JPWO2016189648A1 - スクリュー圧縮機、及びそのスクリュー圧縮機を備えた冷凍サイクル装置 - Google Patents

スクリュー圧縮機、及びそのスクリュー圧縮機を備えた冷凍サイクル装置 Download PDF

Info

Publication number
JPWO2016189648A1
JPWO2016189648A1 JP2017520118A JP2017520118A JPWO2016189648A1 JP WO2016189648 A1 JPWO2016189648 A1 JP WO2016189648A1 JP 2017520118 A JP2017520118 A JP 2017520118A JP 2017520118 A JP2017520118 A JP 2017520118A JP WO2016189648 A1 JPWO2016189648 A1 JP WO2016189648A1
Authority
JP
Japan
Prior art keywords
stage
low
compression chamber
compression
slide valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017520118A
Other languages
English (en)
Other versions
JP6430003B2 (ja
Inventor
栗田 慎
慎 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016189648A1 publication Critical patent/JPWO2016189648A1/ja
Application granted granted Critical
Publication of JP6430003B2 publication Critical patent/JP6430003B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

本発明のスクリュー圧縮機は、ガスを圧縮する低段圧縮部と、低段圧縮部で圧縮されたガスをさらに圧縮する高段圧縮部と、を有するケーシングと、低段圧縮部と高段圧縮部とを貫通し、ケーシング内で回転可能に配置された回転軸と、低段圧縮部内の回転軸に取り付けられ、複数のスクリュー溝が外周面に形成された低段スクリューロータと、低段スクリューロータのスクリュー溝に噛み合う歯部が形成され、低段スクリューロータのスクリュー溝と前記ケーシングとの間で一対の低段圧縮室を形成する一対の低段ゲートロータと、一対の低段圧縮室に配置され、回転軸の軸方向に移動することで低段圧縮室からガスが吐出するタイミングを調整する一対の低段スライドバルブと、を有し、一対の低段スライドバルブは、回転軸の軸方向においてそれぞれ異なる位置に配置されるものである。

Description

本発明は、スクリュー圧縮機に係り、より詳しくは、運転圧縮比を調整するスライドバルブを備えたスクリュー圧縮機、及びそのスクリュー圧縮機を備えた冷凍サイクル装置に関するものである。
従来、スクリュー圧縮機(より詳しくはシングルスクリュー圧縮機)は、螺旋状のスクリュー溝を有したスクリューロータを回転軸に備え、外周に歯溝を有する少なくとも1枚のゲートロータをスクリューロータに嵌め合わせ、それらをケーシング内に収容し、圧縮室を形成する。回転軸の回転にともない、圧縮室は、その容積を減じられ、ガスを圧縮する(特許文献1、2を参照)。
シングルスクリュー圧縮機の圧縮機構には大きく2種類があり、スクリューロータに2枚のゲートロータを嵌め合わせるツインゲートロータ方式と、スクリューロータに1枚のゲートロータを嵌め合わせるモノゲートロータ方式とが存在する。
ツインゲートロータ方式は、スクリューロータの回転軸を中心に対向して2つの圧縮室がそれぞれ形成される。ガス圧が作用する圧縮室がスクリューロータの回転軸に対して対向する位置にあるため、回転軸に作用するガス荷重が互いに相殺される。
これに対し、モノゲートロータ方式は、スクリューロータの回転軸の一方側に圧縮室が形成される。本方式では、ツインゲートロータ方式のよう圧縮室がスクリューの回転軸に対して対向して配置されていないため、圧縮室のガス圧が圧縮室側から回転軸に対して作用する。
特開2013−92091号公報 特許第4147891号公報
圧縮工程を低段圧縮部と高段圧縮部とで二分した二段スクリュー圧縮機において、低段圧縮部にツインゲートロータ方式、高段圧縮部にモノゲートロータ方式を採用した圧縮機が公知である。
このような二段スクリュー圧縮機では、低段圧縮部において上記のようにガス圧が作用する圧縮室がスクリューの回転軸に対して対向する位置にあるため、回転軸に作用するガス荷重が互いに相殺され、スクリューの回転軸の撓みは小さい。
しかし、高段圧縮部では、上記のように圧縮室のガス圧が回転軸に対して圧縮室側から作用する。すなわち、高段圧縮部では、圧縮室が回転軸の一方側に配置され圧縮室内のガス圧が吐出圧力まで高められるのに対し、圧縮室の反対側のガス圧は中間圧力の雰囲気のため、これらの差圧が回転軸に作用する。よって、高段圧縮部では、この差圧によるガス荷重によって、回転軸が圧縮室の反対側へたわみ、撓み量は大きくなる。
また、二段スクリュー圧縮機の回転軸の長さは、スクリューロータを直列に配置するため、単段機の回転軸の長さより長くなり、ガス荷重に対する撓み量は、単段機より大きくなる。このため、回転軸の撓み量はさらに拡大する。
高段圧縮部で回転軸がたわむと、低段圧縮部においても回転軸にたわみが発生し、低段圧縮部の一方の圧縮室(高段圧縮部の圧縮室側)では、スクリューロータとケーシングとの間の内部隙間が拡大する。また、低段圧縮部の他方の圧縮室(高段側の圧縮室に対向する側)ではスクリューロータとケーシングとの間の内部隙間が縮小する。
すると、低段圧縮部の一対の圧縮室では内部隙間が不均一になるため、各圧縮室の内圧の推移は異なることとなる。すなわち、スクリューロータとケーシングとの間の内部隙間が拡大した一方の圧縮室は、圧縮工程中の内部漏洩量が増加するため、他方の圧縮室よりも内圧が上昇する。
したがって、低段圧縮部の一対の圧縮室の内圧が不均一となるため、スクリュー圧縮機の運転効率が低下するという課題があった。
本発明は、上記のような課題を解決するためになされたもので、各圧縮室内の内部隙間の不均一化が発生しても、高効率な運転が可能なスクリュー圧縮機、及びそのスクリュー圧縮機を備えた冷凍サイクル装置を提供することを目的としたものである。
本発明に係るスクリュー圧縮機は、ガスを圧縮する低段圧縮部と、低段圧縮部で圧縮されたガスをさらに圧縮する高段圧縮部と、を有するケーシングと、低段圧縮部と高段圧縮部とを貫通し、ケーシング内で回転可能に配置された回転軸と、低段圧縮部内の回転軸に取り付けられ、複数のスクリュー溝が外周面に形成された低段スクリューロータと、低段スクリューロータのスクリュー溝に噛み合う歯部が形成され、低段スクリューロータのスクリュー溝とケーシングとの間で一対の低段圧縮室を形成する一対の低段ゲートロータと、一対の低段圧縮室に配置され、回転軸の軸方向に移動することで低段圧縮室からガスが吐出するタイミングを調整する一対の低段スライドバルブと、を有し、一対の低段スライドバルブは、回転軸の軸方向においてそれぞれ異なる位置に配置されるものである。
本発明によれば、各圧縮室内の内部隙間の不均一化が発生しても、高効率な運転が可能なスクリュー圧縮機、及びそのスクリュー圧縮機を備えた冷凍サイクル装置を実現することができる。
実施の形態1に係る二段シングルスクリュー圧縮機100の概略断面図である。 実施の形態1に係る低段圧縮部10の図1におけるA−A断面図である。 実施の形態1に係る高段圧縮部20の図1におけるB−B断面図である。 実施の形態1に係る低段スライドバルブ13の斜視図である。 従来の二段シングルスクリュー圧縮機に係る低段圧縮部の第1圧縮室と第2圧縮室の圧力推移を示す説明図である。 実施の形態1に係る二段シングルスクリュー圧縮機100の低段圧縮部10における第1圧縮室15aと第2圧縮室15bの圧力推移を示す説明図である。 実施の形態2に係る低段スライドバルブ213の斜視図である。
以下、本発明の実施の形態に係るスクリュー圧縮機について図面等を参照しながら説明する。ここで、全図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。さらに、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
以下、低段圧縮部10と高段圧縮部20とこれら各圧縮部を駆動する電動機部2とを備えたスクリュー圧縮機の一例である二段シングルスクリュー圧縮機100の構成を説明する。
実施の形態1.
はじめに、実施の形態1に係る二段シングルスクリュー圧縮機100の構成を説明する。
図1は、実施の形態1に係る二段シングルスクリュー圧縮機100の概略断面図である。
二段シングルスクリュー圧縮機100は、圧縮部1と、電動機部2とに大別される。
<圧縮部1>
圧縮部1は、円筒形状のケーシング100a内に収納された低段圧縮部10と高段圧縮部20とに仕切られて構成されている。円筒形状のケーシング100aの中心軸部分には、低段圧縮部10と高段圧縮部20とを挿通する回転軸3が配置されている。ケーシング100aの外部から供給される低圧のガスは低段圧縮部10に第1吸入口10a及び第2吸入口10bを通って流入し、1次圧縮された後、高段圧縮部20に流入し2次圧縮され、高圧のガスとなってケーシング100a外に送り出される。
(低段圧縮部10)
図2は、実施の形態1に係る低段圧縮部10の図1におけるA−A断面図である。
低段圧縮部10は、低段スクリューロータ11に2枚の第1低段ゲートロータ12aと、第2低段ゲートロータ12bを嵌め合わせるツインゲートロータ方式を採用している。低段スクリューロータ11は、外周面に複数の螺旋状のスクリュー溝11aが形成されている。
低段スクリューロータ11は、その外周面がケーシング100aの円柱状の内壁100bに接するようにケーシング100a内に収納されている。
低段圧縮部10の第1低段ゲートロータ12aと、第2低段ゲートロータ12bは、低段スクリューロータ11の径方向に低段スクリューロータ11を挟むように対向して2つ配置されている。第1低段ゲートロータ12aと、第2低段ゲートロータ12bの外周部には複数の歯部が形成されている。
これらの第1低段ゲートロータ12aと、第2低段ゲートロータ12bの歯部が低段スクリューロータ11のスクリュー溝11aと噛み合い、ケーシング100aの内壁100bとの間の空間に低段圧縮室15を形成する。
低段圧縮室15は、図2に示すように低段スクリューロータ11を中心として対向して配置され、第1低段ゲートロータ12aと、第2低段ゲートロータ12bとに対応して形成された第1圧縮室15aと、第2圧縮室15bとを含んでいる。ケーシング100aには、第1圧縮室15aと、第2圧縮室15bとに低圧ガスを供給する第1吸入口10a及び第2吸入口10bがそれぞれ開口している。第1吸入口10a及び第2吸入口10bは、回転軸3に対向して回転軸3の軸方向において同一位置に開口している。
第1圧縮室15aと第2圧縮室15bの外周側には、各圧縮室内で圧縮されたガスを吐出するタイミングを調整する低段スライドバルブ13が配置されている。低段スライドバルブ13は、第1圧縮室15aと第2圧縮室15bとにそれぞれに対応して配置された第1低段スライドバルブ13aと第2低段スライドバルブ13bとを含んでいる。
この第1低段スライドバルブ13aと第2低段スライドバルブ13bは、図2に示すようにケーシング100aの内壁100bに形成された凹部100c内に収納されている。凹部100cは、回転軸3の軸方向と平行に形成された円弧形状の長溝部である。
第1低段スライドバルブ13aと第2低段スライドバルブ13bの内周面40は、低段スクリューロータ11を収容するケーシング100aの内壁100bと同一円弧面を形成している。また、低段スライドバルブ13の外周面41は、ケーシング100aの凹部100cと同一円弧面を有している。
また、第1低段スライドバルブ13aと第2低段スライドバルブ13bは、ロッド33を介して低段駆動機構14に接続されている。低段駆動機構14は、例えば、シリンダーとピストンで構成された駆動機構であり、作動流体がシリンダー内に流入、流出することでピストンがシリンダー内を摺動し、ロッド33を介して低段スライドバルブ13を回転軸3と平行に移動させる。
なお、低段駆動機構14は、シリンダーとピストンで構成された例を示したが、低段スライドバルブ13を回転軸3と平行に移動させることができればその他の駆動機構を採用することができる。
(高段圧縮部20)
図3は、実施の形態1に係る高段圧縮部20の図1におけるB−B断面図である。
高段圧縮部20は、高段スクリューロータ21に1枚の高段ゲートロータ22を嵌め合わせるモノゲートロータ方式を採用している。高段スクリューロータ21は、外周部に複数の螺旋状のスクリュー溝21aが形成されている。
高段スクリューロータ21は、その外周面がケーシング100aの円柱状の内壁100bに接するようにケーシング100a内に収納されている。
高段圧縮部20の高段ゲートロータ22は、高段スクリューロータ21の径方向の一方側に1つ配置されている。高段ゲートロータ22の外周部には複数の歯部が形成されている。
この高段ゲートロータ22の歯部が高段スクリューロータ21のスクリュー溝21aと噛み合い、ケーシング100aの円柱状の内壁100bとの間の空間に高段圧縮室25を形成する。高段圧縮室25は、回転軸3の軸方向に垂直な径方向において、低段圧縮部10の第1圧縮室15aと同一方向に配置されている。ここでの同一方向とは、少なくとも回転軸3を通る仮想面の一方側に高段圧縮室25と第1圧縮室15aとが配置されている状態をいう。
高段圧縮室25には、対応した高段スライドバルブ23が配置されている。
この高段スライドバルブ23は、低段スライドバルブ13と同様に図3に示すようにケーシング100aの内壁100bに形成された凹部100c内に収納されている。凹部100cは、回転軸3の軸方向と平行に形成された円弧形状の長溝部である。
高段スライドバルブ23の内周面40は、高段スクリューロータ21の外周面(高段スクリューロータ21を収容するケーシング100aの内壁100b)と同一円弧面を形成している。また、高段スライドバルブ23の外周面41は、ケーシング100aの凹部100cと同一円弧面を有している。
また、高段スライドバルブ23はロッド33を介して高段駆動機構24に接続されている。高段駆動機構24の構成は、低段駆動機構14と同様に例えば、シリンダーとピストンで構成された駆動機構であり、作動流体がシリンダー内に流入、流出することでピストンがシリンダー内を摺動し、ロッドを介して高段スライドバルブ23を回転軸3と平行に移動させる。
<スライドバルブ13、23の構成>
ここで、低段スライドバルブ13と高段スライドバルブ23の形状を詳述する。
図4は、実施の形態1に係る低段スライドバルブ13の斜視図である。
低段スライドバルブ13は、図4に示すようにバルブ本体30と、ガイド部31と、連結部32と、ロッド33とにより構成される。バルブ本体30とガイド部31との間の空間は、開口部34となっており、低段圧縮室15からの中圧ガス冷媒が流出する流路となる。バルブ本体30とガイド部31の内周面40は、上述のように低段スクリューロータ11を収容するケーシング100aの内壁100bと同一円弧面になる断面形状を有している。また、バルブ本体30とガイド部31の外周面41は、ケーシング100aの凹部100cと同一円弧面となる断面形状を有している。連結部32は、バルブ本体30とガイド部31に比べて小さい断面形状の例えば円柱形状となっている。
高段スライドバルブ23は、基本構成において低段スライドバルブ13と同様である。しかし、高段圧縮部20は、低段圧縮部10と運転圧力比が異なるため、高段スライドバルブ23のバルブ本体30の最適形状は低段スライドバルブ13と異なる設計とすることができる。
低段スライドバルブ13と高段スライドバルブ23は、ケーシング100aの凹部100c内で回転軸3と平行な軸方向に摺動自在となるように構成されている。
(スライドバルブ13、23の機能)
シングルスクリュー圧縮機における省エネルギー化の手段の一つにこのスライドバルブ13、23を使用し、内部容積比を可変にする技術開示がある。内部容積比とは、吸入完了時の圧縮室容積(以下、Vsと記す)と吐出工程が開始される直前の圧縮室容積(以下、Vdと記す)の比(=Vs÷Vd)で定義される。低圧と高圧から求まる運転圧力比において、エネルギー効率が最大化するよう内部容積比を調整する。
内部容積比は、スクリューロータの回転軸方向におけるスライドバルブの位置を制御することでガスの圧縮工程からの吐出タイミングを変更し調整する。なお、圧縮工程とは、圧縮室に吸入口からガスが流入を完了した時点(位置)からスライドバルブの開口部34から圧縮されたガスが圧縮室の外部へと吐出された時点(位置)までの時間、又は、回転軸3の軸方向における長さと定義される。
実施の形態1に係る二段シングルスクリュー圧縮機100においても、同様に内部容積比を調整して運転圧力比を最適化し、省エネルギーを実現することが可能である。
二段シングルスクリュー圧縮機100は、低段圧縮部10と高段圧縮部20の各々の圧縮過程において、エネルギー効率を最大化するための最適な内部容積比が異なるため、低段圧縮部10、高段圧縮部20の各々において位置の調整が可能なスライドバルブ13、23を配置する。
<第1低段スライドバルブ13aと第2低段スライドバルブ13bの配置>
低段スライドバルブ13は、一対のバルブとして第1低段スライドバルブ13aと第2低段スライドバルブ13bとにより構成されている。第1低段スライドバルブ13aは、第1ロッド33aに支持され、第1圧縮室15aに対応して低段スクリューロータ11の外周面に配置されている。また、第2低段スライドバルブ13bは、第2ロッド33bに支持され、第2圧縮室15bに対応して低段スクリューロータ11の外周面に配置されている。
第1ロッド33aと第2ロッド33bとは、ケーシング100aの一端側に配置された連結板17に接続されている。連結板17は低段駆動機構14に接続され、低段駆動機構14の動きに連動して回転軸3と平行に移動する。すると、第1ロッド33aと第2ロッド33bとに取り付けられた第1低段スライドバルブ13aと第2低段スライドバルブ13bとが同時に摺動する。
ここで、第1ロッド33aと第2ロッド33bの長さを比較すると、第1ロッド33aは、第2ロッド33bより長い長さで構成されている。すると、第1低段スライドバルブ13aと第2低段スライドバルブ13bとは、回転軸3と平行な方向の位置関係において異なる位置に配置される。すなわち、第1低段スライドバルブ13aは、第2低段スライドバルブ13bよりも低段圧縮部10における圧縮工程(時間、又は、回転軸3の軸方向の長さ)が短くなるように、第1圧縮室15aの低圧ガスの第1吸入口10aと第1低段スライドバルブ13aとの距離が、第2圧縮室15bの低圧ガスの第2吸入口10bと第2低段スライドバルブ13bとの距離よりも短くなる位置に配置される。より詳しくは、第1低段スライドバルブ13aの第1開口34aと第1吸入口10aとの距離が第2低段スライドバルブ13bの第2開口34bと第2吸入口10bとの距離よりも短くなるように配置されている。
低段圧縮部10の第1圧縮室15aは、回転軸3の軸方向と垂直な径方向において、高段圧縮部20の高段圧縮室25と同一方向に配置されているので、高段圧縮室25側の第1圧縮室15aの圧縮工程が、対向する第2圧縮室15bの圧縮工程よりも短くなるように構成されている。
<二段シングルスクリュー圧縮機100の動作>
次に実施の形態1に係る二段シングルスクリュー圧縮機100の動作について説明する。
二段シングルスクリュー圧縮機100は、熱交換器としての凝縮器と蒸発器と、それらの熱交換器の間に配置した膨張弁とを閉ループで配管接続した冷媒回路に用いられる。
二段シングルスクリュー圧縮機100を駆動する電動機部2は、インバータ回路から起動信号を受けて起動する。
すると、蒸発器を介してケーシング100aの外部から供給される低圧のガス冷媒は、図1に示すように低段圧縮部10の一対の圧縮室である第1圧縮室15aと、第2圧縮室15bとに第1吸入口10aと第2吸入口10bとからそれぞれ供給される。
第1圧縮室15aと第2圧縮室15bへの低圧ガス冷媒の吸入は、同一のタイミングで完了し、各々の圧縮室には、ほぼ同一質量のガス冷媒が吸入される。吸入完了後は、低段スクリューロータ11の回転とともに各圧縮室の容積が減じられ、内圧が高められてゆく。
第1圧縮室15aと第2圧縮室15bのガス冷媒を各圧縮室から吐出させるタイミングは、各々の圧縮室に設けた低段スライドバルブ13を回転軸3の軸方向の位置を変化させることで調整する。低段スライドバルブ13は、専用の低段駆動機構14によって、複数段階の位置に調整される。なお、無断階に位置調整できる駆動装置でも良く、複数段階に限定されるものではない。
実施の形態1に係る第1低段スライドバルブ13aと第2低段スライドバルブ13bとは、回転軸3の軸方向において位置が異なり、第1圧縮室15aの圧縮工程が、対向する第2圧縮室15bの圧縮工程よりも短くなるように構成されている。
すなわち、圧縮室内のガス冷媒は、第2圧縮室15bよりも第1圧縮室15aの方が先に圧縮室から吐出される構成となっている。
圧縮室からガス冷媒が吐出する際には、ガス冷媒が低段スライドバルブの開口部34を通って流出する。
低段圧縮部10の一対の第1圧縮室15aと第2圧縮室15bから吐出された中間圧力のガス冷媒は、図1に示すように高段圧縮部20内に吸い込まれ、集約される。高段圧縮部20はモノゲートロータ方式であり、一つの高段圧縮室25内に吸入圧力より高い圧力の中間圧力のガス冷媒が吸入される。
高段圧縮室25内の冷媒は、高段スクリューロータ21の回転とともに容積を減じられて圧縮され、内圧がする。そして、高圧のガス冷媒となって高段スライドバルブ23の開口部34から吐出する。
吐出した高圧のガス冷媒は凝縮器に流入する。
二段シングルスクリュー圧縮機100の運転中は、スライドバルブ13、23の位置の調整を行う。スライドバルブ13、23の位置の調整は、例えば、制御装置(図示しない)が低段圧縮部10と高段圧縮部20の各吸入圧力と各吐出圧力ならびに電動機部2の回転周波数を検出し、その検出値から最適な内部容積比を演算する。このとき、位置検出手段によって現在のスライドバルブ13、23の位置を求め、演算した最適な内部容積比との差分を縮小するようスライドバルブ13、23の位置を駆動機構によって調整し、エネルギー効率を高めるものである。
<低段圧縮部10の第1圧縮室15aと第2圧縮室15bの圧力の推移>
図5は、従来の二段シングルスクリュー圧縮機に係る低段圧縮部の第1圧縮室と第2圧縮室の圧力推移を示す説明図である。
図6は、実施の形態1に係る二段シングルスクリュー圧縮機100の低段圧縮部10における第1圧縮室15aと第2圧縮室15bの圧力推移を示す説明図である。
図5及び図6において縦軸は、第1圧縮室15aと第2圧縮室15bの内圧を示し、横軸は、圧縮工程の時間、又は、圧縮工程を行う回転軸3の軸方向長さを示している。
二段シングルスクリュー圧縮機100の高段圧縮室25は、上記のように回転軸3の軸方向と垂直な径方向において、低段圧縮部10の第1圧縮室15aと同一方向に配置されている。
低段圧縮部10にツインゲートロータ方式、高段圧縮部20にモノゲートロータ方式を採用した二段シングルスクリュー圧縮機100では、高段圧縮部20で、高段圧縮室25のガス圧が回転軸3に対して一方向側から作用する。すなわち、高段圧縮部20では、高段圧縮室25が回転軸3の一方側に配置され高段圧縮室25内のガス圧が吐出圧力まで高められるのに対し、回転軸3に対して高段圧縮室25の反対側はガス圧が中間圧力の雰囲気のため、これらの差圧が回転軸3に作用する。すると、高段圧縮部20では、この差圧によるガス荷重によって、回転軸3が高段圧縮室25の反対側へたわみ、撓み量が大きくなる。
また、二段シングルスクリュー圧縮機100の回転軸長は、スクリューロータを直列に配置するため、単段機の回転軸長より長くなる。すると、ガス荷重に対する撓み量は、単段機より大きくなる。このため、回転軸3の撓み量はさらに拡大する。さらに、R410Aのよう飽和圧力の高い冷媒を使用する場合にはガス荷重は大きく、回転軸3のたわみ変形を拡大させる。
高段圧縮部20で回転軸3がたわむと、低段圧縮部10においても回転軸3にたわみが発生し、低段圧縮部10の一方の第1圧縮室15a(回転軸3の円周方向で高段圧縮室25側)では、低段スクリューロータ11とケーシング100aとの間の内部隙間が拡大する。また、低段圧縮部10の他方の第2圧縮室15b(回転軸3の円周方向で高段圧縮室25に対向する側)では低段スクリューロータ11とケーシング100aとの間の内部隙間が縮小する。
すると、低段圧縮部10の一対の圧縮室(第1圧縮室15aと第2圧縮室15b)では内部隙間が不均一になるため、各圧縮室の内圧の推移は異なることとなる。すなわち、低段スクリューロータ11とケーシング100aとの間の内部隙間が拡大した第1圧縮室15aは、第1圧縮室15aの圧縮工程中の内部漏洩量が増加するため、低段スクリューロータ11とケーシング100aとの間の隙間が縮小した第2圧縮室15bよりも内圧が上昇する。
従来は、第1圧縮室15aと第2圧縮室15bに設けられた一対の第1低段スライドバルブ13aと第2低段スライドバルブ13bが開くタイミングは同一である。したがって、図5に示すように圧縮室内圧力Pの圧縮過程における推移が第1圧縮室15aと第2圧縮室15bとで不均一となり、二段シングルスクリュー圧縮機100の運転効率が低下する。
また、第1圧縮室15aでは内圧が上昇しやすいため、図5に示すように設定吐出圧力を超える過圧縮領域が発生し、無駄なエネルギーを消費することとなる。
実施の形態1に係る二段シングルスクリュー圧縮機100では、第1低段スライドバルブ13aの第1ロッド33aは、第2低段スライドバルブ13bの第2ロッド33bより長い長さで構成されている。すなわち、第1低段スライドバルブ13aは、第2低段スライドバルブ13bよりも低段圧縮部10における圧縮工程(時間、又は、軸方向の長さ)が短くなるように、第1圧縮室15aの低圧ガスの第1吸入口10aと第1低段スライドバルブ13aとの距離が、第2圧縮室15bの低圧ガスの第2吸入口10bと第2低段スライドバルブ13bとの距離よりも短くなる位置に配置される。より詳しくは、第1低段スライドバルブ13aの第1開口34aと第1吸入口10aとの距離が第2低段スライドバルブ13bの第2開口34bと第2吸入口10bとの距離よりも短くなるように配置されている。
よって、図6に示すように第1圧縮室15aの方が第2圧縮室15bよりも早く低段スライドバルブ13が開くため圧縮室内圧力Pが過度に上昇することがなくなり、設定吐出圧力に対して均等にガス冷媒を圧縮することが可能となる。
すなわち、各圧縮室内の内部隙間の不均一化が発生しても、高効率な運転が可能な二段シングルスクリュー圧縮機100を実現することができる。
また、実施の形態1では、第1低段スライドバルブ13aと第2低段スライドバルブ13bとで同一形状のものを使用するため、同一の型や加工方法で製造することが可能で製造コストを削減することができる。
<実施の形態1に係るスクリュー圧縮機の効果>
実施の形態1に係るスクリュー圧縮機は、ガスを圧縮する低段圧縮部10と、低段圧縮部10で圧縮されたガスをさらに圧縮する高段圧縮部20と、を有するケーシング100aと、低段圧縮部10と高段圧縮部20とを貫通し、ケーシング100a内で回転可能に配置された回転軸3と、低段圧縮部10内の回転軸3に取り付けられ、複数のスクリュー溝11aが外周面に形成された低段スクリューロータ11と、低段スクリューロータ11のスクリュー溝11aに噛み合う歯部が形成され、低段スクリューロータ11のスクリュー溝11aとケーシング100aとの間で一対の低段圧縮室15を形成する一対の低段ゲートロータ12と、一対の低段圧縮室15に配置され、回転軸3の軸方向に移動することで低段圧縮部10からガスが吐出するタイミングを調整する一対の低段スライドバルブ13と、を有し、一対の低段スライドバルブ13は、回転軸3の軸方向においてそれぞれ異なる位置に配置されるため、各低段圧縮室15内に内部隙間の不均一化が発生しても、高効率な運転が可能な二段シングルスクリュー圧縮機100を実現することができる。
また、上記スクリュー圧縮機は、高段圧縮室25内の回転軸3に取り付けられ、複数のスクリュー溝21aが外周面に形成された高段スクリューロータ21と、高段スクリューロータ21のスクリュー溝21aに噛み合う歯部が形成され、高段スクリューロータ21のスクリュー溝21aとケーシング100aとの間で1つの高段圧縮室25を形成する1つの高段ゲートロータ22と、を有し、高段圧縮室25は、回転軸3の軸方向に垂直な径方向において、一対の低段圧縮室15の一方の第1圧縮室15aと同一方向に配置された構成のため、高段圧縮室25によるガス圧により各低段圧縮室15内に内部隙間の不均一化が発生しても、高効率な運転が可能な二段シングルスクリュー圧縮機100を実現することができる。
また、上記スクリュー圧縮機において、低段圧縮室15は、第1圧縮室15aと、第1圧縮室15aに対して回転軸3を中心に対向して配置された第2圧縮室15bと、を有し、一対の低段スライドバルブ13は、第1圧縮室15aに配置された第1低段スライドバルブ13aと第2圧縮室15bに配置された第2低段スライドバルブ13bとにより構成され、第1圧縮室15aと第2圧縮室15bの各圧縮工程において、第1低段スライドバルブ13aは、第2低段スライドバルブ13bよりも早いタイミングで第1圧縮室15a内のガスを吐出させ、第1圧縮室15aの圧縮工程を第2圧縮室15bの圧縮工程よりも短縮させる構成のため、第1圧縮室15a内の圧縮室内圧力Pが過度に上昇することがなくなり、設定吐出圧力に対して均等にガス冷媒を圧縮することが可能となる。
また、上記スクリュー圧縮機は、第1圧縮室15aにガスが供給される第1吸入口10aが開口し、第2圧縮室15bにはガスが供給される第2吸入口10bが開口し、第1低段スライドバルブ13aは、第1圧縮室15a内のガスを吐出させる第1開口34aを有し、第2低段スライドバルブ13bは、第2圧縮室15b内のガスを吐出させる第2開口34bを有し、第1吸入口10aと第1開口34aとの距離は、第2吸入口10bと第2開口34bとの距離よりも短く構成されたので、第1圧縮室15a内の圧縮室内圧力Pが過度に上昇することがなくなり、設定吐出圧力に対して均等にガス冷媒を圧縮することが可能となる。
また、上記スクリュー圧縮機は、第1低段スライドバルブ13aと第2低段スライドバルブ13bとを駆動する低段駆動機構14を備え、第1低段スライドバルブ13aは、低段駆動機構14に第1ロッド33aを介して接続され、第2低段スライドバルブ13bは、低段駆動機構14に第2ロッド33bを介して接続され、第1ロッド33aの軸方向の長さは、第2ロッド33bの軸方向の長さよりも長く構成されているため、第1圧縮室15a内の圧縮室内圧力Pが過度に上昇することがなくなり、設定吐出圧力に対して均等にガス冷媒を圧縮することが可能となる。
実施の形態2.
実施の形態2に係る二段シングルスクリュー圧縮機100では、低段スライドバルブ13の構造、及び、各ロッド33の長さが実施の形態1と異なるため、この点を主に説明する。
図7は、実施の形態2に係る低段スライドバルブ213の斜視図である。
実施の形態2では、低段圧縮部10の第1圧縮室15aと第2圧縮室15bに配置された第1低段スライドバルブ213a及び第2低段スライドバルブ213bの形状が実施の形態1に係る低段スライドバルブ13と異なる。
具体的には、図7に示す第1低段スライドバルブ213a及び第2低段スライドバルブ213bにおいて、バルブ本体30とガイド部31との最大距離W1の寸法が異なって構成されている。バルブ本体30の各寸法は、実施の形態1に係る低段スライドバルブ13と変更がない。
また、図7に示す第1低段スライドバルブ213a及び第2低段スライドバルブ213bの全長L、及び、バルブ本体30の傾斜部30aの高さHと幅Wについては同一寸法である。
よって、最大距離W1を変更するとガイド部31の幅W2が変更され、開口部34の幅寸法が変更される。
実施の形態2に係る低段スライドバルブでは、最大距離W1について、第1圧縮室15aに設けた第1低段スライドバルブ213aを第2圧縮室15bに設けた第2低段スライドバルブ213bよりも長く設定している。
すると、開口部34の幅寸法は、第1低段スライドバルブ213aの第1開口34aが第2低段スライドバルブ213bの第2開口34bよりも大きくなる。
なお、実施の形態1に係る低段スライドバルブ13と同様に低段スライドバルブ213の一端には、ロッド33を備えるが、第1低段スライドバルブ213a及び第2低段スライドバルブ213bとで各ロッド33の長さは同一寸法となっている。
第1低段スライドバルブ213aの第1開口34aの幅寸法は、第2低段スライドバルブ213bの第2開口34bの幅寸法よりも大きくなるため、第1圧縮室15aの方が第2圧縮室15bよりも早く低段スライドバルブ213が開く構成となる。すなわち、回転軸3の軸方向における第1圧縮室15aの圧縮工程の時間、又は、圧縮工程の軸方向の長さが第2圧縮室15bの圧縮工程の時間、又は、圧縮工程の軸方向の長さよりも短くなる。
より詳しくは、第1低段スライドバルブ213aの第1開口34aと第1吸入口10aとの距離が第2低段スライドバルブ213bの第2開口34bと第2吸入口10bとの距離よりも短くなるように構成されている。
<実施の形態2に係るスクリュー圧縮機の効果>
実施の形態2に係るスクリュー圧縮機において、第1低段スライドバルブ213aは、第1圧縮室内のガスを吐出させる第1開口34aを有し、第2低段スライドバルブ213bは、第2圧縮室15b内のガスを吐出させる第2開口34bを有し、第1開口34aの回転軸3の軸方向の長さは、第2開口34bの回転軸3の軸方向の長さよりも長く構成されている。すなわち、第1低段スライドバルブ13aの第1開口34aは、第2低段スライドバルブ13bの第2開口34bよりも低段圧縮部10における圧縮工程の軸方向の長さが短くなるように、低圧ガスの第1吸入口10aとの距離が短くなる位置まで開口している。
すると、第1圧縮室15aに配置された第1低段スライドバルブ13aは、第2圧縮室15bに配置された第2低段スライドバルブ13bよりも早いタイミングで第1圧縮室15a内のガスを吐出させる。
よって、図6に示すように第1圧縮室15a内の圧縮室内圧力Pが過度に上昇することがなくなり、設定吐出圧力に対して均等にガス冷媒を圧縮することが可能となる。
すなわち、各圧縮室内の内部隙間の不均一化が発生しても、高効率な運転が可能な二段シングルスクリュー圧縮機100を実現することができる。
1 圧縮部、2 電動機部、3 回転軸、10 低段圧縮部、10a 第1吸入口、10b 第2吸入口、11 低段スクリューロータ、11a スクリュー溝、12 低段ゲートロータ、12a 第1低段ゲートロータ、12b 第2低段ゲートロータ、13 低段スライドバルブ、13a 第1低段スライドバルブ、13b 第2低段スライドバルブ、14 低段駆動機構、15 低段圧縮室、15a 第1圧縮室、15b 第2圧縮室、17 連結板、20 高段圧縮部、21 高段スクリューロータ、21a スクリュー溝、22 高段ゲートロータ、23 高段スライドバルブ、24 高段駆動機構、25 高段圧縮室、30 バルブ本体、30a 傾斜部、31 ガイド部、32 連結部、33 ロッド、33a 第1ロッド、33b 第2ロッド、34 開口部、34a 第1開口、34b 第2開口、40 内周面、41 外周面、100 二段シングルスクリュー圧縮機、100a ケーシング、100b 内壁、100c 凹部、213 低段スライドバルブ、213a 第1低段スライドバルブ、213b 第2低段スライドバルブ。
本発明に係るスクリュー圧縮機は、ガスを圧縮する低段圧縮部と、低段圧縮部で圧縮されたガスをさらに圧縮する高段圧縮部と、を有するケーシングと、低段圧縮部と高段圧縮部とを貫通し、ケーシング内で回転可能に配置された回転軸と、低段圧縮部内の回転軸に取り付けられ、複数のスクリュー溝が外周面に形成された低段スクリューロータと、低段スクリューロータのスクリュー溝に噛み合う歯部が形成され、低段スクリューロータのスクリュー溝とケーシングとの間で一対の低段圧縮室を形成する一対の低段ゲートロータと、一対の低段圧縮室に配置され、回転軸の軸方向に移動することで低段圧縮室からガスが吐出するタイミングを調整する一対の低段スライドバルブと、高段圧縮部内の回転軸に取り付けられ、複数のスクリュー溝が外周面に形成された高段スクリューロータと、高段スクリューロータのスクリュー溝に噛み合う歯部が形成され、高段スクリューロータのスクリュー溝とケーシングとの間で1つの高段圧縮室を形成する1つの高段ゲートロータと、を有し、低段圧縮室は、第1圧縮室と、第1圧縮室に対して回転軸を中心に対向して配置された第2圧縮室と、を有し、高段圧縮室は、第1圧縮室と回転軸の軸方向に垂直な径方向において同一方向に配置されており、一対の低段スライドバルブは、第1圧縮室に配置された第1低段スライドバルブと第2圧縮室に配置された第2低段スライドバルブとにより構成され、第1圧縮室と第2圧縮室の各圧縮工程において、第1低段スライドバルブは、第2低段スライドバルブよりも早いタイミングで第1圧縮室内のガスを吐出させ、第1圧縮室の圧縮工程を第2圧縮室の圧縮工程よりも短縮させるものである。

Claims (7)

  1. ガスを圧縮する低段圧縮部と、該低段圧縮部で圧縮されたガスをさらに圧縮する高段圧縮部と、を有するケーシングと、
    前記低段圧縮部と前記高段圧縮部とを貫通し、前記ケーシング内で回転可能に配置された回転軸と、
    前記低段圧縮部内の前記回転軸に取り付けられ、複数のスクリュー溝が外周面に形成された低段スクリューロータと、
    該低段スクリューロータのスクリュー溝に噛み合う歯部が形成され、前記低段スクリューロータのスクリュー溝と前記ケーシングとの間で一対の低段圧縮室を形成する一対の低段ゲートロータと、
    前記一対の低段圧縮室に配置され、前記回転軸の軸方向に移動することで前記低段圧縮室からガスが吐出するタイミングを調整する一対の低段スライドバルブと、
    を有し、
    前記一対の低段スライドバルブは、前記回転軸の軸方向においてそれぞれ異なる位置に配置されるスクリュー圧縮機。
  2. 前記高段圧縮部内の前記回転軸に取り付けられ、複数のスクリュー溝が外周面に形成された高段スクリューロータと、
    該高段スクリューロータのスクリュー溝に噛み合う歯部が形成され、前記高段スクリューロータのスクリュー溝と前記ケーシングとの間で1つの高段圧縮室を形成する1つの高段ゲートロータと、
    を有し、
    前記高段圧縮室は、前記一対の低段圧縮室の一方の第1圧縮室と前記回転軸の軸方向に垂直な径方向において同一方向に配置された請求項1に記載のスクリュー圧縮機。
  3. 前記低段圧縮室は、前記第1圧縮室と、該第1圧縮室に対して前記回転軸を中心に対向して配置された第2圧縮室と、を有し、
    前記一対の低段スライドバルブは、前記第1圧縮室に配置された第1低段スライドバルブと前記第2圧縮室に配置された第2低段スライドバルブとにより構成され、
    前記第1圧縮室と前記第2圧縮室の各圧縮工程において、前記第1低段スライドバルブは、前記第2低段スライドバルブよりも早いタイミングで前記第1圧縮室内のガスを吐出させ、前記第1圧縮室の圧縮工程を前記第2圧縮室の圧縮工程よりも短縮させる請求項2に記載のスクリュー圧縮機。
  4. 前記第1圧縮室にはガスが供給される第1吸入口が開口し、前記第2圧縮室にはガスが供給される第2吸入口が開口し、
    前記第1低段スライドバルブは、前記第1圧縮室内のガスを吐出させる第1開口を有し、
    前記第2低段スライドバルブは、前記第2圧縮室内のガスを吐出させる第2開口を有し、
    前記第1吸入口と前記第1開口との間の長さは、前記第2吸入口と前記第2開口との間の長さよりも短く構成された請求項3に記載のスクリュー圧縮機。
  5. 前記第1低段スライドバルブと前記第2低段スライドバルブとを駆動する駆動機構を備え、
    前記第1低段スライドバルブは、前記駆動機構に第1ロッドを介して接続され、
    前記第2低段スライドバルブは、前記駆動機構に第2ロッドを介して接続され、
    前記第1ロッドの前記軸方向の長さは、前記第2ロッドの前記軸方向の長さよりも長く構成された請求項3または4に記載のスクリュー圧縮機。
  6. 前記第1低段スライドバルブと前記第2低段スライドバルブとを駆動する駆動機構を備え、
    前記第1低段スライドバルブは、前記第1圧縮室内のガスを吐出させる第1開口を有し、
    前記第2低段スライドバルブは、前記第2圧縮室内のガスを吐出させる第2開口を有し、
    前記第1開口の前記軸方向の長さは、前記第2開口の前記軸方向の長さよりも長く構成された請求項3に記載のスクリュー圧縮機。
  7. 請求項1〜6のいずれか1項に記載のスクリュー圧縮機を備えた冷凍サイクル装置。
JP2017520118A 2015-05-26 2015-05-26 スクリュー圧縮機、及びそのスクリュー圧縮機を備えた冷凍サイクル装置 Active JP6430003B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065027 WO2016189648A1 (ja) 2015-05-26 2015-05-26 スクリュー圧縮機、及びそのスクリュー圧縮機を備えた冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2016189648A1 true JPWO2016189648A1 (ja) 2017-12-21
JP6430003B2 JP6430003B2 (ja) 2018-11-28

Family

ID=57392635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017520118A Active JP6430003B2 (ja) 2015-05-26 2015-05-26 スクリュー圧縮機、及びそのスクリュー圧縮機を備えた冷凍サイクル装置

Country Status (4)

Country Link
JP (1) JP6430003B2 (ja)
CN (1) CN107614879B (ja)
TW (1) TWI626380B (ja)
WO (1) WO2016189648A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102615A1 (ja) * 2017-11-27 2019-05-31 三菱電機株式会社 シングルスクリュー圧縮機及びそのシングルスクリュー圧縮機を備えた冷凍サイクル装置
JP7044973B2 (ja) * 2018-07-12 2022-03-31 ダイキン工業株式会社 スクリュー圧縮機
WO2020026333A1 (ja) * 2018-07-31 2020-02-06 三菱電機株式会社 スクリュー圧縮機及び冷凍サイクル装置
JP6989811B2 (ja) * 2020-03-31 2022-01-12 ダイキン工業株式会社 スクリュー圧縮機及び冷凍装置
WO2021240605A1 (ja) * 2020-05-25 2021-12-02 三菱電機株式会社 二段シングルスクリュー圧縮機及び冷凍空調装置
WO2024075176A1 (ja) * 2022-10-04 2024-04-11 三菱電機株式会社 スクリュー圧縮機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932689A (ja) * 1982-05-13 1984-02-22 ベルナ−ド ツイメルン スクリユ−・ピニオン式容積形機械
JPS61277886A (ja) * 1985-06-03 1986-12-08 ヴイルタ−・マニユフアクチヤリング・コ−ポレ−シヨン 二重すべり弁を有する気体圧縮機
JPS6258079A (ja) * 1985-09-09 1987-03-13 Daikin Ind Ltd スクリユ−圧縮機の容量制御機構
JP2010255600A (ja) * 2009-04-28 2010-11-11 Mitsubishi Electric Corp 二段スクリュー圧縮機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120733B2 (ja) * 1999-03-10 2008-07-16 三菱電機株式会社 二段スクリュー圧縮機
US7891955B2 (en) * 2007-02-22 2011-02-22 Vilter Manufacturing Llc Compressor having a dual slide valve assembly
US9057373B2 (en) * 2011-11-22 2015-06-16 Vilter Manufacturing Llc Single screw compressor with high output

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932689A (ja) * 1982-05-13 1984-02-22 ベルナ−ド ツイメルン スクリユ−・ピニオン式容積形機械
JPS61277886A (ja) * 1985-06-03 1986-12-08 ヴイルタ−・マニユフアクチヤリング・コ−ポレ−シヨン 二重すべり弁を有する気体圧縮機
JPS6258079A (ja) * 1985-09-09 1987-03-13 Daikin Ind Ltd スクリユ−圧縮機の容量制御機構
JP2010255600A (ja) * 2009-04-28 2010-11-11 Mitsubishi Electric Corp 二段スクリュー圧縮機

Also Published As

Publication number Publication date
TWI626380B (zh) 2018-06-11
CN107614879A (zh) 2018-01-19
TW201641822A (zh) 2016-12-01
WO2016189648A1 (ja) 2016-12-01
JP6430003B2 (ja) 2018-11-28
CN107614879B (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
JP6430003B2 (ja) スクリュー圧縮機、及びそのスクリュー圧縮機を備えた冷凍サイクル装置
JP5826692B2 (ja) 気体圧縮機
US7381038B2 (en) Capacity-changing unit of orbiting vane compressor
JP2008520902A (ja) 容量可変型ロータリ圧縮機
JP2007170253A (ja) スクロール圧縮機
WO2017149659A1 (ja) スクリュー圧縮機および冷凍サイクル装置
JP6661916B2 (ja) スクロール圧縮機および熱サイクルシステム
JP2008133820A (ja) ロータリ圧縮機及びその制御方法、並びにこれを利用した空気調和機
JPH04166694A (ja) 多気筒型回転圧縮機
KR20140136795A (ko) 스크롤 압축기
CN211116580U (zh) 压缩机涡盘结构及应用该结构的半封闭式涡旋压缩机
JP6136499B2 (ja) スクリュー圧縮機
JP2006177225A (ja) ロータリ圧縮機
WO2017094057A1 (ja) シングルスクリュー圧縮機および冷凍サイクル装置
JP2011032957A (ja) スクリュー圧縮機
JP2013127203A (ja) スクリュー圧縮機
EP3832138B1 (en) Screw compressor
JP2022075840A (ja) スクリュー圧縮機
EP3683445B1 (en) Screw compressor
JP2013194549A (ja) 気体圧縮機
WO2016147467A1 (ja) スクリュー圧縮機
JP2011132830A (ja) シングルスクリュー圧縮機
WO2020026333A1 (ja) スクリュー圧縮機及び冷凍サイクル装置
US7651323B2 (en) Smart control valve for compressors
WO2017175298A1 (ja) スクリュー圧縮機および冷凍サイクル装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181030

R150 Certificate of patent or registration of utility model

Ref document number: 6430003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250