JPWO2016163229A1 - Method and apparatus for measuring electrical characteristics of electronic parts - Google Patents

Method and apparatus for measuring electrical characteristics of electronic parts Download PDF

Info

Publication number
JPWO2016163229A1
JPWO2016163229A1 JP2017511527A JP2017511527A JPWO2016163229A1 JP WO2016163229 A1 JPWO2016163229 A1 JP WO2016163229A1 JP 2017511527 A JP2017511527 A JP 2017511527A JP 2017511527 A JP2017511527 A JP 2017511527A JP WO2016163229 A1 JPWO2016163229 A1 JP WO2016163229A1
Authority
JP
Japan
Prior art keywords
electronic component
measurement
measured
measuring
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017511527A
Other languages
Japanese (ja)
Other versions
JP6436321B2 (en
Inventor
慎介 岡野
慎介 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2016163229A1 publication Critical patent/JPWO2016163229A1/en
Application granted granted Critical
Publication of JP6436321B2 publication Critical patent/JP6436321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

高い測定精度を備えた電子部品の電気的特性測定方法を提供する。予め、測定端子を外部電極に当接させた際の荷重の大きさと、電気的特性の測定誤差量との相関式を作成するステップと、電子部品の外部電極に測定端子を当接させて、測定器により電子部品に流れる電気信号を検出し、電子部品の電気的特性を測定して測定電気的特性を得ると同時に、その当接における荷重の大きさを荷重センサにより測定して荷重値を得るステップと、相関式に基づき、荷重値の大きさによって、測定電気的特性を補正するステップと、を備える。Provided is a method for measuring electrical characteristics of an electronic component having high measurement accuracy. In advance, a step of creating a correlation equation between the magnitude of the load when the measurement terminal is brought into contact with the external electrode and the measurement error amount of the electrical characteristics, and the measurement terminal is brought into contact with the external electrode of the electronic component, An electrical signal flowing through the electronic component is detected by a measuring instrument, and the electrical characteristics of the electronic component are measured to obtain the measured electrical characteristics.At the same time, the load at the contact is measured by a load sensor to determine the load value. And a step of correcting the measured electrical characteristic based on the magnitude of the load value based on the correlation equation.

Description

本発明は、電子部品の電気的特性測定方法に関し、さらに詳しくは、高い測定精度を備えた電子部品の電気的特性測定方法に関する。   The present invention relates to a method for measuring electrical characteristics of electronic components, and more particularly to a method for measuring electrical characteristics of electronic components having high measurement accuracy.

また、本発明は、上記電子部品の電気的特性測定方法に使用するのに適した電気的特性測定装置に関し、さらに詳しくは、高い測定精度を備えた電気的特性測定装置に関する。   The present invention also relates to an electrical property measuring apparatus suitable for use in the electrical property measuring method of the electronic component, and more particularly to an electrical property measuring apparatus having high measurement accuracy.

電子機器の高機能化、高精度化にともない、電子機器に使用される電子部品にも、高い特性精度が求められている。特に、医療用や車載用の電子機器に使用される電子部品には、安全性の観点からも、より高い特性精度が求められている。たとえば、そのような高い特性精度が求められる用途においては、特性精度のバラツキの大きさを、一般の民生用途の1/2から1/10、もしくはそれ以下に収めるように求められる場合もある。   With higher functionality and higher precision of electronic devices, high characteristic accuracy is also required for electronic components used in electronic devices. In particular, electronic components used in medical and in-vehicle electronic devices are required to have higher characteristic accuracy from the viewpoint of safety. For example, in applications that require such high characteristic accuracy, there may be cases where the variation in characteristic accuracy is required to be within a range of 1/2 to 1/10 or less than that of general consumer applications.

そのような、電子部品に対する高い特性精度の要求に対応するために、電子部品の電気的特性測定方法や電気的特性測定装置においても、高い測定精度が求められている。すなわち、高い測定精度で電子部品の電気的特性を測定し、目標とする電気的特性値から外れた電子部品を、規格外として使用しないようにする必要がある。   In order to meet such demands for high characteristic accuracy for electronic components, high measurement accuracy is also required in methods for measuring electrical characteristics of electronic components and electrical characteristic measuring apparatuses. That is, it is necessary to measure the electrical characteristics of an electronic component with high measurement accuracy and not use an electronic component that deviates from the target electrical characteristic value as being out of specification.

電子部品の電気的特性の測定において、測定誤差を発生させる大きな原因の1つとして、基準となる温度(その電気的特性の測定に求められている特定の温度;以下において「基準温度」という)と、測定時の電子部品の実際の温度(以下において「測定温度」という)とのずれがある。すなわち、たとえば、基準温度である25℃で電気的特性を測定しなければならないにもかかわらず、測定温度が25℃からずれてしまうと、測定された測定電気的特性は、実際にその電子部品が備えている25℃での電気的特性からずれてしまう。しかしながら、実際に電子部品の電気的特性を測定する工場の製造ラインなどにおいては、気候、空調の状態、ドアの開け閉め、作業者の人数などにより影響を受けるため、測定温度を基準温度と同一の温度に保つことは難しい。   One of the major causes of measurement errors in the measurement of electrical characteristics of electronic components is a reference temperature (a specific temperature required for measuring the electrical characteristics; hereinafter referred to as “reference temperature”). And the actual temperature of the electronic component at the time of measurement (hereinafter referred to as “measurement temperature”). That is, for example, when the measured temperature deviates from 25 ° C. even though the electrical property must be measured at the reference temperature of 25 ° C., the measured measured electrical property is actually the electronic component. Deviates from the electrical characteristics at 25 ° C. of However, in the production line of factories that actually measure the electrical characteristics of electronic components, the measurement temperature is the same as the reference temperature because it is affected by the climate, air conditioning conditions, door opening and closing, the number of workers, etc. It is difficult to keep at the temperature.

特に、NTCサーミスタやPTCサーミスタなどのサーミスタは、温度により抵抗値が大きく変化する電子部品であるため、サーミスタの抵抗値測定においては、基準温度と測定温度とのずれが原因により発生する測定誤差が大きな問題となる。   In particular, thermistors such as NTC thermistor and PTC thermistor are electronic components whose resistance value varies greatly depending on the temperature. Therefore, in measuring the resistance value of the thermistor, there is a measurement error caused by the difference between the reference temperature and the measured temperature. It becomes a big problem.

この問題を解決した抵抗値測定方法が、特許文献1(特開2007−240158号公報)に開示されている。   A resistance value measuring method that solves this problem is disclosed in Japanese Patent Application Laid-Open No. 2007-240158.

特許文献1に開示された抵抗値測定方法は、次のステップでサーミスタの抵抗値を測定している。   In the resistance value measuring method disclosed in Patent Document 1, the resistance value of the thermistor is measured in the following steps.

まず、要求された電気的特性を厳格に備えた、基準となる基準サーミスタ(基準ワーク)を選定する。この基準サーミスタの選定は、難しいものではない。すなわち、たとえば、25℃で抵抗値を測定する必要がある場合には、測定温度を厳格に25℃に保ったうえで、複数のサーミスタの抵抗値を測定し、求められた抵抗値を厳格に備えたサーミスタを基準サーミスタとして選定すれば良い。基準サーミスタは複数個を選定しても良い。   First, a reference thermistor (reference work) that is strictly equipped with the required electrical characteristics is selected. The selection of this standard thermistor is not difficult. That is, for example, when it is necessary to measure the resistance value at 25 ° C., the resistance value of a plurality of thermistors is measured after the measurement temperature is strictly maintained at 25 ° C., and the obtained resistance value is strictly determined. The provided thermistor may be selected as the reference thermistor. A plurality of reference thermistors may be selected.

次に、抵抗値を測定する被測定サーミスタ(被測定ワーク)を用意し、測定端子を被測定サーミスタの外部電極に当接し、被測定サーミスタの抵抗値を測定して測定抵抗値Rを得る。このとき、同時に、被測定サーミスタの抵抗値を測定した場所の極めて近傍において、基準サーミスタの抵抗値を測定して測定抵抗値Rを得る。Then, the resistance was prepared under measurement thermistor (measured work) for measuring, the measuring terminal in contact with the external electrodes of the measured thermistor to obtain a measured resistance value R 1 by measuring the resistance value of the measured thermistor . At the same time, the resistance value of the reference thermistor is measured to obtain the measured resistance value R 0 in the very vicinity of the place where the resistance value of the thermistor to be measured is measured.

次に、下の式1により、基準サーミスタの測定抵抗値Rに対する、被測定サーミスタの測定抵抗値Rの偏差(測定値ずれ率)を求める。
偏差(%)=(R−R)/R×100・・・(式1)
次に、求められた偏差から、被測定サーミスタの良品/不良品の判断を行う。具体的には、求められた偏差が、予め定められた許容範囲内の場合に被測定サーミスタを良品と判断し、予め定められた許容範囲外の場合に被測定サーミスタを不良品と判断する。
Then, by equation 1 below, to the measured resistance value R 0 of the reference thermistor, a deviation of the measured resistance value R 1 of the measurement thermistor (measurement value deviation rate).
Deviation (%) = (R 1 −R 0 ) / R 0 × 100 (Equation 1)
Next, a non-defective product / defective product of the measured thermistor is determined from the obtained deviation. Specifically, the measured thermistor is determined to be a non-defective product when the obtained deviation is within a predetermined allowable range, and the measured thermistor is determined to be defective when it is outside the predetermined allowable range.

この場合において、被測定サーミスタと基準サーミスタとは、極めて近傍に配置されているため、抵抗値を測定した時点において、被測定サーミスタと基準サーミスタとは同一温度であると推定して偏差を求め、被測定サーミスタの良品/不良品の判断を行っている。   In this case, since the measured thermistor and the reference thermistor are arranged very close to each other, when the resistance value is measured, the measured thermistor and the reference thermistor are estimated to have the same temperature, and a deviation is obtained. Judgment of non-defective / defective products of the thermistor being measured.

すなわち、たとえば、基準温度が25℃である場合には、被測定サーミスタの測定温度を厳格に25℃にして抵抗値を測定することが理想である。しかしながら、上述のとおり、実際の電子部品の電気的特性の測定においては、種々の要因により、被測定サーミスタの測定温度を基準温度と同一の温度に保つことは難しい。   That is, for example, when the reference temperature is 25 ° C., it is ideal to measure the resistance value by strictly setting the measurement temperature of the measured thermistor to 25 ° C. However, as described above, in measuring the electrical characteristics of an actual electronic component, it is difficult to keep the measurement temperature of the measured thermistor at the same temperature as the reference temperature due to various factors.

そこで、特許文献1に開示された抵抗値測定方法では、被測定サーミスタと基準サーミスタとを極めて近傍に配置することにより、被測定サーミスタと基準サーミスタとは同一温度であると推定し、その上で、基準サーミスタの測定抵抗値Rに対する被測定サーミスタの測定抵抗値Rの偏差を求め、被測定サーミスタの良品/不良品の判断を行っている。Therefore, in the resistance value measuring method disclosed in Patent Document 1, it is estimated that the measured thermistor and the reference thermistor are at the same temperature by arranging the measured thermistor and the reference thermistor very close to each other. , a deviation of the measured resistance value R 1 of the measurement thermistor for measuring the resistance value R 0 of the reference thermistor, doing good / defective determination of the measured thermistor.

すなわち、特許文献1に開示された抵抗値測定方法は、被測定サーミスタの測定温度と基準温度との差異に起因する測定誤差を極めて小さくした状態で、被測定サーミスタの良品/不良品の判断を行っている。   In other words, the resistance value measuring method disclosed in Patent Document 1 makes a determination as to whether the measured thermistor is non-defective / defective while the measurement error due to the difference between the measured temperature of the measured thermistor and the reference temperature is extremely small. Is going.

特許文献1に開示された抵抗値測定方法は、基準サーミスタを精度の高い一種の温度計として利用し、被測定サーミスタの測定温度と基準温度との差異に起因する測定誤差を極めて小さくしている。
(なお、特許文献1に開示された抵抗値測定方法は、基準サーミスタの温度と被測定サーミスタの温度を可能な限り同一にし、より精度の高い測定値ずれ率(偏差)を求めることを目的にしている。)
The resistance value measuring method disclosed in Patent Document 1 uses a reference thermistor as a kind of high-precision thermometer, and extremely reduces a measurement error due to a difference between the measured temperature of the measured thermistor and the reference temperature. .
(Note that the resistance value measuring method disclosed in Patent Document 1 aims to make the temperature of the reference thermistor and the temperature of the measured thermistor as the same as possible, and to obtain a more accurate measured value deviation rate (deviation). ing.)

特開2007−240158号公報JP 2007-240158 A 特開2002−82144号公報JP 2002-82144 A

特許文献1に開示された電気的特性測定方法(抵抗値測定方法)は、基準温度と測定温度との差異に起因する測定誤差を極めて小さくした、測定精度の高い電気的特性測定方法である。   The electrical characteristic measurement method (resistance value measurement method) disclosed in Patent Document 1 is an electrical characteristic measurement method with high measurement accuracy in which a measurement error due to a difference between a reference temperature and a measurement temperature is extremely small.

しかしながら、電子部品の電気的特性の測定において測定誤差を発生させる原因は、基準温度と測定温度のずれだけではない。   However, the cause of the measurement error in the measurement of the electrical characteristics of the electronic component is not only the difference between the reference temperature and the measurement temperature.

本発明の発明者らは、電気的特性の測定精度を高めるために、測定端子が電子部品の外部電極に当接する際の荷重のばらつきが原因で発生する測定誤差に着目し、その改善に取り組んだ。なお、荷重とは、測定端子が電子部品の外部電極に当接している時間内に計測される荷重を指す。   In order to improve the measurement accuracy of the electrical characteristics, the inventors of the present invention pay attention to the measurement error caused by the variation in the load when the measurement terminal contacts the external electrode of the electronic component, and work on the improvement. It is. In addition, a load refers to the load measured within the time when the measurement terminal is in contact with the external electrode of the electronic component.

なお、測定端子が電子部品の外部電極に当接する際の荷重の大きさのばらつきは、電気的特性が測定される電子部品の形状や寸法のばらつき、外部電極の厚み寸法のばらつき、測定時における測定のキャビィティ内での位置など、種々の要因で発生する。   Note that the variation in the magnitude of the load when the measurement terminal abuts on the external electrode of the electronic component is the variation in the shape and size of the electronic component whose electrical characteristics are measured, the variation in the thickness dimension of the external electrode, This can occur due to various factors such as the location within the measurement cavities.

このテーマに関連する技術として、特許文献2(特開2002−82144号公報)に開示された電気的特性測定方法および電気的特性測定装置(テストハンドラ)がある。   As a technique related to this theme, there is an electric characteristic measuring method and an electric characteristic measuring apparatus (test handler) disclosed in Japanese Patent Application Laid-Open No. 2002-82144.

特許文献2に開示された電気的特性測定方法および電気的特性測定装置は、測定対象の電子部品が、下面に多数の半田ボールが外部電極として形成された半導体パッケージである。以下に、特許文献2に開示された電気的特性測定方法および電気的特性測定装置の概略を説明する。   The electrical characteristic measuring method and electrical characteristic measuring apparatus disclosed in Patent Document 2 are a semiconductor package in which an electronic component to be measured has a large number of solder balls formed on its lower surface as external electrodes. Below, the outline of the electrical property measuring method and electrical property measuring device disclosed in Patent Document 2 will be described.

まず、測定装置を用意する。測定装置は、半導体パッケージの上面を真空吸着して移動させるハンドラ・アームを備えている。ハンドラ・アームには、押圧力センサが組込まれている。また、測定装置は、測定用ボードを備えている。測定用ボードには、上向きに、複数の測定端子(スプリング・プローブ)が設けられている。   First, a measuring device is prepared. The measuring apparatus includes a handler arm that moves the upper surface of the semiconductor package by vacuum suction. A pressing force sensor is incorporated in the handler arm. Further, the measuring apparatus includes a measuring board. The measurement board is provided with a plurality of measurement terminals (spring probes) facing upward.

次に、ハンドラ・アームで半導体パッケージの上面を真空吸着し、半導体パッケージを測定端子上に移動させる。   Next, the upper surface of the semiconductor package is vacuum-sucked by the handler arm, and the semiconductor package is moved onto the measurement terminal.

次に、ハンドラ・アームを降下させ、対応する半導体パッケージの半田ボールと測定端子とを接触させる。このハンドラ・アームを降下させる際に、押圧力センサで押圧力を監視し、押圧力が予め定められた基準押圧力に達した時点で、ハンドラ・アームの降下を停止させる。   Next, the handler arm is lowered to bring the corresponding solder ball of the semiconductor package into contact with the measurement terminal. When the handler arm is lowered, the pressing force is monitored by a pressing force sensor, and when the pressing force reaches a predetermined reference pressing force, the lowering of the handler arm is stopped.

基準押圧力は、次の観点により、予め定められている。まず、半田ボールと測定端子との接触圧力が小さいと、半田ボールと測定端子との接触抵抗が不安定となり、測定された電気的特性値の信頼性が担保されない虞がある。そこで、基準押圧力は、半田ボールと測定端子との接触抵抗が安定する一定以上の大きさの押圧力に設定される。しかしながら、半田ボールと測定端子との接触圧力が大きすぎると、半導体パッケージの半田ボールに接触痕などの外観不良を発生させてしまう虞がある。そこで、基準押圧力は、半田ボールと測定端子との接触抵抗が安定する一定以上の大きさの押圧力であって、かつ、半田ボールに外観不良を発生させる押圧力よりも小さい押圧力に設定される。   The reference pressing force is determined in advance from the following viewpoint. First, if the contact pressure between the solder ball and the measurement terminal is small, the contact resistance between the solder ball and the measurement terminal becomes unstable, and the reliability of the measured electrical characteristic value may not be ensured. Accordingly, the reference pressing force is set to a pressing force having a magnitude greater than a certain level at which the contact resistance between the solder ball and the measurement terminal is stabilized. However, if the contact pressure between the solder ball and the measurement terminal is too large, there is a risk of causing appearance defects such as contact marks on the solder ball of the semiconductor package. Therefore, the reference pressing force is set to a pressing force of a certain level or larger that stabilizes the contact resistance between the solder ball and the measurement terminal, and is set to a pressing force that is smaller than the pressing force that causes the solder ball to have an appearance defect. Is done.

次に、半田ボールと測定端子との接触圧力を基準押圧力に保った状態で、測定端子により半導体パッケージの電気的特性を測定する。   Next, in a state where the contact pressure between the solder ball and the measurement terminal is kept at the reference pressing force, the electrical characteristics of the semiconductor package are measured by the measurement terminal.

このような内容からなる、特許文献2に開示された電気的特性測定方法および電気的特性測定装置は、半田ボールと測定端子との接触圧力を考慮した測定精度の高いものであるが、次のような問題があった。   The electrical property measuring method and electrical property measuring device disclosed in Patent Document 2 having such a content have high measurement accuracy in consideration of the contact pressure between the solder ball and the measurement terminal. There was a problem like this.

すなわち、特許文献2に開示された電気的特性測定方法は、押圧力センサで半田ボールと測定端子との接触圧力を監視しながらハンドラ・アームを降下させ、基準押圧力に達した時点でハンドラ・アームの降下を停止させているため、ハンドラ・アームの降下を高速で行うことができず、測定に時間がかかるという問題があった。すなわち、ハンドラ・アームの降下を高速で行うと、ハンドラ・アームの降下停止を完了した時点で既に基準押圧力を超えてしまっており、半導体パッケージの半田ボールに接触痕などの外観不良を発生させてしまっている虞があるため、ハンドラ・アームの降下を高速で行うことができなかった。特許文献2に開示された電気的特性測定方法では、電気的特性の測定に時間がかかってしまい、たとえば電子部品の製造工程において電気的特性を測定する場合には、生産性が低下し、電子部品の製造コストが高くなってしまうという問題があった。   That is, the electrical characteristic measurement method disclosed in Patent Document 2 is a method in which the handler arm is lowered while monitoring the contact pressure between the solder ball and the measurement terminal with a pressing force sensor, and when the reference pressing force is reached, the handler Since the arm descent was stopped, the handler arm could not be lowered at a high speed, and there was a problem that the measurement took time. In other words, if the handler arm is lowered at a high speed, the reference pressing force has already been exceeded when the handler arm has been lowered and stopped, causing appearance defects such as contact marks on the solder balls of the semiconductor package. The handler arm could not be lowered at a high speed because there was a risk of it being trapped. In the method for measuring electrical characteristics disclosed in Patent Document 2, it takes time to measure electrical characteristics. For example, when measuring electrical characteristics in the manufacturing process of an electronic component, productivity decreases, There was a problem that the manufacturing cost of the parts would be high.

また、特許文献2に開示された電気的特性測定装置は、駆動部分であるハンドラ・アームに押圧力センサが組込まれていた。駆動部分に押圧力センサが組込まれると、構造が複雑になり、測定装置が高価になってしまうという問題があった。また、測定装置の保全作業も煩雑であり、保全コストが高くなってしまうという問題があった。このように、特許文献2に開示された電気的特性測定装置には、構造が複雑であり、高価で、保全コストも高いという問題があった。   In addition, in the electrical characteristic measuring device disclosed in Patent Document 2, a pressing force sensor is incorporated in a handler arm that is a driving part. When the pressing force sensor is incorporated in the driving portion, there is a problem that the structure becomes complicated and the measuring device becomes expensive. Further, the maintenance work of the measuring apparatus is complicated, and there is a problem that the maintenance cost becomes high. As described above, the electrical characteristic measuring device disclosed in Patent Document 2 has a problem that the structure is complicated, expensive, and maintenance cost is high.

本発明は、上述した従来技術の課題を解決するためになされたものである。その手段として、本発明の電子部品の電気的特性測定方法は、電子部品の外部電極に測定端子を当接させて、測定端子に接続された測定器により電子部品に流れる電気信号を検出し、電子部品の電気的特性を測定する電気的特性測定方法であって、予め、測定端子を外部電極に当接させた際の荷重の大きさと、電気的特性の測定誤差量との相関式を作成するステップと、電子部品の外部電極に測定端子を当接させて、測定器により電子部品に流れる電気信号を検出し、電子部品の電気的特性を測定して測定電気的特性を得ると同時に、その当接における荷重の大きさを荷重センサにより測定して荷重値を得るステップと、相関式に基づき、荷重値の大きさによって、測定電気的特性を補正するステップと、を備える。   The present invention has been made to solve the above-described problems of the prior art. As its means, the method for measuring the electrical characteristics of an electronic component according to the present invention is such that a measurement terminal is brought into contact with an external electrode of the electronic component, and an electrical signal flowing through the electronic component is detected by a measuring instrument connected to the measurement terminal This is an electrical property measurement method for measuring electrical properties of electronic components, and a correlation formula between the magnitude of the load when the measurement terminal is brought into contact with the external electrode and the measurement error amount of the electrical property is created in advance. A measurement terminal is brought into contact with an external electrode of the electronic component, an electrical signal flowing through the electronic component is detected by a measuring instrument, and an electrical characteristic of the electronic component is measured to obtain a measured electrical characteristic, Measuring the magnitude of the load in the contact with a load sensor and obtaining a load value; and correcting the measured electrical characteristics based on the magnitude of the load value based on a correlation equation.

さらに、電子部品の電気的特性測定方法は、基準となる基準温度と、測定時の電子部品の温度とのずれによって、測定電気的特性を補正するステップを備えても良い。この場合には、測定端子が電子部品の外部電極に当接する際の荷重が原因で発生する測定誤差の補正に加えて、基準温度と測定温度とのずれが原因で発生する測定誤差も併せて補正することができる。   Furthermore, the method for measuring the electrical characteristics of the electronic component may include a step of correcting the measured electrical characteristics based on a difference between a reference temperature serving as a reference and the temperature of the electronic component during measurement. In this case, in addition to the correction of the measurement error caused by the load when the measurement terminal contacts the external electrode of the electronic component, the measurement error caused by the difference between the reference temperature and the measurement temperature is also combined. It can be corrected.

さらに、電子部品の電気的特性測定方法は、電子部品の補正後の電気的特性が予め定められた許容範囲内にあるか否かで、電子部品を良品か不良品かに分類するステップを備えても良い。この場合には、要求された電気特性を備えない電子部品を規格外として使用しないようにすることが可能になる。   Furthermore, the method for measuring the electrical characteristics of an electronic component includes a step of classifying the electronic component as a non-defective product or a defective product depending on whether or not the corrected electrical property of the electronic component is within a predetermined allowable range. May be. In this case, it becomes possible not to use an electronic component that does not have the required electrical characteristics as being out of specification.

さらに、電子部品の電気的特性測定方法は、荷重値の大きさが、予め定めた閾値を越えて小さい場合と、予め定められた閾値を越えて大きい場合との、少なくとも一方の場合に、その電子部品を不良品と判断するステップを備えても良い。荷重値の大きさが、予め定めた閾値を越えて小さい場合には、測定端子と電子部品の外部電極との接触抵抗が大きく、測定された電気的特性に、補正可能な限界を超えた測定誤差が発生している虞がある。また、荷重値の大きさが、予め定めた閾値を越えて大きい場合には、電子部品の内部にクラックなどの不良が発生している虞や、電子部品の外部電極に接触痕などの外観不良が発生しいている虞や、測定された電気的特性に、補正可能な限界を超えた測定誤差が発生している虞がある。そこで、荷重値の大きさが、予め定めた閾値を越えて小さい場合と、予め定められた閾値を越えて大きい場合との、少なくとも一方の場合に、その電子部品を不良品と判断することにより、その電子部品を規格外として使用しないようにすることが可能になる。   Further, the method of measuring the electrical characteristics of the electronic component is applicable to at least one of a case where the magnitude of the load value is small exceeding a predetermined threshold value and a case where the load value is large exceeding a predetermined threshold value. You may provide the step which judges an electronic component to be inferior goods. When the magnitude of the load value is small beyond a predetermined threshold, the contact resistance between the measuring terminal and the external electrode of the electronic component is large, and the measured electrical characteristics exceed the limit that can be corrected. There may be an error. Also, if the load value is larger than a predetermined threshold value, there is a risk that a defect such as a crack has occurred inside the electronic component, or an external appearance defect such as a contact mark on the external electrode of the electronic component. There is a risk that a measurement error exceeding the correctable limit may occur in the measured electrical characteristics. Therefore, by determining the electronic component as a defective product in at least one of the case where the magnitude of the load value is smaller than a predetermined threshold and the case where the load value is larger than a predetermined threshold. The electronic component can be prevented from being used outside the standard.

測定される電気的特性としては、たとえば、抵抗値をあげることができる。ただし、測定される電気的特性は、抵抗値には限定されず、キャパシタンス値、インダクタンス値など、その他の電気的特性であっても良い。   As an electrical characteristic to be measured, for example, a resistance value can be raised. However, the electrical characteristics to be measured are not limited to resistance values, and may be other electrical characteristics such as capacitance values and inductance values.

また、本発明の電気的特性測定装置は、上述した従来技術の課題を解決する手段として、電子部品の外部電極に当接する測定端子と、測定端子に接続され、電子部品に流れる電気信号を検出し、電子部品の電気的特性を測定する測定器と、測定の際に、電子部品の、測定端子が当接する面と反対側の面に当接する当接部材と、その当接部材に設けられた、測定端子を電子部品の外部電極に当接させた際の荷重の大きさを測定する荷重センサと、を備える。   In addition, the electrical characteristic measuring apparatus according to the present invention detects, as means for solving the above-described problems of the prior art, a measurement terminal that contacts an external electrode of an electronic component and an electrical signal that is connected to the measurement terminal and flows through the electronic component. A measuring instrument that measures the electrical characteristics of the electronic component, a contact member that contacts the surface of the electronic component opposite to the surface on which the measurement terminal contacts, and the contact member. And a load sensor that measures the magnitude of the load when the measurement terminal is brought into contact with the external electrode of the electronic component.

なお、上記電気的特性測定装置において、荷重センサを当接部材に設ける代わりに、荷重センサ自体を当接部材として利用しても良い。   In the electrical characteristic measuring apparatus, instead of providing the load sensor on the contact member, the load sensor itself may be used as the contact member.

さらに、電気的特性測定装置は、予め作成された、測定端子を外部電極に当接させた際の荷重の大きさと、電気的特性の測定誤差量との相関式を記憶する記憶手段と、相関式に基づき、荷重センサで測定された荷重値の大きさによって、測定端子で測定された測定電気的特性を補正する演算手段と、を備えても良い。この場合には、測定端子が電子部品の外部電極に当接する際の荷重が原因で発生する測定誤差を補正した、精度の高い測定結果を得ることができる。   Furthermore, the electrical characteristic measuring device includes a storage unit that stores a correlation formula between a magnitude of a load when the measurement terminal is brought into contact with the external electrode and a measurement error amount of the electrical characteristic, which is created in advance, An arithmetic means for correcting the measured electrical characteristic measured at the measurement terminal based on the magnitude of the load value measured by the load sensor based on the equation may be provided. In this case, it is possible to obtain a highly accurate measurement result in which a measurement error caused by a load caused when the measurement terminal contacts the external electrode of the electronic component is corrected.

さらに、電気的特性測定装置は、基準となる基準温度と、測定時の電子部品の温度とのずれによって、測定電気的特性を補正する演算手段を備えても良い。この場合には、測定端子が電子部品の外部電極に当接する際の荷重が原因で発生する測定誤差の補正に加えて、基準温度と測定温度とのずれが原因で発生する測定誤差も併せて補正することができる。   Furthermore, the electrical property measuring apparatus may include a calculation unit that corrects the measured electrical property based on a difference between a reference temperature serving as a reference and the temperature of the electronic component during measurement. In this case, in addition to the correction of the measurement error caused by the load when the measurement terminal contacts the external electrode of the electronic component, the measurement error caused by the difference between the reference temperature and the measurement temperature is also combined. It can be corrected.

測定される電気的特性としては、たとえば、抵抗値をあげることができる。ただし、測定される電気的特性は、抵抗値には限定されず、キャパシタンス値、インダクタンス値など、その他の電気的特性であっても良い。   As an electrical characteristic to be measured, for example, a resistance value can be raised. However, the electrical characteristics to be measured are not limited to resistance values, and may be other electrical characteristics such as capacitance values and inductance values.

本発明の電子部品の電気的特性測定方法によれば、測定端子が電子部品の外部電極に当接する際の荷重が原因で発生する測定誤差を補正した、精度の高い測定結果を得ることができる。そして、その測定結果に基づき、適正な良品/不良品判断を行うことができる。また、本発明の電気的特性測定方法は、荷重の大きさを監視して、測定端子が電子部品の外部電極に当接する際の荷重の大きさを制御するのではなく、発生した測定誤差を補正して精度の高い測定結果を得るものであるため、測定装置を高速で駆動して、電子部品の電気的特性を測定することができる。したがって、本発明の電気的特性測定方法によれば、たとえば電子部品の製造工程において電気的特性を測定する場合であっても、電子部品の生産性が低下することがなく、電子部品の製造コストが高くなってしまうことがない。   According to the electrical characteristic measurement method for an electronic component of the present invention, it is possible to obtain a highly accurate measurement result in which a measurement error caused by a load caused when the measurement terminal contacts the external electrode of the electronic component is corrected. . Based on the measurement result, it is possible to make an appropriate non-defective / defective product determination. In addition, the electrical characteristic measurement method of the present invention monitors the magnitude of the load and does not control the magnitude of the load when the measurement terminal comes into contact with the external electrode of the electronic component. Since the measurement results are obtained with high accuracy, the electrical characteristics of the electronic component can be measured by driving the measurement device at high speed. Therefore, according to the electrical characteristic measuring method of the present invention, even when the electrical characteristics are measured in the manufacturing process of the electronic component, for example, the productivity of the electronic component is not reduced, and the manufacturing cost of the electronic component is reduced. Will not become expensive.

また、本発明の電気的特性測定装置は、測定端子が電子部品の外部電極に当接する際の荷重が原因で発生する測定誤差を補正した、精度の高い測定結果を得ることができる。そして、その測定結果に基づき、適正な良品/不良品判断を行うことができる。また、本発明の電気的特性測定装置は、測定の際に、電子部品の測定端子が当接する面と反対側の面に当接する当接部材に荷重センサを設けた簡易な構造であり、安価に製造することができる。また、保全作業も簡単であり、保全コストを安価に抑えることができる。   In addition, the electrical property measuring apparatus of the present invention can obtain a highly accurate measurement result in which a measurement error caused by a load caused when the measurement terminal comes into contact with the external electrode of the electronic component is corrected. Based on the measurement result, it is possible to make an appropriate non-defective / defective product determination. In addition, the electrical characteristic measuring device of the present invention has a simple structure in which a load sensor is provided on a contact member that abuts a surface opposite to a surface that a measurement terminal of an electronic component abuts at the time of measurement. Can be manufactured. Also, maintenance work is simple, and maintenance costs can be kept low.

第1実施形態にかかる電子部品の電気的特性測定方法に使用した電気的特性測定装置100の概念図である。It is a conceptual diagram of the electrical property measuring apparatus 100 used for the electrical property measuring method of the electronic component concerning 1st Embodiment. 電気的特性測定装置100の要部断面図である。3 is a cross-sectional view of a main part of the electrical characteristic measuring apparatus 100. FIG. 基準電子部品Aおよび被測定電子部品Bの底面図である。4 is a bottom view of a reference electronic component A and a measured electronic component B. FIG. 第1実施形態にかかる電子部品の電気的特性測定方法のフロー図である。It is a flowchart of the electrical property measuring method of the electronic component concerning 1st Embodiment. 第2実施形態にかかる電子部品の電気的特性測定方法のフロー図である。It is a flowchart of the electrical property measuring method of the electronic component concerning 2nd Embodiment. 第3実施形態にかかる電子部品の電気的特性測定方法のフロー図である。It is a flowchart of the electrical property measuring method of the electronic component concerning 3rd Embodiment. 第4実施形態にかかる電子部品の電気的特性測定方法のフロー図である。It is a flowchart of the electrical property measuring method of the electronic component concerning 4th Embodiment. 第5実施形態にかかる電子部品の電気的特性測定方法のフロー図である。It is a flowchart of the electrical property measuring method of the electronic component concerning 5th Embodiment.

以下、図面とともに、本発明を実施するための形態について説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

[第1実施形態]
図1に、本実施形態において使用する電気的特性測定装置100を示す。ただし、図1は、電気的特性測定装置100の概念図である。なお、図1には、基準電子部品Aおよび被測定電子部品Bも示している。
[First Embodiment]
FIG. 1 shows an electrical characteristic measuring apparatus 100 used in the present embodiment. However, FIG. 1 is a conceptual diagram of the electrical characteristic measuring apparatus 100. FIG. 1 also shows a reference electronic component A and a measured electronic component B.

基準電子部品Aおよび被測定電子部品Bは、同一種類かつ同一規格の電子部品であり、本実施形態においてはNTCサーミスタとした。ただし、電子部品の種類は任意であり、NTCサーミスタには限定されず、PTCサーミスタや、固定抵抗や、キャパシタや、インダクタなどであっても良い。基準電子部品Aは1対の外部電極Aa、Abを備え、被測定電子部品Bは1対の外部電極Ba、Bbを備えている。ただし、それぞれの備える外部電極の数は1対には限定されず、それより多くても良い。   The reference electronic component A and the electronic component B to be measured are electronic components of the same type and the same standard, and are NTC thermistors in this embodiment. However, the type of the electronic component is arbitrary and is not limited to the NTC thermistor, and may be a PTC thermistor, a fixed resistor, a capacitor, an inductor, or the like. The reference electronic component A includes a pair of external electrodes Aa and Ab, and the electronic component B to be measured includes a pair of external electrodes Ba and Bb. However, the number of external electrodes included in each is not limited to one pair, and may be larger than that.

電気的特性測定装置100は、複数の被測定電子部品Bを順次供給するパーツフィーダ1を備える。パーツフィーダ1は、モータにより回転する回転板2を備え、回転板2が回転することにより、回転板2の上に投入された多数の被測定電子部品Bを順次供給する。   The electrical characteristic measuring apparatus 100 includes a parts feeder 1 that sequentially supplies a plurality of electronic components B to be measured. The parts feeder 1 includes a rotating plate 2 that is rotated by a motor, and sequentially supplies a large number of electronic components B to be measured placed on the rotating plate 2 as the rotating plate 2 rotates.

パーツフィーダ1は、リニアフィーダ3に接続されている。リニアフィーダ3は、コンベアを備え、パーツフィーダ1により供給された被測定電子部品Bを直線状に搬送する。   The parts feeder 1 is connected to the linear feeder 3. The linear feeder 3 includes a conveyor and conveys the electronic component B to be measured supplied from the parts feeder 1 in a straight line.

リニアフィーダ3は、測定ベース4に設けられたインデックステーブル5に接続されている。インデックステーブル5は、円板状であり、その外周に被測定電子部品Bを収容する多数の凹部5aが形成されている。インデックステーブル5は、凹部5aに被測定電子部品Bを収容した状態で、モータにより間欠的に回転する。   The linear feeder 3 is connected to an index table 5 provided on the measurement base 4. The index table 5 has a disk shape, and a plurality of recesses 5a for accommodating the electronic component B to be measured are formed on the outer periphery thereof. The index table 5 is intermittently rotated by a motor in a state where the measured electronic component B is accommodated in the recess 5a.

なお、図1においては図示を省略しているが、インデックステーブル5の周囲には、凹部5aに収容された被測定電子部品Bが、インデックステーブル5の回転にともなって円状に搬送されるよう、インデックスガイドが適宜設けられている。また、同じく図1においては図示を省略しているが、インデックステーブル5の上面には、インデックスカバーが設けられる場合がある。   Although not shown in FIG. 1, the measured electronic component B accommodated in the recess 5 a is conveyed around the index table 5 in a circular shape as the index table 5 rotates. An index guide is provided as appropriate. Further, although not shown in FIG. 1, an index cover may be provided on the upper surface of the index table 5.

測定ベース4は、基準電子部品Aの電気的特性を測定する基準電子部品測定領域Sを備える。   The measurement base 4 includes a reference electronic component measurement region S for measuring the electrical characteristics of the reference electronic component A.

また、測定ベース4は、基準電子部品測定領域Sの近傍に、被測定電子部品Bの電気的特性を測定する被測定電子部品測定領域Tを備える。被測定電子部品Bは、被測定電子部品測定領域Tへ、インデックステーブル5により順次搬送される。   In addition, the measurement base 4 includes a measured electronic component measurement region T that measures the electrical characteristics of the measured electronic component B in the vicinity of the reference electronic component measurement region S. The electronic component B to be measured is sequentially conveyed by the index table 5 to the electronic component measurement area T to be measured.

図2に、基準電子部品測定領域Sおよび被測定電子部品測定領域Tの断面図を示す。なお、図2は、図1のX-X部分を示している。   FIG. 2 shows a cross-sectional view of the reference electronic component measurement region S and the measured electronic component measurement region T. FIG. 2 shows a portion XX in FIG.

図2に示すように、基準電子部品測定領域Sには、基準電子部品Aを収容するキャビティ6が設けられている。キャビティ6は、測定ベース4と、ガイド7a、7bと、当接部材8とで構成されている。当接部材8は、基準電子部品Aの上面に当接する部材である。   As shown in FIG. 2, the reference electronic component measurement region S is provided with a cavity 6 that accommodates the reference electronic component A. The cavity 6 includes a measurement base 4, guides 7 a and 7 b, and a contact member 8. The contact member 8 is a member that contacts the upper surface of the reference electronic component A.

また、図2に示すように、被測定電子部品測定領域Tには、被測定電子部品Bを収容するキャビティ9が設けられている。キャビティ9は、測定ベース4と、インデックステーブル5の凹部5aと、ガイド7cと、当接部材10とで構成されている。当接部材10は、被測定電子部品Bの上面に当接する部材である。   Further, as shown in FIG. 2, a cavity 9 for accommodating the electronic component B to be measured is provided in the electronic component measurement area T to be measured. The cavity 9 includes a measurement base 4, a recess 5 a of the index table 5, a guide 7 c, and a contact member 10. The contact member 10 is a member that contacts the upper surface of the electronic component B to be measured.

キャビティ6部分の測定ベース4には、たとえば4つの孔が設けられ、その4つの孔に、2対の測定端子11a、11b、12a、12bが配置されている。測定端子11a、11b、12a、12bは、基準電子部品Aの外部電極Aa、Abに当接するためのものである。測定端子11a、11b、12a、12bは、測定端子駆動機構15に取付けられ、常時、基準電子部品Aの測定電気的特性に影響を与えない(測定誤差を発生させない)圧力で基準電子部品Aの外部電極Aa、Abに当接している。   For example, four holes are provided in the measurement base 4 of the cavity 6 portion, and two pairs of measurement terminals 11a, 11b, 12a, and 12b are disposed in the four holes. The measurement terminals 11a, 11b, 12a, and 12b are for contacting the external electrodes Aa and Ab of the reference electronic component A. The measurement terminals 11a, 11b, 12a, and 12b are attached to the measurement terminal drive mechanism 15 and are not constantly affected by the pressure of the reference electronic component A at a pressure that does not affect the measurement electrical characteristics of the reference electronic component A (does not cause a measurement error). It is in contact with the external electrodes Aa and Ab.

なお、本実施形態においては、測定端子駆動機構15に取付けられた測定端子11a、11b、12a、12bは、常時、一定の圧力で基準電子部品Aの外部電極Aa、Abに当接しているが、これに代えて、測定端子駆動機構15を駆動することにより、測定のつど、間欠的に測定端子11a、11b、12a、12bが基準電子部品Aの外部電極Aa、Abに当接するようにしても良い。ただし、この場合には、測定端子11a、11b、12a、12bが被測定電子部品Aの外部電極Aa、Abに当接した際の荷重の大きさを測定し、基準電子部品Aの測定抵抗値から、その荷重が原因で発生した測定誤差を補正することが必要になる。   In the present embodiment, the measurement terminals 11a, 11b, 12a, and 12b attached to the measurement terminal drive mechanism 15 are always in contact with the external electrodes Aa and Ab of the reference electronic component A with a constant pressure. Instead, by driving the measurement terminal drive mechanism 15, the measurement terminals 11 a, 11 b, 12 a, and 12 b are intermittently brought into contact with the external electrodes Aa and Ab of the reference electronic component A every time measurement is performed. Also good. However, in this case, the magnitude of the load when the measurement terminals 11a, 11b, 12a, 12b contact the external electrodes Aa, Ab of the electronic component A to be measured is measured, and the measured resistance value of the reference electronic component A is measured. Therefore, it is necessary to correct the measurement error caused by the load.

キャビティ9部分の測定ベース4にも、たとえば4つの孔が設けられ、その4つの孔に、2対の測定端子13a、13b、14a、14bが配置されている。測定端子13a、13b、14a、14bは、被測定電子部品Bの外部電極Ba、Bbに当接するためのものである。測定端子13a、13b、14a、14bは測定端子駆動機構16に取付けられ、測定端子駆動機構16が駆動されることにより、間欠的に被測定電子部品Bの外部電極Ba、Bbに当接する。   The measurement base 4 in the cavity 9 portion is also provided with, for example, four holes, and two pairs of measurement terminals 13a, 13b, 14a, and 14b are arranged in the four holes. The measurement terminals 13a, 13b, 14a, and 14b are for contacting the external electrodes Ba and Bb of the electronic component B to be measured. The measurement terminals 13a, 13b, 14a, and 14b are attached to the measurement terminal drive mechanism 16, and are intermittently brought into contact with the external electrodes Ba and Bb of the electronic component B to be measured by driving the measurement terminal drive mechanism 16.

キャビティ9の当接部材10には、荷重センサ17が設けられている。荷重センサ17は、測定端子13a、13b、14a、14bが被測定電子部品Bの外部電極Ba、Bbに当接した際の荷重の大きさを測定するためのものである。なお、荷重とは、測定端子13a、13b、14a、14bが被測定電子部品Bの外部電極Ba、Bbに当接している時間内に計測される荷重を指す。   A load sensor 17 is provided on the contact member 10 of the cavity 9. The load sensor 17 is for measuring the magnitude of the load when the measurement terminals 13a, 13b, 14a, 14b are in contact with the external electrodes Ba, Bb of the electronic component B to be measured. Note that the load refers to a load measured within the time when the measurement terminals 13a, 13b, 14a, and 14b are in contact with the external electrodes Ba and Bb of the electronic component B to be measured.

図1に示すように、電気的特性測定装置100は、測定器18を備える。測定器18には、測定端子11a、11b、12a、12bと、測定端子13a、13b、14a、14bが接続されている。測定器18は、基準電子部品Aの電気的特性と被測定電子部品Bの電気的特性とを測定するためのものである。   As shown in FIG. 1, the electrical characteristic measuring apparatus 100 includes a measuring device 18. The measuring terminal 11a, 11b, 12a, 12b and the measuring terminal 13a, 13b, 14a, 14b are connected to the measuring device 18. The measuring device 18 is for measuring the electrical characteristics of the reference electronic component A and the electrical characteristics of the electronic component B to be measured.

図3に、基準電子部品Aおよび被測定電子部品Bの底面を示す。また、図3には、基準電子部品Aの外部電極Aa、Abの測定端子11a、11b、12a、12bが当接する部分と、被測定電子部品Bの外部電極Ba、Bbの測定端子13a、13b、14a、14bが当接する部分を、それぞれ破線で示している。   FIG. 3 shows the bottom surfaces of the reference electronic component A and the electronic component B to be measured. Further, FIG. 3 shows a portion where the measurement terminals 11a, 11b, 12a, 12b of the external electrodes Aa, Ab of the reference electronic component A abut, and measurement terminals 13a, 13b of the external electrodes Ba, Bb of the electronic component B to be measured. , 14a and 14b are shown by broken lines.

たとえば、測定器18は、測定端子11a、11b間に所定の値の電流を流し、測定端子12a、12b間の電圧を測定することにより、基準電子部品Aの抵抗値を測定することができる。また、測定器18は、測定端子13a、13b間に所定の値の電流を流し、測定端子14a、14b間の電圧を測定することにより、基準電子部品Bの抵抗値を測定することができる。   For example, the measuring instrument 18 can measure the resistance value of the reference electronic component A by passing a current of a predetermined value between the measurement terminals 11a and 11b and measuring the voltage between the measurement terminals 12a and 12b. Further, the measuring device 18 can measure the resistance value of the reference electronic component B by flowing a current of a predetermined value between the measurement terminals 13a and 13b and measuring the voltage between the measurement terminals 14a and 14b.

なお、本実施形態においては、1つの測定器18で、基準電子部品Aの電気的特性と被測定電子部品Bの電気的特性とを測定しているが、基準電子部品Aの電気的特性を測定する測定器と、被測定電子部品Bの電気的特性を測定する測定器とを、別々に設けても良い。   In the present embodiment, the single measuring instrument 18 measures the electrical characteristics of the reference electronic component A and the electrical characteristics of the electronic component B to be measured. You may provide separately the measuring device to measure, and the measuring device to measure the electrical property of the to-be-measured electronic component B. FIG.

電気的特性測定装置100は、パーソナルコンピュータ(以下において「PC」という)19を備える。PC19は、少なくとも、記憶装置、演算装置、入力インターフェース、出力インターフェースなどを備える。   The electrical characteristic measuring apparatus 100 includes a personal computer (hereinafter referred to as “PC”) 19. The PC 19 includes at least a storage device, an arithmetic device, an input interface, an output interface, and the like.

PC19は、パーツフィーダ1、リニアフィーダ3、インデックステーブル5、測定端子駆動機構16、それぞれの駆動系に接続されている。PC19の記憶装置には、パーツフィーダ1、リニアフィーダ3、インデックステーブル5、測定端子駆動機構16、それぞれを制御する所定のコンピュータプログラムが記憶されており、PC19は、パーツフィーダ1、リニアフィーダ3、インデックステーブル5、測定端子駆動機構16を、それぞれ制御する。   The PC 19 is connected to the drive system of the parts feeder 1, the linear feeder 3, the index table 5, and the measurement terminal drive mechanism 16. The storage device of the PC 19 stores a predetermined computer program for controlling the parts feeder 1, the linear feeder 3, the index table 5, and the measurement terminal drive mechanism 16, and the PC 19 includes the parts feeder 1, the linear feeder 3, The index table 5 and the measurement terminal drive mechanism 16 are controlled.

また、PC19は、荷重センサ17に接続されている。なお、荷重センサ17とPC19との間には、アンプ20とアナログ・デジタル変換器21とが挿入されている。   The PC 19 is connected to the load sensor 17. An amplifier 20 and an analog / digital converter 21 are inserted between the load sensor 17 and the PC 19.

また、PC19は、測定器18に接続されている。   The PC 19 is connected to the measuring instrument 18.

さらに、PC19の記憶装置には、後述する、測定端子13a、13b、14a、14bを被測定電子部品Bの外部電極Ba、Bbに当接させた際の荷重の大きさと、測定器18で測定された測定電気的特性(測定抵抗値)の測定誤差量との相関式(相関データ)が記憶されている。   Further, in the storage device of the PC 19, the magnitude of the load when the measurement terminals 13a, 13b, 14a, 14b, which will be described later, are brought into contact with the external electrodes Ba, Bb of the electronic component B to be measured, and the measurement device 18 are used. A correlation equation (correlation data) with the measurement error amount of the measured electrical characteristics (measurement resistance value) is stored.

電気的特性測定装置100の測定ベース4は、電気的特性を測定した後に、不良品と判断された被測定電子部品Bを排除する不良品排除領域Uを備える。不良品排除領域Uには、インデックステーブル5の凹部5aから、不良品と判断された被測定電子部品Bを排除する排除機構(図示せず)が設けられている。排除機構はPC19に接続されており、PC19の演算装置により不良品と判断された被測定電子部品Bを、インデックステーブル5の凹部5aから排除する。   The measurement base 4 of the electrical characteristic measuring apparatus 100 includes a defective product exclusion region U that excludes the measured electronic component B that is determined to be defective after measuring the electrical characteristics. The defective product exclusion area U is provided with a rejection mechanism (not shown) that excludes the measured electronic component B determined to be defective from the recess 5a of the index table 5. The rejection mechanism is connected to the PC 19 and excludes the measured electronic component B, which is determined as a defective product by the computing device of the PC 19, from the recess 5 a of the index table 5.

さらに、電気的特性測定装置100の測定ベース4は、不良品と判断された被測定電子部品Bを排除した後に、良品と判断された被測定電子部品Bを回収する被測定電子部品回収領域Rを備える。本実施形態においては、良品と判断された被測定電子部品Bを一律に回収しているが、PC19と連動させることにより、電気的特性(抵抗値)の測定結果により、被測定電子部品Bを選別して回収するようにしても良い。   Furthermore, the measurement base 4 of the electrical characteristic measuring apparatus 100 removes the measured electronic component B determined to be defective, and then collects the measured electronic component recovery area R for recovering the measured electronic component B determined to be non-defective. Is provided. In the present embodiment, the electronic component B to be measured, which is determined to be a non-defective product, is uniformly collected. However, the electronic component B to be measured is connected to the PC 19 according to the measurement result of the electrical characteristics (resistance value). You may make it select and collect | recover.

次に、電気的特性測定装置100を使用した、電子部品の電気的特性測定方法について説明する。本実施形態においては、上述したとおり、被測定電子部品BとしてNTCサーミスタを使用し、電気的特性として被測定電子部品Bの抵抗値を測定する。また、基準電子部品Aとして、被測定電子部品Bと同一種類、同一規格のNTCサーミスタを使用する。   Next, a method for measuring electrical characteristics of electronic components using the electrical characteristic measuring apparatus 100 will be described. In the present embodiment, as described above, an NTC thermistor is used as the electronic component B to be measured, and the resistance value of the electronic component B to be measured is measured as an electrical characteristic. Further, as the reference electronic component A, an NTC thermistor of the same type and the same standard as the electronic component B to be measured is used.

測定に先立ち、予め、複数のNTCサーミスタの中から、要求された抵抗値(電気的特性)を厳格に備えた、基準となる基準電子部品(基準NTCサーミスタ)Aを選定する。具体的には、たとえば、25℃で抵抗値を測定する必要がある場合には、測定温度を厳格に25℃に保ったうえで、複数のNTCサーミスタの抵抗値を測定し、求められた抵抗値を厳格に備えたNTCサーミスタを基準電子部品Aとして選定する。基準電子部品Aは複数個が選定される。   Prior to the measurement, a reference electronic component (reference NTC thermistor) A that is strictly provided with a required resistance value (electrical characteristic) is selected from a plurality of NTC thermistors in advance. Specifically, for example, when it is necessary to measure the resistance value at 25 ° C., the resistance value of the plurality of NTC thermistors is measured after the measurement temperature is strictly maintained at 25 ° C. An NTC thermistor with strict values is selected as the reference electronic component A. A plurality of reference electronic components A are selected.

また、測定に先立ち、予め、基準電子部品Aを使って、測定端子を外部電極に当接させた際の荷重の大きさ(偏差)と、抵抗値の測定誤差量との相関式(相関データ)を作成する。具体的には、電気的特性測定装置100の、基準電子部品Aを収容するキャビティ6と、本来は被測定電子部品Bを収容するキャビティ9のそれぞれに、厳格に基準となる抵抗値を備えた基準電子部品Aを収容する。続いて、荷重センサ17で荷重の大きさを監視しながら、測定端子駆動機構16を制御して駆動し、基準となる荷重(基準温度で測定した場合にキャビティ9に収容された基準電子部品Aの真の抵抗値が測定される荷重)から、プラス方向またはマイナス方向に僅かずつ荷重を強制的にずらしながら、抵抗値を複数回測定することにより、測定端子を外部電極に当接させた際の荷重の大きさと、抵抗値の測定誤差量との相関式を作成する。なお、このとき、インデックステーブル5は停止させておき、回転させない。相関式は、基準温度と測定温度とのずれの大きさが原因で発生する測定誤差を補正したうえで作成する。   Prior to the measurement, a correlation equation (correlation data) between the magnitude (deviation) of the load when the measurement terminal is brought into contact with the external electrode using the reference electronic component A and the resistance measurement error amount in advance. ). Specifically, each of the cavity 6 that accommodates the reference electronic component A and the cavity 9 that originally accommodates the electronic component B to be measured has a strictly standard resistance value of the electrical characteristic measuring apparatus 100. The reference electronic component A is accommodated. Subsequently, while monitoring the magnitude of the load with the load sensor 17, the measurement terminal drive mechanism 16 is controlled and driven, and the reference load (the reference electronic component A housed in the cavity 9 when measured at the reference temperature) When the measurement terminal is brought into contact with the external electrode by measuring the resistance value multiple times while forcibly shifting the load slightly in the plus or minus direction from the load at which the true resistance value is measured) The correlation formula between the magnitude of the load and the measurement error amount of the resistance value is created. At this time, the index table 5 is stopped and is not rotated. The correlation formula is created after correcting the measurement error caused by the magnitude of the difference between the reference temperature and the measured temperature.

あるいは、以上の方法に代えて、次の方法で、測定端子を外部電極に当接させた際の荷重の大きさと抵抗値の測定誤差量との相関式を作成することもできる。まず、複数の、厳格に基準となる抵抗値を備えた基準電子部品Aを用意する。次に、1つの基準電子部品Aをキャビティ6に収容し、残りの基準電子部品Aをパーツフィーダ1の回転板2の上に投入する。次に、実際に電気的特性測定装置100を駆動させ、複数の基準電子部品Aの抵抗値を測定する。この測定における、測定端子を外部電極に当接させた際の荷重の大きさと、測定抵抗値の関係から、測定端子を外部電極に当接させた際の荷重の大きさと抵抗値の測定誤差量との相関式を作成することができる。   Alternatively, instead of the above method, a correlation equation between the magnitude of the load when the measurement terminal is brought into contact with the external electrode and the measurement error amount of the resistance value can be created by the following method. First, a plurality of reference electronic components A having strict reference resistance values are prepared. Next, one reference electronic component A is accommodated in the cavity 6, and the remaining reference electronic component A is put on the rotating plate 2 of the parts feeder 1. Next, the electrical characteristic measuring apparatus 100 is actually driven, and the resistance values of the plurality of reference electronic components A are measured. In this measurement, from the relationship between the magnitude of the load when the measurement terminal is brought into contact with the external electrode and the measurement resistance value, the measurement error amount of the magnitude of the load and the resistance value when the measurement terminal is brought into contact with the external electrode A correlation equation can be created.

作成された、測定端子を外部電極に当接させた際の荷重の大きさと抵抗値の測定誤差量との相関式を、PC19の記憶装置に記憶させる。   The created correlation equation between the magnitude of the load when the measurement terminal is brought into contact with the external electrode and the measurement error amount of the resistance value is stored in the storage device of the PC 19.

また、測定に先立ち、予め、PC19の記憶装置に、被測定電子部品Bが良品と判断される抵抗値(電気的特性)の許容範囲を記憶させる。さらに、荷重センサ17で測定された荷重値の大きさが、予め定めた閾値を越えて小さい場合と、予め定められた閾値を越えて大きい場合との、少なくとも一方の場合に、当該被測定電子部品Bを不良品と判断することにした場合には、PC19の記憶装置に、それらの閾値を記憶させる。   Prior to the measurement, an allowable range of the resistance value (electrical characteristic) for determining that the electronic component B to be measured is a non-defective product is stored in the storage device of the PC 19 in advance. Further, in the case where at least one of the case where the magnitude of the load value measured by the load sensor 17 is smaller than a predetermined threshold and is larger than the predetermined threshold, the measured electron is If it is determined that the part B is defective, those threshold values are stored in the storage device of the PC 19.

以上の準備の後、測定を開始する。図4に、本実施形態にかかる電子部品の電気的特性測定方法のフローを示す。   After the above preparation, measurement is started. FIG. 4 shows a flow of a method for measuring the electrical characteristics of the electronic component according to the present embodiment.

まず、基準電子部品Aをキャビティ6に収容するとともに、複数の被測定電子部品Bをパーツフィーダ1の回転板2上に投入する。   First, the reference electronic component A is accommodated in the cavity 6, and a plurality of electronic components B to be measured are placed on the rotating plate 2 of the parts feeder 1.

次に、PC19の制御に基づき、パーツフィーダ1、リニアフィーダ3、インデックステーブル5が、それぞれ駆動を開始する。その結果、被測定電子部品Bが、順次、測定ベース4の被測定電子部品測定領域Tに搬送される。   Next, based on the control of the PC 19, the parts feeder 1, the linear feeder 3, and the index table 5 each start driving. As a result, the measured electronic component B is sequentially transferred to the measured electronic component measurement area T of the measurement base 4.

1番目(先頭)の被測定電子部品Bが、測定ベース4の被測定電子部品測定領域Tのキャビティ9に接近すると、PC19の制御に基づき、測定端子駆動機構16が駆動を開始する。   When the first (first) measured electronic component B approaches the cavity 9 in the measured electronic component measurement region T of the measurement base 4, the measurement terminal drive mechanism 16 starts driving based on the control of the PC 19.

そして、基準電子部品Aの抵抗値が、測定端子11a、11b、12a、12bを介して、測定器18により測定され、基準電子部品Aの測定抵抗値が得られる。同時に、1番目の被測定電子部品Bの抵抗値が、測定端子13a、13b、14a、14bを介して、測定器18により測定され、被測定電子部品Bの測定抵抗値が得られる。なお、基準電子部品Aの抵抗値の測定と、被測定電子部品Bの抵抗値の測定とは、厳格に同時である必要はなく、僅かに時間がずれていても良い。   Then, the resistance value of the reference electronic component A is measured by the measuring device 18 via the measurement terminals 11a, 11b, 12a, and 12b, and the measured resistance value of the reference electronic component A is obtained. At the same time, the resistance value of the first electronic component B to be measured is measured by the measuring instrument 18 via the measurement terminals 13a, 13b, 14a, 14b, and the measured resistance value of the electronic component B to be measured is obtained. Note that the measurement of the resistance value of the reference electronic component A and the measurement of the resistance value of the electronic component B to be measured need not be strictly the same, and may be slightly shifted in time.

被測定電子部品Bの抵抗値の測定においては、荷重センサ17により、測定端子13a、13b、14a、14bが被測定電子部品Bの外部電極Ba、Bbに当接した際の荷重の大きさが測定される。   In measuring the resistance value of the electronic component B to be measured, the load sensor 17 determines the magnitude of the load when the measurement terminals 13a, 13b, 14a, 14b abut on the external electrodes Ba, Bb of the electronic component B to be measured. Measured.

1番目の被測定電子部品Bの測定抵抗値と、同時に測定した基準電子部品Aの測定抵抗値とが、測定器18からPC19に伝達される。また、1番目の被測定電子部品Bの抵抗値を測定した際の、荷重センサ17により測定された荷重の大きさが、荷重センサ17からPC19に伝達される。   The measurement resistance value of the first electronic component B to be measured and the measurement resistance value of the reference electronic component A measured at the same time are transmitted from the measuring instrument 18 to the PC 19. Further, the magnitude of the load measured by the load sensor 17 when the resistance value of the first electronic component B to be measured is measured is transmitted from the load sensor 17 to the PC 19.

次に、PC19の演算装置において、以下の演算処理を行う。   Next, the following arithmetic processing is performed in the arithmetic unit of the PC 19.

まず、PC19の記憶装置に記憶された、測定端子を外部電極に当接させた際の荷重の大きさと、抵抗値の測定誤差量との相関式に基づき、荷重センサ17により測定された荷重の大きさによって、1番目の被測定電子部品Bの測定抵抗値を補正する。この結果、1番目の被測定電子部品Bの測定抵抗値から、測定端子を外部電極に当接させた際の荷重が原因で発生した測定誤差が除去される。   First, based on the correlation equation stored in the storage device of the PC 19 when the measurement terminal is brought into contact with the external electrode and the measurement error amount of the resistance value, the load measured by the load sensor 17 is calculated. The measurement resistance value of the first electronic component B to be measured is corrected according to the size. As a result, the measurement error caused by the load when the measurement terminal is brought into contact with the external electrode is removed from the measurement resistance value of the first electronic component B to be measured.

次に、式1により、基準サーミスタの測定抵抗値Rに対する、荷重が原因で発生した測定誤差が除去された後の被測定サーミスタの測定抵抗値Rの偏差(測定値ずれ率)を演算により求める。
偏差(%)=(R−R)/R×100・・・(式1)
なお、偏差の演算は、測定端子を外部電極に当接させた際の荷重が原因で発生した測定誤差の除去の演算の後に独立して行っても良いが、測定端子を外部電極に当接させた際の荷重が原因で発生した測定誤差の除去の演算と一括して同時に行っても良い。
Next, the deviation (measured value deviation rate) of the measured resistance value R 1 of the measured thermistor after the measurement error caused by the load is removed with respect to the measured resistance value R 0 of the reference thermistor is calculated by Equation 1. Ask for.
Deviation (%) = (R 1 −R 0 ) / R 0 × 100 (Equation 1)
The calculation of the deviation may be performed independently after the calculation of removing the measurement error caused by the load when the measurement terminal is brought into contact with the external electrode, but the measurement terminal is brought into contact with the external electrode. It may be performed simultaneously with the calculation for removing the measurement error caused by the load at the time.

次に、求められた偏差が、予め定められた許容範囲内にあるか否かで、1番目の被測定電子部品Bを良品か不良品かを判断し、分類する。予め定められた許容範囲内の場合には、1番目の被測定電子部品Bは良品と判断され、予め定められた許容範囲外の場合には、1番目の被測定電子部品Bは不良品と判断される。なお、被測定電子部品Bが良品と判断される抵抗値の許容範囲は、予めPC19の記憶装置に記憶されている。この良品か不良品かの判断は、荷重が原因で発生した測定誤差が除去され、かつ、測定温度と基準温度との差異に起因する測定誤差を極めて小さくしたうえで行うものであり、極めて精度の高いものである。   Next, the first measured electronic component B is judged to be non-defective or defective based on whether or not the obtained deviation is within a predetermined allowable range, and is classified. If it is within the predetermined allowable range, the first electronic component B to be measured is judged as a non-defective product, and if it is outside the predetermined allowable range, the first electronic component B to be measured is a defective product. To be judged. Note that the allowable range of the resistance value at which the electronic component B to be measured is determined to be non-defective is stored in advance in the storage device of the PC 19. The determination of whether the product is non-defective or defective is performed after the measurement error caused by the load is removed, and the measurement error due to the difference between the measurement temperature and the reference temperature is extremely small. Is high.

以上で良品か不良品かの判断を完結させても良いが、さらに、任意の設定(演算処理)として、求められた偏差が予め定められた許容範囲内にあっても、荷重センサ17で測定された荷重値の大きさが、予め定めた閾値を越えて小さい場合と、予め定められた閾値を越えて大きい場合との、少なくとも一方の場合に、その被測定電子部品Bを不良品と判断するようにしても良い。荷重値の大きさが、予め定めた閾値を越えて小さい場合には、測定端子と外部電極との接触抵抗が大きく、測定された抵抗値に、補正可能な限界を超えた測定誤差が発生している虞があるからである。また、荷重値の大きさが、予め定めた閾値を越えて大きい場合には、被測定電子部品Bの内部にクラックなどの不良が発生している虞や、被測定電子部品Bの外部電極Ba、Bbに接触痕などの外観不良が発生しいている虞や、測定された抵抗値に、補正可能な限界を超えた測定誤差が発生している虞があるからである。なお、荷重センサ17で測定された荷重値の大きさによる被測定電子部品Bの良品/不良品の判断は、上述した偏差による被測定電子部品Bの良品/不良品の判断の、前であっても良いし、後であっても良い。   The determination as to whether the product is a non-defective product or a defective product may be completed as described above. Further, as an arbitrary setting (calculation process), even if the obtained deviation is within a predetermined allowable range, the load sensor 17 is used for measurement. The measured electronic component B is determined to be defective when at least one of the case where the magnitude of the applied load value is small exceeding a predetermined threshold and the case where it is large exceeding a predetermined threshold. You may make it do. If the magnitude of the load value is small beyond a predetermined threshold, the contact resistance between the measurement terminal and the external electrode is large, and a measurement error exceeding the correctable limit occurs in the measured resistance value. It is because there is a possibility that. In addition, when the magnitude of the load value is larger than a predetermined threshold, there is a possibility that a defect such as a crack has occurred in the electronic component B to be measured, or the external electrode Ba of the electronic component B to be measured. This is because there is a possibility that an appearance defect such as a contact mark has occurred in Bb, or that there is a possibility that a measurement error exceeding the correctable limit may occur in the measured resistance value. The determination of the non-defective / defective product of the measured electronic component B based on the magnitude of the load value measured by the load sensor 17 is performed before the determination of the acceptable / defective product of the measured electronic component B based on the deviation described above. It may be later or later.

1番目の被測定電子部品Bの良品か不良品かの判断結果は、PC19の記憶装置に記憶される。   The determination result of whether the first measured electronic component B is a non-defective product or a defective product is stored in the storage device of the PC 19.

そして、1番目の被測定電子部品Bが良品と判断された場合には、1番目の被測定電子部品Bは、被測定電子部品回収領域Rにおいて、良品として回収される。   When it is determined that the first measured electronic component B is a non-defective product, the first measured electronic component B is collected as a non-defective product in the measured electronic component collection area R.

一方、1番目の被測定電子部品Bが不良品と判断された場合には、1番目の被測定電子部品Bは、不良品排除領域Uにおいて、PC19に制御された排除機構(図示せず)により、不良品として排除される。   On the other hand, when it is determined that the first electronic component B to be measured is a defective product, the first electronic device B to be measured is an exclusion mechanism (not shown) controlled by the PC 19 in the defective product exclusion area U. Therefore, it is excluded as a defective product.

以上の方法により、1番目の被測定電子部品Bの抵抗値が測定される。測定された抵抗値は、測定端子を外部電極に当接させた際の荷重が原因で発生した測定誤差が補正され、かつ基準温度と測定温度とのずれが原因で発生した測定誤差が極めて小さくされており、極めて精度の高いものである。   With the above method, the resistance value of the first electronic component B to be measured is measured. The measured resistance value corrects the measurement error caused by the load when the measurement terminal is in contact with the external electrode, and the measurement error caused by the difference between the reference temperature and the measurement temperature is extremely small. It is extremely accurate.

以下、同様の方法で、2番目以降の被測定電子部品Bの抵抗値を測定する。   Thereafter, the resistance value of the second and subsequent measured electronic components B is measured by the same method.

[第2実施形態]
図5に、第2実施形態にかかる電子部品の電気的特性測定方法のフローを示す。なお、第2実施形態にかかる電子部品の電気的特性測定方法も、電気的特性測定装置100を使用して行う。
[Second Embodiment]
FIG. 5 shows a flow of a method for measuring electrical characteristics of an electronic component according to the second embodiment. In addition, the electrical property measuring method of the electronic component concerning 2nd Embodiment is also performed using the electrical property measuring apparatus 100. FIG.

上述した第1実施形態にかかる電子部品の電気的特性測定方法では、図4に示すように、被測定電子部品Bの外部電極に測定端子を当接させた際の荷重が原因で発生した測定誤差を先に補正し、基準サーミスタの測定抵抗値に対する(荷重が原因で発生した測定誤差が除去された後の)被測定サーミスタの測定抵抗値の偏差を後から求めた。   In the electrical characteristic measurement method of the electronic component according to the first embodiment described above, as shown in FIG. 4, the measurement caused due to the load when the measurement terminal is brought into contact with the external electrode of the electronic component B to be measured. The error was corrected first, and the deviation of the measured resistance value of the measured thermistor (after the measurement error caused by the load was removed) with respect to the measured resistance value of the reference thermistor was obtained later.

第2実施形態にかかる電子部品の電気的特性測定方法では、この順番を入れ替えた。すなわち、基準サーミスタの測定抵抗値に対する被測定サーミスタの測定抵抗値の偏差を先に求め、被測定電子部品Bの外部電極に測定端子を当接させた際の荷重が原因で発生した測定誤差を後から補正した。   In the method for measuring the electrical characteristics of the electronic component according to the second embodiment, this order is changed. That is, the deviation of the measured resistance value of the measured thermistor relative to the measured resistance value of the reference thermistor is obtained first, and the measurement error caused by the load when the measuring terminal is brought into contact with the external electrode of the measured electronic component B is calculated. It was corrected later.

第2実施形態にかかる電子部品の電気的特性測定方法の他のステップは、第1実施形態にかかる電子部品の電気的特性測定方法と同じにした。   The other steps of the method for measuring electrical characteristics of electronic components according to the second embodiment are the same as those of the method for measuring electrical characteristics of electronic components according to the first embodiment.

[第3実施形態]
図6に、第3実施形態にかかる電子部品の電気的特性測定方法のフローを示す。なお、第3実施形態にかかる電子部品の電気的特性測定方法も、電気的特性測定装置100を使用して行う。
[Third Embodiment]
FIG. 6 shows a flow of a method for measuring electrical characteristics of an electronic component according to the third embodiment. In addition, the electrical property measuring method of the electronic component concerning 3rd Embodiment is also performed using the electrical property measuring apparatus 100. FIG.

上述した第1実施形態にかかる電子部品の電気的特性測定方法では、図4に示すように、被測定電子部品Bの外部電極に測定端子を当接させた際の荷重が原因で発生した測定誤差を先に補正し、基準サーミスタの測定抵抗値に対する(荷重が原因で発生した測定誤差が除去された後の)被測定サーミスタの測定抵抗値の偏差を後から求めた。   In the electrical characteristic measurement method of the electronic component according to the first embodiment described above, as shown in FIG. 4, the measurement caused due to the load when the measurement terminal is brought into contact with the external electrode of the electronic component B to be measured. The error was corrected first, and the deviation of the measured resistance value of the measured thermistor (after the measurement error caused by the load was removed) with respect to the measured resistance value of the reference thermistor was obtained later.

第3実施形態にかかる電子部品の電気的特性測定方法では、上記2つを同時に行った。すなわち、被測定電子部品Bの外部電極に測定端子を当接させた際の荷重が原因で発生した測定誤差の補正の演算と、基準サーミスタの測定抵抗値に対する被測定サーミスタの測定抵抗値の偏差の演算とを同時に行った。   In the method for measuring the electrical characteristics of the electronic component according to the third embodiment, the above two operations were performed simultaneously. That is, the calculation of correction of the measurement error caused by the load when the measurement terminal is brought into contact with the external electrode of the electronic component B to be measured, and the deviation of the measured resistance value of the measured thermistor from the measured resistance value of the reference thermistor The calculation was performed at the same time.

第3実施形態にかかる電子部品の電気的特性測定方法の他のステップは、第1実施形態にかかる電子部品の電気的特性測定方法と同じにした。   The other steps of the method for measuring the electrical characteristics of the electronic component according to the third embodiment are the same as those of the method for measuring the electrical characteristics of the electronic component according to the first embodiment.

[第4実施形態]
図7に、第4実施形態にかかる電子部品の電気的特性測定方法のフローを示す。なお、第4実施形態にかかる電子部品の電気的特性測定方法も、電気的特性測定装置100を使用して行う。
[Fourth Embodiment]
FIG. 7 shows a flow of a method for measuring electrical characteristics of an electronic component according to the fourth embodiment. In addition, the electrical property measuring method of the electronic component concerning 4th Embodiment is also performed using the electrical property measuring apparatus 100. FIG.

第4実施形態にかかる電子部品の電気的特性測定方法は、上述した図4に示す第1実施形態にかかる電子部品の電気的特性測定方法に、ステップを1つ追加した。具体的には、被測定電子部品Bの外部電極に測定端子を当接させた際の荷重が原因で発生した測定誤差の補正、および基準サーミスタの測定抵抗値に対する被測定サーミスタの測定抵抗値の偏差の演算が終了した後に、荷重センサ17で測定された荷重値の大きさが、予め定めた閾値を越えて小さい場合と、予め定められた閾値を越えて大きい場合に、その被測定電子部品Bを不良品と判断するステップを追加した。   In the method for measuring the electrical characteristics of the electronic component according to the fourth embodiment, one step is added to the method for measuring the electrical characteristics of the electronic component according to the first embodiment shown in FIG. 4 described above. Specifically, correction of the measurement error caused by the load when the measurement terminal is brought into contact with the external electrode of the electronic component B to be measured, and the measurement resistance value of the measurement thermistor with respect to the measurement resistance value of the reference thermistor After the calculation of the deviation is finished, when the magnitude of the load value measured by the load sensor 17 is smaller than a predetermined threshold and larger than a predetermined threshold, the measured electronic component A step for judging B as a defective product was added.

荷重値の大きさが、予め定めた閾値を越えて小さい場合には、測定端子と外部電極との接触抵抗が大きく、測定された抵抗値に、補正可能な限界を超えた測定誤差が発生している虞があるからである。また、荷重値の大きさが、予め定めた閾値を越えて大きい場合には、被測定電子部品Bの内部にクラックなどの不良が発生している虞や、被測定電子部品Bの外部電極Ba、Bbに接触痕などの外観不良が発生しいている虞や、測定された抵抗値に、補正可能な限界を超えた測定誤差が発生している虞があるからである。   If the magnitude of the load value is small beyond a predetermined threshold, the contact resistance between the measurement terminal and the external electrode is large, and a measurement error exceeding the correctable limit occurs in the measured resistance value. It is because there is a possibility that. In addition, when the magnitude of the load value is larger than a predetermined threshold, there is a possibility that a defect such as a crack has occurred in the electronic component B to be measured, or the external electrode Ba of the electronic component B to be measured. This is because there is a possibility that an appearance defect such as a contact mark has occurred in Bb, or that there is a possibility that a measurement error exceeding the correctable limit may occur in the measured resistance value.

第4実施形態にかかる電子部品の電気的特性測定方法の他のステップは、第1実施形態にかかる電子部品の電気的特性測定方法と同じにした。   The other steps of the method for measuring electrical characteristics of electronic components according to the fourth embodiment are the same as those of the method for measuring electrical characteristics of electronic components according to the first embodiment.

[第5実施形態]
図8に、第5実施形態にかかる電子部品の電気的特性測定方法のフローを示す。
[Fifth Embodiment]
FIG. 8 shows a flow of a method for measuring electrical characteristics of an electronic component according to the fifth embodiment.

上述した第1実施形態〜第4実施形態にかかる電子部品の電気的特性測定方法においては、被測定電子部品Bの外部電極に測定端子を当接させた際の荷重が原因で発生した測定誤差を補正するだけではなく、基準サーミスタの測定抵抗値に対する被測定サーミスタの測定抵抗値の偏差の演算をおこない、基準温度と測定温度とのずれが原因で発生した測定誤差を小さくしている。   In the electrical characteristic measurement method of the electronic component according to the first to fourth embodiments described above, the measurement error caused by the load when the measurement terminal is brought into contact with the external electrode of the electronic component B to be measured. In addition to correcting the measurement, the deviation of the measured resistance value of the measured thermistor from the measured resistance value of the reference thermistor is calculated to reduce the measurement error caused by the difference between the reference temperature and the measured temperature.

第5実施形態にかかる電子部品の電気的特性測定方法においては、基準サーミスタの測定抵抗値に対する被測定サーミスタの測定抵抗値の偏差の演算は行わず、被測定電子部品Bの外部電極に測定端子を当接させた際の荷重が原因で発生した測定誤差の補正のみを行うようにした。すなわち、被測定電子部品Bの外部電極に測定端子を当接させた際の荷重が原因で発生した測定誤差を補正した後の抵抗値(電気的特性)が、予め定められた許容範囲内にあるか否かで、被測定サーミスタの良品/不良品の判断を行うようにした。   In the electrical characteristic measuring method of the electronic component according to the fifth embodiment, the deviation of the measured resistance value of the measured thermistor from the measured resistance value of the reference thermistor is not calculated, and the measurement terminal is connected to the external electrode of the measured electronic component B. Only the correction of the measurement error caused by the load at the time of contact is made. That is, the resistance value (electrical characteristic) after correcting the measurement error caused by the load when the measurement terminal is brought into contact with the external electrode of the electronic component B to be measured is within a predetermined allowable range. Whether or not the thermistor to be measured is good or bad is determined based on whether or not it is present.

たとえば、厳格に温度管理された環境で電子部品の電気的特性を測定する場合には、基準温度と測定温度とのずれが原因で発生する測定誤差の補正(縮小化)は不要になる。この場合には、上述した電気的特性測定装置100よりも簡易な測定装置で、電子部品の電気的特性を測定することが可能になる。   For example, when measuring the electrical characteristics of an electronic component in a strictly temperature-controlled environment, it is not necessary to correct (reduce) the measurement error caused by the difference between the reference temperature and the measured temperature. In this case, it becomes possible to measure the electrical characteristics of the electronic component with a measurement device simpler than the electrical property measurement device 100 described above.

このように、本発明の電子部品の電気的特性測定方法においては、基準温度と測定温度とのずれが原因で発生する測定誤差の補正(縮小化)は必須の構成ではない。   As described above, in the method for measuring electrical characteristics of an electronic component according to the present invention, correction (reduction) of a measurement error caused by a difference between the reference temperature and the measurement temperature is not an essential configuration.

以上、第1実施形態〜第5実施形態にかかる電子部品の電気的特性測定方法と、電気的特性測定装置100の構成、動作などについて説明した。しかしながら、本発明が上述した内容に限定されることはなく、発明の趣旨に沿って種々の変更をなすことができる。   Heretofore, the method for measuring the electrical characteristics of the electronic component according to the first to fifth embodiments and the configuration and operation of the electrical characteristic measuring apparatus 100 have been described. However, the present invention is not limited to the contents described above, and various modifications can be made in accordance with the spirit of the invention.

たとえば、第1実施形態〜第5実施形態では、NTCサーミスタの抵抗値を測定したが、電子部品の種類はNTCサーミスタには限定されず、測定される電気的特性も抵抗値には限定されない。たとえば、PTCサーミスタや固定抵抗の抵抗値を測定しても良いし、キャパシタのキャパスタン値や、インダクタのインダクタンス値を測定しても良い。   For example, in the first to fifth embodiments, the resistance value of the NTC thermistor is measured, but the type of electronic component is not limited to the NTC thermistor, and the measured electrical characteristics are not limited to the resistance value. For example, the resistance value of a PTC thermistor or a fixed resistor may be measured, or the capacitor's capacitance value or inductor's inductance value may be measured.

また、第1実施形態〜第4実施形態では、基準サーミスタの測定抵抗値Rに対する被測定サーミスタの測定抵抗値Rの偏差を求め、求められた偏差が予め定められた許容範囲内にあるか否かで良品/不良品の判断をし、被測定サーミスタの測定温度と基準温度との差異に起因する測定誤差を小さくしている。これに代えて、被測定サーミスタの測定温度と基準温度との差異に起因する測定誤差に対しても、測定端子が被測定サーミスタの外部電極に当接する際の荷重が原因で発生する測定誤差の補正と同様に、基準温度と測定温度とのずれの大きさと抵抗値の測定誤差量との相関式を作成し、その相関式と基準サーミスタの測定抵抗値から、基準サーミスタと被測定サーミスタの測定温度を算定し、その算定温度に基づき、相関式により被測定サーミスタの測定抵抗値を補正するようにしても良い。In the first to fourth embodiments, a deviation of the measured resistance value R 1 of the measurement thermistor for measuring the resistance value R 0 of the reference thermistor, is within the allowable range set obtained deviation advance Whether the product is good or defective is determined based on whether or not the measurement error due to the difference between the measurement temperature of the measured thermistor and the reference temperature is reduced. Instead of the measurement error caused by the difference between the measurement temperature of the measured thermistor and the reference temperature, the measurement error caused by the load when the measurement terminal contacts the external electrode of the measured thermistor Similar to the correction, create a correlation formula between the magnitude of the deviation between the reference temperature and the measured temperature and the measurement error amount of the resistance value, and measure the reference thermistor and measured thermistor from the correlation formula and the measured resistance value of the reference thermistor The temperature may be calculated, and the measured resistance value of the thermistor to be measured may be corrected by the correlation equation based on the calculated temperature.

また、電気的特性測定装置100は、PC19を備えているが、PC19に代えて、専用の記憶装置、専用の演算装置などを、電気的特性測定装置100自体に組込んでも良い。   In addition, the electrical characteristic measuring apparatus 100 includes the PC 19, but instead of the PC 19, a dedicated storage device, a dedicated arithmetic device, or the like may be incorporated in the electrical characteristic measuring apparatus 100 itself.

さらに、電気的特性測定装置100は、荷重センサ17を当接部材10に設けているが、当接部材10を省略し、荷重センサ17自体に当接部材としての機能を兼ねさせても良い。   Furthermore, although the electrical characteristic measuring apparatus 100 is provided with the load sensor 17 on the contact member 10, the contact member 10 may be omitted, and the load sensor 17 itself may also function as the contact member.

1・・・パーツフィーダ
2・・・回転板
3・・・リニアフィーダ
4・・・測定ベース
5・・・インデックステーブル
5a・・・凹部
6・・・キャビティ(基準電子部品Aが収容される)
7a、7b、7c・・・ガイド
8・・・当接部材
9・・・キャビティ(被測定電子部品Bが収容される)
10・・・当接部材
11a、11b、12a、12b、13a、13b、14a、14b・・・測定端子
15、16・・・測定端子駆動機構
17・・・荷重センサ
18・・・測定器
19・・・パーソナルコンピュータ(PC)
20・・・アンプ
21・・・アナログ・デジタル変換器
A・・・基準電子部品(NTCサーミスタ)
B・・・被測定電子部品(NTCサーミスタ)
S・・・基準電子部品測定領域
T・・・被測定電子部品測定領域
U・・・不良品排除領域
R・・・被測定電子部品回収領域
100・・・電気的特性測定装置
DESCRIPTION OF SYMBOLS 1 ... Parts feeder 2 ... Rotary plate 3 ... Linear feeder 4 ... Measurement base 5 ... Index table 5a ... Concave part 6 ... Cavity (reference electronic component A is accommodated)
7a, 7b, 7c ... guide 8 ... contact member 9 ... cavity (accommodates electronic component B to be measured)
DESCRIPTION OF SYMBOLS 10 ... Contact member 11a, 11b, 12a, 12b, 13a, 13b, 14a, 14b ... Measurement terminal 15, 16 ... Measurement terminal drive mechanism 17 ... Load sensor 18 ... Measuring device 19 ... Personal computer (PC)
20 ... Amplifier 21 ... Analog / digital converter A ... Reference electronic component (NTC thermistor)
B: Electronic component to be measured (NTC thermistor)
S: reference electronic component measurement region T: measured electronic component measurement region U: defective product exclusion region R: measured electronic component recovery region 100: electrical characteristic measuring device

Claims (10)

電子部品の外部電極に測定端子を当接させて、前記測定端子に接続された測定器により前記電子部品に流れる電気信号を検出し、前記電子部品の電気的特性を測定する電気的特性測定方法であって、
予め、前記測定端子を前記外部電極に当接させた際の荷重の大きさと、電気的特性の測定誤差量との相関式を作成するステップと、
前記電子部品の前記外部電極に前記測定端子を当接させて、前記測定器により前記電子部品に流れる電気信号を検出し、前記電子部品の電気的特性を測定して測定電気的特性を得ると同時に、前記当接における荷重の大きさを荷重センサにより測定して荷重値を得るステップと、
前記相関式に基づき、前記荷重値の大きさによって、前記測定電気的特性を補正するステップと、を備えた電気的特性測定方法。
An electrical characteristic measurement method for measuring an electrical characteristic of the electronic component by contacting an external electrode of the electronic component with a measurement terminal, detecting an electrical signal flowing through the electronic component with a measuring instrument connected to the measurement terminal Because
Creating a correlation formula between the magnitude of the load when the measurement terminal is brought into contact with the external electrode in advance and the measurement error amount of the electrical characteristics;
When the measurement terminal is brought into contact with the external electrode of the electronic component, an electric signal flowing through the electronic component is detected by the measuring instrument, and an electric characteristic of the electronic component is measured to obtain a measured electric characteristic. At the same time, measuring the magnitude of the load in the contact with a load sensor to obtain a load value;
Correcting the measured electrical characteristics based on the magnitude of the load value based on the correlation equation.
さらに、基準となる基準温度と、測定時の前記電子部品の温度とのずれによって、前記測定電気的特性を補正するステップを備えた、請求項1に記載された電気的特性測定方法。   The electrical property measurement method according to claim 1, further comprising a step of correcting the measured electrical property based on a difference between a reference temperature serving as a reference and a temperature of the electronic component at the time of measurement. さらに、前記電子部品の補正後の電気的特性が予め定められた許容範囲内にあるか否かで、前記電子部品を良品か不良品かに分類するステップを備えた、請求項1または2に記載された電気的特性測定方法。   The electronic component according to claim 1, further comprising a step of classifying the electronic component as a non-defective product or a defective product depending on whether or not the corrected electrical characteristics of the electronic component are within a predetermined allowable range. The electrical property measurement method described. さらに、前記荷重値の大きさが、予め定めた閾値を越えて小さい場合と、予め定められた閾値を越えて大きい場合との、少なくとも一方の場合に、当該電子部品を不良品と判断するステップを備えた、請求項1ないし3のいずれか1項に記載された電気的特性測定方法。   Further, the step of determining the electronic component as a defective product in at least one of a case where the magnitude of the load value is small exceeding a predetermined threshold and a case where the magnitude is larger than a predetermined threshold. The method for measuring electrical characteristics according to any one of claims 1 to 3, further comprising: 前記電気的特性が抵抗値である、請求項1ないし4のいずれか1項に記載された電気的特性測定方法。   The electrical property measuring method according to claim 1, wherein the electrical property is a resistance value. 電子部品の外部電極に当接する測定端子と、
前記測定端子に接続され、前記電子部品に流れる電気信号を検出し、前記電子部品の電気的特性を測定する測定器と、
測定の際に、前記電子部品の、前記測定端子が当接する面と反対側の面に当接する当接部材と、
前記当接部材に設けられた、前記測定端子を前記電子部品の前記外部電極に当接させた際の荷重の大きさを測定する荷重センサと、を備えた電気的特性測定装置。
A measurement terminal that contacts the external electrode of the electronic component;
A measuring instrument connected to the measurement terminal for detecting an electrical signal flowing through the electronic component and measuring an electrical characteristic of the electronic component;
A contact member that abuts on the surface of the electronic component opposite to the surface on which the measurement terminal abuts,
An electrical characteristic measurement device comprising: a load sensor provided on the contact member for measuring the magnitude of a load when the measurement terminal is brought into contact with the external electrode of the electronic component.
電子部品の外部電極に当接する測定端子と、
前記測定端子に接続され、前記電子部品に流れる電気信号を検出し、前記電子部品の電気的特性を測定する測定器と、
測定の際に、前記電子部品の、前記測定端子が当接する面と反対側の面に当接し、かつ、前記測定端子を前記電子部品の前記外部電極に当接させた際の荷重の大きさを測定する荷重センサと、を備えた電気的特性測定装置。
A measurement terminal that contacts the external electrode of the electronic component;
A measuring instrument connected to the measurement terminal for detecting an electrical signal flowing through the electronic component and measuring an electrical characteristic of the electronic component;
During measurement, the magnitude of the load when the electronic component abuts on the surface opposite to the surface on which the measurement terminal abuts and the measurement terminal abuts on the external electrode of the electronic component And a load sensor for measuring the electrical characteristic measuring device.
さらに、予め作成された、前記測定端子を前記外部電極に当接させた際の荷重の大きさと、電気的特性の測定誤差量との相関式を記憶する記憶手段と、
前記相関式に基づき、前記荷重センサで測定された荷重値の大きさによって、前記測定端子で測定された測定電気的特性を補正する演算手段と、を備えた、請求項6または7に記載された電気的特性測定装置。
Furthermore, a storage unit that stores a correlation formula between a magnitude of a load when the measurement terminal is brought into contact with the external electrode and a measurement error amount of electrical characteristics, which is created in advance,
The calculation means according to claim 6, further comprising: an arithmetic unit that corrects a measured electrical characteristic measured at the measurement terminal based on a magnitude of a load value measured by the load sensor based on the correlation equation. Electrical characteristic measuring device.
さらに、基準となる基準温度と、測定時の前記電子部品の温度とのずれによって、前記測定電気的特性を補正する演算手段を備えた、請求項6ないし8のいずれか1項に記載された電気的特性測定装置。   The calculation device according to any one of claims 6 to 8, further comprising calculation means for correcting the measurement electrical characteristics based on a difference between a reference temperature serving as a reference and a temperature of the electronic component at the time of measurement. Electrical characteristic measuring device. 前記電気的特性が抵抗値である、請求項6ないし9のいずれか1項に記載された電気的特性測定装置。   The electrical property measuring device according to claim 6, wherein the electrical property is a resistance value.
JP2017511527A 2015-04-09 2016-03-23 Method and apparatus for measuring electrical characteristics of electronic parts Active JP6436321B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015080434 2015-04-09
JP2015080434 2015-04-09
PCT/JP2016/059100 WO2016163229A1 (en) 2015-04-09 2016-03-23 Method for measuring electric characteristics of electronic component and electric characteristic measuring device

Publications (2)

Publication Number Publication Date
JPWO2016163229A1 true JPWO2016163229A1 (en) 2018-01-18
JP6436321B2 JP6436321B2 (en) 2018-12-12

Family

ID=57073193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017511527A Active JP6436321B2 (en) 2015-04-09 2016-03-23 Method and apparatus for measuring electrical characteristics of electronic parts

Country Status (3)

Country Link
JP (1) JP6436321B2 (en)
CN (1) CN107430160A (en)
WO (1) WO2016163229A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273399B2 (en) * 2019-04-04 2023-05-15 アキム株式会社 Parts transfer processing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227578A (en) * 1994-02-17 1995-08-29 Hitachi Ltd Method for selecting electronic parts and device therefor
JP2002082144A (en) * 2000-09-06 2002-03-22 Toshiba Microelectronics Corp Measuring method for electrical characteristics of semiconductor package, and test handler for the same
JP2008084601A (en) * 2006-09-26 2008-04-10 Toyota Motor Corp Fuel cell system and impedance measuring method of fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692564B2 (en) * 2011-02-04 2014-04-08 General Electric Company System and method for use in determining the thickness of a layer of interest in a multi-layer structure
TW201329483A (en) * 2012-01-12 2013-07-16 Mpi Corp Probe pressure calibration method and calibration apparatus thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227578A (en) * 1994-02-17 1995-08-29 Hitachi Ltd Method for selecting electronic parts and device therefor
JP2002082144A (en) * 2000-09-06 2002-03-22 Toshiba Microelectronics Corp Measuring method for electrical characteristics of semiconductor package, and test handler for the same
JP2008084601A (en) * 2006-09-26 2008-04-10 Toyota Motor Corp Fuel cell system and impedance measuring method of fuel cell

Also Published As

Publication number Publication date
JP6436321B2 (en) 2018-12-12
CN107430160A (en) 2017-12-01
WO2016163229A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
TWI771300B (en) System and method for electrical circuit monitoring
JP6592885B2 (en) Substrate inspection method and substrate inspection apparatus
CN109557376B (en) Resistance measuring device, substrate inspection device, and resistance measuring method
CN101937021A (en) Online measurement method of contact resistance of probe
TW201038142A (en) Plasma Processing System
TWI514372B (en) Detecting and filtering method of random noise signal
KR102247116B1 (en) Data processing method, data processing device, and data processing program
JP6436321B2 (en) Method and apparatus for measuring electrical characteristics of electronic parts
JP2016075683A (en) Sensor chip calibration method and manufacturing line for calibrated sensor chip
US20150234028A1 (en) State of Charge Gauge Device and State of Charge Gauge Method Thereof
JP2007095938A (en) Tester, prober, wafer test system and electrical contact position detection method
CN115096463A (en) Glass channel welding type thermocouple temperature compensation method, system, equipment and medium
JP6575094B2 (en) Electronic component conveying device and electronic component inspection device
KR101806820B1 (en) Complex environment measuring device for reflow machine, complex environment monitoring system using the same
JP2008116226A (en) Characteristic measuring method for electronic component and characteristic measuring device used for the same
JP2016176902A (en) Electronic component conveyance device and electronic component inspection device
JP3003657U (en) Impedance measuring device
JP2012037411A (en) Semiconductor device inspection method and inspection apparatus
TWI686606B (en) Method for making a test strip with temperature sensing function
JP4770578B2 (en) Sample for evaluation, method for producing the same, and evaluation method
JP2008205258A (en) Semiconductor device and its trimming method
US20130207686A1 (en) Defect detection in integrated circuit devices
JP4422038B2 (en) Measuring method and measuring device
US20120245882A1 (en) Wafer tilt detection system
JP6267546B2 (en) Contact position control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181030

R150 Certificate of patent or registration of utility model

Ref document number: 6436321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150