JPWO2017006756A1 - 色素測定装置および色素測定方法 - Google Patents

色素測定装置および色素測定方法 Download PDF

Info

Publication number
JPWO2017006756A1
JPWO2017006756A1 JP2017527162A JP2017527162A JPWO2017006756A1 JP WO2017006756 A1 JPWO2017006756 A1 JP WO2017006756A1 JP 2017527162 A JP2017527162 A JP 2017527162A JP 2017527162 A JP2017527162 A JP 2017527162A JP WO2017006756 A1 JPWO2017006756 A1 JP WO2017006756A1
Authority
JP
Japan
Prior art keywords
illumination
light
image
dye
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017527162A
Other languages
English (en)
Inventor
河野 芳弘
芳弘 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of JPWO2017006756A1 publication Critical patent/JPWO2017006756A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/256Arrangements using two alternating lights and one detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

この色素測定装置(1)は、3以上の色素により染色された標本Oに照明光を照射する照明部(4)と、該照明部(4)により照射された照明光の標本(O)における透過光を撮影して画像信号を取得する撮像部(5)と、照明部(4)または撮像部(5)に配置され、異なる2以上の波長帯域内にそれぞれ含まれる複数の異なる狭帯域の光を切り替えて生成する狭帯域光生成部(3)と、該狭帯域光生成部(3)により生成された狭帯域の光が撮像部(5)によって撮影されることにより取得された4以上の画像信号を用いて、アンミキシング処理により色素の存在割合を決定する画像処理部(6)とを備えている。

Description

本発明は、色素測定装置および色素測定方法に関するものである。
従来、病理診断を行うために、透過照明を用いたヘマトキシリン&イオシン(H&E)染色標本の観察が行われている。また、H&E染色だけでは分からない病気のサブ分類を明らかにするために、IHC染色でタンパクを染色したり、ISH染色で遺伝子を染色したりすることが行われる。さらに、同一の標本から多くの情報を得るために、タンパクを多重染色することも行われている(例えば、特許文献1から特許文献3参照。)。
米国特許第6403332号明細書 米国特許第6025601号明細書 特公平7−50031号公報
複数の色素を用いて同一の標本に多重染色を行う場合には、色素のスペクトルが重なっているため、標本の分光像を取得して、真の色素の像を取得することが求められる。
しかしながら、通常のモノクロのカメラによって分光像の撮影を行うと、撮影に時間がかかるという不都合がある。
本発明は上述した事情に鑑みてなされたものであって、簡易な構成で短時間に標本の分光像を取得して、真の色素の像を得ることができる色素測定装置および色素測定方法を提供することを目的としている。
上記目的を達成するために、本発明は以下の手段を提供する。
本発明の第1の態様は、3以上の色素により染色された標本に照明光を照射する照明部と、該照明部により照射された前記照明光の前記標本における透過光を撮影して画像信号を取得する撮像部と、前記照明部または前記撮像部に配置され、異なる2以上の波長帯域内にそれぞれ含まれる複数の異なる狭帯域の光を切り替えて生成する狭帯域光生成部と、該狭帯域光生成部により生成された狭帯域の光が前記撮像部によって撮影されることにより取得された4以上の前記画像信号を用いて、アンミキシング処理により前記色素の存在割合を決定する画像処理部とを備える色素測定装置を提供する。
本態様によれば、3以上の色素により染色された標本に照明部から照明光を照射し、標本における透過光を撮像部において撮影して画像信号を取得し、取得された画像信号を画像処理部において処理することにより、色素の存在割合が決定される。すなわち、狭帯域光生成部が照明部に設けられている場合には、異なる2以上の波長帯域内にそれぞれ含まれる複数の狭帯域の光を狭帯域光生成部において切り替えて生成して標本に照射することにより、4以上の狭帯域の透過光が撮像部により撮影され4以上の画像信号が取得される。
一方、狭帯域光生成部が撮像部に設けられている場合には、2以上の波長帯域を含む広帯域の光を照射することにより得られた透過光から4以上の狭帯域の光を切り出して撮影することにより、4以上の狭帯域の透過光が撮像部により撮影され4以上の画像信号が取得される。
そして、取得された4以上の画像信号に基づけば、アンミキシング処理によって3以上の色素の存在割合を画素毎に決定することができる。これにより、簡易な構成で短時間に標本の分光像を取得して、真の色素の像を得ることができる。
本発明の第2の態様は、3以上の色素により染色された標本に第1照明光を照射する第1照明ステップと、該第1照明ステップにおいて照射された前記第1照明光の前記標本における透過光を撮影して画像信号を取得する第1撮像ステップと、前記標本に第2照明光を照射する第2照明ステップと、該第2照明ステップにおいて照射された前記第2照明光の前記標本における透過光の内、前記第1撮像ステップとは異なる波長の透過光を撮影して前記画像信号を取得する第2撮像ステップと、前記第1撮像ステップおよび前記第2撮像ステップにおいて取得された4以上の前記画像信号を用いてアンミキシング処理により前記色素の存在割合を決定する画像処理ステップとを含む色素測定方法を提供する。
本態様によれば、第1照明ステップにおいて第1照明光を照射して第1撮像ステップにより第1照明光の標本における透過光が撮影して画像信号が取得され、第2照明ステップにおいて第2照明光を照射して第2撮像ステップにより第2照明光の標本における透過光が撮影して画像信号が取得される。第2撮像ステップにおいて撮影される透過光の波長は第1撮像ステップにおいて撮影される透過光の波長とは異なるので、2回の撮影によって4以上の画像信号を簡易に取得できる。そして、画像処理ステップにおいてアンミキシング処理を行うことにより、簡易に色素の存在割合を画素毎に決定することができる。
上記態様においては、前記第1撮像ステップおよび前記第2撮像ステップでは、2以上の異なる波長帯域に感度を有するセンサにより透過光を撮影し、前記第1照明光が、各前記波長帯域にそれぞれ含まれる2以上の狭帯域の光を含み、前記第2照明光が、各前記波長帯域にそれぞれ含まれる、前記第1照明光とは波長の異なる1以上の狭帯域の光を含んでいてもよい。
このようにすることで、第1照明ステップにおいて、2以上の狭帯域の光が標本に照射され、第1撮像ステップにおいて、各狭帯域の光の透過光が撮影されて画像信号が生成される。また、第2照明ステップにおいては、第1照明ステップとは異なる1以上の狭帯域の光が標本に照射され、第2撮像ステップにおいて、各狭帯域の光の透過光が撮影されて画像信号が生成される。これにより、2回の撮影によって4以上の画像信号を簡易に取得でき、画像処理ステップにおいて簡易に色素の存在割合を画素毎に決定することができる。
また、上記態様においては、前記第1照明光および前記第2照明光が、合計で4以上の狭帯域の光を含み、前記第1撮像ステップおよび前記第2撮像ステップでは、2以上の異なる波長帯域に感度を有するセンサにより、撮影する透過光の波長を切り替えて、合計で4以上の狭帯域の光を撮影してもよい。
このようにすることで、合計で4以上の異なる狭帯域の光が第1照明ステップおよび第2照明ステップの2回に分けて標本に照射され、撮影する透過光の波長が切り替えられて2以上の異なる波長帯域に感度を有するセンサにより、合計で4以上の狭帯域の光が撮影される。これにより、2回の撮影によって4以上の画像信号を簡易に取得でき、画像処理ステップにおいて簡易に色素の存在割合を画素毎に決定することができる。
また、上記態様においては、前記画像処理ステップでは、4以上の前記画像信号から分光画像を生成する分光画像生成ステップと、生成された分光画像に基づいて、前記標本の透過光スペクトルを画素毎に生成するスペクトル生成ステップと、生成された透過光スペクトルおよび予め記憶された各色素の吸収スペクトルを用いてアンミキシング処理を行うアンミキシングステップが行われてもよい。
また、上記態様においては、前記画像処理ステップでは、前記分光画像生成ステップにおいて生成された分光画像に基づいて対象領域を選択させる領域選択ステップが行われ、前記スペクトル生成ステップおよび前記アンミキシングステップが、前記領域選択ステップにおいて選択された対象領域について実施されてもよい。
このようにすることで、領域選択ステップにおいて選択された対象領域のみについてスペクトル生成ステップおよびアンミキシングステップが実施され、処理時間が短縮されるとともに、不要な領域の信号をアンミキシング処理に含めることによるノイズの発生を防止することができる。
本発明によれば、簡易な構成で短時間に標本の分光像を取得して、真の色素の像を得ることができるという効果を奏する。
本発明の一実施形態に係る色素測定装置を示す全体構成図である。 図1の色素測定装置に備えられるカラー撮像素子の感度特性を示す図である。 図1の色素測定装置に備えられる光源部の照明光強度特性を示す図である。 図1の色素測定装置に備えられる光源部による(a)第1照明光、(b)第2照明光の光強度特性を示す図である。 図1の色素測定装置により取得された透過光スペクトルの一例を示す図である。 本発明の一実施形態に係る色素測定方法を示すフローチャートである。 図1の色素測定装置の第1の変形例を示す全体構成図である。 図1の色素測定装置の第2の変形例を示す全体構成図である。
本発明の一実施形態に係る色素測定装置1および色素測定方法について、図面を参照して以下に説明する。
本実施形態に係る色素測定装置1は、図1に示されるように、標本Oを搭載するステージ2と、照明光を発生する光源部(狭帯域光生成部)3と、該光源部3からの照明光をステージ2の下方から標本Oに照射する照明光学系(照明部)4と、ステージ2の上方において標本Oを透過した光を撮影する撮像光学系(撮像部)5と、該撮像光学系5により取得された画像信号を処理する画像処理部6と、制御部7と、モニタ8とを備えている。
ステージ2は、標本O、例えば、スライドガラス標本を搭載し、下方の照明光学系4からの光を透過可能な材質または透孔が形成された載置部9と、該載置部9を照明光学系4の光軸Sに直交する2方向に移動させるXY駆動機構10とを備えている。XY駆動機構10は、例えば、2対のモータ11およびボールネジ12を備える直動機構である。
光源部3は、異なる波長の照明光を射出する6個のLED21,22,23,24,25,26と、各LED21,22,23,24,25,26から発せられた照明光を合波するダイクロイックミラー13とを備えている。
照明光学系4は、光源部3のダイクロイックミラー13により合波された照明光を集光するカップリングレンズ14と、該カップリングレンズ14により集光された照明光を導光する光ファイバ15と、該光ファイバ15により導光された照明光を標本Oの所定範囲に集光させる集光レンズ16とを備えている。
撮像光学系5は、標本Oを透過した照明光の透過光を標本Oの上方において集光する対物レンズ17と、該対物レンズ17により集光された透過光を結像させる結像レンズ18と、該結像レンズ18により結像された標本Oの像を撮影するカラー撮像素子19とを備えている。
カラー撮像素子19は、図2に示される感度特性を有している。すなわち、カラー撮像素子19は、R、G、Bの波長帯域に相当する光を透過可能なカラーフィルタを各画素に配列してなる、いわゆるベイヤ配列の撮像素子である。R、G、Bの波長帯域にそれぞれ対応する各カラーフィルタが備えられた画素の信号を別々に取得することにより、標本OのR画像、G画像およびB画像をそれぞれ取得することができるようになっている。
また、本実施形態においては、光源部3の6個のLED21,22,23,24,25,26は、図3に示されるスペクトルを備えている。すなわち、6個のLED21,22,23,24,25,26を2個ずつ3組に分け、各組の2個のLEDは、それぞれカラー撮像素子19のR、G、Bの波長帯域内にスペクトルを有している。
制御部7は、光源部3を制御して、6個のLED21,22,23,24,25,26を、図4に示されるように、各組から1つずつ選択された3個のLEDが同時に点灯または消灯させられるように動作させる。図4に示される例では、制御部7は、(a)に示される波長λ1,λ3,λ5のLED21,23,25を同時に点灯させ、その後に(b)に示される波長λ2,λ4,λ6のLED22,24,26を同時に点灯させるようになっている。制御部7は、同じR、G、Bの波長帯域内の一方のLEDを点灯させるときには,他方のLEDは消灯させるようになっている。
これにより、最初の撮影時には、LED21,23,25が同時に点灯されて、これらのLED21,23,25から波長λ1,λ3,λ5の照明光が同時に標本Oに照射され、標本Oを透過した波長λ1,λ3,λ5の透過光がカラー撮像素子19によって一度に撮影される。カラー撮像素子19は、波長λ1,λ3,λ5をそれぞれ1つずつ含むR、G、Bの波長帯域の透過光を透過させるカラーフィルタを配列しているので、同種のカラーフィルタが配置された画素の信号を集めることにより、波長λ1,λ3,λ5の3種類の画像信号を同時に分離して取得することができるようになっている。
同様に、次の撮影時には、LED22,24,26が同時に点灯されて、これらのLED22,24,26から波長λ2,λ4,λ6の照明光が同時に標本Oに照射され、標本Oを透過した波長λ2,λ4,λ6の透過光がカラー撮像素子19によって一度に撮影される。カラー撮像素子19は、波長λ2,λ4,λ6をそれぞれ1つずつ含むR、G、Bの波長帯域の透過光を透過させるカラーフィルタを配列しているので、波長λ2,λ4,λ6の3種類の画像信号を同時に分離して取得することができるようになっている。
画像処理部6は、標本Oを染色する色素の吸収スペクトルを記憶している。本実施形態においては、例えば、3つの色素によって標本Oが多重染色されており、画像処理部6は3つの色素の吸収スペクトルを記憶している。
また、画像処理部6は、撮像光学系5による2回の撮影により取得された6種類の画像信号に基づいて、標本Oの透過光スペクトルを画素毎に生成するようになっている。透過光スペクトルは、図5に示されるように、各画素について取得された6種類の信号の強度を、横軸に波長をとってプロットすることにより簡易に生成することができる。
そして、画像処理部6は、記憶している3つの色素の吸収スペクトルと、生成された標本Oの透過光スペクトルとに基づいて、公知のアンミキシング処理を実施し、各色素の存在割合を画素毎に算出するようになっている。
これにより、各色素について存在割合の分布を示す画像を取得することができるようになっている。
このように構成された本実施形態に係る色素測定装置1を用いた色素測定方法について以下に説明する。
色素測定に先立って、標準標本をステージ2に載置し、6個のLED21,22,23,24,25,26を同時に点灯したときに撮像光学系5により取得された画像のスペクトルに基づいて、各LED21,22,23,24,25,26から発せられる照明光の強度を調節する。これにより、適正な白色照明光を射出できるように各LED21,22,23,24,25,26の強度バランスを設定する。
本実施形態に係る色素測定方法は、図6に示されるように、3つの色素により標本Oを染色し(ステップS1)、染色された標本Oをステージ2に載置し(ステップS2)、LED21,23,25を点灯して波長λ1,λ3,λ5の照明光(第1照明光)を標本Oに照射し(第1照明ステップS3)、標本Oを透過した透過光を撮像光学系5により撮影して画像信号を取得する(第1撮像ステップS4)。
次いで点灯するLEDをLED22,24,26に切り替えて波長、λ2,λ4,λ6の照明光(第2照明光)を標本Oに照射し(第2照明ステップS5)、標本Oを透過した透過光を撮像光学系5により撮影して画像信号を取得する(第2撮像ステップS6)。
この後に、取得された6つの画像信号を用いて色素の存在割合を決定する(画像処理ステップ)。具体的には、取得された6個の画像信号を用いて分光画像を生成し(分光画像生成ステップ)、画像処理部6により、生成された分光画像に基づいて透過光スペクトルを画素毎に生成し(スペクトル生成ステップS7)、生成された透過光スペクトルと、記憶しておいた色素の吸収スペクトルとに基づいて、アンミキシング処理により色素の存在割合を決定する(アンミキシングステップS8)。
これにより、各色素について存在割合の分布を示す画像を取得することができる。
すなわち、本実施形態に係る色素測定装置1および色素測定方法によれば、2回の撮影によって6種類の画像信号を得て、3以上5以下の色素の分布画像を取得することができるという利点がある。その結果、簡易な構成で短時間に標本Oの分光像を取得して、真の色素の像を得ることができ、標本Oにおける病変のサブ分類を検出することが可能となる。
なお、本実施形態に係る色素測定装置1および色素測定方法においては、R,G,Bの3つの波長帯域内に2つずつ異なる波長の照明光をLEDの切替によって照射することとしたが、アンミキシング処理により3つの色素の存在割合を測定するには、4以上の異なる波長の照明光を照射すればよい。したがって、例えば、第1照明光として波長λ1,λ3の照明光を照射し、第2照明光として波長λ2,λ4の照明光を照射するというように、2つの波長帯域内の2つの異なる波長の照明光をLEDの切替によって照射することにしてもよい。また、第1照明光として波長λ1,λ3,λ5の照明光を照射し、第2照明光として波長λ2の照明光を照射するというように、合計して4つの異なる波長の照明光を照射することにしてもよい。
また、本実施形態においては、取得された画像の全体について、色素の存在割合を算出することとしたが、これに代えて、取得された画像内の一部の領域を選択させ(領域選択ステップ)、選択された領域についてのみ、透過光スペクトルの生成およびアンミキシング処理を実施することにしてもよい。このようにすることで、処理に要する時間を短縮することができるとともに、色素の存在割合の分布の測定が不要な画素を処理に含めることによるノイズの発生を防止することができるという利点がある。
また、6以上の異なる色素により多重染色された標本Oにおける色素の存在割合を測定するには、R,G,Bの3つの波長帯域内において3以上の異なる波長の照明光を切り替えて発生させることにしてもよい。また、R,G,Bの3色に、エメラルド色のような他の波長帯域を加えることにより、同時に照明光を射出可能なLEDの数を増やすことにしてもよい。
また、本実施形態においては、LED21,22,23,24,25,26の点灯切替によって、2回の撮影で6色の画像信号を取得することとしたが、これに代えて、図7に示されるように、光源として単一の白色光源27を採用し、ターレット28によって切替可能なフィルタ29を用いて、標本Oに照射する照明光の波長を図4(a),(b)のように切り替えることにしてもよい。また、図8に示されるように、ターレット28を撮像光学系5側に配置して、標本Oを透過した照明光の内からカラー撮像素子19によって撮影される透過光の波長を切り替えることにしてもよい。
また、3つの色素A,B,Cの内、2つの色素A,Bを異なるタンパクの発現を示すための色素とし、他の1つの色素Cを、細胞核を検出するための色素とすることにより、色素Cの像によって細胞核の範囲を検出し、色素A,Bの像によって、細胞核内に発現しているタンパクの量を測定することができる。これにより、細胞核毎に2種類のタンパクの発現量のクラス判定を行うことができる。
また、アンミキシング処理としては、スペクトルアンミキシング法の他、スペクトルブラインドアンミキシング法を用いることにしてもよい。
1 色素測定装置
3 光源部(狭帯域光生成部)
4 照明光学系(照明部)
5 撮像光学系(撮像部)
6 画像処理部
S3 第1照明ステップ
S4 第1撮像ステップ
S5 第2照明ステップ
S6 第2撮像ステップ
S7 スペクトル生成ステップ
S8 アンミキシングステップ
O 標本

Claims (6)

  1. 3以上の色素により染色された標本に照明光を照射する照明部と、
    該照明部により照射された前記照明光の前記標本における透過光を撮影して画像信号を取得する撮像部と、
    前記照明部または前記撮像部に配置され、異なる2以上の波長帯域内にそれぞれ含まれる複数の異なる狭帯域の光を切り替えて生成する狭帯域光生成部と、
    該狭帯域光生成部により生成された狭帯域の光が前記撮像部によって撮影されることにより取得された4以上の前記画像信号を用いて、アンミキシング処理により前記色素の存在割合を決定する画像処理部とを備える色素測定装置。
  2. 3以上の色素により染色された標本に第1照明光を照射する第1照明ステップと、
    該第1照明ステップにおいて照射された前記第1照明光の前記標本における透過光を撮影して画像信号を取得する第1撮像ステップと、
    前記標本に第2照明光を照射する第2照明ステップと、
    該第2照明ステップにおいて照射された前記第2照明光の前記標本における透過光の内、前記第1撮像ステップとは異なる波長の透過光を撮影して前記画像信号を取得する第2撮像ステップと、
    前記第1撮像ステップおよび前記第2撮像ステップにおいて取得された4以上の前記画像信号を用いてアンミキシング処理により前記色素の存在割合を決定する画像処理ステップとを含む色素測定方法。
  3. 前記第1撮像ステップおよび前記第2撮像ステップでは、2以上の異なる波長帯域に感度を有するセンサにより透過光を撮影し、
    前記第1照明光が、各前記波長帯域にそれぞれ含まれる2以上の狭帯域の光を含み、
    前記第2照明光が、各前記波長帯域にそれぞれ含まれる、前記第1照明光とは波長の異なる1以上の狭帯域の光を含む請求項2に記載の色素測定方法。
  4. 前記第1照明光および前記第2照明光が、合計で4以上の狭帯域の光を含み、
    前記第1撮像ステップおよび前記第2撮像ステップでは、2以上の異なる波長帯域に感度を有するセンサにより、撮影する透過光の波長を切り替えて、合計で4以上の狭帯域の光を撮影する請求項2に記載の色素測定方法。
  5. 前記画像処理ステップでは、4以上の前記画像信号から分光画像を生成する分光画像生成ステップと、生成された分光画像に基づいて、前記標本の透過光スペクトルを画素毎に生成するスペクトル生成ステップと、生成された透過光スペクトルおよび予め記憶された各色素の吸収スペクトルを用いてアンミキシング処理を行うアンミキシングステップとが行われる請求項2から請求項4のいずれかに記載の色素測定方法。
  6. 前記画像処理ステップでは、前記分光画像生成ステップにおいて生成された分光画像に基づいて対象領域を選択させる領域選択ステップが行われ、
    前記スペクトル生成ステップおよび前記アンミキシングステップが、前記領域選択ステップにおいて選択された対象領域について実施される請求項5に記載の色素測定方法。
JP2017527162A 2015-07-09 2016-06-20 色素測定装置および色素測定方法 Pending JPWO2017006756A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015137680 2015-07-09
JP2015137680 2015-07-09
PCT/JP2016/068303 WO2017006756A1 (ja) 2015-07-09 2016-06-20 色素測定装置および色素測定方法

Publications (1)

Publication Number Publication Date
JPWO2017006756A1 true JPWO2017006756A1 (ja) 2018-04-19

Family

ID=57685492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017527162A Pending JPWO2017006756A1 (ja) 2015-07-09 2016-06-20 色素測定装置および色素測定方法

Country Status (5)

Country Link
US (1) US20180128684A1 (ja)
EP (1) EP3321659A4 (ja)
JP (1) JPWO2017006756A1 (ja)
CN (1) CN107709973A (ja)
WO (1) WO2017006756A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012461A1 (ja) * 2002-07-26 2004-02-05 Olympus Optical Co., Ltd. 画像処理システム
JP2009008481A (ja) * 2007-06-27 2009-01-15 Olympus Corp 画像処理装置および画像処理プログラム
JP2009253418A (ja) * 2008-04-02 2009-10-29 Fujifilm Corp 撮像装置、撮像方法、およびプログラム
JP2011022131A (ja) * 2009-06-18 2011-02-03 Olympus Corp 医療診断支援装置、画像処理方法、画像処理プログラム、およびバーチャル顕微鏡システム
JP2011095225A (ja) * 2009-11-02 2011-05-12 Olympus Corp 画像処理装置、画像処理方法および顕微鏡システム
JP2013003386A (ja) * 2011-06-17 2013-01-07 Olympus Corp 撮像装置およびバーチャルスライド装置
JP2013544151A (ja) * 2010-11-16 2013-12-12 ギブン イメージング リミテッド 生体内イメージング装置及びスペクトル解析を行う方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2304988A (en) * 1940-04-19 1942-12-15 Eastman Kodak Co Photomechanical reproduction
JPS59779B2 (ja) * 1977-01-20 1984-01-09 株式会社京都第一科学 尿等の分析方法
JPS59161981A (ja) * 1983-03-06 1984-09-12 Canon Inc 画像処理装置
US5385143A (en) * 1992-02-06 1995-01-31 Nihon Kohden Corporation Apparatus for measuring predetermined data of living tissue
US5766875A (en) * 1993-07-30 1998-06-16 Molecular Devices Corporation Metabolic monitoring of cells in a microplate reader
JP5161052B2 (ja) * 2008-12-04 2013-03-13 オリンパス株式会社 顕微鏡システム、標本観察方法およびプログラム
JP2924756B2 (ja) * 1996-01-30 1999-07-26 ノーリツ鋼機株式会社 画像露光装置
US6071748A (en) * 1997-07-16 2000-06-06 Ljl Biosystems, Inc. Light detection device
US6509575B1 (en) * 1999-05-07 2003-01-21 Impact Imaging, Inc. Method and apparatus for polarization filtered x-ray film scanning recording
JP2005201693A (ja) * 2004-01-13 2005-07-28 Olympus Corp 色票処理装置、色票処理方法及び色票処理プログラム
JP5074044B2 (ja) * 2007-01-18 2012-11-14 オリンパス株式会社 蛍光観察装置および蛍光観察装置の作動方法
US20100201800A1 (en) * 2009-02-09 2010-08-12 Olympus Corporation Microscopy system
US20100238035A1 (en) * 2009-03-19 2010-09-23 Tangidyne Corporation Detection device and method for detecting analyte
WO2011037980A2 (en) * 2009-09-22 2011-03-31 Bioptigen, Inc. Systems for extended depth frequency domain optical coherence tomography (fdoct) and related methods
US8625104B2 (en) * 2009-10-23 2014-01-07 Bioptigen, Inc. Systems for comprehensive fourier domain optical coherence tomography (FDOCT) and related methods
WO2011070846A1 (ja) * 2009-12-10 2011-06-16 オリンパスメディカルシステムズ株式会社 医療用マニピュレータ
JP5451552B2 (ja) * 2010-08-09 2014-03-26 オリンパス株式会社 顕微鏡システム、標本観察方法およびプログラム
JP5303012B2 (ja) * 2010-12-15 2013-10-02 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置及び内視鏡システムの作動方法
US9428384B2 (en) * 2011-01-18 2016-08-30 Jizhong He Inspection instrument
CN103688145B (zh) * 2011-03-03 2020-03-17 恩光码公司 多频带色觉滤波器和使用线性程序解算器优化的方法
US8797530B2 (en) * 2011-03-23 2014-08-05 Bioptigen, Inc. Linearized variable-dispersion spectrometers and related assemblies
US8699024B2 (en) * 2011-08-23 2014-04-15 Jds Uniphase Corporation Tunable optical filter and spectrometer
KR101263238B1 (ko) * 2012-10-22 2013-05-10 한국지질자원연구원 항공 다중 분광 주사기를 이용한 발전소 온배수 모니터링 장치
US9513164B2 (en) * 2013-03-15 2016-12-06 Honeywell International Inc. Stand-off spectrometry systems and methods
JP6010571B2 (ja) * 2014-02-27 2016-10-19 富士フイルム株式会社 内視鏡システム、内視鏡システム用プロセッサ装置、内視鏡システムの作動方法、内視鏡システム用プロセッサ装置の作動方法
JP6039639B2 (ja) * 2014-02-27 2016-12-07 富士フイルム株式会社 内視鏡システム、内視鏡システム用プロセッサ装置、内視鏡システムの作動方法、及び内視鏡システム用プロセッサ装置の作動方法
US9660681B1 (en) * 2015-10-28 2017-05-23 Dicon Fiberoptics Inc. Tunable optical module for optical communication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012461A1 (ja) * 2002-07-26 2004-02-05 Olympus Optical Co., Ltd. 画像処理システム
JP2009008481A (ja) * 2007-06-27 2009-01-15 Olympus Corp 画像処理装置および画像処理プログラム
JP2009253418A (ja) * 2008-04-02 2009-10-29 Fujifilm Corp 撮像装置、撮像方法、およびプログラム
JP2011022131A (ja) * 2009-06-18 2011-02-03 Olympus Corp 医療診断支援装置、画像処理方法、画像処理プログラム、およびバーチャル顕微鏡システム
JP2011095225A (ja) * 2009-11-02 2011-05-12 Olympus Corp 画像処理装置、画像処理方法および顕微鏡システム
JP2013544151A (ja) * 2010-11-16 2013-12-12 ギブン イメージング リミテッド 生体内イメージング装置及びスペクトル解析を行う方法
JP2013003386A (ja) * 2011-06-17 2013-01-07 Olympus Corp 撮像装置およびバーチャルスライド装置

Also Published As

Publication number Publication date
EP3321659A1 (en) 2018-05-16
CN107709973A (zh) 2018-02-16
US20180128684A1 (en) 2018-05-10
EP3321659A4 (en) 2019-01-16
WO2017006756A1 (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
JP7424286B2 (ja) 蛍光観察装置及び蛍光観察方法
JP5806504B2 (ja) 撮像装置およびこれを備える顕微鏡システム
WO2015111349A1 (ja) 多色蛍光画像分析装置
JP6234621B2 (ja) 内視鏡装置
US10795143B2 (en) Microscopy system and microscopy method for recording fluorescence images and white-light images
JP2016044995A (ja) 測色方法、測色装置および電子機器
JP4245787B2 (ja) 蛍光画像取得方法および装置
US20190227291A1 (en) Fluorescence microscope
WO2012090416A1 (ja) 検査装置
JPWO2020066610A1 (ja) 蛍光観察カメラシステム
JP7501364B2 (ja) 分光イメージング装置および蛍光観察装置
WO2021177446A1 (en) Signal acquisition apparatus, signal acquisition system, and signal acquisition method
JP2013003386A (ja) 撮像装置およびバーチャルスライド装置
JP2006261861A (ja) 撮像装置
WO2017006756A1 (ja) 色素測定装置および色素測定方法
KR20170063046A (ko) 다파장 광원을 이용한 내시경 시스템
JP2012189342A (ja) 顕微分光測定装置
JP6800664B2 (ja) 内視鏡装置
CA3130563A1 (en) System and method for enhanced imaging of biological tissue
JP2016024027A (ja) 測定装置および蛍光測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201020