JPWO2016129255A1 - レーザ加工用ガラス及びそれを用いた孔付きガラスの製造方法 - Google Patents

レーザ加工用ガラス及びそれを用いた孔付きガラスの製造方法 Download PDF

Info

Publication number
JPWO2016129255A1
JPWO2016129255A1 JP2016574660A JP2016574660A JPWO2016129255A1 JP WO2016129255 A1 JPWO2016129255 A1 JP WO2016129255A1 JP 2016574660 A JP2016574660 A JP 2016574660A JP 2016574660 A JP2016574660 A JP 2016574660A JP WO2016129255 A1 JPWO2016129255 A1 JP WO2016129255A1
Authority
JP
Japan
Prior art keywords
glass
mol
laser
laser processing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016574660A
Other languages
English (en)
Other versions
JP6643263B2 (ja
Inventor
輝英 井上
輝英 井上
坂口 浩一
浩一 坂口
小用 広隆
広隆 小用
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Publication of JPWO2016129255A1 publication Critical patent/JPWO2016129255A1/ja
Application granted granted Critical
Publication of JP6643263B2 publication Critical patent/JP6643263B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/08Severing cooled glass by fusing, i.e. by melting through the glass
    • C03B33/082Severing cooled glass by fusing, i.e. by melting through the glass using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本発明は、紫外線レーザ照射による変質部形成とエッチングとを組合せた微細孔一括加工技術において、円形の輪郭と平滑な内壁を有する孔を作製可能にし、実用的な連続生産が可能なガラス組成を提供する。本発明は、ガラスの組成が、モル%で表示して、45.0%≦SiO2≦70.0%、2.0%≦B2O3≦20.0%、3.0%≦Al2O3≦20.0%、0.1%≦CuO≦2.0%、0%≦TiO2≦15.0%、及び0%≦ZnO≦9.0%を含み、かつ、0≦Li2O+Na2O+K2O<2.0%であるレーザ加工用ガラスに関する。

Description

本発明は、レーザ加工用ガラス及びそれを用いた孔付きガラスの製造方法に関する。
MEMSあるいは電子デバイスに用いられる微小素子として微細な貫通孔を多数配列した素材が使用されている。この素材には、温度変化による膨張収縮が小さく破損の発生しにくいシリコンウェハが一般的に用いられている(CTE=35×10-7/℃程度)。また、熱膨張係数(CTE)が小さいため、温度変化による特性の変動も小さい等の特徴もある。一方でシリコンウェハの母材であるシリコン単結晶の製造は非常に高コストであり、従ってシリコンウェハも非常に高価である。さらに、実用化されているシリコンウェハへの孔開け加工方法であるアブレーションを利用したレーザ加工では、1つの孔に複数のパルスを照射する必要があり、高速加工が難しく、タクトタイムが長くなるために加工コストも高額になる。
一方、紫外線レーザパルスの照射とウェットエッチングを組み合わせて、理論上は毎秒1000個以上の高速な孔開け加工を可能にする技術(特許文献1)が知られている。本加工方法によれば、535nm以下の波長のパルスレーザを、所定のレンズで集光してから、孔を形成したい基板状のガラスに照射して、変質部を形成する。さらに、形成された変質部の部分は、他の部分よりエッチング速度が大きくなることを利用して、変質部の形成されたガラスをフッ酸溶液に浸し、変質部の部分に貫通孔又は有底孔を形成させるものである。
当該特許文献1によれば、実施例1や12等に記載されているチタン含有シリケートガラスにおいて、円柱状や円錐台状の貫通孔の一括同時製作を実現している。しかしながら、実施例に開示されているガラス組成は、アルカリ金属を酸化物の形態で多く含んでいるため、熱膨張係数がシリコンウェハより大きく、MEMSや電子デバイス用途には不向きであったり、失透の核形成剤として失透の発生を促進する成分として知られるチタンを高濃度に含有するため、ガラスが失透し易く連続生産に適さなかったり、組成に含まれるアルカリ成分がデバイスの製造工程を汚染する等の問題がある。
特許第4672689号公報
本発明は、紫外線レーザ照射による変質部形成とエッチングとを組み合せた微細孔一括加工技術において、円形の輪郭と平滑な内壁を有する孔を作製可能にし、実用的な連続生産が可能なガラスを提供することを目的とする。
本発明者らは、単にガラスがAlを含むだけでは十分な孔品質を得られない場合でもCuイオンを組み合わせて用いることで良好な孔品質の得られることを初めて見出した。
本発明は、ガラスの組成が、モル%で表示して、
45.0%≦SiO2≦70.0%、
2.0%≦B23≦20.0%、
3.0%≦Al23≦20.0%、
0.1%≦CuO≦2.0%、
0%≦TiO2≦15.0%、及び
0%≦ZnO≦9.0%、
を含み、かつ
0≦Li2O+Na2O+K2O<2.0%
であるレーザ加工用ガラスを提供する。
また、本発明は、上記のレーザ加工用ガラスに対して、所定のレーザパルスをレンズで集光して照射することによって、照射部に変質部を形成する工程〔i〕と、エッチング液を用いて少なくともその変質部をエッチングする工程〔ii〕によって、孔付きガラスを製造する方法を提供する。
本発明のレーザ加工用ガラスを用いることにより、紫外線レーザ照射による変質部形成とエッチングとを組合せた微細孔一括加工技術において、円形の輪郭と平滑な内壁を有する孔を有するガラスを製造することができる。また、本発明に係るガラスは、所定の穿孔方法によって、加工部分周辺のクラック等のガラスの変形を抑制することができ、面内でばらつきの少ない孔を備えるガラスを得ることができる。さらに、本発明に用いるレーザはNd:YVOレーザの高調波を発生するものでナノ秒レーザを用いることができるため、一般的に高価なフェムト秒レーザを用いる必要がなく、工業的に有利である。さらに、本発明のガラスは、穿孔等の加工に及ばなくても、必要とされる透過率特性等の光学特性を満たす場合には無アルカリガラス基板としてディスプレイやタッチパネル等の表示装置用部品としての適用を妨げるものではない。
本発明の製造方法の模式図である。 本発明の円形度又は輪郭の評価方法に関する説明図である。 本発明の孔内壁の平滑性の評価方法に関する説明図である。 本発明のガラスの孔の深さの評価方法に関する説明図である。 本発明のレーザ加工用ガラスを用いた応用例(インターポーザ用ガラス基板)に関する説明図である。
本発明のレーザ加工用ガラスは、ガラスの組成が、モル%で表示して、
45.0%≦SiO2≦70.0%、
2.0%≦B23≦20.0%、
3.0%≦Al23≦20.0%、
0.1%≦CuO≦2.0%、
0%≦TiO2≦15.0%、及び
0%≦ZnO≦9.0%、
を含み、かつ
0≦Li2O+Na2O+K2O<2.0%
であることを特徴とする。
本発明のレーザ加工用ガラスの50〜350℃の平均熱膨張係数(本明細書において、単に「熱膨張係数」という)は、70×10-7/℃以下であることが好ましく、60×10-7/℃以下であることがより好ましく、50×10-7/℃以下であることがさらに好ましく、45×10-7/℃以下が特に好ましい。また、熱膨張係数の下限は特に限定されないが、例えば、10×10-7/℃以上であってもよく、20×10-7/℃以上であってもよい。熱膨張係数は以下のように測定する。まず、直径5mm、高さ18mmの円柱形状のガラス試料を作製する。これを25℃からガラス試料の降伏点まで加温し、各温度におけるガラス試料の伸びを測定することにより、熱膨張係数を算出する。50〜350℃の範囲の熱膨張係数の平均値を計算し、平均熱膨張係数を得ることができる。実際の熱膨張係数の測定はNETZSCH社の熱機械分析装置TMA4000SAを用い、5℃/分の昇温速度条件で測定した。
本発明に係るガラスについては、その照射されるレーザの波長域における吸収係数αが重要である。本発明のレーザ加工用ガラスの吸収係数αは、照射するレーザ光の主波長において、1〜50/cmが好ましく、2〜40/cmがより好ましく、2〜35/cmがさらに好ましいが、厚みの全幅方向で、変質部を形成するために必要な吸収係数に調整してもよい。吸収係数αが小さすぎると、レーザ光がガラスを素通りしてガラスがレーザのエネルギーを吸収できずに変質部を形成することができない。逆に大きすぎると、ガラス表面近傍でレーザのエネルギーを吸収されつくされてしまい、一発のレーザパルスで、変質部がガラスの厚み方向に深く形成させることができず、結果、孔の形成が容易ではなくなってしまう。
吸収係数αは、厚さt(cm)のガラス基板の透過率及び反射率を測定することによって算出できる。厚さt(cm)のガラス基板について、所定の波長(波長535nm以下)における透過率T(%)と入射角12°における反射率R(%)とを分光光度計(例えば、日本分光株式会社製 紫外可視近赤分光光度計V−670)を用いて測定する。得られた測定値から以下の式を用いて吸収係数αを算出する。
α=(1/t)*ln{(1−R)/T}
本発明のレーザ加工用ガラスに含まれ得る各成分について、以下に説明する。なお、本明細書において、数値範囲(各成分の含有量、各成分から算出される値及び各物性等)の上限値及び下限値は適宜組み合わせ可能である。なお、本発明において、ある成分を「実質的に含有しない」とは、ガラスにおける当該成分の含有量が、0.1モル%未満、好ましくは0.05モル%未満、より好ましくは0.01モル%以下であることを意味する。
(1)SiO2
SiO2は、ガラスの主たるネットワークを構成する網目形成酸化物である。SiO2を含めることによって、化学的耐久性向上に寄与するとともに、温度と粘度との関係を調整でき、また、失透温度を調整できる。SiO2の含有量が多すぎると実用的な1700℃未満の温度で溶融することが難しくなり、SiO2の含有量が少なすぎると失透の発生する液相温度が低下する。本発明のガラスにおいて、SiO2の含有量は、45.0モル%以上であり、50.0モル%以上が好ましく、52.0モル%以上がより好ましく、55.0モル%以上がさらに好ましい。また、SiO2の含有量は、70.0モル%以下であり、68.0モル%以下が好ましく、67.0モル%以下がより好ましく、66.0モル%以下がさらに好ましい。
(2)B23
23は、SiO2と同じく、ガラスの主たるネットワークを構成する網目形成酸化物である。B23を含めることによって、ガラスの液相温度を低下させて、実用的な溶融温度に調整できる。SiO2含有量の比較的多い無アルカリあるいは微アルカリガラスにおいては、B23の含有量が少なすぎる場合には実用的な1700℃未満の温度で溶融することが難しくなる。B23の含有量が多すぎる場合にも高温の溶融において揮発量が増大し、組成比の安定的な維持が難しくなる。B23の含有量としては、2.0〜20.0モル%である。さらに6.0モル%未満の場合には、粘性が大きくなりガラスの溶解の難易度が上がり、18.0モル%を超える場合には歪点が小さくなることから、B23の含有量は、6.0モル%以上が好ましく、6.5モル%以上がより好ましく、7.0モル%以上がさらに好ましい。B23の含有量は、18.0モル%以下が好ましく、17.0モル%以下がより好ましく、16.5モル%以下がさらに好ましい。
(3)SiO2+B23
これらの網目形成成分の和(SiO2+B23)については、80.0モル%を超えるとガラスの溶融が著しく困難となるため、これらの網目形成成分の和は80.0モル%以下が好ましく、78.0モル%以下がより好ましく、76.0モル%以下がさらに好ましく、74.0モル%以下が特に好ましい。これらの網目形成成分の和は55.0モル%以上が好ましく、58.0モル%以上がより好ましく、59.0モル%以上がさらに好ましく、62.0モル%以上が特に好ましい。
(4)Al23
本発明は、レーザアブレーションによる直接的な物理的加工、即ち完全に結合を切断する必要はないが、レーザの照射エネルギーによって変質部を形成可能な適度に弱い結合強度を持たせる点が特徴である。
Al23は、いわゆる中間酸化物であり、上述の網目形成成分SiO2とB23と修飾酸化物である後述のアルカリ土類金属酸化物の含有量とのバランスに応じて、前者あるいは後者の酸化物として機能し得る。一方で、Al23は4配位をとって、ガラスを安定化し、ホウケイ酸ガラスの分相を防止し、化学的耐久性を増大させる成分である。SiO2含有量の比較的多い無アルカリあるいは微アルカリガラスにおいては、Al23の含有量が少なすぎる場合には実用的な1700℃未満の温度で溶融することが難しくなる。Al23の含有量が多すぎる場合にも、ガラスの溶融温度は上昇し、また安定的にガラスを形成することが困難になる。Al23の含有量としては3.0〜20.0モル%である。さらに6.0モル%未満では歪点が低くなる虞があり、18.0モル%を超える場合には表面が白濁しやすくなることから、6.0モル%以上が好ましく、6.5モル%以上がより好ましく、7.0モル%以上がさらに好ましく、7.5モル%以上が特に好ましい。また、Al23の含有量としては、18.0モル%以下が好ましく、17.5モル%以下がより好ましく、16.0モル%以下がさらに好ましく、13.5モル%以下が特に好ましい。
(5)TiO2
TiO2は、いわゆる中間酸化物であり、一般的に溶融温度、失透性調整に使用される。レーザアブレーションによるガラスの加工方法においても、TiO2を被加工ガラスに含有させることにより、レーザによる加工閾値を低下させることができることが知られている(特許第4495675号)。特許第4495675号では、レーザ加工において割れることなく比較的容易に加工できるガラス組成において、網目修飾酸化物(アルカリ金属酸化物、アルカリ土類金属酸化物、遷移金属酸化物等)によって構成される、例えばNa−O結合等の弱い結合はレーザ加工性に寄与せず、当該レーザ加工性は、Na−O等の網目修飾酸化物による弱い結合を除く網目形成酸化物と中間酸化物による結合強度で特徴づけられるとされている。この場合、照射したレーザのエネルギーによって結合を完全に切断するのに十分な量の中間酸化物がガラスの組成に導入されていると解される。Kuan−Han Sunによる単結合強度によるガラス形成能の分類(J.Amer.Ceram.Soc.vol.30,9,Sep 1947,pp277−281)によると、TiO2は中間的な結合強度を持つ中間酸化物に属する。レーザ照射とエッチングとを併用する孔付きガラスの製造方法においては、CuOを含む等の特定の組成を有する無アルカリガラスもしくは微アルカリガラスにTiO2を含ませることにより、比較的弱いレーザ等のエネルギー照射によっても変質部を形成することが可能となり、さらにその変質部は後工程のエッチングにより容易に除去され得るという作用をもたらす。要するにTiO2は、ガラスのレーザ加工性を調整できる作用を期待できる。
また、TiO2をガラスに適量含有させることにより、同時に含まれるFe、Cu等の着色成分の着色の効果に影響を与えることもよく知られている。これはすなわち、所定のレーザの波長領域の吸収係数αを調整できる働きも備えているといえる。従って、本発明においては、レーザ照射及びエッチングの併用する製造方法のエッチング工程によって孔が形成される変質部の形成を容易にすることを目的として、ガラスが適切な吸収係数αを有するように、TiO2を含有させてもよい。一方で、TiO2の含有量が多すぎると耐薬品性、特に耐フッ酸性が過度に増大し、レーザ照射後のエッチング工程において、孔が適切に形成されない等の不具合を生じる場合がある。そのため、本発明のガラスは、実質的にTiO2を含有しないものであってもよい。また、過度なTiO2の含有により着色濃度が大きくなり、ディスプレイ用途のガラスの成型には適さなくなる場合もある。本発明のガラスにおいては、TiO2の含有量は0〜15.0モル%であり、レーザ照射によって得られる孔内壁面の平滑性に優れる点から、0〜10.0モル%が好ましく、1.0〜10.0モル%がより好ましく、1.0〜9.0モル%がさらに好ましく、1.0〜5.0モル%が特に好ましい。
本発明のガラスが、TiO2を含有する(TiO2の含有量が0モル%を除く)場合、TiO2の含有量(モル%)をCuOの含有量(モル%)で除した値(「TiO2/CuO」)は、他の成分との組み合わせにもよるが、レーザ照射によって得られる孔内壁面の平滑性に優れる点から、1.0以上であることが好ましく、1.5以上がより好ましく、2.0以上がさらに好ましい。また、TiO2/CuOは、20.0以下が好ましく、15.0以下がより好ましく、12.0以下がさらに好ましい。
(6)ZnO
ZnOは、溶融温度、失透性調整に使用される。ZnOは、組成によっては、中間酸化物並の単結合強度を持つ場合のある成分である。ZnOの含有量が多すぎるとガラスが失透し易くなる。そのため、本発明のガラスは、実質的にZnOを含有しないもの(ZnOの含有量が0.1モル%未満、好ましくは0.05モル%未満、より好ましくは0.01モル%以下であることを意味する)であってもよい。このような特徴から鑑みて、本発明のガラスにおいては、ZnOの含有量は0〜10.0モル%であり、1.0〜10.0モル%が好ましく、1.0〜9.0モル%がより好ましく、1.0〜7.0モル%がさらに好ましい。
(7)MgO
MgOはアルカリ土類金属酸化物の中でも、熱膨張係数の増大を抑制しつつ、かつ歪点を過大には低下させないという特徴を有し、溶解性も向上させるため含有させてもよい。但し、MgOの含有量が多すぎるとガラスが分相したり、失透特性、耐酸性が劣化し好ましくない。本発明のガラスにおいて、MgOの含有量は15.0モル%以下が好ましく、12.0モル%以下がより好ましく、10.0モル%以下がさらに好ましく、8.5モル%以下が特に好ましい。また、MgOの含有量は2.0モル%以上が好ましく、2.5モル%以上がより好ましく、3.0モル%以上がさらに好ましく、3.5モル%以上が特に好ましい。
(8)CaO
CaOは、MgOと同様に、熱膨張係数の増大を抑制しつつ、かつ歪点を過大には低下させないという特徴を有し、溶解性も向上させるため含有させてもよい。但し、CaOの含有量が多すぎると失透特性の劣化や熱膨張係数の増大、耐酸性の低下を招くため好ましくない。本発明のガラスにおいて、CaOの含有量は15.0モル%以下が好ましく、10.0モル%以下がより好ましく、6.5モル%以下がさらに好ましく、6.0モル%以下が特に好ましい。また、CaOの含有量は1.0モル%以上が好ましく、1.5モル%以上がより好ましく、2.0モル%以上がさらに好ましく、2.5モル%以上が特に好ましい。
(9)SrO
SrOはMgO及びCaOと同様に、熱膨張係数の増大を抑制しつつ、かつ歪点を過大には低下させないという特徴を有し、溶解性も向上させるため、失透特性と耐酸性の改善のためには含有させてもよい。但し、SrOを多く含有しすぎると失透特性の劣化や熱膨張係数の増大、耐酸性や耐久性の低下を招くため好ましくない。本発明のガラスにおいて、SrOの含有量は15.0モル%以下が好ましく、10.0モル%以下がより好ましく、6.5モル%以下がさらに好ましく、6.0モル%以下が特に好ましい。また、SrOの含有量は1.0モル%以上が好ましく、1.5モル%以上がより好ましく、2.0モル%以上がさらに好ましく、2.5モル%以上が特に好ましい。
(10)BaO
BaOはエッチング性を調整し、またガラスの分相及び失透特性の向上、ならびに化学的耐久性の向上に効果があるため適量含有してもよい。本発明のガラスにおいて、BaOの含有量は15.0モル%以下が好ましく、12.0モル%以下がより好ましく、10.0モル%以下がさらに好ましく、6.0モル%以下が特に好ましい。また、BaOの含有量は1.0モル%以上が好ましく、2.0モル%以上がより好ましく、3.0モル%以上がさらに好ましく、3.5モル%以上が特に好ましい。但し、他のアルカリ土類金属酸化物との兼ね合いで、実質的に含有しなくてもよい。
(11)MgO+CaO+SrO+BaO
アルカリ土類金属酸化物(MgO、CaO、SrO、及びBaO)は、上述のような作用を備えており、総じて熱膨張係数の増大を抑制しつつ、ガラスの溶融温度を調整する成分である。粘性、溶融温度、失透性の調整に使用される。但し、アルカリ土類金属酸化物の含有量が多すぎると、ガラスが失透しやすくなったりするため、本発明のガラスにおいて、これらアルカリ土類金属酸化物の含有量の総和(以下、「ΣRO」ともいう)は、25.0モル%以下が好ましく、23.0モル%以下がより好ましく、20.0モル%以下がさらに好ましく、18.0モル%以下が特に好ましい。ΣROは、6.0モル%以上が好ましく、8.0モル%以上がより好ましく、10.0モル%以上がさらに好ましく、10.5モル%以上が特に好ましい。
(12)Li2O、Na2O、K2
アルカリ金属酸化物(Li2O、Na2O、及びK2O)は、ガラスの特性を大きく変化させることの可能な成分である。ガラスの溶解性が著しく向上するため含有しても差し支えないが、特に熱膨張係数の増大に対する影響は大きいため、用途に応じて調整する必要がある。特に電子工学分野で使用されるガラスにおいては、後工程の熱処理中に近接の半導体に拡散したり、電気絶縁性を著しく低下させ、誘電率(ε)あるいは誘電正接(tanδ)を増大させ、高周波特性を劣化させる虞がある。もしガラス中にこれらのアルカリ金属酸化物を含む場合は、ガラスの成型後に他の誘電体物質によってガラス表面をコーティングすることにより、アルカリ成分の少なくとも表面への拡散等を防止できるため、上記の問題点を解消することができる。コーティングの方法は、SiO2等の誘電体をスパッタリング、蒸着等の物理的方法あるいはゾルゲル法による液相からの成膜方法等、周知の技術により効果を得られる。一方、本発明のガラスにおいては、アルカリ金属酸化物を含まない無アルカリ(Li2O+Na2O+K2O=0モル%)ガラスであってもよく、若干のアルカリ成分を許容する微アルカリガラスであってもよい。微アルカリガラスに含まれるアルカリ金属酸化物の含有量は2.0モル%未満であることが好ましく、1.0モル%未満であってもよく、0.1モル%未満であることがより好ましく、0.05モル%未満であることがさらに好ましく、0.01モル%未満であることが特に好ましい。また、微アルカリガラスに含まれるアルカリ金属酸化物の含有量は、0.0001モル%以上であってもよく、0.0005モル%以上であってもよく、0.001モル%以上であってもよい。
(13)CuO
CuOは本発明における必須の成分であり、CuOを含有させることにより、ガラスに着色が生じ、所定レーザの波長における吸収係数αを適切な範囲にすることで、照射レーザのエネルギーを適切に吸収させることができ、孔形成の基礎となる変質部を容易に形成させることができる。
CuOの含有量は、上記した吸収係数αの数値範囲に収まるように、2.0モル%以下が好ましく、1.9モル%以下がより好ましく、1.8モル%以下がさらに好ましく、1.6モル%以下が特に好ましい。またCuOの含有量は、0.1モル%以上が好ましく、0.15モル%以上がより好ましく、0.18モル%以上がさらに好ましく、0.2モル%以上が特に好ましい。
本発明において、Al23の含有量(モル%)をCuOの含有量(モル%)で除した値(「Al23/CuO」)は、他の成分との組み合わせにもよるが、レーザ照射によって得られる孔内壁面の平滑性に優れる点から、4.0以上であることが好ましく、5.0以上がより好ましく、6.0以上がさらに好ましく、6.5以上が特に好ましい。また、Al23/CuOは、120.0以下が好ましく、80.0以下がより好ましく、60.0以下がさらに好ましく、56.0以下が特に好ましい。
(13)他の着色成分
本発明において「他の着色成分」とは、CuO及びTiO2以外のガラスに含有させた場合に着色の効果が大きい金属酸化物を意味するものである。具体的にはFe、Ce、Bi、W、Mo、Co、Mn、Cr、及びVからなる群から選択される金属の酸化物であって、1又は複数(2種以上)の種類を含有させてもよい。これにより紫外線レーザ光のエネルギーをガラスの変質部形成に寄与させるため、直接的にあるいは間接的に吸収させる働きをもたらすものと考えられる。
(14)その他の成分
ガラスの製造方法として、フロート法、ロールアウト法、フュージョン法、スロットダウン法、キャスティング法、プレス法等の方法を用いることができ、中でも基板両主面の高度な品位を得ることができることから、電子技術分野に用いられる基板用ガラスを製造するためにはフュージョン法が好適である。フュージョン法等でガラスを溶融及び成型する場合は、清澄剤を添加してもよい。
(14−1)清澄剤
清澄剤としては、特に限定されないが、As、Sb、Sn、Ce等の酸化物;Ba、Ca等の硫化物;Na、K等の塩化物;F、F2、Cl、Cl2、SO3等が挙げられる。本発明のガラスは、As、Sb、Sn、Ce等の酸化物、Ba、Ca等の硫化物、Na,K等の塩化物、F、F2、Cl、Cl2、及びSO3からなる群から選ばれる少なくとも1種の清澄剤を0〜3.0モル%含むことができる(0モル%を除いていてもよい)。また、Fe23も清澄剤として機能し得るが、本明細書においては、Fe23は着色成分を意味するものとする。
(14−2)ガラス製造設備からの不純物
ガラスを製造する際に、ガラス製造設備からの不純物が混入する場合がある。本発明のガラスは、本発明の効果が得られる限り特に限定されず、このような不純物を含むガラスも包含する。ガラス製造設備から生じる不純物としては、Zr、Pt(いずれもガラス製造設備(溶融、成形工程等)の耐火材若しくは電極の主要素材、ZrはZrO2として耐火材の主要素材として使用される場合がある)等が挙げられる。これに起因して本発明のガラスは、ZrO2及びPtからなる群から選ばれる少なくとも1種を若干量(例えば、3.0モル%以下)含んでいてもよい。先述のようにZrO2は中間酸化物としてガラスに含ませることができるが、ZrO2を積極的にガラスに含ませない場合であっても、上記のようにガラス製造設備からの不純物として、若干量のZr成分がガラスに含まれていてもよい。
(14−3)水分
また、成型されたガラスはある程度の水分を含む場合もある。水分量を規定する指標としてはβ−OH値がある。β−OH値は、厚さt’(mm)のガラス基板の参照波数3846cm-1における透過率T1(%)と、水酸基吸収波数3600cm-1付近における最小透過率T2(%)をFT−IR法によって測定することにより、式(1/t’)×log(T1/T2)によって算出する。β−OH値は0.01〜0.5/mm程度であってもよく、この値を小さくすると歪点を高めることに寄与するが、逆に小さすぎると溶解性が低下しやすくなる。
本発明の好適な実施態様(X−1)として、例えば、ガラス組成が、
モル%で表示して、
45.0%≦SiO2≦68.0%、
2.0%≦B23≦20.0%、
3.0%≦Al23≦20.0%、及び
0.1%≦CuO≦2.0%、を含み、
TiO2とZnOとを実質的に含まず、かつ
58.0%≦SiO2+B23≦80.0%、
8.0%≦MgO+CaO+SrO+BaO≦20.0%、
0≦Li2O+Na2O+K2O<2.0%、
6.0≦Al23/CuO≦60.0
であるアルミノボロシリケートガラスが挙げられる。
本発明の他の好適な実施態様(X−2)として、例えば、ガラス組成が、
モル%で表示して、
50.0%≦SiO2≦68.0%、
6.0%≦B23≦18.0%、
7.0%≦Al23≦18.0%、
0.1%≦CuO≦1.8%、及び
1.0%≦TiO2≦10.0%を含み、
ZnOを実質的に含まず、かつ
58.0%≦SiO2+B23≦80.0%、
8.0%≦MgO+CaO+SrO+BaO≦20.0%、
0≦Li2O+Na2O+K2O<2.0%、
6.0≦Al23/CuO≦60.0、
0≦TiO2/CuO≦20.0
であるアルミノボロシリケートガラスが挙げられる。
本発明の他の好適な実施態様(X−3)として、例えば、ガラス組成が、
モル%で表示して、
50.0%≦SiO2≦68.0%、
6.0%≦B23≦18.0%、
7.0%≦Al23≦18.0%、
0.1%≦CuO≦1.8%、及び
1.0%≦ZnO≦9.0%を含み、
TiO2を実質的に含まず、かつ
58.0%≦SiO2+B23≦80.0%、
8.0%≦MgO+CaO+SrO+BaO≦20.0%、
0≦Li2O+Na2O+K2O<2.0%、
6.0≦Al23/CuO≦60.0
であるアルミノボロシリケートガラスが挙げられる。
前記実施態様(X−1)は、さらに、ガラスの組成が、モル%で表示して、
2.0%≦MgO≦10.0%、
1.0%≦CaO≦10.0%、
1.0%≦SrO≦10.0%、及び
0%≦BaO≦6.0%を含むアルミノボロシリケートガラス(X−4)であってもよい。同様に、前記実施態様(X−2)及び(X−3)は、MgO、CaO、SrO及びBaOのそれぞれの配合量が(X−4)と同一であるアルミノボロシリケートガラス(X−5)及び(X−6)であってもよい。
前記実施態様(X−1)は、さらに、ガラスの組成が、モル%で表示して、
3.0%≦MgO≦8.5%、
2.0%≦CaO≦6.5%、
2.0%≦SrO≦6.5%、及び
0%≦BaO≦6.0%を含むアルミノボロシリケートガラス(X−7)であってもよい。同様に、前記実施態様(X−2)及び(X−3)は、MgO、CaO、SrO及びBaOのそれぞれの配合量が(X−7)と同一であるアルミノボロシリケートガラス(X−8)及び(X−9)であってもよい。
上記したいずれの実施態様においても、上述の説明に基づいて、各成分の量を適宜変更でき、任意の成分について、追加、削除等の変更をすることができる。また、上記したいずれの実施態様においても、各ガラスの組成と各特性(熱膨張係数、吸収係数α等)の値を適宜変更して組み合わせることもできる。例えば、実施態様(X−1)〜(X−9)のガラスにおいて、熱膨張係数が60×10-7/℃以下であってもよい。また、実施態様(X−1)〜(X−9)のガラスにおいて、吸収係数αが2〜40/cmであってもよい。
本発明の他の実施態様としては、上記レーザ加工用ガラスを用いた孔付きガラスの製造方法が挙げられる。以下、当該製造方法について説明する。
孔付きガラスの製造方法は、上述したいずれかの本発明のレーザ加工用ガラスに、レーザパルスをレンズで集光して照射して、照射部に変質部を形成する工程〔i〕と、エッチング液を用いて、少なくとも前記変質部をエッチングすることにより、前記レーザ加工用ガラスに孔を形成する工程〔ii〕とを有する。
変質部を形成する工程〔i〕に用いるレーザ加工用ガラスは、例えば、下記のようにして製造することができる。
[ガラス溶融及び成型]
約300gのガラスが得られるように、所定分量のガラス原料粉末を調合し、白金ルツボを用いて通常の溶融急冷法で、ある程度の体積をもつガラスブロックを作製する。途中、ガラスの均一性の向上あるいは清澄を目的に撹拌してもよい。
溶融温度及び時間については、各ガラスの溶融特性に適するように設定できる。溶融温度は、例えば、800〜1800℃程度であってもよく、1000〜1700℃程度であってもよい。溶融時間は、例えば、0.1〜24時間程度であってもよい。ガラス内部の残留応力を緩和するため、所定の温度範囲(例えば、400〜600℃程度)を数時間かけて通過させたあと、室温まで自然放冷するのが好ましい。
このように成型することによって、厚さ0.1〜1.5mm程度の薄板状のレーザ加工用ガラス基板を得ることができる。
[変質部の形成]
工程〔i〕において、上述したいずれかの本発明のレーザ加工用ガラスに、レーザパルスをレンズで集光して照射して、照射部に変質部を形成する。
工程〔i〕では、1度のパルス照射で変質部を形成することが可能である。すなわち、工程〔i〕では、照射位置が重ならないようにレーザパルスを照射することによって、変質部を形成できる。但し、照射パルスが重なるようにレーザパルスを照射してもよい。
工程〔i〕では、通常、ガラスの内部にフォーカスされるようにレンズでレーザパルスを集光する。例えば、ガラス板に貫通孔を形成する場合には、通常、ガラス板の厚さ方向の中央付近にフォーカスされるようにレーザパルスを集光する。なお、ガラス板の上面側(レーザパルスの入射側)のみを加工する場合には、通常、ガラス板の上面側にフォーカスされるようにレーザパルスを集光する。逆に、ガラス板の下面側(レーザパルスの入射側とは反対側)のみを加工する場合には、通常、ガラス板の下面側にフォーカスされるようにレーザパルスを集光する。但し、ガラス変質部が形成できる限り、レーザパルスがガラスの外部にフォーカスされてもよい。例えば、ガラス板の上面あるいは下面から所定の距離(例えば1.0mm)だけガラスから離れた位置にレーザパルスがフォーカスされてもよい。換言すれば、ガラスに変質部が形成できる限り、レーザパルスは、ガラスの上面から手前方向(レーザパルスの進行方向とは逆の方向)に1.0mm以内にある位置(ガラスの上面含む)、またはガラスの下面から後方(ガラスを透過したレーザパルスが進行する方向)に1.0mm以内にある位置(ガラスの下面位置を含む)又は内部にフォーカスされてもよい。
レーザパルスのパルス幅は、1〜200ns(ナノ秒)が好ましく、1〜100nsがより好ましく、5〜50nsがさらに好ましい。また、パルス幅が200nsより大きくなると、レーザパルスの尖頭値が低下してしまい、加工がうまくできない場合がある。5〜100μJ/パルスのエネルギーからなるレーザ光を上記レーザ加工用ガラスに照射する。レーザパルスのエネルギーを増加させることによって、それに比例するように変質部の長さを長くすることが可能である。レーザパルスのビーム品質M2値は、例えば2以下であってもよい。M2値が2以下であるレーザパルスを用いることによって、微小な細孔あるいは微小な溝の形成が容易になる。
本発明の製造方法では、レーザパルスが、Nd:YAGレーザの高調波、Nd:YVO4レーザの高調波、又はNd:YLFレーザの高調波であってもよい。高調波は、例えば、第2高調波、第3高調波又は第4高調波である。これらレーザの第2高調波の波長は、532nm〜535nm近傍である。第3高調波の波長は、355nm〜357nm近傍である。第4高調波の波長は、266nm〜268nmの近傍である。これらのレーザを用いることによって、ガラスを安価に加工できる。
レーザ加工に用いる装置としては、例えば、コヒレント社製の高繰返し固体パルスUVレーザ:AVIA355−4500が挙げられる。当該装置では、第3高調波Nd:YVO4レーザであり、繰返し周波数が25kHzの時に6W程度の最大のレーザパワーが得られる。第3高調波の波長は350nm〜360nmである。
レーザパルスの波長は、535nm以下が好ましく、例えば、350nm〜360nmの範囲であってもよい。一方、レーザパルスの波長が535nmよりも大きくなると、照射スポットが大きくなり、微小孔の作製が困難になる上、熱の影響で照射スポットの周囲が割れやすくなる。
典型的な光学系として、発振されたレーザを、ビームエキスパンダで2〜4倍に広げ(この時点でφ7.0〜14.0mm)、可変のアイリスでレーザの中心部分を切り取った後にガルバノミラーで光軸を調整し、100mm程度のfθレンズで焦点位置を調整しつつガラスに集光する。
レンズの焦点距離L(mm)は、例えば50〜500mmの範囲にあり、100〜200mmの範囲から選択してもよい。
また、レーザパルスのビーム径D(mm)は、例えば1〜40mmの範囲にあり、3〜20mmの範囲から選択してもよい。ここで、ビーム径Dは、レンズに入射する際のレーザパルスのビーム径であり、ビームの中心の強度に対して強度が[1/e2]倍となる範囲の直径を意味する。
本発明では、焦点距離Lをビーム径Dで除した値、すなわち[L/D]の値が、7以上であり、7以上40以下が好ましく、10以上20以下であってもよい。この値は、ガラスに照射されるレーザの集光性に関係する値であり、この値が小さいほど、レーザが局所的に集光され、均一で長い変質部の作製が困難になることを示す。この値が7未満であると、ビームウェスト近傍でレーザパワーが強くなりすぎてしまい、ガラス内部でクラックが発生しやすくなるという問題が生じる。
本発明では、レーザパルスの照射前にガラスに対する前処理(例えば、レーザパルスの吸収を促進するような膜を形成すること)は不要である。但し、本発明の効果が得られる限り、そのような処理を行ってもよい。
アイリスの大きさを変えてレーザ径を変化させて開口数(NA)を0.020〜0.075まで変動させてもよい。NAが大きくなりすぎると、レーザのエネルギーが焦点付近のみに集中し、ガラスの厚さ方向にわたって効果的に変質部が形成されない。
NAの小さいパルスレーザを照射することにより、一度のパルス照射によって、厚み方向に比較的長い変質部が形成されるため、タクトタイムの向上に効果がある。
繰返し周波数は10〜25kHzとして、サンプルにレーザを照射するのが好ましい。また焦点位置をガラスの厚み方向で変えることで、ガラスに形成される変質部の位置(上面側又は下面側)を最適に調整できる。
さらに制御PCからのコントロールにより、レーザ出力、ガルバノミラーの動作等を制御することができ、CADソフト等で作成した2次元描画データに基づいて、レーザを所定の速度でガラス基板上に照射することができる。
レーザが照射された部分には、ガラスの他の部分とは異なる変質部が形成される。この変質部は、光学顕微鏡等により容易に見分けることが可能である。組成によってガラス毎に差異はあるものの、変質部はおおむね円柱状に形成される。変質部はガラスの上面近傍から下面近傍に達する。
この変質部は、レーザ照射により光化学的な反応が生じ、E’センタもしくは非架橋酸素等の欠陥が生じた部位あるいは、レーザ照射による急加熱もしくは急冷却によって生じた、高温度域における疎なガラス構造を保持した部位であると考えられる。この変質部は、ガラスの他の部分よりも所定のエッチング液に対して、エッチングのスピードが速いために、エッチング液に浸すことによって微小な孔や溝を形成することができる。
フェムト秒レーザ装置(これは一般的に高価でもある)を用いた従来の加工方法では、照射パルスが重なるようにレーザを深さ方向(ガラス基板の厚み方向)にスキャンしながら変質部を形成していたが、本発明に係るレーザ照射とウェットエッチングを併用する孔開け技術(孔付きガラスの製造方法)においては、一度のレーザパルスの照射で変質部を形成することができる。
工程〔i〕において選択される条件としては、例えば、ガラスの吸収係数αが1〜20/cmであり、レーザパルス幅が1〜100nsであり、レーザパルスのエネルギーが5〜100μJ/パルスであり、波長が350nm〜360nmであり、レーザパルスのビーム径Dが3〜20mmであり、かつレンズの焦点距離Lが100〜200mmである組み合わせが挙げられる。
工程〔ii〕を行う前に、必要に応じて、変質部の直径のばらつきを減らすために、ガラス板を研磨してもよい。研磨しすぎると変質部に対するエッチングの効果が弱まるため、研磨の深さは、ガラス板の上面から1〜20μmの深さが好ましい。
工程〔i〕で形成される変質部の大きさは、レンズに入射する際のレーザのビーム径D、レンズの焦点距離L、ガラスの吸収係数α、レーザパルスのパワー等によって変化する。得られる変質部は、例えば、直径が5〜200μm程度であり、10〜150μm程度であってもよい。また、変質部の深さは、上記のレーザ照射条件、ガラスの吸収係数α、ガラスの板厚によっても異なるが、例えば、50〜300μm程度であってもよい。
[エッチング]
工程〔ii〕では、エッチング液を用いて、少なくとも前記変質部をエッチングすることにより、前記レーザ加工用ガラスに孔を形成する。
工程〔ii〕におけるエッチング液は、前記レーザ加工用ガラスに対するエッチングレートよりも前記変質部に対するエッチングレートが大きいものが好ましい。エッチング液としては、例えば、フッ酸(フッ化水素(HF)の水溶液)を用いてもよい。また、硫酸(H2SO4)もしくはその水溶液、硝酸(HNO3)もしくはその水溶液、又は塩酸(塩化水素(HCl)の水溶液)を用いてもよい。これらは1種単独で用いてもよく、2種以上の酸の混合物を用いてもよい。フッ酸を用いた場合、変質部のエッチングが進みやすく、短時間に孔を形成できる。硫酸を用いた場合、変質部以外のガラスがエッチングされにくく、テーパ角の小さいストレートな孔を作製できる。
エッチング工程において、片側のみからのエッチングを可能にするために、ガラス板の上面側又は下面側に表面保護皮膜剤を塗布して保護してもよい。このような表面保護皮膜剤として、市販品を使用でき、例えば、シリテクト−II(Trylaner International社製)等が挙げられる。
エッチング時間あるいはエッチング液の温度は、変質部の形状あるいは目的とする加工形状に応じて選択される。なお、エッチング時のエッチング液の温度を高くすることによって、エッチング速度を高めることができる。また、エッチング条件によって、孔の直径を制御することが可能である。
エッチング時間は板厚にもよるため、特に限定されないが、30〜180分程度が好ましい。エッチング液の温度は、エッチングレートの調整のために変更することが可能であり、5℃〜45℃程度が好ましく、15〜40℃程度がより好ましい。
45℃以上の温度でも加工は可能であるが、エッチング液の揮発が早いため実用的ではない。5℃以下の温度でも加工は可能であるが、エッチングレートが極端に遅くなる温度の場合は実用的ではない。
また必要に応じてエッチング液に超音波を印加しながら、エッチングを行ってもよい。エッチングレートを大きくすることができるとともに、液の撹拌効果も期待できる。
変質部がガラス板の上面側(レーザパルスの入射側)にのみ露出するように形成された場合、エッチングによって、ガラス板の上面側のみに孔を形成できる。逆に、変質部がガラス板の下面側(レーザパルスの入射側と逆側)にのみ露出するように形成された場合、エッチングによって、ガラス板の下面側のみに孔を形成できる。また、変質部がガラス板の上面側及び下面側に露出するように形成された場合には、エッチングを行うことによって、貫通孔を形成できる。なお、ガラス板の上面側又は下面側にエッチングを防止するための膜を形成し、一方のみからエッチングが起こるようにしてもよい。また、ガラス板の表面に露出しない変質部を形成し、次に、変質部が露出するようにガラス板を研磨してからエッチングを行ってもよい。変質部の形成条件及びエッチング条件を変化させることによって、円柱状の貫通孔、鼓形(砂時計形)の貫通孔、円錐台状の貫通孔、円錐状の孔、円錐台状の孔、円柱状の孔といった様々な形状の孔を形成することが可能である。
また、複数の孔を、それらが連続するように形成することによって、溝を形成することも可能である。この場合、線状に並ぶように複数のレーザパルスを照射することによって、線状に配置された複数の変質部を形成する。その後、変質部をエッチングすることによって溝を形成する。複数のレーザパルスの照射位置は重なっていなくてもよく、エッチングによって形成された孔が、隣接する孔同士を結合すればよい。
本発明の製造方法の一実施態様について、図1に模式図を示す。図1Aに示すように、レーザパルス11の照射によって、ガラス板12を貫通するように変質部13を形成する。次に、ガラス板12の両面からエッチングを行うことによって、貫通孔14を形成する。図1Bでは、貫通孔14は、2つの円錐台状の孔を連結したような形状を有する。
以上のように、本発明の方法によって形成される孔は、有底孔であっても貫通孔であってもよい。
また、工程〔ii〕において変質部をエッチングにて除去する際に、孔の一部分が連結したところで、エッチングを止めることにより、例えば、周期的に幅の変化する溝を得ることができる。この幅の変化は、周期的である必要はなく、変質部を形成する間隔によって、部分的に幅の狭い箇所が形成されていればよい。このように、本発明によれば、溝が部分的に幅の狭い箇所を有するガラス板を得ることができる。この溝は、エッチングされたガラス板の表面に垂直な方向から見て、幅が狭い部分(箇所)を有する。この相対的に幅が狭い部分は、相対的に幅が広い部分を連結する。相対的に幅が広い部分は、レーザパルスの照射による複数の変質部がエッチングされて生成した部分である。
本発明は、本発明の効果を奏する限り、本発明の技術的範囲内において、上記の構成を種々組み合わせた態様を含む。
次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。
以下に孔開けに供したガラス基板の各種組成に基づく実施例を孔の品質評価とともに記載する。孔の品質評価は以下の基準によるものである。いずれの評価もレーザ照射後、エッチングによる穿孔の完成後に検査、評価したものである。「○」が実用的に合格レベルで「×」は不合格レベルである。
(1)円形度又は輪郭
ガラス基板上(表面上)に形成される略円形状の孔の開口部について、長辺と短辺との長さの比(長辺/短辺)が1.5以下であるものを○、そうでないものを×とした。いわゆる偏平な開口の孔をもつガラス基板を電子回路基板に供した際には、そのピッチのばらつきが生じるため好ましくないからである。一例を図2に示す。図2Aが○レベルであり、図2Bが×レベルである。
(2)孔内壁の平滑性
ガラス基板の厚み方向に平行に切断したときに観察される孔の断面を100倍以上の光学顕微鏡で検査したときに、孔の内壁に視認できる凹凸がないものを○、そうでないものを×とした。電子基板用インターポーザに使用したときに、凹凸がある場合は高周波特性が悪化するために必要な特性である。一例を図3に示す。図3Aが○レベルであり、図3Bが×レベルである。
さらにガラス表面上に略円形状の輪郭らしきものが形成されるに留まるもの、孔の深さが0.05mmに達しないものについては評価不能=「−」とした。
(3)貫通
貫通するか否かはガラス基板の厚みにも依存するため発明の必須な効果ではないが一応の評価は与えた。貫通した場合を「貫通孔」そうでない場合を「有底孔」とした。孔の開口径程度の深さの孔が形成されておれば「有底孔」とした。一例を図4に示す。図4Aは「貫通」状態であり、図4Bは「有底」状態である。これら以外の場合は、評価不能=「−」とした。
電子基板用ガラスとして使用できるものは、(1)及び(2)について「○」として評価され得るものである。
さらに、熱膨張係数及び吸収係数αは、下記の方法で評価した。
(4)熱膨張係数
50〜350℃の平均熱膨張係数を以下のように測定する。まず、直径5mm、高さ18mmの円柱形状のガラス試料を作製する。これを25℃からガラス試料の降伏点まで加温し、各温度におけるガラス試料の伸びを測定することにより、熱膨張係数を算出する。50〜350℃の範囲の熱膨張係数の平均値を計算し、平均熱膨張係数を得ることができる。測定はNETZSCH社の熱機械分析装置TMA4000SAを用い、5℃/分の昇温速度条件で測定した。
(5)吸収係数α
吸収係数αは、厚さt(cm)のガラス基板の透過率及び反射率を測定することによって算出する。厚さt(cm)のガラス基板について、所定の波長(波長535nm以下)における透過率T(%)と入射角12°における反射率R(%)とを分光光度計(日本分光株式会社製 紫外可視近赤分光光度計V−670)を用いて測定する。得られた測定値から以下の式を用いて吸収係数αを算出する。
α=(1/t)*ln{(1−R)/T}
<実施例1〜22及び比較例1〜2>
[ガラス溶融及び成型]
約300gのガラスが下記表1〜3の組成で得られるように、所定分量のガラス原料粉末を調合し、白金ルツボを用いて通常の溶融急冷法で、ある程度の体積をもつガラスブロックを作製した。途中、ガラスの均一性の向上あるいは清澄を目的に撹拌した。
溶融温度及び時間については、各ガラスの溶融特性に適するように設定した。例えば実施例1の場合は約1600℃で6時間溶融し、カーボン板の上に流し出して成形した。ガラス内部の残留応力を緩和するために、徐冷点付近の温度範囲である550℃〜700℃を約4時間かけて通過させたあと、室温まで自然放冷した。
このように成型したガラスブロックから、厚さ0.1〜1.5mm程度の薄板状のガラス基板を切出して、変質部形成用サンプルとした。
[変質部の形成]
レーザ加工は、コヒレント社製の高繰返し固体パルスUVレーザ:AVIA355−4500を用いた。第3高調波Nd:YVO4レーザであり、繰返し周波数が25kHzの時に6W程度の最大のレーザパワーが得られる。第3高調波の主波長は355nmである。
レーザ装置より出射されたレーザパルス(パルス幅9ns、パワー0.8W、ビーム径3.5mm)を、ビームエキスパンダで4倍に広げ、この拡大されたビームを、径5〜15mmの範囲で調整可能な可変のアイリスで切り取り、ガルバノミラーで光軸を調整し、焦点距離100mmのfθレンズでガラス板の内部に集光させた。アイリスの大きさを変えることでレーザ径を変化させてNAを0.020〜0.075まで変動させた。このとき、ガラス板の上面から物理長で0.15mmだけ離れた位置にレーザ光を集光させた。照射パルスが重ならないように、レーザ光を、400mm/sの速度でスキャンした。
レーザ光照射後、各実施例のガラスには、レーザ光が照射された部分において、他の部分とは異なる変質部が形成されていることが光学顕微鏡で確認された。ガラス毎に差異はあるものの、変質部はおおむね円柱状に形成されており、ガラスの上面近傍から下面近傍に達していた。
繰返し周波数は10〜25kHzとして、サンプルにレーザを照射した。また焦点位置をガラスの厚み方向で変えることで、ガラスに形成される変質部の位置(上面側又は下面側)を最適に調整した。
また組成が異なる複数のレーザ加工用ガラスに対して加工を試みるために、実施例のガラス毎にレーザの集光位置を調整し、最適と思われる条件によって加工を行った。またガラス間の差異を把握するために厚みは実施例16〜20を除いて0.3mmに統一したガラス基板を用いた。その他、ガラスの厚み依存性を把握するために0.1〜1.5mm程度のガラス基板も用いて加工を試みた。
[エッチング]
レーザ照射後のサンプルを、2.13wt%HF(元濃度4.5%)と3.28wt%HNO3を混合したエッチング液を攪拌しながらエッチング液槽に浸漬し、エッチングを行った。エッチング時間は板厚にもよるが、90〜120分、液温は33℃とした。
得られた各ガラスについて、上記の方法で評価した。評価結果を表4〜6に示す。
Figure 2016129255
Figure 2016129255
Figure 2016129255
Figure 2016129255
Figure 2016129255
Figure 2016129255
本発明に係るガラスは、実施例1〜5に示すように、順に11.2,5.6,2.1,20.0,34.1/cmの吸収係数αを有しており、適度なCuOの存在下で好ましい孔加工を実現することができた。表1〜3に示されるように、実施例22を除き、実施例1〜21のガラスは、いずれも無アルカリガラスである。
エッチング後のガラス基板は、その厚みがいずれの実施例においてもエッチング前に比べて数十ミクロン薄くなるとともに、直径が50〜100μm、深さが0.15〜0.3mm程度の孔が形成されたことが確認できた。特に実施例5及び20については、貫通していないが表面上きれいな孔が確認された。
上記結果から、本発明のレーザ加工用ガラスは、紫外線レーザ照射による変質部形成とエッチングとを組合せた微細孔一括加工技術において、円形の輪郭と平滑な内壁を有する孔を作製可能にすることが確認できた。
本発明のレーザ加工用ガラスは、孔開け加工後、インターポーザ用ガラス基板、電子部品搭載用ガラス基板、さらには光学素子搭載用ガラス基板として好適に使用できる。インターポーザとは配線のデザインルールの異なるICとプリント基板等、端子間距離が異なる基板同士を中継する基板のことである。
本発明のレーザ加工用ガラスから得られるインターポーザ用ガラス基板は、併用して用いられることもあるSi製基板と熱膨張係数の点でマッチングもよく、さらにアルカリ金属成分を含まないか、非常に少ないために、電気的特性についても高周波の範囲で劣化しない等、非常に有効な特徴を備える。加えて本発明のレーザ加工用ガラスから得られるインターポーザ用ガラス基板は、Si製基板とは異なり、可視光域から近赤外域にかけて光学的に透明であることも大きな特徴である。このため基板に搭載された光電変換素子から基板を通じて光を取り出したり、逆に基板を通じて光を入射させることができ、光素子と電気回路等との混合基板を容易に作製することが可能である。
図5に本発明のレーザ加工用ガラスから得られるインターポーザ用ガラス基板23の概略的な実施例を示す。この図では、相互の配線ピッチ等のデザインルールが異なるIC等の受発光素子21とプリント配線基板との接合に用いるインターポーザの一例を示している。
孔開け加工された本発明のレーザ加工用ガラスの片面又は両面に、周知の技術、具体的には特に限られないが、無電解めっきと電解めっきとを組み合わせてパターニングされた回路パターン22あるいは電極24を形成する。回路や電極の材質は特に限られないが、低抵抗で高周波特性もよいという理由から、Au、Cu等が好適である。
これらの回路パターンの形成の際には、所定の位置の貫通孔内にAuあるいはCuをフィリングさせておいてもよい。表裏の導通性を確保することができる。これらはめっきの際に同時にフィルすることもできるが、めっき工程の前後に別途の周知の方法で作製することもできる。
あとは所望の電気部品あるいは受発光素子等を実装すればよく、所望の回路基板への実装も容易にできる。
本発明のレーザ加工用ガラスは、円形の輪郭と平滑な内壁を有する孔付きガラスの製造に有用である。

Claims (13)

  1. ガラスの組成が、モル%で表示して、
    45.0%≦SiO2≦70.0%、
    2.0%≦B23≦20.0%、
    3.0%≦Al23≦20.0%、
    0.1%≦CuO≦2.0%、
    0%≦TiO2≦15.0%、及び
    0%≦ZnO≦9.0%、
    を含み、かつ
    0≦Li2O+Na2O+K2O<2.0%
    であるレーザ加工用ガラス。
  2. 55.0%≦SiO2+B23≦80.0%である請求項1記載のレーザ加工用ガラス。
  3. 6.0%≦MgO+CaO+SrO+BaO≦25.0%である請求項1又は2に記載のレーザ加工用ガラス。
  4. 5.0≦Al23/CuO≦60.0である請求項1〜3のいずれか1項に記載のレーザ加工用ガラス。
  5. さらに、Fe、Ce、Bi、W、Mo、Co、Mn、Cr、及びVからなる群から選ばれる少なくとも1種の金属の酸化物を着色成分として含む請求項1〜4のいずれか1項に記載のレーザ加工用ガラス。
  6. ガラス組成が、モル%で表示して、
    45.0%≦SiO2≦68.0%、
    2.0%≦B23≦20.0%、
    3.0%≦Al23≦20.0%、及び
    0.1%≦CuO≦2.0%を含み、
    TiO2とZnOとを実質的に含まず、かつ
    58.0%≦SiO2+B23≦80.0%、
    8.0%≦MgO+CaO+SrO+BaO≦20.0%、
    0≦Li2O+Na2O+K2O<2.0%、
    6.0≦Al23/CuO≦60.0
    である請求項1〜5のいずれか1項に記載のレーザ加工用ガラス。
  7. ガラス組成が、モル%で表示して、
    50.0%≦SiO2≦68.0%、
    6.0%≦B23≦18.0%、
    7.0%≦Al23≦18.0%、
    0.1%≦CuO≦1.8%、及び
    1.0%≦TiO2≦10.0%を含み、
    ZnOを実質的に含まず、かつ
    58.0%≦SiO2+B23≦80.0%、
    8.0%≦MgO+CaO+SrO+BaO≦20.0%、
    0≦Li2O+Na2O+K2O<2.0%、
    6.0≦Al23/CuO≦60.0、
    0≦TiO2/CuO≦20.0
    である請求項1〜5のいずれか1項に記載のレーザ加工用ガラス。
  8. ガラス組成が、モル%で表示して、
    50.0%≦SiO2≦68.0%、
    6.0%≦B23≦18.0%、
    7.0%≦Al23≦18.0%、
    0.1%≦CuO≦1.8%、及び
    1.0%≦ZnO≦9.0%を含み、
    TiO2を実質的に含まず、かつ
    58.0%≦SiO2+B23≦80.0%、
    8.0%≦MgO+CaO+SrO+BaO≦20.0%、
    0≦Li2O+Na2O+K2O<2.0%、
    6.0≦Al23/CuO≦60.0
    である請求項1〜5のいずれか1項に記載のレーザ加工用ガラス。
  9. さらに、ガラスの組成が、モル%で表示して、
    2.0%≦MgO≦10.0%、
    1.0%≦CaO≦10.0%、
    1.0%≦SrO≦10.0%及び
    0≦BaO≦6.0%を含む請求項1〜8のいずれか1項に記載のレーザ加工用ガラス。
  10. さらに、ガラスの組成が、モル%で表示して、
    3.0%≦MgO≦8.5%、
    2.0%≦CaO≦6.5%、
    2.0%≦SrO≦6.5%、及び
    0≦BaO≦6.0%を含む請求項1〜8のいずれか1項に記載のレーザ加工用ガラス。
  11. 熱膨張係数が、60×10-7/℃以下であることを特徴とする請求項1〜10のいずれか1項に記載のレーザ加工用ガラス。
  12. 吸収係数αが、2〜40/cmである請求項1〜11のいずれか1項に記載のレーザ加工用ガラス。
  13. 請求項1〜12のいずれか1項に記載のレーザ加工用ガラスに、レーザパルスをレンズで集光して照射して、照射部に変質部を形成する工程〔i〕と、
    エッチング液を用いて、少なくとも前記変質部をエッチングすることにより、前記レーザ加工用ガラスに孔を形成する工程〔ii〕とを有することを特徴とする孔付きガラスの製造方法。
JP2016574660A 2015-02-13 2016-02-03 レーザ加工用ガラス及びそれを用いた孔付きガラスの製造方法 Active JP6643263B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015026929 2015-02-13
JP2015026929 2015-02-13
PCT/JP2016/000571 WO2016129255A1 (ja) 2015-02-13 2016-02-03 レーザ加工用ガラス及びそれを用いた孔付きガラスの製造方法

Publications (2)

Publication Number Publication Date
JPWO2016129255A1 true JPWO2016129255A1 (ja) 2017-11-24
JP6643263B2 JP6643263B2 (ja) 2020-02-12

Family

ID=56614307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016574660A Active JP6643263B2 (ja) 2015-02-13 2016-02-03 レーザ加工用ガラス及びそれを用いた孔付きガラスの製造方法

Country Status (6)

Country Link
US (1) US10329185B2 (ja)
JP (1) JP6643263B2 (ja)
KR (1) KR102525730B1 (ja)
CN (1) CN107250073B (ja)
TW (1) TWI658024B (ja)
WO (1) WO2016129255A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201502149D0 (en) * 2015-02-09 2015-03-25 Spi Lasers Uk Ltd Apparatus and method for laser welding
KR102292435B1 (ko) * 2015-06-30 2021-08-20 아반스트레이트 가부시키가이샤 디스플레이용 유리 기판 및 그 제조 방법
EP3452421A1 (en) 2016-05-04 2019-03-13 Corning Incorporated Tinted aluminosilicate glass compositions and glass articles including same
JP6913276B2 (ja) * 2017-01-26 2021-08-04 日本電気硝子株式会社 気密パッケージ
JP7064706B2 (ja) * 2017-08-28 2022-05-11 日本電気硝子株式会社 レーザーアシストエッチング用ガラス基板、及びそれを用いた有孔ガラス基板の製造方法
US20200369559A1 (en) * 2017-10-25 2020-11-26 Nippon Sheet Glass Company, Limited Glass composition
JP7407499B2 (ja) * 2017-12-26 2024-01-04 株式会社ディスコ 凹部又は貫通孔の形成方法、電極の形成方法
CN108269910A (zh) * 2018-01-19 2018-07-10 深圳大学 一种利用玻璃模板制作热电器件的方法及热电器件
CN108161250A (zh) * 2018-01-30 2018-06-15 苏州德龙激光股份有限公司 多焦点动态分布激光加工脆性透明材料的方法及装置
US11554984B2 (en) * 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
JP7139886B2 (ja) * 2018-10-30 2022-09-21 Agc株式会社 孔を有するガラス基板の製造方法、およびアニール用ガラス積層体
WO2020129553A1 (ja) * 2018-12-19 2020-06-25 日本板硝子株式会社 微細構造付ガラス基板及び微細構造付ガラス基板の製造方法
FR3090624B1 (fr) * 2018-12-20 2021-01-08 Eurokera Verres aluminoborosilicates de cuivre et leurs utilisations
CN109867442B (zh) * 2019-04-24 2021-11-26 成都光明光电股份有限公司 光学玻璃
US11952310B2 (en) * 2019-05-10 2024-04-09 Corning Incorporated Silicate glass compositions useful for the efficient production of through glass vias
JP7498891B2 (ja) * 2019-08-08 2024-06-13 日本電気硝子株式会社 ガラス粉末、誘電体材料、焼結体及び高周波用回路部材
CN112894146A (zh) * 2019-12-04 2021-06-04 大族激光科技产业集团股份有限公司 玻璃基板通孔的激光加工方法和装置
CN111777327A (zh) * 2020-07-20 2020-10-16 成都光明光电股份有限公司 玻璃组合物、玻璃制品及其制造方法
WO2022075068A1 (ja) * 2020-10-06 2022-04-14 日本電気硝子株式会社 貫通孔を有するガラス基板
CN112924255B (zh) * 2021-01-29 2023-08-15 上海微谱化工技术服务有限公司 一种阳性样品微孔加工方法及其应用
KR20220115676A (ko) * 2021-02-09 2022-08-18 삼성디스플레이 주식회사 윈도우 제조용 지그 및 이를 이용한 윈도우의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761835A (ja) * 1993-08-25 1995-03-07 Asahi Glass Co Ltd 紫外線及び赤外線カットガラス
JPH09263422A (ja) * 1996-03-28 1997-10-07 Nitto Boseki Co Ltd 防かび性ガラス繊維
JP2010024064A (ja) * 2008-07-15 2010-02-04 Seiko Epson Corp 構造体の製造方法、液滴吐出ヘッド

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898767A (en) * 1987-10-07 1990-02-06 Corning Incorporated Copper-exuding boroaluminosilicate glasses
DE112004000123T5 (de) 2003-01-10 2005-11-10 Nippon Sheet Glass Co., Ltd. Glas für die Laserbearbeitung
JP2006056769A (ja) * 2004-07-23 2006-03-02 Nippon Sheet Glass Co Ltd 封着用ガラス組成物、封着用ガラスフリット、及び封着用ガラスシート
JP5018032B2 (ja) * 2005-12-09 2012-09-05 旭硝子株式会社 電極被覆用無鉛ガラス
JP4672689B2 (ja) 2006-02-22 2011-04-20 日本板硝子株式会社 レーザを用いたガラスの加工方法および加工装置
US20080124558A1 (en) * 2006-08-18 2008-05-29 Heather Debra Boek Boro-silicate glass frits for hermetic sealing of light emitting device displays
US7800303B2 (en) * 2006-11-07 2010-09-21 Corning Incorporated Seal for light emitting display device, method, and apparatus
JP2014105144A (ja) * 2012-11-29 2014-06-09 Nippon Electric Glass Co Ltd ガラス板およびその製造方法
WO2014161535A2 (de) * 2013-04-04 2014-10-09 Lpkf Laser & Electronics Ag Verfahren und vorrichtung zum trennen eines substrates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761835A (ja) * 1993-08-25 1995-03-07 Asahi Glass Co Ltd 紫外線及び赤外線カットガラス
JPH09263422A (ja) * 1996-03-28 1997-10-07 Nitto Boseki Co Ltd 防かび性ガラス繊維
JP2010024064A (ja) * 2008-07-15 2010-02-04 Seiko Epson Corp 構造体の製造方法、液滴吐出ヘッド

Also Published As

Publication number Publication date
TW201702199A (zh) 2017-01-16
CN107250073A (zh) 2017-10-13
JP6643263B2 (ja) 2020-02-12
CN107250073B (zh) 2020-10-30
TWI658024B (zh) 2019-05-01
US10329185B2 (en) 2019-06-25
KR102525730B1 (ko) 2023-04-27
US20180022634A1 (en) 2018-01-25
WO2016129255A1 (ja) 2016-08-18
KR20170118115A (ko) 2017-10-24

Similar Documents

Publication Publication Date Title
JP6894550B2 (ja) レーザ加工用ガラス及びそれを用いた孔付きガラスの製造方法
JP6643263B2 (ja) レーザ加工用ガラス及びそれを用いた孔付きガラスの製造方法
US10727048B2 (en) Method for producing glass substrate with through glass vias and glass substrate
US20100029460A1 (en) Glass for anodic bonding
WO2017217496A1 (ja) レーザ加工用ガラス
US10501363B2 (en) Method for producing photo-structurable glass bodies by a redrawing method
JP7109739B2 (ja) レーザーアシストエッチング用ガラス基板、及びそれを用いた有孔ガラス基板の製造方法
JP2005289683A (ja) レーザー照射で異質相が形成されてなる強化ガラス
WO2020241805A1 (ja) 微細構造付ガラス基板、導電層付ガラス基板、及び微細構造付ガラス基板を製造する方法
US7399721B2 (en) Glass for laser processing
US20230399253A1 (en) Glass substrate
KR20230083273A (ko) 관통 구멍을 갖는 유리 기판
JPWO2020184026A1 (ja) 微細構造付ガラス基板を製造する方法及びガラス基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R150 Certificate of patent or registration of utility model

Ref document number: 6643263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250