000rpm、切削速度;0.5mm/sの条件で加工し、光入出力面は、粒径;#3000のダイシングブレードを用い、回転数;30,000rpm、切削速度;0.5mm/sの条件で加工した。側面の光軸方向の表面粗さはRa=0.3μmで、光軸垂直方向の表面粗さはRa=1.0μm、光入出力面の表面粗さはRa=2.0μmであった。
表示領域163は、画素毎に所定の偏光をその偏光とは垂直方向か平行方向かどちらかに変換する機能を有している。映像として有効にする場合は、偏光分岐素子161で選択された方向と直交な偏光に変換する。
図18はスマートフォン251のシステムを説明する図である。図18において、スマートフォン251は、光検出器175、複数波長光源91、複数波長光源を制御するための設定値を記憶させたデータテーブル269を備えた映投射装置170、コントローラ272、通信装置273、外光センサ274、センシング装置275、電力供給回路276、撮像装置255、制御回路279、映像回路271、操作ボタン254、表示兼操作装置252を備える。
通信装置273は、WiFi(登録商標)やBluetooth(登録商標)のようなインターネット上の情報や使用者200が所持している電子機器などの外部サーバ280とアクセスして外部情報を取得する機能を有している。外光センサ274は、外部の明るさを取得する機能を有している。表示兼操作装置252は、使用者200に情報を表示すると共に、指で操作する操作情報を取得する機能を有している。また、センシング装置275は、圧電素子や静電容量などの原理で加速度を検知する加速度センサやGPSなどで外部環境をセンシングする機能を有している。電力供給回路276は、バッテリーなどから電力を供給する機能を有している。撮像装置255は、カメラなどで、外界映像を取得するも機能を有している。制御回路279は、操作ボタン254や表示兼操作装置252から使用者200が操作したい情報を検知する機能を有している。映像回路271は、使用者200の操作に応じて表示兼操作装置252や映像投射装置170用に映像情報を変換する機能を有している。そして、コントローラ272は、制御回路279から得られる使用者200が操作した情報に応じて、個別の装置、回路をコントロールするメインチップである。
また、コントローラ272は、表示兼操作装置252のアイコンが操作された情報が制御回路から送られると、映像回路でポインタを映像上に表示するように操作し、映像投射装置170を動作させる機能も持つ。
光量の差が所定の設定値より小さい場合は、複数波長光源91か光検出器175のどちらかが劣化したものと想定し、初期の光量I0(R)、I0(G)、I0(B)をIT2とIT0の比率に応じて初期光量の設定を光量I0‘(R)、I0‘(G)、I0‘(B)に変更してデータテーブル269の設定値を更新する(図中319)。
複数波長光源508から出射した光は、光積分器507に入射し均一に混色される。光積分器507は、前述した光積分器93と同様に、散乱素子(図示無し)がランダムに充填されており、散乱の機能と側面による内部閉じ込めの機能により、高効率に混色させることができる。
表示装置のアスペクト比16:9(水平:垂直)の場合は、垂直側が短い。したがって、コバ510、511はその垂直側と略平行になるように設ける。この場合、図23のように照明装置501の水平断面を見たときにレンズ502が浮いたように見える。光積分器507から出射した光のうち、レンズより出射方向側にある反射放物線516、517のエリア551、552まで有効活用できる。出射する略平行な光が多いほど、光の取込み角度の制限された虚像を投射する映像投射装置用の照明装置としての効率を高められる。
また、支持機構519は、照明装置501を他の虚像装置に搭載するときの、位置決めなどに利用するため設けている。
また、レンズ502は、入射面をフラット面532、出射面をレンズ面531としたが、逆に、入射面をレンズ面、出射面をフラット面としても良い。また、入射面、出射面を共にレンズ面としても構わない。

Claims (15)

  1. 光源と、透明な材質で形成され前記光源からの光を集光して出射するための集光体とを備えた照明装置であって、
    前記集光体は、前記光源側の入射面と、前記光を出射する出射面と、前記入射面と前記出射面の間にある側面とを有し、
    前記側面は、前記入射面から前記出射面に向けて、光源中心からその発光面と直交する方向の光軸からの距離が大きくなる湾曲面であり、該湾曲面の形状が異なる複数の湾曲面形状を有することを特徴とする照明装置。
  2. 請求項1に記載の照明装置であって、
    前記入射面は、前記光源から出射する光を前記光軸に対して直交する方向に光軸側である内側の光と光軸から離れる外側の光に分ける2つの形状を有することを特徴とする照明装置。
  3. 請求項2に記載の照明装置であって、
    前記出射面は、前記光源から出射して前記入射面で内側に分けられた光の出射角度を変換する形状と、該形状の外側を複数の異なる形状で構成したことを特徴とする照明装置。
  4. 請求項3に記載の照明装置であって、
    前記複数の湾曲面形状は、各々異なる回転体の一部であり、その異なる回転体の軸を異ならせたことを特徴とする照明装置。
  5. 請求項4に記載の照明装置であって、
    前記回転体は、楕円体であることを特徴とする照明装置。
  6. 請求項5に記載の照明装置であって、
    前記回転体の各軸は、前記光源で交わることを特徴とする照明装置。
  7. 請求項6に記載の照明装置であって、
    前記入射面で前記外側に分けられた光は、前記側面で少なくとも1回反射することを特徴とする照明装置。
  8. 請求項7に記載の照明装置であって、
    前記回転体の軸は、前記光源と、前記照明装置の目標とする照明領域の中心と端の間を少なくとも通過することを特徴とする照明装置。
  9. 請求項1に記載の照明装置であって、
    前記光源と前記集光体の間に、前記光源から出射した光を内面反射により均質化させる透明な材質で満たされた光積分器を配置させたことを特徴とする照明装置。
  10. 請求項9に記載の照明装置であって、
    前記光積分器は、内部に光を散乱させる散乱素子を含有させたことを特徴とする照明装置。
  11. 請求項10に記載の照明装置であって、
    前記光源は、2個以上の発光点を有した複数波長光源であることを特徴とする照明装置。
  12. 請求項1に記載の照明装置を用いた映像投射装置であって、
    映像を生成する表示装置と、
    該表示装置で生成される映像を投射する投射体を備え、
    前記集光体からの光を前記表示装置に照明することを特徴とする映像投射装置。
  13. 請求項12に記載の映像投射装置であって、
    前記投射体は、虚像を使用者が視認できるように前記映像投射装置から投射する映像を光学的に発散させることを特徴とする映像投射装置。
  14. 光源と、該光源から出射した光を内面反射により均質化させる透明な材質で満たされた光積分器と、該光積分器から出射する光を略平行な光に変換するレンズと、該レンズの光軸中心に対してレンズの外側に配置され前記光積分器から出射する光を略平行な光に変換する反射放物面とを備えた照明装置であって、
    前記光積分器の内部に光を散乱させる散乱素子を含有させ、
    前記レンズの前記光積分器側の面を、前記反射放物面の前記光積分器と反対側にある前記レンズ光軸方向の端よりも前記光積分器側に配置したことを特徴とする照明装置。
  15. 光源から出射した光を混色し、該混色した光を略平行な光に変換する反射放物面とレンズを有し、光源から出射した光を集光して出射する照明装置の照明方法であって、
    前記反射放物面を形成する空間内に配置された前記レンズで前記混色した光を略平行な光に変換できなかった光を前記反射放物面で略平行な光に変換するようにしたことを特徴とする照明方法。
JP2017529434A 2015-07-22 2015-12-11 照明装置、照明方法、及びそれを用いた映像投射装置 Pending JPWO2017013816A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015144916 2015-07-22
JP2015144916 2015-07-22
PCT/JP2015/084741 WO2017013816A1 (ja) 2015-07-22 2015-12-11 照明装置、照明方法、及びそれを用いた映像投射装置

Publications (1)

Publication Number Publication Date
JPWO2017013816A1 true JPWO2017013816A1 (ja) 2018-08-02

Family

ID=57834215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017529434A Pending JPWO2017013816A1 (ja) 2015-07-22 2015-12-11 照明装置、照明方法、及びそれを用いた映像投射装置

Country Status (6)

Country Link
US (1) US20180203338A1 (ja)
JP (1) JPWO2017013816A1 (ja)
KR (1) KR20180013936A (ja)
CN (1) CN107709873A (ja)
TW (1) TWI627442B (ja)
WO (1) WO2017013816A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11988343B2 (en) * 2016-10-13 2024-05-21 Logitech Europe S.A. Rugged all purpose lighting cube
TWI626402B (zh) * 2017-03-31 2018-06-11 誠益光電科技股份有限公司 光線投射裝置
JPWO2018221579A1 (ja) * 2017-05-30 2020-04-02 日立化成株式会社 光インテグレータホルダ及び光インテグレータユニット
US11112617B2 (en) 2017-11-17 2021-09-07 Robert Bosch Start-Up Platform North America, LLC, Series 1 Luminaire
WO2019099847A1 (en) * 2017-11-17 2019-05-23 Robert Bosch Start-Up Platform North America, LLC, Series 1 Optical system
CN109946834B (zh) 2017-12-21 2022-03-29 中强光电股份有限公司 投影装置
CN109946909B (zh) 2017-12-21 2022-10-04 中强光电股份有限公司 投影装置
CN109946835B (zh) 2017-12-21 2022-04-26 中强光电股份有限公司 投影装置
CN110147028B (zh) 2018-02-13 2021-08-27 中强光电股份有限公司 投影装置
CN112083626A (zh) * 2019-06-12 2020-12-15 扬明光学股份有限公司 投影装置及其制造方法
KR102129706B1 (ko) * 2019-08-13 2020-07-03 주식회사 옵토전자 마이크로 광학소자 및 이를 포함하는 광전자 모듈
JP2021136204A (ja) * 2020-02-28 2021-09-13 市光工業株式会社 光源ユニット及び車両用灯具
CN115279251A (zh) * 2020-03-05 2022-11-01 纳瑟维有限公司 视觉传感器装置
CN113933918B (zh) * 2021-10-19 2023-05-16 京东方科技集团股份有限公司 一种凸透镜和投影装置
EP4220281A1 (en) * 2022-01-31 2023-08-02 Quality Photonics Optics S.L. (QPO) Optical system
CN117296009A (zh) * 2022-02-28 2023-12-26 京东方科技集团股份有限公司 投影装置
CN115951552B (zh) * 2023-03-09 2023-06-02 深圳市橙子数字科技有限公司 一种发光装置及光源系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249107A (ja) * 2002-02-22 2003-09-05 Asahi Matsushita Electric Works Ltd ビームライト
JP2011181429A (ja) * 2010-03-03 2011-09-15 Konica Minolta Opto Inc Led照明装置、led照明装置の製造方法
JP2011191723A (ja) * 2010-02-22 2011-09-29 Nippon Seiki Co Ltd 照明装置
JP2011228241A (ja) * 2010-03-30 2011-11-10 Enplas Corp 光束制御部材、発光装置、及び照明装置
JP2015115380A (ja) * 2013-12-10 2015-06-22 シチズン電子株式会社 Led発光装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641284B2 (en) * 2002-02-21 2003-11-04 Whelen Engineering Company, Inc. LED light assembly
KR20050006415A (ko) * 2003-07-08 2005-01-17 삼성전자주식회사 조명유닛 및 이를 구비하는 투사형 화상표시장치
TW200921007A (en) * 2007-11-15 2009-05-16 Prodisc Technology Inc An optics for reshaping the light shape and a light module for the same
JP6248473B2 (ja) * 2013-08-28 2017-12-20 日本精機株式会社 ヘッドアップディスプレイ装置
EP3052981A2 (en) * 2013-10-01 2016-08-10 Robe Lighting, Inc Multiple color homogenization system for an led luminaire
CN104154495B (zh) * 2014-05-20 2017-12-15 广州市浩洋电子股份有限公司 混合型光学积分器组件及其光学系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249107A (ja) * 2002-02-22 2003-09-05 Asahi Matsushita Electric Works Ltd ビームライト
JP2011191723A (ja) * 2010-02-22 2011-09-29 Nippon Seiki Co Ltd 照明装置
JP2011181429A (ja) * 2010-03-03 2011-09-15 Konica Minolta Opto Inc Led照明装置、led照明装置の製造方法
JP2011228241A (ja) * 2010-03-30 2011-11-10 Enplas Corp 光束制御部材、発光装置、及び照明装置
JP2015115380A (ja) * 2013-12-10 2015-06-22 シチズン電子株式会社 Led発光装置

Also Published As

Publication number Publication date
CN107709873A (zh) 2018-02-16
KR20180013936A (ko) 2018-02-07
TW201704814A (zh) 2017-02-01
WO2017013816A1 (ja) 2017-01-26
TWI627442B (zh) 2018-06-21
US20180203338A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
WO2017013816A1 (ja) 照明装置、照明方法、及びそれを用いた映像投射装置
JP6579355B2 (ja) 光積分器および、それを用いた映像投射装置
JP7196832B2 (ja) 画像表示装置
JP6535456B2 (ja) 映像投射装置及びヘッドマウントディスプレイ
US10859754B2 (en) LED light source device and electronic device using the same
US8523362B2 (en) Illumination system and projection apparatus
JP6663891B2 (ja) バックライトユニットおよびヘッドアップディスプレイ装置
US11422367B2 (en) Light source apparatus and head up display apparatus
WO2019037370A1 (zh) 一种hud照明系统、抬头显示装置以及实现方法
KR20120007015U (ko) 편광 빔 스플리터 및 투영 장치
JP2018098162A (ja) 面光源装置および表示装置
JP2018060006A (ja) ヘッドアップディスプレイ装置とその光源装置
US20110096299A1 (en) Illumination system and projection apparatus having the same
JP2009217060A (ja) プロジェクタ装置
JP4149493B2 (ja) フレネル光学素子、表示スクリーン及び投写型表示装置
JP2006019027A (ja) 照明装置
WO2017002725A1 (ja) 発光装置、面光源装置および表示装置
KR102002546B1 (ko) 화상생성장치용 백라이트 유닛
JP2017016995A (ja) 発光装置、面光源装置および表示装置
US20190004408A1 (en) Optical mixer and multi-wavelength homogeneous light source using the same
WO2018109978A1 (ja) 面光源装置および表示装置
US20110134398A1 (en) Projection System
US11487194B2 (en) Wavelength conversion element, light source device, and projector
CN107991837A (zh) 基于全反射的增强投影亮度和对比度的幕布及其制作方法
JP2005326551A (ja) 画像表示装置

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190910