JPWO2016111112A1 - Silicone copolymer and method for producing the same - Google Patents

Silicone copolymer and method for producing the same Download PDF

Info

Publication number
JPWO2016111112A1
JPWO2016111112A1 JP2016500006A JP2016500006A JPWO2016111112A1 JP WO2016111112 A1 JPWO2016111112 A1 JP WO2016111112A1 JP 2016500006 A JP2016500006 A JP 2016500006A JP 2016500006 A JP2016500006 A JP 2016500006A JP WO2016111112 A1 JPWO2016111112 A1 JP WO2016111112A1
Authority
JP
Japan
Prior art keywords
group
mol
silicone polymer
component
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016500006A
Other languages
Japanese (ja)
Inventor
真之 水田
真之 水田
山中 秀一
秀一 山中
小川 龍治
龍治 小川
秀利 加藤
秀利 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Publication of JPWO2016111112A1 publication Critical patent/JPWO2016111112A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本発明のシリコーン共重合体は、一般式【化1】(式中、a、b、cはモル%を示す。Yは有機基を、Xはトリメチルル基を示す。)で示され、(a+b)は40〜100モル%、cは0〜60モル%、a+b+c=100モル%、a/(a+b)は、0.8以上1以下であり、ゲル浸透クロマトグラフィ測定で得られるピークの数が2以上であるシリコーン重合体である。本発明のシリコーン共重合体は、保護基のアルコキシ基の脱保護率が高いため、アルカリ溶解速度が安定しており、パターンの形成を安定して行うことができる。本発明のシリコーン共重合体は、可視光領域の波長における透明性が良く、密着性、クラック耐性に優れ、かつアルカリ溶解速度が安定していた材料である。本発明のシリコーン共重合体は、液晶表示素子や半導体素子等の電子部品に好適に用いられる。The silicone copolymer of the present invention is represented by the general formula: ## STR1 ## wherein a, b, and c represent mol%, Y represents an organic group, and X represents a trimethyl group. a + b) is 40 to 100 mol%, c is 0 to 60 mol%, a + b + c = 100 mol%, a / (a + b) is 0.8 or more and 1 or less, and the number of peaks obtained by gel permeation chromatography measurement is It is a silicone polymer that is 2 or more. Since the silicone copolymer of the present invention has a high deprotection rate of the alkoxy group of the protective group, the alkali dissolution rate is stable, and the pattern can be formed stably. The silicone copolymer of the present invention is a material having good transparency at wavelengths in the visible light region, excellent adhesion and crack resistance, and a stable alkali dissolution rate. The silicone copolymer of this invention is used suitably for electronic components, such as a liquid crystal display element and a semiconductor element.

Description

本発明は、シリコーン共重合体およびその製造方法に関する。本発明は、特に、液晶表示素子や半導体素子等の電子部品の耐熱性材料として有用なシリコーン共重合体およびその製造方法に関するものである。   The present invention relates to a silicone copolymer and a method for producing the same. The present invention particularly relates to a silicone copolymer useful as a heat-resistant material for electronic components such as liquid crystal display elements and semiconductor elements, and a method for producing the same.

近年、液晶表示素子や半導体素子等の電子部品に用いられる電子材料として、高い透明性、耐熱性、耐薬品性、クラック耐性などの特性を兼ね備えた樹脂が必要となってきた。このような樹脂は、可視光の透過性が高い透明性や、素子を製造する時の処理工程に耐えられる耐熱性が必要である。   In recent years, as an electronic material used for an electronic component such as a liquid crystal display element or a semiconductor element, a resin having characteristics such as high transparency, heat resistance, chemical resistance, and crack resistance has been required. Such a resin is required to have transparency with high visible light permeability and heat resistance that can withstand a processing step when manufacturing an element.

その中で、アルカリ溶媒に溶解するヒドロキシ基を有するシリコーン重合体、中でもフェノール基を有するシリコーン重合体が注目されている。フェノール基を有するシリコーン重合体は、微細加工で用いられるアルカリ溶媒に溶解する。   Among them, a silicone polymer having a hydroxy group that dissolves in an alkali solvent, particularly a silicone polymer having a phenol group, has attracted attention. The silicone polymer having a phenol group is dissolved in an alkaline solvent used in fine processing.

フェノール基を、メチル基やエチル基などのアルキル基で保護した、アルコキシ基を有するシリコーン重合体を用いて、フェノール基を有するシリコーン重合体が製造される。アルコキシ基を有するシリコーン重合体は、一般的に、原料にクロロシランを用い、水で加水分解し、縮重合反応して合成される。   A silicone polymer having a phenol group is produced using a silicone polymer having an alkoxy group in which a phenol group is protected with an alkyl group such as a methyl group or an ethyl group. Silicone polymers having an alkoxy group are generally synthesized by using chlorosilane as a raw material, hydrolyzing with water, and performing a condensation polymerization reaction.

アルコキシ基を含有するシリコーン重合体を製造する場合、特に、縮重合反応は、200℃で2時間といった苛烈な条件で反応する必要があり、工業的に生産することが困難であった。   In the case of producing a silicone polymer containing an alkoxy group, the condensation polymerization reaction, in particular, needs to react under severe conditions such as 200 ° C. for 2 hours, and it was difficult to produce industrially.

さらに、クロロシランを水で加水分解した際に生じる塩酸は、縮重合反応の触媒となる場合がある。塩酸を触媒として合成したシリコーン重合体は末端にシラノールが多く残ることがある。   Furthermore, hydrochloric acid generated when chlorosilane is hydrolyzed with water may serve as a catalyst for the condensation polymerization reaction. A silicone polymer synthesized using hydrochloric acid as a catalyst may have a large amount of silanol remaining at the terminal.

このように、アルコキシ基を有するシリコーン重合体を脱保護してフェノール基を有するシリコーン重合体を得るためには、まず、シラノール基を何らかの保護基で保護した後、アルコキシ基を脱保護する必要があり、反応が煩雑になるという課題があった(特許文献1〜3)。   Thus, in order to deprotect a silicone polymer having an alkoxy group to obtain a silicone polymer having a phenol group, it is necessary to first protect the silanol group with some protective group and then deprotect the alkoxy group. There was a problem that the reaction was complicated (Patent Documents 1 to 3).

さらに、従来の方法で得られたフェノール基を有するシリコーン重合体は、保護基のアルコキシ基が15%程度残存する。また、脱保護率は条件によってバラつきを生じるため(特許文献1)、アルカリ溶解速度(Alkali Dissolution Rate、ADR)が安定せず、パターンの形成が困難となることがあった。   Further, in the silicone polymer having a phenol group obtained by the conventional method, about 15% of the protective alkoxy group remains. Further, since the deprotection rate varies depending on the conditions (Patent Document 1), the alkali dissolution rate (Alkali Dissolution Rate, ADR) is not stable, and it may be difficult to form a pattern.

以上の理由により、温和な条件で縮重合することができ、保護基のアルコキシ基の残存量が少なく、脱保護率が高いシリコーン重合体が求められていた。   For the above reasons, there has been a demand for a silicone polymer that can be subjected to polycondensation under mild conditions, has a small residual amount of alkoxy groups as a protective group, and has a high deprotection rate.

特公平5−58446号公報Japanese Patent Publication No. 5-58446 特許第3636242号公報Japanese Patent No. 3636242 特許第4039704号公報Japanese Patent No. 4039704

本発明は、温和な条件で縮重合することができ、保護基のアルコキシ基の残存量が少なく、脱保護率が高いため、アルカリ溶解速度が安定しており、パターンの形成が安定して行えるシリコーン重合体およびその製造方法を提供することにある。   In the present invention, polycondensation can be performed under mild conditions, the remaining amount of the alkoxy group of the protecting group is small, and the deprotection rate is high, so that the alkali dissolution rate is stable and the pattern can be formed stably. It is in providing a silicone polymer and its manufacturing method.

本発明は、一般式   The present invention provides a general formula

Figure 2016111112
Figure 2016111112

(式中、a、b、cはモル%を示す。Yは有機基を、Xはトリメチルシリル基を示す。)
で示され、(a+b)は40〜100モル%、cは0〜60モル%、a+b+c=100モル%、a/(a+b)は、0.8以上1以下であり、ゲル浸透クロマトグラフィで得られるピークの数が2本以上であるシリコーン重合体である。
(Wherein, a, b and c represent mol%, Y represents an organic group, and X represents a trimethylsilyl group.)
(A + b) is 40 to 100 mol%, c is 0 to 60 mol%, a + b + c = 100 mol%, and a / (a + b) is 0.8 or more and 1 or less, and is obtained by gel permeation chromatography. This is a silicone polymer having two or more peaks.

さらに、本発明は、一般式   Furthermore, the present invention provides a general formula

Figure 2016111112
Figure 2016111112

(式中、Rはメチル基、Zは一価の炭化水素基を示す。)で示されるケイ素化合物と、一般式(Wherein, R represents a methyl group, Z 1 represents a monovalent hydrocarbon group) and a general formula

Figure 2016111112
Figure 2016111112

(式中、Yは有機基を示し、Zは一価の炭化水素基を示す)で示されるケイ素化合物の混合物を第4級アンモニウム塩の存在下、加水分解し、さらに縮重合反応を行った後、非プロトン性極性溶媒中で脱保護する、一般式(Wherein Y represents an organic group and Z 2 represents a monovalent hydrocarbon group). A hydrolyzed mixture of silicon compounds represented in the presence of a quaternary ammonium salt is subjected to a polycondensation reaction. Followed by deprotection in aprotic polar solvent, general formula

Figure 2016111112
Figure 2016111112

(式中、a、b、cはモル%を示す。Yは有機基を、Xはトリメチルシリル基を示す。)
で示され、(a+b)は40〜100モル%、cは0〜60モル%、a+b+c=100モル%、a/(a+b)は、0.8以上1以下であり、ゲル浸透クロマトグラフィ測定で得られるピークの数が2以上であるシリコーン重合体を製造するシリコーン重合体の製造方法である。
(Wherein, a, b and c represent mol%, Y represents an organic group, and X represents a trimethylsilyl group.)
(A + b) is 40 to 100 mol%, c is 0 to 60 mol%, a + b + c = 100 mol%, and a / (a + b) is 0.8 or more and 1 or less, and is obtained by gel permeation chromatography measurement. This is a method for producing a silicone polymer, which produces a silicone polymer having 2 or more peaks.

本発明のシリコーン共重合体は、保護基のアルコキシ基の脱保護率が高いため、アルカリ溶解速度が安定しており、パターンの形成を安定して行うことができる。また、脱保護率が高く、アルカリ溶解速度が安定しているため、a成分およびb成分の割合を変えることによって、アルカリ溶解速度を緻密にコントロールすることができる。さらに、また、シラノール基がトリメチルシリル基で保護されているため、粘度や分子量等その他の特性を変化させても、狙ったアルカリ溶解速度が得られる。   Since the silicone copolymer of the present invention has a high deprotection rate of the alkoxy group of the protective group, the alkali dissolution rate is stable, and the pattern can be formed stably. Moreover, since the deprotection rate is high and the alkali dissolution rate is stable, the alkali dissolution rate can be precisely controlled by changing the ratio of the component a and the component b. Furthermore, since the silanol group is protected with a trimethylsilyl group, the targeted alkali dissolution rate can be obtained even if other properties such as viscosity and molecular weight are changed.

さらに、本発明のシリコーン重合体の製造方法では、触媒として第4級アンモニウム塩を用いるため、反応温度が0〜100℃であり、従来の反応温度200℃に比べ温和な条件で縮重合反応を行うことができる。また、シラノール基の量が少ないため、シラノール基の保護と、アルコキシル基の脱保護を同時に行うことができ、効率良く反応を行うことができる。さらに、加水分解、縮重合および脱保護をワンポット(one−pot)で行うことができ、工業化する上で効率が良い。   Furthermore, since the quaternary ammonium salt is used as a catalyst in the method for producing a silicone polymer of the present invention, the reaction temperature is 0 to 100 ° C., and the polycondensation reaction is carried out under mild conditions compared to the conventional reaction temperature of 200 ° C. It can be carried out. In addition, since the amount of silanol groups is small, silanol group protection and alkoxyl group deprotection can be performed simultaneously, and the reaction can be carried out efficiently. Furthermore, hydrolysis, polycondensation and deprotection can be carried out in one-pot, which is efficient for industrialization.

本発明のシリコーン共重合体は、可視光領域の波長における透明性が良く、密着性、クラック耐性に優れ、かつアルカリ溶解速度が安定していた材料である。本発明のシリコーン共重合体は、液晶表示素子や半導体素子等の電子部品に好適に用いられる。   The silicone copolymer of the present invention is a material having good transparency at wavelengths in the visible light region, excellent adhesion and crack resistance, and a stable alkali dissolution rate. The silicone copolymer of this invention is used suitably for electronic components, such as a liquid crystal display element and a semiconductor element.

実施例1により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果である。2 is a measurement result of gel permeation chromatography of the silicone copolymer obtained in Example 1. FIG. 実施例1により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果である。ピーク数を示すため変曲点で分割した。2 is a measurement result of gel permeation chromatography of the silicone copolymer obtained in Example 1. FIG. It was divided at the inflection point to show the number of peaks. 実施例7により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果である。7 is a measurement result of gel permeation chromatography of the silicone copolymer obtained in Example 7. 実施例7により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果である。ピーク数を示すため変曲点で分割した。7 is a measurement result of gel permeation chromatography of the silicone copolymer obtained in Example 7. It was divided at the inflection point to show the number of peaks. 実施例8により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果である。7 is a measurement result of gel permeation chromatography of the silicone copolymer obtained in Example 8. 実施例8により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果である。ピークの数を示すため変曲点で分割した。7 is a measurement result of gel permeation chromatography of the silicone copolymer obtained in Example 8. It was divided at the inflection point to show the number of peaks. 実施例9により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果である。7 is a measurement result of gel permeation chromatography of the silicone copolymer obtained in Example 9. 実施例9により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果である。ピークの数を示すため変曲点で分割した。7 is a measurement result of gel permeation chromatography of the silicone copolymer obtained in Example 9. It was divided at the inflection point to show the number of peaks. 実施例10により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果である。2 is a measurement result of gel permeation chromatography of the silicone copolymer obtained in Example 10. FIG. 実施例10により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果である。ピークの数を示すため変曲点で分割した。2 is a measurement result of gel permeation chromatography of the silicone copolymer obtained in Example 10. FIG. It was divided at the inflection point to show the number of peaks. 実施例11により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果である。2 is a measurement result of gel permeation chromatography of the silicone copolymer obtained in Example 11. FIG. 実施例11により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果である。ピークの数を示すため変曲点で分割した。2 is a measurement result of gel permeation chromatography of the silicone copolymer obtained in Example 11. FIG. It was divided at the inflection point to show the number of peaks. 比較例6により得られたシリコーン重合体のゲル浸透クロマトグラフィの測定結果である。7 is a measurement result of gel permeation chromatography of a silicone polymer obtained in Comparative Example 6.

本発明のシリコーン重合体は、一般式   The silicone polymer of the present invention has the general formula

Figure 2016111112
Figure 2016111112

(式中、a、b、cはモル%を示す。Yは有機基を、Xはトリメチルシリル基を示す。)
で示され、(a+b)は40〜100モル%、cは0〜60モル%、a+b+c=100モル%、a/(a+b)は、0.8以上1以下であり、ゲル浸透クロマトグラフィで得られるピークの数が2本以上であるシリコーン重合体である。
(Wherein, a, b and c represent mol%, Y represents an organic group, and X represents a trimethylsilyl group.)
(A + b) is 40 to 100 mol%, c is 0 to 60 mol%, a + b + c = 100 mol%, and a / (a + b) is 0.8 or more and 1 or less, and is obtained by gel permeation chromatography. This is a silicone polymer having two or more peaks.

本発明のシリコーン重合体の骨格は、   The skeleton of the silicone polymer of the present invention is:

Figure 2016111112
Figure 2016111112

シルセスキオキサン骨格を示し、各ケイ素原子が3個の酸素原子に結合し、各酸素原子が2個のケイ素原子に結合していることを示す。シルセスキオキサン骨格は、例えば、一般式 A silsesquioxane skeleton is shown, and each silicon atom is bonded to three oxygen atoms, and each oxygen atom is bonded to two silicon atoms. The silsesquioxane skeleton has, for example, a general formula

Figure 2016111112
Figure 2016111112

に示す構造式で示すことができる。 It can be shown by the structural formula shown in

本発明において、a、b、cはモル%を示し、a+b+c=100である。   In the present invention, a, b and c represent mol%, and a + b + c = 100.

本発明におけるa成分およびb成分は、ヒドロキシベンジル基を含む成分であり、シリコーン重合体にアルカリ可溶性を付与する成分である。a成分とb成分の合計は40〜100モル%である。a成分とb成分の合計は、好ましくは50〜100モル%、更に好ましくは60〜100%である。a成分とb成分の合計が40モル%未満であると、アルカリに溶解しないことがある。   The components a and b in the present invention are components containing a hydroxybenzyl group, and are components that impart alkali solubility to the silicone polymer. The sum of component a and component b is 40 to 100 mol%. The sum of component a and component b is preferably 50 to 100 mol%, more preferably 60 to 100%. When the sum of the component a and the component b is less than 40 mol%, it may not be dissolved in alkali.

本発明におけるa成分およびb成分は、a/(a+b)が、0.8以上1以下である。a/(a+b)は、好ましくは、0.85以上1以下、より好ましくは、0.90以上1以下である。   In the component a and component b in the present invention, a / (a + b) is 0.8 or more and 1 or less. a / (a + b) is preferably 0.85 or more and 1 or less, and more preferably 0.90 or more and 1 or less.

本発明におけるc成分は、有機基を含む成分であり、得られるシリコーン重合体の粘度や耐熱性を付与する成分である。c成分は0〜60モル%が好ましく、より好ましくは0〜50モル%、更に好ましくは0〜40モル%である。c成分が60モル%を超えると、アルカリに溶解しないことがある。   The component c in the present invention is a component containing an organic group, and is a component that imparts viscosity and heat resistance of the resulting silicone polymer. The component c is preferably 0 to 60 mol%, more preferably 0 to 50 mol%, still more preferably 0 to 40 mol%. When c component exceeds 60 mol%, it may not melt | dissolve in an alkali.

本発明のシリコーン重合体では、Yは有機基である。Yは、炭化水素基が好ましい。炭化水素基は、好ましくは、炭素数1〜20の直鎖状炭化水素基、分岐状炭化水素基、環状炭化水素基、または、芳香族炭化水素基である。炭素数1〜20の直鎖状炭化水素基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などの炭化水素基がより好ましい。分岐状炭化水素基は、イソプロピル基、イソブチル基が好ましい。環状炭化水素基は、シクロペンチル基、シクロヘキシル基、シクロペンチル基などの環状炭化水素基が好ましく、またノルボルナン骨格を有するような架橋型炭化水素基も好ましい。芳香族炭化水素基としては、フェニル基、ベンジル基、フェネチル基、フェニルプロピル基、ジフェニルメチル基、シンナミル基、スチリル基、トリチル基などのベンゼン環と炭化水素基とを有した置換基、トルイル基、クメニル基、メシル基、キシリル基などのベンゼン環に置換基が結合した芳香族炭化水素基が挙げられる。   In the silicone polymer of the present invention, Y is an organic group. Y is preferably a hydrocarbon group. The hydrocarbon group is preferably a linear hydrocarbon group having 1 to 20 carbon atoms, a branched hydrocarbon group, a cyclic hydrocarbon group, or an aromatic hydrocarbon group. The linear hydrocarbon group having 1 to 20 carbon atoms is more preferably a hydrocarbon group such as a methyl group, an ethyl group, a propyl group, a butyl group, or a pentyl group. The branched hydrocarbon group is preferably an isopropyl group or an isobutyl group. The cyclic hydrocarbon group is preferably a cyclic hydrocarbon group such as a cyclopentyl group, a cyclohexyl group or a cyclopentyl group, and a bridged hydrocarbon group having a norbornane skeleton is also preferred. The aromatic hydrocarbon group includes a phenyl group, a benzyl group, a phenethyl group, a phenylpropyl group, a diphenylmethyl group, a cinnamyl group, a styryl group, a trityl group, a substituent having a benzene ring and a hydrocarbon group, and a toluyl group. And an aromatic hydrocarbon group having a substituent bonded to a benzene ring, such as a cumenyl group, a mesyl group, or a xylyl group.

これら炭化水素基の中で、メチル基、エチル基、プロピル基等の炭素数1〜5のアルキレン基、フェニル基、ベンジル基等の芳香族炭化水素基が、より好ましく、原料入手の容易さからメチル基、エチル基、フェニル基がさらに好ましい。   Among these hydrocarbon groups, an alkylene group having 1 to 5 carbon atoms such as a methyl group, an ethyl group, and a propyl group, an aromatic hydrocarbon group such as a phenyl group, and a benzyl group are more preferable because of easy availability of raw materials. More preferred are a methyl group, an ethyl group, and a phenyl group.

本発明のシリコーン重合体では、Xはトリメチルシリル基を示す。   In the silicone polymer of the present invention, X represents a trimethylsilyl group.

本発明のシリコーン重合体は、重量平均分子量(ポリスチレン換算)が500〜20000の範囲であることが好ましい。より好ましくは、重量平均分子量(ポリスチレン換算)が、1000〜10000の範囲であり、さらに好ましくは2000〜5000の範囲である。   The silicone polymer of the present invention preferably has a weight average molecular weight (polystyrene conversion) in the range of 500 to 20000. More preferably, the weight average molecular weight (polystyrene conversion) is in the range of 1000 to 10,000, and more preferably in the range of 2000 to 5000.

本発明のシリコーン重合体の分散度は、1.0〜10.0の範囲にあるものが好ましく、1.5〜5.0の範囲にあるものが最も好ましい。なお、分散度は、以下の計算式
重量平均分子量/数平均分子量 = 分散度
によって求める。
The dispersity of the silicone polymer of the present invention is preferably in the range of 1.0 to 10.0, and most preferably in the range of 1.5 to 5.0. The degree of dispersion is determined by the following calculation formula: weight average molecular weight / number average molecular weight = dispersion degree.

本発明のシリコーン重合体は、ゲル浸透クロマトグラフィの測定で得られるピークの数が2以上であるシリコーン重合体である。   The silicone polymer of the present invention is a silicone polymer having two or more peaks obtained by gel permeation chromatography measurement.

本発明では、ゲル浸透クロマトグラフィの測定で得られる分子量分布領域を変曲点で分離して、得られるピークの数を決める。ただし、変曲点が明瞭でない場合は、ゲル浸透クロマトグラフィの測定で得られる測定図から、ピークの数を決めることができる。分子量分布が高くなると得られるピークの数は大きくなるが、分散度が高いポリマーとなるため特性が得られない場合がある。よってピークの数は2〜10が好ましく、さらに2〜5が好ましい。   In the present invention, the molecular weight distribution region obtained by gel permeation chromatography measurement is separated at the inflection point to determine the number of peaks obtained. However, when the inflection point is not clear, the number of peaks can be determined from a measurement diagram obtained by gel permeation chromatography measurement. When the molecular weight distribution is high, the number of peaks obtained is large, but since the polymer has a high degree of dispersion, characteristics may not be obtained. Therefore, the number of peaks is preferably 2 to 10, and more preferably 2 to 5.

ゲル浸透クロマトグラフィは分子の大きさを区別することで表れるピークであることから、ゲル浸透クロマトグラフィの測定によって2以上のピークがあることは、本発明のシリコーン重合体は、通常、分子の立体構造が複数存在することを示唆する。   Since gel permeation chromatography is a peak that appears by distinguishing the size of the molecule, the silicone polymer of the present invention usually has a three-dimensional structure of the molecule because there are two or more peaks as measured by gel permeation chromatography. Suggests that there are multiple.

本発明のシリコーン重合体は、分子の立体構造には次の籠型の構造が含まれていても良い。代表的な籠型構造は、一般式   In the silicone polymer of the present invention, the following cage structure may be included in the three-dimensional structure of the molecule. A typical vertical structure is a general formula

Figure 2016111112
Figure 2016111112

(式中、Rは一般的な有機基を示す)
で示されるケイ素原子を8つ有するT8構造と、一般式
(In the formula, R represents a general organic group)
A T8 structure having 8 silicon atoms, and a general formula

Figure 2016111112
Figure 2016111112

(式中、Rは一般的な有機基を示す)
で示されるケイ素原子を10個有するT10構造と、一般式
(In the formula, R represents a general organic group)
A T10 structure having 10 silicon atoms, and a general formula

Figure 2016111112
Figure 2016111112

(式中、Rは一般的な有機基を示す)
で示されるケイ素原子を12個有するT12構造が挙げられる。それら構造は完全縮合した形では無く、部分的にシラノール基が残っている構造式
(In the formula, R represents a general organic group)
The T12 structure which has 12 silicon atoms shown by these is mentioned. Their structure is not a fully condensed form, but a structural formula in which silanol groups remain partially

Figure 2016111112
Figure 2016111112

(式中、Rは一般的な有機基を示す)
の構造も含まれる。さらに、シラノール基はトリメチルシリル基によって保護されていても良い。
(In the formula, R represents a general organic group)
Is also included. Furthermore, the silanol group may be protected by a trimethylsilyl group.

本発明のシリコーン重合体は、好ましくは、有機溶媒に可溶である。本発明のシリコーン重合体は、好ましくは、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン溶媒、メタノール、エタノール、イソプロパノール、n−ブタノール、シクロへキサノール等のアルコール溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル等のエステル溶媒、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン等のエーテル溶媒、アセトニトリル、ベンゾニトリル等のニトリル系溶媒、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒に可溶である。本発明のシリコーン重合体は、例えばプロピレングリコールモノメチルエーテルアセテートなどの有機溶媒に溶解させた場合は、シリコンウェハーやガラス基板上に有機溶媒に溶解させたシリコーン共重合体をスピンコートすることができ、基板上の膜厚を調整したり、平坦で緻密な膜を形成できることから、沸点の高い溶媒に溶解することは特に好ましい。   The silicone polymer of the present invention is preferably soluble in an organic solvent. The silicone polymer of the present invention is preferably a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methylcyclohexanone, alcohol solvent such as methanol, ethanol, isopropanol, n-butanol, cyclohexanol, benzene, toluene, Aromatic hydrocarbon solvents such as xylene, ester solvents such as methyl acetate, ethyl acetate, butyl acetate and ethyl lactate, ether solvents such as diethyl ether, dibutyl ether and tetrahydrofuran, nitrile solvents such as acetonitrile and benzonitrile, propylene glycol dimethyl ether It is soluble in glycol solvents such as propylene glycol diethyl ether and propylene glycol monomethyl ether acetate. When the silicone polymer of the present invention is dissolved in an organic solvent such as propylene glycol monomethyl ether acetate, for example, the silicone copolymer dissolved in the organic solvent can be spin-coated on a silicon wafer or a glass substrate, It is particularly preferable to dissolve in a solvent having a high boiling point because the film thickness on the substrate can be adjusted and a flat and dense film can be formed.

本発明におけるアルカリ溶解速度(Alkali Dissolution Rate、ADR)とは、例えば、塗膜としたシリコーン重合体を、アルカリ溶液に浸漬した際に、塗膜が溶解する速度のことである。アルカリ溶解速度測定に用いられるアルカリ溶液は、半導体・液晶リソグラフィー用途では、1.19%、2.38%および25%のテトラメチルアンモニウムヒドロキシド水溶液が一般的に用いられる。塗膜は、本発明のシリコーン重合体を、高沸点溶媒に溶解し、シリコンウエハーやガラス基板上にスピンコート等の手法で形成させることができる。   The alkali dissolution rate (Alkali Dissolution Rate, ADR) in the present invention is a rate at which the coating film dissolves when the silicone polymer used as the coating film is immersed in an alkaline solution, for example. As the alkali solution used for measuring the alkali dissolution rate, 1.19%, 2.38%, and 25% tetramethylammonium hydroxide aqueous solutions are generally used for semiconductor / liquid crystal lithography applications. The coating film can be formed by dissolving the silicone polymer of the present invention in a high boiling point solvent and using a technique such as spin coating on a silicon wafer or glass substrate.

アルカリ溶解速度は、塗膜の膜厚(A)を事前に光干渉式膜厚測定装置等を用いて測定し、一方で、塗膜をアルカリ溶液に浸漬してから、目視で塗膜が完全に溶解するまでの時間(B)を測定し、以下の式にて求められる。   The alkali dissolution rate is determined by measuring the film thickness (A) of the coating film in advance using a light interference type film thickness measuring device or the like. The time (B) until dissolution is measured, and is obtained by the following formula.

A / B = ADR(Å/s)
半導体・液晶リソグラフィーでは、アルカリ溶解速度は100Å/sが好ましく、より好ましくは200Å/s、さらに好ましくは300Å/sである。アルカリ溶解速度が100Å/s以上であれば、リソグラフィーに用いる事ができる。
A / B = ADR (Å / s)
In semiconductor / liquid crystal lithography, the alkali dissolution rate is preferably 100 Å / s, more preferably 200 Å / s, and still more preferably 300 Å / s. If the alkali dissolution rate is 100 Å / s or more, it can be used for lithography.

本発明のシリコーン重合体は、一般的には、例えば、一般式   The silicone polymer of the present invention generally has, for example, a general formula

Figure 2016111112
Figure 2016111112

(式中、Xは加水分解性基を示し、nは1から3を示す。)
で示される加水分解反応と一般式
(In the formula, X represents a hydrolyzable group, and n represents 1 to 3.)
Hydrolysis reaction and general formula

Figure 2016111112
Figure 2016111112

(式中、Xは加水分解性基を示し、nは1から3を示す。)
のとおり加水分解反応と縮重合反応との2反応から合成される。本発明のシリコーン重合体は、加水分解反応と縮重合反応との2反応から合成される場合は、一般的なラジカル縮合とは異なり、使用モノマーや反応条件などから重合度を制御することができる。
(In the formula, X represents a hydrolyzable group, and n represents 1 to 3.)
As described above, it is synthesized from two reactions of hydrolysis and condensation polymerization. When the silicone polymer of the present invention is synthesized from two reactions of a hydrolysis reaction and a condensation polymerization reaction, the polymerization degree can be controlled from the monomers used and reaction conditions, etc., unlike general radical condensation. .

本発明のシリコーン重合体の製造方法は、一般式   The method for producing the silicone polymer of the present invention has the general formula

Figure 2016111112
Figure 2016111112

(式中、Rはメチル基を示す。Zは一価の炭化水素基を示す。)で示されるケイ素化合物と一般式(Wherein R represents a methyl group, Z 1 represents a monovalent hydrocarbon group) and a general formula

Figure 2016111112
Figure 2016111112

(式中、Yは有機基を示し、Zは一価の炭化水素基を示す)
で示されるケイ素化合物の混合物を、第4級アンモニウム塩の存在下、加水分解し、さらに縮重合反応を行った後、非プロトン性極性溶媒中で脱保護することで、一般式
(Wherein Y represents an organic group and Z 2 represents a monovalent hydrocarbon group)
A mixture of silicon compounds represented by the following formula is hydrolyzed in the presence of a quaternary ammonium salt, followed by a condensation polymerization reaction, followed by deprotection in an aprotic polar solvent.

Figure 2016111112
Figure 2016111112

(式中、a、b、cはモル%を示す。Yは有機基を、Xはトリメチルシリル基を示す。)
で示され、(a+b)は40〜100モル%、cは0〜60モル%、a+b+c=100モル%、a/(a+b)は、0.8以上1以下であり、ゲル浸透クロマトグラフィ測定で得られるピークの数が2以上であるシリコーン重合体を製造するシリコーン重合体の製造方法である。
(Wherein, a, b and c represent mol%, Y represents an organic group, and X represents a trimethylsilyl group.)
(A + b) is 40 to 100 mol%, c is 0 to 60 mol%, a + b + c = 100 mol%, and a / (a + b) is 0.8 or more and 1 or less, and is obtained by gel permeation chromatography measurement. This is a method for producing a silicone polymer, which produces a silicone polymer having 2 or more peaks.

ここで、Zは一価の炭化水素基を示し、炭素数1〜20の直鎖状炭化水素基が好ましい。炭素数1〜20の直鎖状炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などの炭化水素基が挙げられる。中でも、Zは、メチル基、エチル基、プロピル基等の炭素数1〜5のアルキレン基がより好ましく、原料入手の容易さからメチル基、エチル基がさらに好ましい。Here, Z < 1 > shows a monovalent hydrocarbon group and a C1-C20 linear hydrocarbon group is preferable. Examples of the linear hydrocarbon group having 1 to 20 carbon atoms include hydrocarbon groups such as a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Among these, Z 1 is more preferably an alkylene group having 1 to 5 carbon atoms such as a methyl group, an ethyl group, or a propyl group, and a methyl group or an ethyl group is more preferable because of availability of raw materials.

本発明のシリコーン重合体の製造方法では、Yは有機基である。Yは、炭化水素基が好ましい。炭化水素基は、炭素数1〜20の直鎖状炭化水素基、分岐状炭化水素基、環状炭化水素基、芳香族炭化水素基等である。炭素数1〜20の直鎖状炭化水素基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などの炭化水素基がより好ましい。分岐状炭化水素基は、イソプロピル基、イソブチル基などの炭化水素基が好ましい。環状炭化水素基は、シクロペンチル基、シクロヘキシル基、シクロペンチル基が好ましく、またノルボルナン骨格を有するような架橋型炭化水素基も好ましい。芳香族炭化水素基は、フェニル基、ベンジル基、フェネチル基、フェニルプロピル基、ジフェニルメチル基、シンナミル基、スチリル基、トリチル基などのベンゼン環と炭化水素基とを有した置換基、トルイル基、クメニル基、メシル基、キシリル基などのベンゼン環に置換基が結合した芳香族炭化水素基が挙げられる。   In the method for producing a silicone polymer of the present invention, Y is an organic group. Y is preferably a hydrocarbon group. The hydrocarbon group is a linear hydrocarbon group having 1 to 20 carbon atoms, a branched hydrocarbon group, a cyclic hydrocarbon group, an aromatic hydrocarbon group, or the like. The linear hydrocarbon group having 1 to 20 carbon atoms is more preferably a hydrocarbon group such as a methyl group, an ethyl group, a propyl group, a butyl group, or a pentyl group. The branched hydrocarbon group is preferably a hydrocarbon group such as isopropyl group or isobutyl group. The cyclic hydrocarbon group is preferably a cyclopentyl group, a cyclohexyl group or a cyclopentyl group, and a bridged hydrocarbon group having a norbornane skeleton is also preferred. The aromatic hydrocarbon group includes a phenyl group, a benzyl group, a phenethyl group, a phenylpropyl group, a diphenylmethyl group, a cinnamyl group, a styryl group, a trityl group, a substituent having a benzene ring and a hydrocarbon group, a toluyl group, An aromatic hydrocarbon group in which a substituent is bonded to a benzene ring, such as a cumenyl group, a mesyl group, or a xylyl group.

これら炭化水素基の中で、メチル基、エチル基、プロピル基等の炭素数1〜5のアルキレン基、フェニル基、ベンジル基等の芳香族炭化水素基がより好ましく、原料入手の容易さからメチル基、エチル基、フェニル基がさらに好ましい。   Among these hydrocarbon groups, an alkylene group having 1 to 5 carbon atoms such as a methyl group, an ethyl group, and a propyl group, and an aromatic hydrocarbon group such as a phenyl group and a benzyl group are more preferable. More preferred are a group, an ethyl group and a phenyl group.

は一価の炭化水素基を示し、炭素数1〜20の直鎖状炭化水素基が好ましい。炭素数1〜20の直鎖状炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などの炭化水素基が挙げられる。Zは、メチル基、エチル基、プロピル基等の炭素数1〜5のアルキレン基がより好ましく、原料入手の容易さからメチル基、エチル基がさらに好ましい。Z 2 represents a monovalent hydrocarbon group, preferably a linear hydrocarbon group having 1 to 20 carbon atoms. Examples of the linear hydrocarbon group having 1 to 20 carbon atoms include hydrocarbon groups such as a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Z 2 is more preferably an alkylene group having 1 to 5 carbon atoms such as a methyl group, an ethyl group, or a propyl group, and a methyl group or an ethyl group is more preferable from the viewpoint of availability of raw materials.

本発明のシリコーン重合体の製造方法では、触媒として第4級アンモニウム塩を用いる。第4級アンモニウム塩としては、テトラブチルアンモニウムフルオライド、ベンジルトリブチルアンモニウムクロライド、ベンジルトリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド、テトラn−ブチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラメチルアンモニウムクロライド、ベンジルトリn−ブチルアンモニウムブロマイド、ベンジルトリエチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムブロマイド、n−オクチルトリメチルアンモニウムブロマイド、ヘキシルトリメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、テトラエチルアンモニウムブロマイド、テトラデシルトリメチルアンモニウムブロマイド、テトラメチルアンモニウムブロマイド、テトラn−プロピルアンモニウムブロマイド、テトラブチルアンモニウムアイオダイド、テトラエチルアンモニウムアイオダイド、テトラメチルアンモニウムアイオダイド、テトラn−プロピルアンモニウムアイオダイド、トリメチルフェニルアンモニウムアイオダイド、ベンジルトリメチルアンモニウムヒドロキシト゛、フェニルトリメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロゲンスルフェート、テトラブチルアンモニウムテトラフルオロボレート、テトラメチルアンモニウムチオシアネート、テトラメチルアンモニウムp−トルエンスルフォネートなどが挙げられる。中でも、ベンジルトリブチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド、テトラn−ブチルアンモニウムクロライド、テトラメチルアンモニウムクロライド、ベンジルトリn−ブチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムブロマイド、ヘキシルトリメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、テトラデシルトリメチルアンモニウムブロマイド、テトラメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムヒドロキシト゛、フェニルトリメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロゲンスルフェート、テトラブチルアンモニウムテトラフルオロボレート、テトラメチルアンモニウムチオシアネート、テトラメチルアンモニウムp−トルエンスルフォネートが好ましく、さらに、強い塩基でモノマーの加水分解速度を制御可能なテトラメチルアンモニウムヒドロキシドが好ましい。   In the method for producing a silicone polymer of the present invention, a quaternary ammonium salt is used as a catalyst. The quaternary ammonium salts include tetrabutylammonium fluoride, benzyltributylammonium chloride, benzyltriethylammonium chloride, benzyltrimethylammonium chloride, tetra n-butylammonium chloride, tetraethylammonium chloride, tetramethylammonium chloride, benzyltrin-butylammonium. Bromide, benzyltriethylammonium bromide, benzyltrimethylammonium bromide, n-octyltrimethylammonium bromide, hexyltrimethylammonium bromide, tetrabutylammonium bromide, tetraethylammonium bromide, tetradecyltrimethylammonium bromide, tetramethylammonium Romide, tetra-n-propylammonium bromide, tetrabutylammonium iodide, tetraethylammonium iodide, tetramethylammonium iodide, tetra-n-propylammonium iodide, trimethylphenylammonium iodide, benzyltrimethylammonium hydroxide, phenyltrimethylammonium hydroxy Tetrabutylammonium hydroxide, tetraethylammonium hydroxide, tetramethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydrogen sulfate, tetrabutylammonium tetrafluoroborate, tetramethylammonium thiocyanate, tetramethylammonium p- G Such as Enns Gandolfo sulfonate, and the like. Among them, benzyltributylammonium chloride, benzyltrimethylammonium chloride, tetra n-butylammonium chloride, tetramethylammonium chloride, benzyltrin-butylammonium bromide, benzyltrimethylammonium bromide, hexyltrimethylammonium bromide, tetrabutylammonium bromide, tetradecyltrimethylammonium Bromide, tetramethylammonium bromide, benzyltrimethylammonium hydroxide, phenyltrimethylammonium hydroxide, tetrabutylammonium hydroxide, tetraethylammonium hydroxide, tetramethylammonium hydroxide, tetrapropylammonium hydroxide, tetra Tylammonium hydrogen sulfate, tetrabutylammonium tetrafluoroborate, tetramethylammonium thiocyanate, tetramethylammonium p-toluenesulfonate are preferred, and tetramethylammonium hydroxide that can control the hydrolysis rate of the monomer with a strong base Is preferred.

第4級アンモニウム塩の使用量は、一般式   The amount of quaternary ammonium salt used is the general formula

Figure 2016111112
Figure 2016111112

(式中、Rはメチル基、Zは一価の炭化水素基を示す。)で示されるケイ素化合物と、一般式(Wherein, R represents a methyl group, Z 1 represents a monovalent hydrocarbon group) and a general formula

Figure 2016111112
Figure 2016111112

(式中、Yは有機基を示し、Zは一価の炭化水素基を示す)で示されるケイ素化合物の合計のモル数に対して、0.001〜1.0当量が好ましく、0.005〜0.5当量がさらに好ましい。第4級アンモニウム塩は、加水分解、縮重合反応の終了後、適当な酸を用いて中和しても良い。(Wherein Y represents an organic group and Z 2 represents a monovalent hydrocarbon group), 0.001 to 1.0 equivalent is preferable with respect to the total number of moles of the silicon compound. 005 to 0.5 equivalent is more preferable. The quaternary ammonium salt may be neutralized with an appropriate acid after completion of hydrolysis and polycondensation reaction.

本発明のシリコーン重合体の製造方法では、加水分解、縮重合反応の反応温度は、0〜100℃が好ましく、より好ましくは、10〜90℃であり、さらに好ましくは、20℃〜80℃である。反応温度が0℃以上であれば加水分解、縮重合反応が短時間で完了し、また100℃以下であれば工業化が容易である。   In the method for producing a silicone polymer of the present invention, the reaction temperature of the hydrolysis and condensation polymerization reaction is preferably 0 to 100 ° C, more preferably 10 to 90 ° C, and further preferably 20 to 80 ° C. is there. If the reaction temperature is 0 ° C. or higher, hydrolysis and polycondensation reactions are completed in a short time, and if it is 100 ° C. or lower, industrialization is easy.

この加水分解、縮重合反応には水を用いる。水の使用量は、一般式   Water is used for the hydrolysis and condensation polymerization reactions. The amount of water used is the general formula

Figure 2016111112
Figure 2016111112

(式中、Rはメチル基、Zは一価の炭化水素基を示す。)で示されるケイ素化合物と、一般式(Wherein, R represents a methyl group, Z 1 represents a monovalent hydrocarbon group) and a general formula

Figure 2016111112
Figure 2016111112

(式中、Yは有機基を示し、Zは一価の炭化水素基を示す)で示されるケイ素化合物の合計のモル数に対して、0.1〜20当量使用することが好ましく、0.5〜10当量使用することが特に好ましい。(Wherein Y represents an organic group, and Z 2 represents a monovalent hydrocarbon group), it is preferably used in an amount of 0.1 to 20 equivalents relative to the total number of moles of the silicon compound. It is particularly preferable to use 5 to 10 equivalents.

加水分解、縮重合反応では、有機溶媒を使用してもよい。有機溶媒としては、トルエン、キシレン等の非プロトン性溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、メタノール、エタノール、2−プロパノール等のアルコール溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル溶媒等の溶媒を使用することができる。また、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、乳酸エチルなどの高沸点溶媒を使用しても良い。また非プロトン性溶媒を使用した場合は、水と混合しないため加水分解反応が遅くなると推測され、そのような場合は水に可溶なアルコール溶媒を加えて加水分解反応させてもよい。有機溶媒は2種類以上用いても良い。   In the hydrolysis and polycondensation reaction, an organic solvent may be used. Examples of the organic solvent include aprotic solvents such as toluene and xylene, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, alcohol solvents such as methanol, ethanol and 2-propanol, and ether solvents such as diethyl ether and tetrahydrofuran. Can be used. Moreover, you may use high boiling-point solvents, such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, and ethyl lactate. When an aprotic solvent is used, it is presumed that the hydrolysis reaction is slowed because it is not mixed with water. In such a case, a hydrolysis reaction may be performed by adding an alcohol solvent soluble in water. Two or more organic solvents may be used.

加水分解、縮重合反応では、ケイ素化合物に触媒を滴下しても良いし、触媒や触媒を含む有機溶媒にケイ素化合物を滴下しても良い。   In the hydrolysis and polycondensation reaction, the catalyst may be added dropwise to the silicon compound, or the silicon compound may be added dropwise to the catalyst or an organic solvent containing the catalyst.

加水分解、縮重合反応の反応時間は、所望の分子量のシリコーン重合体が得られる時間でよく、好ましくは0.5〜20時間、更に好ましくは1〜10時間である。   The reaction time for the hydrolysis and polycondensation reaction may be a time for obtaining a silicone polymer having a desired molecular weight, preferably 0.5 to 20 hours, and more preferably 1 to 10 hours.

本発明のシリコーン重合体の製造方法では、非プロトン性極性溶媒中で脱保護反応を行うことで、アルコキシ基を脱保護して水酸基とする。   In the method for producing a silicone polymer of the present invention, the alkoxy group is deprotected to form a hydroxyl group by performing a deprotection reaction in an aprotic polar solvent.

非プロトン性極性溶媒としては、アセトニトリル、クロロホルム、塩化メチレン等を用いることができる。中でも、アセトニトリル、クロロホルムを用いた場合、脱保護率が高く好ましい。非プロトン性極性溶媒は2種類以上用いても良い。   As the aprotic polar solvent, acetonitrile, chloroform, methylene chloride or the like can be used. Among these, when acetonitrile or chloroform is used, the deprotection rate is high and preferable. Two or more aprotic polar solvents may be used.

非プロトン性極性溶媒の量は、得られたポリマーに対し、0.5〜8.0重量倍が用いられ、好ましくは1.0〜7.0重量倍であり、さらに好ましくは1.5〜6.0重量倍である。0.5重量倍以上であれば、脱保護率が高くなり、8.0重量倍以下であれば、経済的な観点から好ましい。   The amount of the aprotic polar solvent is 0.5 to 8.0 times by weight, preferably 1.0 to 7.0 times by weight, and more preferably 1.5 to 8.0 times by weight with respect to the obtained polymer. 6.0 times by weight. If it is 0.5 weight times or more, a deprotection rate will become high, and if it is 8.0 weight times or less, it is preferable from an economical viewpoint.

本発明のシリコーン重合体の製造方法では、より好ましくは、第4級アンモニウム塩が、テトラメチルアンモニウムヒドロキシドであり、非プロトン性極性溶媒が、アセトニトリル、または、クロロホルムである。   In the method for producing a silicone polymer of the present invention, more preferably, the quaternary ammonium salt is tetramethylammonium hydroxide, and the aprotic polar solvent is acetonitrile or chloroform.

脱保護反応には、トリメチルシリルアイオダイドを用いることができる。トリメチルシリルアイオダイドは、シラン化合物の加水分解、縮重合物に、溶液のトリメチルシリルアイオダイドを滴下しても良いし、トリメチルシリルクロライドとヨウ化ナトリウムを別々に添加し反応系中で生じさせても良い。トリメチルシリルクロライドとヨウ化ナトリウムは安価であり好ましい。   Trimethylsilyl iodide can be used for the deprotection reaction. The trimethylsilyl iodide may be produced by dropping the trimethylsilyl iodide in the solution into the hydrolyzed or condensed polymer of the silane compound, or by adding trimethylsilyl chloride and sodium iodide separately in the reaction system. Trimethylsilyl chloride and sodium iodide are preferred because they are inexpensive.

トリメチルシリルアイオダイドの量は、a成分のモル数に対して1.2〜2.9当量、好ましくは1.3〜2.8当量、さらに好ましくは1.4〜2.7当量である。1.2当量以上であれば、脱保護率が高く、2.9当量以下であれば、経済的に好ましい。さらに、トリメチルシリルクロライドとヨウ化ナトリウムを別々に添加する場合は、ヨウ化ナトリウムに対し、トリメチルシリルクロライドが過剰となるほうが好ましい。   The amount of trimethylsilyl iodide is 1.2 to 2.9 equivalents, preferably 1.3 to 2.8 equivalents, more preferably 1.4 to 2.7 equivalents, relative to the number of moles of component a. If it is 1.2 equivalents or more, the deprotection rate is high, and if it is 2.9 equivalents or less, it is economically preferable. Furthermore, when trimethylsilyl chloride and sodium iodide are added separately, it is preferable that trimethylsilyl chloride is excessive with respect to sodium iodide.

脱保護反応の温度は、50℃以上、好ましくは60℃以上であり、更に好ましくは65℃以上である。50℃以上であれば、脱保護率が高くなり好ましい。   The temperature of the deprotection reaction is 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 65 ° C. or higher. If it is 50 degreeC or more, a deprotection rate becomes high and is preferable.

脱保護反応の時間は、所望の脱保護率が得られる時間であれば良く、6〜100時間、好ましくは10〜80時間、更に好ましくは14〜60時間である。6時間を以上であれば、脱保護率が80%以上となり、100時間以下であれば生産性の面で好ましい。   The time for the deprotection reaction may be a time for obtaining a desired deprotection rate, and is 6 to 100 hours, preferably 10 to 80 hours, and more preferably 14 to 60 hours. If it is 6 hours or more, the deprotection rate is 80% or more, and if it is 100 hours or less, it is preferable in terms of productivity.

脱保護反応に用いる水の量は、トリメチルシリルアイオダイドのモル数に対して、1.0〜4.0当量、好ましくは1.2〜3.5当量、更に好ましくは1.5〜3.0当量が好ましい。   The amount of water used in the deprotection reaction is 1.0 to 4.0 equivalents, preferably 1.2 to 3.5 equivalents, more preferably 1.5 to 3.0 equivalents relative to the number of moles of trimethylsilyl iodide. Equivalents are preferred.

本発明のシリコーン重合体の製造方法では、トリメチルシリルアイオダイドに、トリメチルシリルクロライドとヨウ化ナトリウムを用いた場合、副生成物として生じる塩を除去し、シリコーン重合体に含まれる金属を低減させるために、水洗を行っても良い。水洗に用いる水は、イオン交換水が好ましく、更に好ましくは電気伝導度が5μS/cm以下であるイオン交換水が好ましい。水洗は繰り返し行っても良い。   In the method for producing a silicone polymer of the present invention, when trimethylsilyl chloride and sodium iodide are used for trimethylsilyl iodide, in order to remove salts generated as by-products and reduce the metal contained in the silicone polymer, You may wash with water. The water used for washing is preferably ion-exchanged water, more preferably ion-exchanged water having an electric conductivity of 5 μS / cm or less. Washing with water may be repeated.

本発明のシリコーン重合体の製造方法では、好ましくは、全ての反応をワンポット(one−pot)で行う。反応をワンポットで行うとは、反応容器に基質や溶媒を逐次投入することで、多段階の反応を行うことである。通常の合成反応では、一般的に、余剰の基質や副生成物が、次工程の反応を阻害することがあり、単離・精製が必要である。   In the method for producing a silicone polymer of the present invention, preferably, all reactions are carried out in one-pot. Performing the reaction in one pot means performing a multi-stage reaction by sequentially introducing a substrate and a solvent into the reaction vessel. In ordinary synthesis reactions, generally, excess substrates and by-products may inhibit the next step reaction, and isolation and purification are necessary.

本発明のシリコーン重合体の製造方法では、加水分解・縮重合反応の後、単離・精製を行うことなく、ワンポットで反応を行いながら、メトキシ基の脱保護が高い脱保護率で行う事ができる。ワンポットで反応を行う事ができるので、単離・精製に用いるエネルギーや溶媒を使用することなく合成することができ経済的である。また、単離・精製を行わないため、生成物をロスすることが無く、廃液が発生せず、環境に対する負荷が少ない。加えて、反応設備を一基しか用いないため、設備が少なくてすみ効率が良い。   In the method for producing a silicone polymer of the present invention, after the hydrolysis / condensation reaction, the methoxy group can be deprotected at a high deprotection rate while performing the reaction in one pot without performing isolation / purification. it can. Since the reaction can be carried out in one pot, it can be synthesized without using energy and solvent used for isolation and purification, which is economical. Further, since no isolation / purification is performed, no product is lost, no waste liquid is generated, and the burden on the environment is small. In addition, since only one reaction facility is used, the number of facilities is small and efficiency is high.

以下、実施例を示して本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

以下の実施例において、測定には下記装置を使用し、原料は試薬メーカー(東京化成工業(株)、和光純薬工業(株)、ナカライテスク(株)、信越化学工業(株))から購入した一般的な試薬を用いた。   In the following examples, the following apparatus is used for measurement, and raw materials are purchased from reagent manufacturers (Tokyo Chemical Industry Co., Ltd., Wako Pure Chemical Industries, Ltd., Nacalai Tesque Co., Ltd., Shin-Etsu Chemical Co., Ltd.). The general reagents used were used.

測定装置
NMR測定
NMR(400MHz、日本電子(株)製)を使用した。合成した化合物を約20〜30mgを和光純薬製CDCl約1gに溶解させその溶液をNMRチューブに全量移液した。内部標準物質にはテトラメチルシラン(TMSと略す)CDClに対して0.5%w/w加え、TMS由来のピークを0ppmとして解析した。測定はオートロックで行い、積算回数は16回とした。得られたチャートに基づき脱保護率を計算した。脱保護率は、6〜7ppm付近のフェノールのプロトン由来のピーク面積(A)と、3.6ppm付近のメトキシ基のプロトン由来のピーク面積(B)を用い、以下の計算式にて
100 −((B/3)/(A/4)×100) = 脱保護率(%)
求めた。
Measuring device NMR measurement
NMR (400 MHz, manufactured by JEOL Ltd.) was used. About 20 to 30 mg of the synthesized compound was dissolved in about 1 g of CDCl 3 manufactured by Wako Pure Chemical Industries, and the total amount of the solution was transferred to an NMR tube. The internal standard substance was analyzed by adding 0.5% w / w to tetramethylsilane (abbreviated as TMS) CDCl 3 and setting the peak derived from TMS to 0 ppm. Measurement was performed by auto-locking and the number of integrations was 16 times. The deprotection rate was calculated based on the obtained chart. The deprotection rate is calculated by the following formula using the peak area (A) derived from the proton of phenol in the vicinity of 6 to 7 ppm and the peak area (B) derived from the proton of the methoxy group in the vicinity of 3.6 ppm. (B / 3) / (A / 4) × 100) = Deprotection rate (%)
Asked.

IR測定
IR Prestige−21((株)島津製作所製)を使用した。KBr板に合成品を少量塗布し、赤外を透過させて測定した。
IR measurement
IR Prestige-21 (manufactured by Shimadzu Corporation) was used. A small amount of the synthetic product was applied to the KBr plate and measured by transmitting infrared light.

GC測定
GC−2010((株)島津製作所製)を使用した。カラムはJ&W社製DB−5 (長さ30m×膜厚0.5mmI.D.)を使用した。測定条件は、注入口温度250℃、検出器温度300℃。昇温プログラムは、カラム温度50℃から10℃/分で300℃まで昇温し2分間保持した。
GC measurement GC-2010 (manufactured by Shimadzu Corporation) was used. The column used was DB-5 manufactured by J & W (length 30 m × film thickness 0.5 mm ID). The measurement conditions were an inlet temperature of 250 ° C and a detector temperature of 300 ° C. In the temperature raising program, the column temperature was raised from 50 ° C. to 300 ° C. at 10 ° C./min and held for 2 minutes.

ゲル浸透クロマトグラフィ(GPC)測定
HLC−8220GPCシステム(東ソー(株)製)を使用した。カラムには、TSKgelSuperHZ3000、TSKgelSuperHZ2000、TSKgel1000(いずれも東ソー(株)製)を用いた。検出はRIで行い、リファレンスカラムとしてTSKgelSuperH−RCを使用した。溶媒にはテトラヒドロフランを使用し、カラムとリファレンスカラムの流速は0.35mL/minで行った。測定温度は、プランジャーポンプ、カラム共に40℃で行った。サンプルの調整には、シリコーン重合体約0.025gを10mlのテトラヒドロフランで希釈し、1μL注入した。分子量分布計算には、TSK標準ポリスチレン(東ソー(株)製、A−500、A−1000、A−2500、A−5000、F−1、F−2、F−4、F−10、F−20、F−40、F−80)を標準物質として使用して算出した。
Gel permeation chromatography (GPC) measurement
An HLC-8220 GPC system (manufactured by Tosoh Corporation) was used. TSKgelSuperHZ3000, TSKgelSuperHZ2000, and TSKgel1000 (all manufactured by Tosoh Corporation) were used for the column. Detection was performed by RI, and TSKgelSuperH-RC was used as a reference column. Tetrahydrofuran was used as the solvent, and the flow rate between the column and the reference column was 0.35 mL / min. The measurement temperature was 40 ° C. for both the plunger pump and the column. For sample preparation, about 0.025 g of a silicone polymer was diluted with 10 ml of tetrahydrofuran and 1 μL was injected. For molecular weight distribution calculation, TSK standard polystyrene (manufactured by Tosoh Corporation, A-500, A-1000, A-2500, A-5000, F-1, F-2, F-4, F-10, F- 20, F-40, F-80) were used as standard substances.

アルカリ溶解速度(Alkali Dissolution Rate、ADR)測定
Si単結晶ウェハ上に、スピンコーター(MS−A100、ミカサ製)にて、シリコーン重合体を膜厚15,000〜25,000Å(A)になるように成膜し、ホットプレートで100℃にて90秒間焼成した。膜厚は光干渉式膜厚測定装置(ラムダエースVM−1210、大日本スクリーン製造(株)製)を用いて測定した。ADRは、塗膜したウェハを、1.19%または2.38%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液と略す)中に浸漬し、目視にて塗膜が消失するまでの時間(B)を計測し、下記式にて
A / B = ADR(Å/s)
求めた。
Measurement of Alkali Dissolution Rate (ADR) On a Si single crystal wafer, a spin coater (MS-A100, manufactured by Mikasa) is used to form a silicone polymer with a film thickness of 15,000 to 25,000 mm (A). And baked at 100 ° C. for 90 seconds on a hot plate. The film thickness was measured using an optical interference type film thickness measuring device (Lambda Ace VM-1210, manufactured by Dainippon Screen Mfg. Co., Ltd.). ADR is a time until the coated film disappears by immersing the coated wafer in a 1.19% or 2.38% tetramethylammonium hydroxide aqueous solution (abbreviated as TMAH aqueous solution) (B). Is measured, and A / B = ADR (Å / s) by the following formula
Asked.

合成例1
4−メトキシベンジルトリメトキシシランの合成例
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、マグネシウム19.0g(0.784モル)とテトラヒドロフラン300mLを加えヨウ素片を加えた。そこに少量の4−メトキシベンジルクロライドを滴下し反応を開始させた後、4−メトキシベンジルクロライド合計116.9g(0.746モル)を5〜10℃で滴下してグリニャール試薬を調製した。
Synthesis example 1
Synthesis example of 4-methoxybenzyltrimethoxysilane To a 500 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 19.0 g (0.784 mol) of magnesium and 300 mL of tetrahydrofuran were added, and iodine pieces were added. added. A small amount of 4-methoxybenzyl chloride was added dropwise thereto to initiate the reaction, and then a total of 116.9 g (0.746 mol) of 4-methoxybenzyl chloride was added dropwise at 5 to 10 ° C. to prepare a Grignard reagent.

次に撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた1000mL4つ口フラスコに正珪酸メチル568g(3.73モル)仕込み、70〜80℃の温度で先に調整したグリニャール試薬を2時間かけて滴下した。その後冷却し析出したマグネシウム塩をろ過した後、溶媒を留去し、さらに減圧度5mmHgで128〜135℃の留分を122g(0.495モル)回収した。得られた留分のGC分析結果、GC純度98.8%、NMRとIR分析の結果、4−メトキシベンジルトリメトキシシランであった。   Next, 568 g (3.73 mol) of normal methyl silicate was charged into a 1000 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a thermometer, and 2 Grignard reagents previously adjusted at a temperature of 70 to 80 ° C. It was added dropwise over time. After cooling and filtering the precipitated magnesium salt, the solvent was distilled off, and 122 g (0.495 mol) of a 128-135 ° C. fraction was recovered at a reduced pressure of 5 mmHg. As a result of GC analysis of the obtained fraction, GC purity was 98.8%, and NMR and IR analysis revealed that it was 4-methoxybenzyltrimethoxysilane.

得られた化合物のスペクトルデータを下記に示す。   The spectrum data of the obtained compound is shown below.

赤外線吸収スペクトル
2839,2941cm−1(−CH,Ar),1080cm−1(Si−O)
核磁気共鳴スペクトル
2.15(s、2H、−CH−)、3.52(s、9H、−OCH)、3.76(s、3H、CH−O−)、6.78−6.80(d、J=8.5Hz、2H、Ar−H)、7.07−7.09(d、J=8.5Hz、2H、Ar−H)ppm。
Infrared absorption spectrum 2839, 2941 cm −1 (—CH 3 , Ar), 1080 cm −1 (Si—O)
Nuclear magnetic resonance spectrum 2.15 (s, 2H, -CH 2 -), 3.52 (s, 9H, -OCH 3), 3.76 (s, 3H, CH 3 -O -), 6.78- 6.80 (d, J = 8.5 Hz, 2H, Ar—H), 7.07-7.09 (d, J = 8.5 Hz, 2H, Ar—H) ppm.

実施例1
ゲル浸透クロマトグラフィの測定で得られるピークの数が3つである4−ヒドロキシベンジルシルセスキオキサンの合成
Example 1
Synthesis of 4-hydroxybenzylsilsesquioxane having three peaks obtained by gel permeation chromatography measurement

Figure 2016111112
Figure 2016111112

(1)加水分解、縮重合
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた5L四つ口フラスコに25%テトラメチルアンモニウムヒドロキシド水溶液17.7g、イオン交換水62.2g、2−プロパノール390.2g、トルエン418.5gを仕込んだ。40℃まで昇温した後、合成例1で得た4−メトキシベンジルトリメトキシシラン557.4gを滴下ろう斗を用いて1.5時間かけて滴下した。その後40℃にて4時間反応させた。反応後、2%くえん酸水を添加し中和した。さらに、トルエン975.5g、イオン交換水278.7gを添加し、撹拌後、分液した。分液した油層にイオン交換水418.0gを添加し撹拌後、分液した。同様の操作をもう1回実施した。得られた油層を濃縮したところ、無色透明液体の4−メトキシベンジルシルセスキオキサン510.8g(固形分77%トルエン溶液)を得た。
(1) Hydrolysis, condensation polymerization In a 5 L four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 17.7 g of 25% tetramethylammonium hydroxide aqueous solution, 62.2 g of ion-exchanged water, 2 -390.2 g of propanol and 418.5 g of toluene were charged. After the temperature was raised to 40 ° C., 557.4 g of 4-methoxybenzyltrimethoxysilane obtained in Synthesis Example 1 was added dropwise over 1.5 hours using a dropping funnel. Thereafter, the reaction was carried out at 40 ° C. for 4 hours. After the reaction, 2% citric acid water was added for neutralization. Furthermore, 975.5 g of toluene and 278.7 g of ion-exchanged water were added, followed by liquid separation after stirring. 418.0 g of ion-exchanged water was added to the separated oil layer, and the mixture was stirred and separated. The same operation was performed once more. When the obtained oil layer was concentrated, 510.8 g of a colorless transparent liquid 4-methoxybenzylsilsesquioxane (solid content 77% toluene solution) was obtained.

(2)脱保護
得られたポリマーにアセトニトリル1570.0g(4.0重量倍/ポリマー)を加え、撹拌しながらヨウ化ナトリウム509.4g、テトラメトキシシリルクロリド492.2g(2.0モル倍/メトキシベンジルユニット)を加え、65℃に昇温した。その後、16時間反応させた後、冷却し、イオン交換水163.3gを滴下した。30℃にて1.5時間反応させた後、15%亜硫酸水素ナトリウム水溶液 1178.7gを添加した。メチルイソブチルケトン982.1g添加、攪拌後に分液した。油層にイオン交換水392.5gを添加し攪拌の上、分液した。この操作を5回繰り返した。その後、減圧濃縮することで溶媒を除去し、プロピレングリコールモノメチルエーテル(PGME)を添加することで黄色透明液体である4−ヒドロキシベンジルシルセスキオキサン950g(固形分40%PGME溶液)を得た。
(2) Deprotection To the obtained polymer, 1570.0 g (4.0 times by weight / polymer) of acetonitrile was added, and while stirring, 509.4 g of sodium iodide and 492.2 g of tetramethoxysilyl chloride (2.0 mol times / Methoxybenzyl unit) was added and the temperature was raised to 65 ° C. Then, after making it react for 16 hours, it cooled and ion-exchange water 163.3g was dripped. After reacting at 30 ° C. for 1.5 hours, 1178.7 g of a 15% aqueous sodium hydrogen sulfite solution was added. 982.1 g of methyl isobutyl ketone was added, followed by liquid separation after stirring. To the oil layer, 392.5 g of ion-exchanged water was added, followed by liquid separation with stirring. This operation was repeated 5 times. Thereafter, the solvent was removed by concentration under reduced pressure, and 950 g of 4-hydroxybenzylsilsesquioxane (solid content 40% PGME solution) was obtained as a yellow transparent liquid by adding propylene glycol monomethyl ether (PGME).

得られた4−ヒドロキシベンジルシルセスキオキサンをGPCにて分析したところ、分子量(Mw)3530、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は98%であった。表1、表2に、(a)成分と(b)成分の組成比をまとめた。(a)成分は98モル%、(b)成分は2モル%であった。   When the obtained 4-hydroxybenzylsilsesquioxane was analyzed by GPC, molecular weight (Mw) 3530, two inflection points existed, and the number of peaks was three. The deprotection rate determined by NMR was 98%. Tables 1 and 2 summarize the composition ratios of component (a) and component (b). The component (a) was 98 mol%, and the component (b) was 2 mol%.

図1、2に、実施例1により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果を示した。図中、○はポリスチレンで測定した検量線を示し、一番右の○は重量平均分子量(Mw)500を示し。その間のピークがシリコーン共重合体のピークを示す。GPC分析結果からピーク形状は3本であることが分かった。   1 and 2 show the results of gel permeation chromatography measurement of the silicone copolymer obtained in Example 1. In the figure, ◯ indicates a calibration curve measured with polystyrene, and the rightmost ◯ indicates a weight average molecular weight (Mw) 500. The peak in between is the peak of the silicone copolymer. From the GPC analysis results, it was found that there were three peak shapes.

1.19%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定結果を表1に示した。2.38%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定結果を表2に示した。ADR(1.19%TMAH水溶液)は580(Å/s)であった。ADR(2.38%TMAH水溶液)は6110(Å/s)であった。   Table 1 shows the measurement results of alkali dissolution rate (ADR) using a 1.19% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution). Table 2 shows the results of measurement of alkali dissolution rate (ADR) using 2.38% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution). ADR (1.19% TMAH aqueous solution) was 580 (Å / s). ADR (2.38% TMAH aqueous solution) was 6110 (Å / s).

実施例2
実施例1において、(2)脱保護工程におけるアセトニトリルの量を1570.0g(4.0重量倍/ポリマー)から981.3g(2.5重量倍/ポリマー)に変更した以外は同様にして4−ヒドロキシベンジルシルセスキオキサン948g(固形分40%PGME溶液)を得た。得られた4−ヒドロキシベンジルシルセスキオキサンをGPCにて分析したところ、分子量(Mw)3230、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は94%であった。表1に、(a)成分と(b)成分の組成比をまとめた。(a)成分は94モル%、(b)成分は6モル%であった。1.19%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定結果を表1に示した。ADR(1.19%TMAH水溶液)は320(Å/s)であった。
Example 2
4 in the same manner as in Example 1 except that (2) the amount of acetonitrile in the deprotection step was changed from 1570.0 g (4.0 weight times / polymer) to 981.3 g (2.5 weight times / polymer). 948 g of hydroxybenzylsilsesquioxane (solid content 40% PGME solution) was obtained. When the obtained 4-hydroxybenzylsilsesquioxane was analyzed by GPC, molecular weight (Mw) 3230, two inflection points existed, and the number of peaks was three. The deprotection rate determined by NMR was 94%. Table 1 summarizes the composition ratios of the component (a) and the component (b). The component (a) was 94 mol%, and the component (b) was 6 mol%. Table 1 shows the measurement results of alkali dissolution rate (ADR) using a 1.19% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution). ADR (1.19% TMAH aqueous solution) was 320 (Å / s).

実施例3
実施例1において、(2)脱保護工程におけるアセトニトリルの量を1570.0g(4.0重量倍/ポリマー)から1962.5g(5.0重量倍/ポリマー)に変更した以外は同様にして4−ヒドロキシベンジルシルセスキオキサン947g(固形分40%PGME溶液)を得た。得られた4−ヒドロキシベンジルシルセスキオキサンをGPCにて分析したところ、分子量(Mw)3230、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は95%であった。表1に、(a)成分と(b)成分の組成比をまとめた。(a)成分は95モル%、(b)成分は5モル%であった。1.19%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定結果を表1に示した。ADR(1.19%TMAH水溶液)は330(Å/s)であった。
Example 3
4 in the same manner as in Example 1, except that the amount of acetonitrile in (2) deprotection step was changed from 1570.0 g (4.0 weight times / polymer) to 1962.5 g (5.0 weight times / polymer). -947 g of hydroxybenzylsilsesquioxane (solid content 40% PGME solution) was obtained. When the obtained 4-hydroxybenzylsilsesquioxane was analyzed by GPC, molecular weight (Mw) 3230, two inflection points existed, and the number of peaks was three. The deprotection rate determined by NMR was 95%. Table 1 summarizes the composition ratios of the component (a) and the component (b). Component (a) was 95 mol%, and component (b) was 5 mol%. Table 1 shows the measurement results of alkali dissolution rate (ADR) using a 1.19% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution). ADR (1.19% TMAH aqueous solution) was 330 (Å / s).

実施例4
実施例1において、(2)脱保護工程における反応時間を16時間から6時間に変更した以外は同様にして4−ヒドロキシベンジルシルセスキオキサン950g(固形分40%PGME溶液)を得た。得られた4−ヒドロキシベンジルシルセスキオキサンをGPCにて分析したところ、分子量(Mw)3560、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は85%であった。表1に、(a)成分と(b)成分の組成比をまとめた。(a)成分は85モル%、(b)成分は15モル%であった。1.19%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定結果を表1に示した。ADR(1.19%TMAH水溶液)は140(Å/s)であった。
Example 4
In Example 1, 950 g of 4-hydroxybenzylsilsesquioxane (solid content 40% PGME solution) was obtained in the same manner except that the reaction time in the (2) deprotection step was changed from 16 hours to 6 hours. When the obtained 4-hydroxybenzylsilsesquioxane was analyzed by GPC, molecular weight (Mw) 3560, two inflection points existed, and the number of peaks was three. The deprotection rate determined by NMR was 85%. Table 1 summarizes the composition ratios of the component (a) and the component (b). The component (a) was 85 mol%, and the component (b) was 15 mol%. Table 1 shows the measurement results of alkali dissolution rate (ADR) using a 1.19% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution). ADR (1.19% TMAH aqueous solution) was 140 (Å / s).

実施例5
実施例1において、(2)脱保護工程における反応時間を16時間から40時間に変更した以外は同様にして4−ヒドロキシベンジルシルセスキオキサン946g(固形分40%PGME溶液)を得た。得られた4−ヒドロキシベンジルシルセスキオキサンをGPCにて分析したところ、分子量(Mw)3580、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は97%であった。表1に、(a)成分と(b)成分の組成比をまとめた。(a)成分は97モル%、(b)成分は3モル%であった。1.19%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定結果を表1に示した。ADR(1.19%TMAH水溶液)は460(Å/s)であった。
Example 5
In Example 1, 946 g of 4-hydroxybenzylsilsesquioxane (solid content 40% PGME solution) was obtained in the same manner except that the reaction time in the (2) deprotection step was changed from 16 hours to 40 hours. When the obtained 4-hydroxybenzylsilsesquioxane was analyzed by GPC, molecular weight (Mw) 3580, two inflection points existed, and the number of peaks was three. The deprotection rate determined by NMR was 97%. Table 1 summarizes the composition ratios of the component (a) and the component (b). The component (a) was 97 mol%, and the component (b) was 3 mol%. Table 1 shows the measurement results of alkali dissolution rate (ADR) using a 1.19% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution). ADR (1.19% TMAH aqueous solution) was 460 (Å / s).

実施例6
実施例1において、(2)脱保護工程における温度を65℃から60℃に変更した以外は同様にして4−ヒドロキシベンジルシルセスキオキサン949g(固形分40%PGME溶液)を得た。得られた4−ヒドロキシベンジルシルセスキオキサンをGPCにて分析したところ、分子量(Mw)4000、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は86%であった。表1に、(a)成分と(b)成分の組成比をまとめた。(a)成分は86モル%、(b)成分は14モル%であった。1.19%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定結果を表1に示した。ADR(1.19%TMAH水溶液)は160(Å/s)であった。
Example 6
In Example 1, 949 g of 4-hydroxybenzylsilsesquioxane (solid content 40% PGME solution) was obtained in the same manner except that the temperature in the (2) deprotection step was changed from 65 ° C. to 60 ° C. When the obtained 4-hydroxybenzylsilsesquioxane was analyzed by GPC, molecular weight (Mw) 4000, two inflection points existed, and the number of peaks was three. The deprotection rate determined by NMR was 86%. Table 1 summarizes the composition ratios of the component (a) and the component (b). The component (a) was 86 mol%, and the component (b) was 14 mol%. Table 1 shows the measurement results of alkali dissolution rate (ADR) using a 1.19% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution). ADR (1.19% TMAH aqueous solution) was 160 (Å / s).

比較例1
実施例2において、(2)脱保護工程におけるテトラメチルシリルクロリドの添加量を492.2g(2.0モル倍/メトキシベンジルユニット)から、246.1g(1.0モル倍/メトキシベンジルユニット)に変更した以外は同様にして4−ヒドロキシベンジルシルセスキオキサン945g(固形分40%PGME溶液)を得た。得られた4−ヒドロキシベンジルシルセスキオキサンをGPCにて分析したところ、分子量(Mw)3560、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は78%であった。表1に、(a)成分と(b)成分の組成比をまとめた。(a)成分は78モル%、(b)成分は22モル%であった。1.19%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定を試みたが、溶解せず、測定できなかった。
Comparative Example 1
In Example 2, the amount of tetramethylsilyl chloride added in the deprotection step (2) was changed from 492.2 g (2.0 mol times / methoxybenzyl unit) to 246.1 g (1.0 mol times / methoxybenzyl unit). 945 g of 4-hydroxybenzylsilsesquioxane (solid content 40% PGME solution) was obtained in the same manner except that When the obtained 4-hydroxybenzylsilsesquioxane was analyzed by GPC, molecular weight (Mw) 3560, two inflection points existed, and the number of peaks was three. The deprotection rate determined by NMR was 78%. Table 1 summarizes the composition ratios of the component (a) and the component (b). The component (a) was 78 mol%, and the component (b) was 22 mol%. An attempt was made to measure the alkali dissolution rate (ADR) using a 1.19% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution), but it was not dissolved and could not be measured.

比較例2
実施例2において、(2)脱保護工程におけるテトラメチルシリルクロリドの添加量を492.2g(2.0モル倍/メトキシベンジルユニット)から、738.3g(3.0モル倍/メトキシベンジルユニット)に変更した以外は同様にして4−ヒドロキシベンジルシルセスキオキサン948g(固形分40%PGME溶液)を得た。得られた4−ヒドロキシベンジルシルセスキオキサンをGPCにて分析したところ、分子量(Mw)3500、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は77%であった。表1に、(a)成分と(b)成分の組成比をまとめた。(a)成分は77モル%、(b)成分は23モル%であった。1.19%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定を試みたが、溶解せず、測定できなかった。
Comparative Example 2
In Example 2, (2) The amount of tetramethylsilyl chloride added in the deprotection step was changed from 492.2 g (2.0 mol times / methoxybenzyl unit) to 738.3 g (3.0 mol times / methoxybenzyl unit). 948 g of 4-hydroxybenzylsilsesquioxane (solid content 40% PGME solution) was obtained in the same manner except that it was changed to. When the obtained 4-hydroxybenzylsilsesquioxane was analyzed by GPC, molecular weight (Mw) 3500, two inflection points existed, and the number of peaks was three. The deprotection rate determined by NMR was 77%. Table 1 summarizes the composition ratios of the component (a) and the component (b). The component (a) was 77 mol%, and the component (b) was 23 mol%. An attempt was made to measure the alkali dissolution rate (ADR) using a 1.19% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution), but it was not dissolved and could not be measured.

比較例3
実施例2において、(2)脱保護工程におけるテトラメチルシリルクロリドの添加量を492.2g(2.0モル倍/メトキシベンジルユニット)から、861.4g(3.5モル倍/メトキシベンジルユニット)に変更した以外は同様にして4−ヒドロキシベンジルシルセスキオキサン946g(固形分40%PGME溶液)を得た。得られた4−ヒドロキシベンジルシルセスキオキサンをGPCにて分析したところ、分子量(Mw)3490、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は71%であった。表1に、(a)成分と(b)成分の組成比をまとめた。(a)成分は71モル%、(b)成分は29モル%であった。1.19%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定を試みたが、溶解せず、測定できなかった。
Comparative Example 3
In Example 2, the addition amount of tetramethylsilyl chloride in (2) deprotection step was changed from 492.2 g (2.0 mol times / methoxybenzyl unit) to 861.4 g (3.5 mol times / methoxybenzyl unit). 946 g of 4-hydroxybenzylsilsesquioxane (solid content 40% PGME solution) was obtained in the same manner except that When the obtained 4-hydroxybenzylsilsesquioxane was analyzed by GPC, molecular weight (Mw) 3490, two inflection points existed, and the number of peaks was three. The deprotection rate determined by NMR was 71%. Table 1 summarizes the composition ratios of the component (a) and the component (b). The component (a) was 71 mol%, and the component (b) was 29 mol%. An attempt was made to measure the alkali dissolution rate (ADR) using a 1.19% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution), but it was not dissolved and could not be measured.

比較例4
実施例1において、(2)脱保護工程におけるアセトニトリルをトルエンに変更した以外は同様にして反応をしたが、NMRで求めた脱保護率は0%であった。表1に、(a)成分と(b)成分の組成比をまとめた。(a)成分は0モル%、(b)成分は100モル%であった。1.19%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定を試みたが、溶解せず、測定できなかった。
Comparative Example 4
In Example 1, the reaction was carried out in the same manner except that acetonitrile in the (2) deprotection step was changed to toluene, but the deprotection rate determined by NMR was 0%. Table 1 summarizes the composition ratios of the component (a) and the component (b). The component (a) was 0 mol%, and the component (b) was 100 mol%. An attempt was made to measure the alkali dissolution rate (ADR) using a 1.19% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution), but it was not dissolved and could not be measured.

比較例5
実施例1において、(2)脱保護工程におけるアセトニトリルをメシチレンに変更した以外は同様にして反応をしたが、NMRで求めた脱保護率は0%であった。表1に、(a)成分と(b)成分の組成比をまとめた。(a)成分は0モル%、(b)成分は100モル%であった。1.19%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定を試みたが、溶解せず、測定できなかった。
Comparative Example 5
In Example 1, the reaction was performed in the same manner except that (2) acetonitrile in the deprotection step was changed to mesitylene, but the deprotection rate determined by NMR was 0%. Table 1 summarizes the composition ratios of the component (a) and the component (b). The component (a) was 0 mol%, and the component (b) was 100 mol%. An attempt was made to measure the alkali dissolution rate (ADR) using a 1.19% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution), but it was not dissolved and could not be measured.

実施例7
ゲル浸透クロマトグラフィの測定で得られるピークの数が3つである4−ヒドロキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合物の合成
Example 7
Synthesis of 4-hydroxybenzylsilsesquioxane / methylsilsesquioxane copolymer having three peaks obtained by gel permeation chromatography

Figure 2016111112
Figure 2016111112

(70:30は原料の仕込みモル組成比を示す)
(1)加水分解、縮重合
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた5L四つ口フラスコに25%テトラメチルアンモニウムヒドロキシド水溶液14.6g、イオン交換水54.1g、2−プロパノール424.4g、トルエン424.4gを仕込んだ。40℃まで昇温した後、合成例1で得た4−メトキシベンジルトリメトキシシラン324.7g、メチルトリメトキシシラン81.7gを混合し、滴下ろう斗を用いて1.5時間かけて滴下した。その後40℃にて4時間反応させた。反応後、2%くえん酸水を添加し中和した。さらに、トルエン848.9g、イオン交換水212.2gを添加し、撹拌後、分液した。分液した油層にイオン交換水331.1gを添加し撹拌後、分液した。同様の操作をもう1回実施した。得られた油層を濃縮したところ、無色透明液体の4−メトキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合体391.3g(固形分70%トルエン溶液)を得た。
(70:30 indicates the charged molar composition ratio of raw materials)
(1) Hydrolysis, condensation polymerization In a 5 L four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 14.6 g of 25% tetramethylammonium hydroxide aqueous solution, 54.1 g of ion-exchanged water, 2 -Charged 444.4 g of propanol and 424.4 g of toluene. After raising the temperature to 40 ° C., 324.7 g of 4-methoxybenzyltrimethoxysilane obtained in Synthesis Example 1 and 81.7 g of methyltrimethoxysilane were mixed and added dropwise over 1.5 hours using a dropping funnel. . Thereafter, the reaction was carried out at 40 ° C. for 4 hours. After the reaction, 2% citric acid water was added for neutralization. Furthermore, 848.9 g of toluene and 212.2 g of ion-exchanged water were added, and the mixture was separated after stirring. To the separated oil layer, 331.1 g of ion-exchanged water was added, followed by liquid separation after stirring. The same operation was performed once more. When the obtained oil layer was concentrated, 391.3 g of a colorless transparent liquid 4-methoxybenzylsilsesquioxane / methylsilsesquioxane copolymer (70% solid content toluene solution) was obtained.

(2)脱保護
得られたポリマーにアセトニトリル1565.2g(4.0重量倍/ポリマー)を加え、撹拌しながらヨウ化ナトリウム314.8g、トリメチルシリルクロライド304.2g(2.0モル倍/メトキシベンジルユニット)を加え、65℃に昇温した。その後、16時間反応させた後、冷却し、イオン交換水100.9gを滴下した。30℃にて1.5時間反応させた後、15%亜硫酸水素ナトリウム水溶液 1178.7gを添加した。メチルイソブチルケトン707.9g添加、攪拌後に分液した。油層にイオン交換水267.5gを添加し攪拌の上、分液した。この操作を5回繰り返した。その後、減圧濃縮することで溶媒を除去し、プロピレングリコールモノメチルエーテル(PGME)を添加することで黄色透明液体である4−ヒドロキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合体656.5g(固形分40%PGME溶液)を得た。
(2) Deprotection 1565.2 g (4.0 weight times / polymer) of acetonitrile was added to the obtained polymer, and 314.8 g of sodium iodide and 304.2 g of trimethylsilyl chloride (2.0 mole times / methoxybenzyl) with stirring. Unit) and the temperature was raised to 65 ° C. Then, after making it react for 16 hours, it cooled and ion-exchange water 100.9g was dripped. After reacting at 30 ° C. for 1.5 hours, 1178.7 g of a 15% aqueous sodium hydrogen sulfite solution was added. After adding 707.9 g of methyl isobutyl ketone and stirring, the solution was separated. To the oil layer, 267.5 g of ion-exchanged water was added, followed by liquid separation with stirring. This operation was repeated 5 times. Thereafter, the solvent is removed by concentration under reduced pressure, and 656.5 g of 4-hydroxybenzylsilsesquioxane / methylsilsesquioxane copolymer, which is a yellow transparent liquid, is added by adding propylene glycol monomethyl ether (PGME) ( A 40% solid content PGME solution) was obtained.

得られた4−ヒドロキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合体をGPCにて分析した。図3、4に、実施例7により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果を示した。分子量(Mw)3430、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は91%であった。表2に、(a)成分、(b)成分、(c)成分の組成比をまとめた。(a)成分は64モル%、(b)成分は6モル%、(c)成分は30モル%であった。   The obtained 4-hydroxybenzylsilsesquioxane / methylsilsesquioxane copolymer was analyzed by GPC. 3 and 4 show the results of gel permeation chromatography measurement of the silicone copolymer obtained in Example 7. FIG. Molecular weight (Mw) 3430, two inflection points existed, and the number of peaks was three. The deprotection rate determined by NMR was 91%. Table 2 summarizes the composition ratios of the component (a), the component (b), and the component (c). Component (a) was 64 mol%, component (b) was 6 mol%, and component (c) was 30 mol%.

2.38%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定結果を表2に示した。ADR(2.38%TMAH水溶液)は、730(Å/s)であった。   Table 2 shows the results of measurement of alkali dissolution rate (ADR) using 2.38% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution). ADR (2.38% TMAH aqueous solution) was 730 (Å / s).

実施例8
ゲル浸透クロマトグラフィの測定で得られるピークの数が3つである4−ヒドロキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合物の合成
Example 8
Synthesis of 4-hydroxybenzylsilsesquioxane / methylsilsesquioxane copolymer having three peaks obtained by gel permeation chromatography

Figure 2016111112
Figure 2016111112

(60:40は原料の仕込みモル組成比を示す)
(1)加水分解、縮重合
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた5L四つ口フラスコに25%テトラメチルアンモニウムヒドロキシド水溶液14.6g、イオン交換水54.2g、2−プロパノール402.6g、トルエン402.6gを仕込んだ。40℃まで昇温した後、合成例1で得た4−メトキシベンジルトリメトキシシラン293.7、メチルトリメトキシシラン109.0gを混合し滴下ろう斗を用いて1.5時間かけて滴下した。その後40℃にて4時間反応させた。反応後、2%くえん酸水を添加し中和した。さらに、トルエン805.4g、イオン交換水201.4gを添加し、撹拌後、分液した。分液した油層にイオン交換水314.1gを添加し撹拌後、分液した。同様の操作をもう1回実施した。得られた油層を濃縮したところ、無色透明液体の4−メトキシベンジルシルセスキオキサン・メチルトリメトキシシラン共重合体393.6g(固形分71%トルエン溶液)を得た。
(60:40 indicates the charged molar composition ratio of raw materials)
(1) Hydrolysis, condensation polymerization In a 5 L four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 14.6 g of 25% tetramethylammonium hydroxide aqueous solution, 54.2 g of ion-exchanged water, 2 -402.6 g of propanol and 402.6 g of toluene were charged. After heating up to 40 degreeC, 4-methoxybenzyltrimethoxysilane 293.7 and methyltrimethoxysilane 109.0g which were obtained by the synthesis example 1 were mixed, and it was dripped over 1.5 hours using the dropping funnel. Thereafter, the reaction was carried out at 40 ° C. for 4 hours. After the reaction, 2% citric acid water was added for neutralization. Further, 805.4 g of toluene and 201.4 g of ion-exchanged water were added, followed by liquid separation after stirring. To the separated oil layer, 314.1 g of ion-exchanged water was added and stirred for liquid separation. The same operation was performed once more. When the obtained oil layer was concentrated, 393.6 g of a colorless transparent liquid 4-methoxybenzylsilsesquioxane / methyltrimethoxysilane copolymer (solid content 71% toluene solution) was obtained.

(2)脱保護
得られたポリマーにアセトニトリル1102.1g(4.0重量倍/ポリマー)を加え、撹拌しながらヨウ化ナトリウム264.4g、トリメチルシリルクロライド263.5g(2.0モル倍/メトキシベンジルユニット)を加え、65℃に昇温した。その後、16時間反応させた後、冷却し、イオン交換水84.8gを滴下した。30℃にて1.5時間反応させた後、15%亜硫酸水素ナトリウム水溶液 822.4gを添加した。メチルイソブチルケトン640.9g添加、攪拌後に分液した。油層にイオン交換水256.3gを添加し攪拌の上、分液した。この操作を5回繰り返した。その後、減圧濃縮することで溶媒を除去し、プロピレングリコールモノメチルエーテル(PGME)を添加することで黄色透明液体である4−ヒドロキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合体604.0g(固形分40%PGME溶液)を得た。得られた4−ヒドロキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合体をGPCにて分析した。図5、6に、実施例8により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果を示した。分子量(Mw)3530、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は94%)であった。表2に、(a)成分、(b)成分、(c)成分の組成比をまとめた。(a)成分は56モル%、(b)成分は4モル%、(c)成分は40モル%であった。
(2) Deprotection 1102.1 g of acetonitrile (4.0 times by weight / polymer) was added to the obtained polymer, and while stirring, 264.4 g of sodium iodide and 263.5 g of trimethylsilyl chloride (2.0 mol times / methoxybenzyl). Unit) and the temperature was raised to 65 ° C. Then, after making it react for 16 hours, it cooled and ion-exchange water 84.8g was dripped. After reacting at 30 ° C. for 1.5 hours, 822.4 g of 15% aqueous sodium bisulfite solution was added. After adding 640.9 g of methyl isobutyl ketone and stirring, the solution was separated. 256.3 g of ion exchange water was added to the oil layer, and the mixture was separated with stirring. This operation was repeated 5 times. Thereafter, the solvent is removed by concentration under reduced pressure, and 604.0 g of 4-hydroxybenzylsilsesquioxane / methylsilsesquioxane copolymer, which is a yellow transparent liquid, is added by adding propylene glycol monomethyl ether (PGME) ( A 40% solid content PGME solution) was obtained. The obtained 4-hydroxybenzylsilsesquioxane / methylsilsesquioxane copolymer was analyzed by GPC. The measurement result of the gel permeation chromatography of the silicone copolymer obtained by Example 8 was shown in FIG. Molecular weight (Mw) 3530, two inflection points existed, and the number of peaks was three. The deprotection rate determined by NMR was 94%). Table 2 summarizes the composition ratios of the component (a), the component (b), and the component (c). The component (a) was 56 mol%, the component (b) was 4 mol%, and the component (c) was 40 mol%.

2.38%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定結果を表2に示した。ADR(2.38%TMAH水溶液)は200(Å/s)であった。   Table 2 shows the results of measurement of alkali dissolution rate (ADR) using 2.38% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution). ADR (2.38% TMAH aqueous solution) was 200 (Å / s).

実施例9
ゲル浸透クロマトグラフィの測定で得られるピークの数が3つである4−ヒドロキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合物の合成
Example 9
Synthesis of 4-hydroxybenzylsilsesquioxane / methylsilsesquioxane copolymer having three peaks obtained by gel permeation chromatography

Figure 2016111112
Figure 2016111112

(55:45は原料の仕込みモル組成比を示す)
(1)加水分解、縮重合
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた5L四つ口フラスコに25%テトラメチルアンモニウムヒドロキシド水溶液23.0g、イオン交換水81.1g、2−プロパノール583.8g、トルエン817.3gを仕込んだ。40℃まで昇温した後、合成例1で得た4−メトキシベンジルトリメトキシシラン399.9g、メチルトリメトキシシラン183.9gを混合し滴下ろう斗を用いて1.5時間かけて滴下した。その後40℃にて4時間反応させた。反応後、2%くえん酸水を添加し中和した。さらに、トルエン1167.5g、イオン交換水291.9gを添加し、撹拌後、分液した。分液した油層にイオン交換水437.8gを添加し撹拌後、分液した。同様の操作をもう1回実施した。得られた油層を濃縮したところ、無色透明液体の4−メトキシベンジルシルセスキオキサン・メチルトリメトキシシラン共重合体482.3g(固形分77%トルエン溶液)を得た。
(55:45 indicates the charged molar composition ratio of raw materials)
(1) Hydrolysis, condensation polymerization In a 5 L four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 23.0 g of 25% tetramethylammonium hydroxide aqueous solution, 81.1 g of ion-exchanged water, 2 -583.8 g of propanol and 817.3 g of toluene were charged. After raising the temperature to 40 ° C., 399.9 g of 4-methoxybenzyltrimethoxysilane obtained in Synthesis Example 1 and 183.9 g of methyltrimethoxysilane were mixed and added dropwise over 1.5 hours using a dropping funnel. Thereafter, the reaction was carried out at 40 ° C. for 4 hours. After the reaction, 2% citric acid water was added for neutralization. Furthermore, 1167.5 g of toluene and 291.9 g of ion-exchanged water were added, and the mixture was separated after stirring. 437.8 g of ion-exchanged water was added to the separated oil layer, and the mixture was stirred and separated. The same operation was performed once more. When the obtained oil layer was concentrated, 482.3 g of a colorless transparent liquid 4-methoxybenzylsilsesquioxane / methyltrimethoxysilane copolymer (solid content 77% toluene solution) was obtained.

(2)脱保護
得られたポリマーにアセトニトリル1487.2g(4.0重量倍/ポリマー)を加え、撹拌しながらヨウ化ナトリウム423.7g、トリメチルシリルクロライド422.1g(2.0モル倍/メトキシベンジルユニット)を加え、65℃に昇温した。その後、16時間反応させた後、冷却し、イオン交換水140.4gを滴下した。30℃にて1.5時間反応させた後、15%亜硫酸水素ナトリウム水溶液 1187.3gを添加した。メチルイソブチルケトン931.1g添加、攪拌後に分液した。油層にイオン交換水371.9gを添加し攪拌の上、分液した。この操作を5回繰り返した。その後、減圧濃縮することで溶媒を除去し、プロピレングリコールモノメチルエーテル(PGME)を添加することで黄色透明液体である4−ヒドロキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合体883.5g(固形分40%PGME溶液)を得た。得られた4−ヒドロキシベンジルシルセスキオキサン・メチルシルセスキオキサン共重合体をGPCにて分析した。図7、8に、実施例9により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果を示した。分子量(Mw)4030、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は100%)であった。表2に、(a)成分、(b)成分、(c)成分の組成比をまとめた。(a)成分は55モル%、(b)成分は0モル%、(c)成分は45モル%であった。
(2) Deprotection 1487.2 g (4.0 times by weight / polymer) of acetonitrile was added to the obtained polymer, and 423.7 g of sodium iodide and 422.1 g of trimethylsilyl chloride (2.0 mol times / methoxybenzyl) with stirring. Unit) and the temperature was raised to 65 ° C. Then, after making it react for 16 hours, it cooled and 140.4g of ion-exchange water was dripped. After reacting at 30 ° C. for 1.5 hours, 1187.3 g of 15% aqueous sodium hydrogen sulfite solution was added. After adding 931.1 g of methyl isobutyl ketone and stirring, the solution was separated. To the oil layer, 371.9 g of ion-exchanged water was added, followed by liquid separation with stirring. This operation was repeated 5 times. Thereafter, the solvent is removed by concentration under reduced pressure, and 883.5 g of 4-hydroxybenzylsilsesquioxane / methylsilsesquioxane copolymer, which is a yellow transparent liquid, is added by adding propylene glycol monomethyl ether (PGME) ( A 40% solid content PGME solution) was obtained. The obtained 4-hydroxybenzylsilsesquioxane / methylsilsesquioxane copolymer was analyzed by GPC. 7 and 8 show the gel permeation chromatography measurement results of the silicone copolymer obtained in Example 9. FIG. Molecular weight (Mw) 4030, two inflection points existed, and the number of peaks was three. The deprotection rate determined by NMR was 100%). Table 2 summarizes the composition ratios of the component (a), the component (b), and the component (c). Component (a) was 55 mol%, component (b) was 0 mol%, and component (c) was 45 mol%.

2.38%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定結果を表2に示した。ADR(2.38%TMAH水溶液)は140(Å/s)であった。   Table 2 shows the results of measurement of alkali dissolution rate (ADR) using 2.38% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution). ADR (2.38% TMAH aqueous solution) was 140 (Å / s).

実施例10
ゲル浸透クロマトグラフィの測定で得られるピークの数が3つである4−ヒドロキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合物の合成
Example 10
Synthesis of 4-hydroxybenzylsilsesquioxane / phenylsilsesquioxane copolymer having 3 peaks obtained by gel permeation chromatography

Figure 2016111112
Figure 2016111112

(70:30は原料の仕込みモル組成比を示す)
(1)加水分解、縮重合
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた5L四つ口フラスコに25%テトラメチルアンモニウムヒドロキシド水溶液16.0g、イオン交換水59.5g、2−プロパノール504.1g、トルエン252.0gを仕込んだ。40℃まで昇温した後、合成例1で得た4−メトキシベンジルトリメトキシシラン373.2gとフェニルトリメトキシシラン130.87gを滴下ろう斗を用いて1.5時間かけて滴下した。その後40℃にて4時間反応させた。反応後、2%くえん酸水を添加し中和した。さらに、トルエン1008.4g、イオン交換水252.0gを添加し、撹拌後、分液した。分液した油層にイオン交換水378.1gを添加し撹拌後、分液した。同様の操作をもう1回実施した。得られた油層を濃縮したところ、無色透明液体の4−メトキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合体457.7g(固形分70%トルエン溶液)を得た。
(70:30 indicates the charged molar composition ratio of raw materials)
(1) Hydrolysis, condensation polymerization In a 5 L four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 16.0 g of 25% tetramethylammonium hydroxide aqueous solution, 59.5 g of ion-exchanged water, 2 -504.1 g of propanol and 252.0 g of toluene were charged. After raising the temperature to 40 ° C., 373.2 g of 4-methoxybenzyltrimethoxysilane obtained in Synthesis Example 1 and 130.87 g of phenyltrimethoxysilane were added dropwise over 1.5 hours using a dropping funnel. Thereafter, the reaction was carried out at 40 ° C. for 4 hours. After the reaction, 2% citric acid water was added for neutralization. Furthermore, toluene 1008.4g and ion-exchange water 252.0g were added, and it liquid-separated after stirring. 378.1 g of ion-exchanged water was added to the separated oil layer, and the mixture was stirred and separated. The same operation was performed once more. When the obtained oil layer was concentrated, 457.7 g of a colorless transparent liquid 4-methoxybenzylsilsesquioxane / phenylsilsesquioxane copolymer (solid content 70% toluene solution) was obtained.

(2)脱保護
得られたポリマーにアセトニトリル1408.2g(4.0重量倍/ポリマー)を加え、撹拌しながらヨウ化ナトリウム346.3g、トリメチルシリルクロリド418.3g(2.5モル倍/メトキシベンジルユニット)を加え、65℃に昇温した。その後、16時間反応させた後、冷却し、イオン交換水138.8gを滴下した。30℃にて1.5時間反応させた後、15%亜硫酸水素ナトリウム水溶液 921.5gを添加した。メチルイソブチルケトン880.1g添加、攪拌後に分液した。油層にイオン交換水352.1gを添加し攪拌の上、分液した。この操作を5回繰り返した。その後、減圧濃縮することで溶媒を除去し、プロピレングリコールモノメチルエーテル(PGME)を添加することで黄色透明液体である4−ヒドロキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合体587g(固形分40%PGME溶液)を得た。得られた4−ヒドロキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合体をGPCにて分析した。図9、10に、実施例10により得られたシリコーン共重合体のゲル浸透クロマトグラフィの測定結果を示した。分子量(Mw)4500、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は100%であった。表2に、(a)成分、(b)成分、(c)成分の組成比をまとめた。(a)成分は70モル%、(b)成分は0モル%、(c)成分は30モル%であった。
(2) Deprotection 1408.2 g (4.0 weight times / polymer) of acetonitrile was added to the obtained polymer, and 346.3 g of sodium iodide and 418.3 g of trimethylsilyl chloride (2.5 mole times / methoxybenzyl) with stirring. Unit) and the temperature was raised to 65 ° C. Then, after making it react for 16 hours, it cooled and 138.8g of ion-exchange water was dripped. After reacting at 30 ° C. for 1.5 hours, 921.5 g of a 15% aqueous sodium hydrogen sulfite solution was added. After adding 880.1 g of methyl isobutyl ketone and stirring, the solution was separated. To the oil layer, 352.1 g of ion-exchanged water was added, followed by separation with stirring. This operation was repeated 5 times. Thereafter, the solvent was removed by concentration under reduced pressure, and 587 g (solid content) of 4-hydroxybenzylsilsesquioxane / phenylsilsesquioxane copolymer as a yellow transparent liquid was added by adding propylene glycol monomethyl ether (PGME). 40% PGME solution) was obtained. The obtained 4-hydroxybenzylsilsesquioxane / phenylsilsesquioxane copolymer was analyzed by GPC. 9 and 10 show the results of gel permeation chromatography measurement of the silicone copolymer obtained in Example 10. FIG. Molecular weight (Mw) 4500, two inflection points existed, and the number of peaks was three. The deprotection rate determined by NMR was 100%. Table 2 summarizes the composition ratios of the component (a), the component (b), and the component (c). The component (a) was 70 mol%, the component (b) was 0 mol%, and the component (c) was 30 mol%.

2.38%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定結果を表2に示した。ADR(2.38%TMAH水溶液)は460(Å/s)であった。   Table 2 shows the results of measurement of alkali dissolution rate (ADR) using 2.38% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution). ADR (2.38% TMAH aqueous solution) was 460 (Å / s).

実施例11
ゲル浸透クロマトグラフィの測定で得られるピークの数が3つである4−ヒドロキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合物の合成
Example 11
Synthesis of 4-hydroxybenzylsilsesquioxane / phenylsilsesquioxane copolymer having 3 peaks obtained by gel permeation chromatography

Figure 2016111112
Figure 2016111112

(60:40は原料の仕込みモル組成比を示す)
(1)加水分解、縮重合
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた5L四つ口フラスコに25%テトラメチルアンモニウムヒドロキシド水溶液13.8g、イオン交換水48.7g、2−プロパノール404.5g、トルエン101.1gを仕込んだ。40℃まで昇温した後、合成例1で得た4−メトキシベンジルトリメトキシシラン261.7gとフェニルトリメトキシシラン142.8gを滴下ろう斗を用いて1.5時間かけて滴下した。その後40℃にて4時間反応させた。反応後、2%くえん酸水を添加し中和した。さらに、トルエン1213.5g、イオン交換水202.2gを添加し、撹拌後、分液した。分液した油層にイオン交換水303.4gを添加し撹拌後、分液した。同様の操作をもう1回実施した。得られた油層を濃縮したところ、無色透明液体の4−メトキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合体366.8g(固形分75%トルエン溶液)を得た。
(60:40 indicates the charged molar composition ratio of raw materials)
(1) Hydrolysis, condensation polymerization In a 5 L four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 13.8 g of 25% tetramethylammonium hydroxide aqueous solution, 48.7 g of ion-exchanged water, 2 -404.5 g of propanol and 101.1 g of toluene were charged. After the temperature was raised to 40 ° C., 261.7 g of 4-methoxybenzyltrimethoxysilane obtained in Synthesis Example 1 and 142.8 g of phenyltrimethoxysilane were added dropwise over 1.5 hours using a dropping funnel. Thereafter, the reaction was carried out at 40 ° C. for 4 hours. After the reaction, 2% citric acid water was added for neutralization. Furthermore, 1213.5 g of toluene and 202.2 g of ion-exchanged water were added, followed by liquid separation after stirring. To the separated oil layer, 303.4 g of ion-exchanged water was added, followed by liquid separation after stirring. The same operation was performed once more. When the obtained oil layer was concentrated, 366.8 g of a colorless transparent liquid 4-methoxybenzylsilsesquioxane / phenylsilsesquioxane copolymer (solid content 75% toluene solution) was obtained.

(2)脱保護
得られたポリマーにアセトニトリル1152.0g(4.0重量倍/ポリマー)を加え、撹拌しながらヨウ化ナトリウム404.7g、トリメチルシリルクロリド391.1g(2.5モル倍/メトキシベンジルユニット)を加え、65℃に昇温した。その後、16時間反応させた後、冷却し、イオン交換水129.7gを滴下した。30℃にて1.5時間反応させた後、15%亜硫酸水素ナトリウム水溶液 936.6gを添加した。メチルイソブチルケトン720.1g添加、攪拌後に分液した。油層にイオン交換水288.0gを添加し攪拌の上、分液した。この操作を5回繰り返した。その後、減圧濃縮することで溶媒を除去し、プロピレングリコールモノメチルエーテル(PGME)を添加することで黄色透明液体である4−ヒドロキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合体632g(固形分40%PGME溶液)を得た。得られた4−ヒドロキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合体をGPCにて分析した。図11、12に、実施例11のゲル浸透クロマトグラフィの測定結果を示した。分子量(Mw)3470、2つの変曲点が存在し、ピーク数は3本であった。NMRで求めた脱保護率は100%であった。表2に、(a)成分、(b)成分、(c)成分の組成比をまとめた。(a)成分は60モル%、(b)成分は0モル%、(c)成分は40モル%であった。
(2) Deprotection 1152.0 g of acetonitrile (4.0 times by weight / polymer) was added to the obtained polymer, and while stirring, 404.7 g of sodium iodide and 391.1 g of trimethylsilyl chloride (2.5 mol times / methoxybenzyl). Unit) and the temperature was raised to 65 ° C. Then, after making it react for 16 hours, it cooled and 129.7g of ion-exchange water was dripped. After reacting at 30 ° C. for 1.5 hours, 936.6 g of 15% aqueous sodium bisulfite solution was added. After adding 720.1 g of methyl isobutyl ketone and stirring, the solution was separated. To the oil layer, 288.0 g of ion-exchanged water was added, followed by liquid separation with stirring. This operation was repeated 5 times. Thereafter, the solvent is removed by concentration under reduced pressure, and 632 g of 4-hydroxybenzylsilsesquioxane / phenylsilsesquioxane copolymer (solid content) which is a yellow transparent liquid is added by adding propylene glycol monomethyl ether (PGME). 40% PGME solution) was obtained. The obtained 4-hydroxybenzylsilsesquioxane / phenylsilsesquioxane copolymer was analyzed by GPC. The measurement result of the gel permeation chromatography of Example 11 was shown in FIGS. Molecular weight (Mw) 3470 There were two inflection points, and the number of peaks was three. The deprotection rate determined by NMR was 100%. Table 2 summarizes the composition ratios of the component (a), the component (b), and the component (c). The component (a) was 60 mol%, the component (b) was 0 mol%, and the component (c) was 40 mol%.

2.38%のテトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定結果を表2に示した。ADR(2.38%TMAH水溶液)は220(Å/s)であった。   Table 2 shows the results of measurement of alkali dissolution rate (ADR) using 2.38% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution). ADR (2.38% TMAH aqueous solution) was 220 (Å / s).

比較例6
ゲル浸透クロマトグラフィの測定で得られるピークの数が1つである4−メトキシベンジルシルセスキオキサン重合物の合成
Comparative Example 6
Synthesis of 4-methoxybenzylsilsesquioxane polymer having one peak obtained by gel permeation chromatography measurement

Figure 2016111112
Figure 2016111112

撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、35%塩酸水溶液3.3gと水120gを仕込み撹拌を開始した。また、4−メトキシベンジルトリメトキシシラン78.5g(0.324モル)のトルエン120mL溶液を15〜20℃で滴下した。その後15〜20℃の温度でそのまま2時間熟成し、トルエンを加えて抽出し、水層を除去後、炭酸水素ナトリウム水溶液、希酢酸水溶液、水で4回洗浄後、油層を濃縮して4−メトキシベンジルシルセスキオキサン縮重合物57.5gを得た。   A 500 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer was charged with 3.3 g of 35% aqueous hydrochloric acid and 120 g of water, and stirring was started. Moreover, the toluene 120mL solution of 4-methoxybenzyltrimethoxysilane 78.5g (0.324 mol) was dripped at 15-20 degreeC. Thereafter, the mixture was aged for 2 hours at a temperature of 15 to 20 ° C., extracted by adding toluene, removed the aqueous layer, washed 4 times with an aqueous sodium hydrogen carbonate solution, dilute acetic acid aqueous solution and water, concentrated the oil layer to 4- 57.5 g of a methoxybenzylsilsesquioxane condensation polymer was obtained.

得られた共重合体のスペクトルデータを下記に示す
赤外線吸収スペクトル(IR)データ
1026−1246cm−1(Si−O)、2951−3071cm−1(C−H)、3165−3603cm−1(Si−OH)
核磁気共鳴スペクトル(NMR)データ(H−NMR δ(ppm)、溶媒:CDCl
1.83(bs、2H、−CH−)、3.68(bs、3H、CH−O−)、6.69(bs、4H、Ar−H)ppm
GPC分析データ:Mw=2,530、Mn=1,610、Mw/Mn=1.57(ポリスチレン換算) 。
The spectrum data of the obtained copolymer are shown below. Infrared absorption spectrum (IR) data 1026 to 1246 cm −1 (Si—O), 2951 to 3071 cm −1 (C—H), 3165 to 3603 cm −1 (Si— OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
1.83 (bs, 2H, —CH 2 —), 3.68 (bs, 3H, CH 3 —O—), 6.69 (bs, 4H, Ar—H) ppm
GPC analysis data: Mw = 2,530, Mn = 1,610, Mw / Mn = 1.57 (polystyrene conversion).

図13に、比較例6により得られたシリコーン重合体のゲル浸透クロマトグラフィの測定結果を示した。図中、○はポリスチレンで測定した検量線を示し、一番右の○は重量平均分子量(Mw)500を示し。その間のピークがシリコーン共重合体のピークを示す。GPC分析結果からピーク形状は1本であることが分かった。比較例6の物質は、テトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定を試みたが、溶解せず、測定できなかった。   In FIG. 13, the measurement result of the gel permeation chromatography of the silicone polymer obtained by the comparative example 6 was shown. In the figure, ◯ indicates a calibration curve measured with polystyrene, and the rightmost ◯ indicates a weight average molecular weight (Mw) 500. The peak in between is the peak of the silicone copolymer. From the GPC analysis results, it was found that there was one peak shape. The substance of Comparative Example 6 tried to measure the alkali dissolution rate (ADR) using a tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution), but did not dissolve and could not be measured.

実施例及び比較例の結果を表1、2に示す。   The results of Examples and Comparative Examples are shown in Tables 1 and 2.

Figure 2016111112
Figure 2016111112

Figure 2016111112
Figure 2016111112

実施例1〜6のシリコーン共重合体は、アルカリに溶解した。一方、比較例1〜5の物質は、テトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を使用したアルカリ溶解速度(ADR)の測定を試みたが、溶解せず、測定できなかった。   The silicone copolymers of Examples 1 to 6 were dissolved in alkali. On the other hand, the substances of Comparative Examples 1 to 5 tried to measure the alkali dissolution rate (ADR) using a tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution), but did not dissolve and could not be measured.

表1および表2の実施例のシリコーン共重合体は、フェノール基を有する(a)成分が(a)/((a)+(b))=0.8以上であるためテトラメチルアンモニウムヒドロキシド水溶液に溶解したが、比較例のリコーン共重合体は、フェノール基を有する(a)成分が(a)/((a)+(b))=0.8未満であるためテトラメチルアンモニウムヒドロキシド水溶液に溶解しなかった。   The silicone copolymers of the examples in Table 1 and Table 2 have tetramethylammonium hydroxide since the component (a) having a phenol group is (a) / ((a) + (b)) = 0.8 or more. Although dissolved in an aqueous solution, the ricone copolymer of the comparative example has tetramethylammonium hydroxide since the component (a) having a phenol group is less than (a) / ((a) + (b)) = 0.8. It did not dissolve in the aqueous solution.

本発明のシリコーン共重合体は、可視光領域の波長における透明性が良く、密着性、クラック耐性に優れ、かつアルカリ溶解速度が安定していた材料であることから、液晶表示素子や半導体素子等の電子部品に好適に用いられる。   Since the silicone copolymer of the present invention is a material having good transparency in the visible light wavelength, excellent adhesion, crack resistance, and stable alkali dissolution rate, a liquid crystal display element, a semiconductor element, etc. It is suitably used for electronic components.

本発明のシリコーン共重合体は、塗料や接着剤等、幅広い分野に応用できる。   The silicone copolymer of the present invention can be applied to a wide range of fields such as paints and adhesives.

Claims (8)

一般式
Figure 2016111112
(式中、a、b、cはモル%を示す。Yは有機基を、Xはトリメチルシリル基を示す。)
で示され、(a+b)は40〜100モル%、cは0〜60モル%、a+b+c=100モル%、a/(a+b)は、0.8以上1以下であり、ゲル浸透クロマトグラフィ測定で得られるピークの数が2以上であるシリコーン重合体。
General formula
Figure 2016111112
(Wherein, a, b and c represent mol%, Y represents an organic group, and X represents a trimethylsilyl group.)
(A + b) is 40 to 100 mol%, c is 0 to 60 mol%, a + b + c = 100 mol%, and a / (a + b) is 0.8 or more and 1 or less, and is obtained by gel permeation chromatography measurement. A silicone polymer having 2 or more peaks.
重量平均分子量が500〜20000である請求項1記載のシリコーン重合体。 The silicone polymer according to claim 1, having a weight average molecular weight of 500 to 20,000. アルカリ溶解速度が100Å/s以上である請求項1または2に記載のシリコーン重合体。 The silicone polymer according to claim 1 or 2, wherein the alkali dissolution rate is 100 Å / s or more. 一般式
Figure 2016111112
(式中、Rはメチル基、Zは一価の炭化水素基を示す。)で示されるケイ素化合物と、一般式
Figure 2016111112
(式中、Yは有機基を示し、Zは一価の炭化水素基を示す)で示されるケイ素化合物の混合物を第4級アンモニウム塩の存在下、加水分解し、さらに縮重合反応を行った後、非プロトン性極性溶媒中で脱保護する、下記一般式
Figure 2016111112
(式中、a、b、cはモル%を示す。Yは有機基を、Xはトリメチルシリル基を示す。)
で示され、(a+b)は40〜100モル%、cは0〜60モル%、a+b+c=100モル%、a/(a+b)は、0.8以上1以下であり、ゲル浸透クロマトグラフィ測定で得られるピークの数が2以上であるシリコーン重合体を製造するシリコーン重合体の製造方法。
General formula
Figure 2016111112
(Wherein, R represents a methyl group, Z 1 represents a monovalent hydrocarbon group) and a general formula
Figure 2016111112
(Wherein Y represents an organic group and Z 2 represents a monovalent hydrocarbon group). A hydrolyzed mixture of silicon compounds represented in the presence of a quaternary ammonium salt is subjected to a polycondensation reaction. And then deprotecting in an aprotic polar solvent,
Figure 2016111112
(Wherein, a, b and c represent mol%, Y represents an organic group, and X represents a trimethylsilyl group.)
(A + b) is 40 to 100 mol%, c is 0 to 60 mol%, a + b + c = 100 mol%, and a / (a + b) is 0.8 or more and 1 or less, and is obtained by gel permeation chromatography measurement. A method for producing a silicone polymer, comprising producing a silicone polymer having 2 or more peaks.
全ての反応を、ワンポット(one−pot)で行う請求項4に記載のシリコーン重合体の製造方法。 The method for producing a silicone polymer according to claim 4, wherein all reactions are performed in one-pot. 加水分解および縮重合反応を0〜100℃で行う請求項4または5に記載のシリコーン重合体の製造方法 The method for producing a silicone polymer according to claim 4 or 5, wherein the hydrolysis and condensation polymerization reactions are carried out at 0 to 100 ° C. 第4級アンモニウム塩がテトラメチルアンモニウムヒドロキシドである請求項4または5に記載のシリコーン重合体の製造方法。 The method for producing a silicone polymer according to claim 4 or 5, wherein the quaternary ammonium salt is tetramethylammonium hydroxide. 非プロトン性極性溶媒がアセトニトリル、クロロホルムである請求項4または5に記載のシリコーン重合体の製造方法。 The method for producing a silicone polymer according to claim 4 or 5, wherein the aprotic polar solvent is acetonitrile or chloroform.
JP2016500006A 2015-01-05 2015-12-10 Silicone copolymer and method for producing the same Pending JPWO2016111112A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015000120 2015-01-05
JP2015000120 2015-01-05
PCT/JP2015/084602 WO2016111112A1 (en) 2015-01-05 2015-12-10 Silicone copolymer and method for producing same

Publications (1)

Publication Number Publication Date
JPWO2016111112A1 true JPWO2016111112A1 (en) 2017-10-12

Family

ID=56355814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016500006A Pending JPWO2016111112A1 (en) 2015-01-05 2015-12-10 Silicone copolymer and method for producing the same

Country Status (3)

Country Link
JP (1) JPWO2016111112A1 (en)
TW (1) TW201630981A (en)
WO (1) WO2016111112A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063066A1 (en) * 2022-09-22 2024-03-28 ダウ・東レ株式会社 Curable branched organopolysiloxane, high energy ray-curable composition containing same, and use of same
WO2024063067A1 (en) * 2022-09-22 2024-03-28 ダウ・東レ株式会社 Curable branched organopolysiloxane, high energy ray-curable composition containing same, and use thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296526A (en) * 1985-10-24 1987-05-06 Hitachi Ltd Alkali-soluble polyorganosilsesquioxane polymer
JPS6390534A (en) * 1986-10-06 1988-04-21 Hitachi Ltd Alkali-soluble ladder silicone polymer
JPS63101427A (en) * 1986-10-17 1988-05-06 Hitachi Ltd Alkali-soluble ladder silicone
JPS63101426A (en) * 1986-10-17 1988-05-06 Hitachi Ltd Alkali-soluble ladder silicone polymer
JPS63132942A (en) * 1986-11-25 1988-06-04 Hitachi Ltd Alkali-soluble polyorganosilsesquioxane polymer
JP5296297B2 (en) * 2005-04-04 2013-09-25 東レ・ファインケミカル株式会社 Silicone copolymer having condensed polycyclic hydrocarbon group and process for producing the same
JP5854266B2 (en) * 2010-11-24 2016-02-09 東レ・ファインケミカル株式会社 Method for producing silicone polymer
JP5854385B2 (en) * 2011-10-19 2016-02-09 東レ・ファインケミカル株式会社 Silicone polymer

Also Published As

Publication number Publication date
WO2016111112A1 (en) 2016-07-14
TW201630981A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
CN105706000B (en) Positive type photosensitive organic compound, used it film manufacturing method and electronic component
CN102667625B (en) Positive type photosensitive organic compound, the cured film formed by said composition and there is the element of cured film
TWI460184B (en) Siloxanes and their hardened products and their use
CN102918460B (en) Photosensitive siloxane composition, cured film formed form same, and element having cured film
JP6281288B2 (en) Silicon compound containing hexafluoroisopropanol group, method for producing the same, and polymer compound obtained by polymerization thereof
KR20210084595A (en) A resin composition, a photosensitive resin composition, a cured film, the manufacturing method of a cured film, the manufacturing method of a pattern cured film, and a pattern cured film
JP6788862B2 (en) Method for producing silicone polymer
JP2010503761A (en) Low-temperature curable protective film-forming composition, protective film produced thereby, and substrate containing the same
KR20140091694A (en) Silane composition and cured film thereof, and method for forming negative resist pattern using same
JP5158594B2 (en) Silicone polymer having naphthalene ring and composition thereof
JPH1129640A (en) Production of photo cation curable composition and photo cation curable hard coating agent composition
WO2016111112A1 (en) Silicone copolymer and method for producing same
CN105359037B (en) Positive photosensitive resin composition, cured film obtained by curing same, and optical device provided with same
JP5854385B2 (en) Silicone polymer
JP5115099B2 (en) Silicone copolymer having acyloxy group and method for producing the same
JP2006282725A (en) Silicon-containing new optically active compound
KR20090111341A (en) Cage-cleavable siloxane resin having functional group and method for production thereof
JP2009203463A (en) Silicone copolymer having fused polycyclic hydrocarbon group and method for producing the same
JP5915878B2 (en) Method for producing silicone polymer
KR20220155321A (en) Negative photosensitive resin composition, pattern structure, and manufacturing method of pattern cured film
JP5158589B2 (en) Silicone copolymer
KR20230113808A (en) Coating liquid for optical members, polymer, cured film, photosensitive coating liquid, pattern cured film, optical member, solid-state imaging device, display device, polysiloxane compound, stabilizer used in coating liquid, method for producing cured film, method for producing pattern cured film , and methods for preparing polymers
KR20230118902A (en) Resin composition, cured film, method for producing a cured film, substrate having a multilayer film, method for producing a substrate having a pattern, photosensitive resin composition, method for producing a patterned cured film, method for producing a polymer, and method for producing a resin composition
KR101968223B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Device Incoporating the Cured Film
TW202140630A (en) Method for producing silicone polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191203