JP5115099B2 - Silicone copolymer having acyloxy group and method for producing the same - Google Patents

Silicone copolymer having acyloxy group and method for producing the same Download PDF

Info

Publication number
JP5115099B2
JP5115099B2 JP2007219847A JP2007219847A JP5115099B2 JP 5115099 B2 JP5115099 B2 JP 5115099B2 JP 2007219847 A JP2007219847 A JP 2007219847A JP 2007219847 A JP2007219847 A JP 2007219847A JP 5115099 B2 JP5115099 B2 JP 5115099B2
Authority
JP
Japan
Prior art keywords
group
mol
silicone copolymer
formula
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007219847A
Other languages
Japanese (ja)
Other versions
JP2008088415A (en
Inventor
健 西川
典子 落合
久 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Priority to JP2007219847A priority Critical patent/JP5115099B2/en
Publication of JP2008088415A publication Critical patent/JP2008088415A/en
Application granted granted Critical
Publication of JP5115099B2 publication Critical patent/JP5115099B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Polymers (AREA)

Description

本発明は、液晶表示素子や半導体素子等の電子部品の絶縁膜材料として有用なアシロキシ基を有するシリコーン共重合体に関するものである。   The present invention relates to a silicone copolymer having an acyloxy group that is useful as an insulating film material for electronic components such as liquid crystal display elements and semiconductor elements.

近年、液晶表示素子や半導体素子等の電子部品に用いられる絶縁膜としては、可視光で透過性が高い高透明性や、素子を製造する際の各種処理工程に耐えられる耐熱性、耐薬品性、クラック耐性などの特性を兼ね備えた樹脂の必要性が高まっている。その中で、シルセスキオキサン骨格を有するシリコーン樹脂は、光学特性や耐熱性等に優れた性能を有し、これらの特性を利用して広く利用されてきた。
しかし、その硬化膜は特に1μm以上の膜厚で膜にクラックが入りやすく用途が限定されていた。
In recent years, insulating films used in electronic components such as liquid crystal display elements and semiconductor elements include high transparency with high transparency to visible light, and heat resistance and chemical resistance that can withstand various processing steps when manufacturing elements. There is an increasing need for resins having characteristics such as crack resistance. Among them, a silicone resin having a silsesquioxane skeleton has excellent performance in optical characteristics and heat resistance, and has been widely used by utilizing these characteristics.
However, the cured film has a thickness of 1 μm or more, and the film is liable to crack, and its application is limited.

重要な特性であるクラック耐性を有する材料として、エポキシ基含有シリコーン樹脂の例が開示されている(特許文献1参照)。しかし、クラック耐性は優れているが、300℃以上の熱処理工程には耐えられず、耐熱性が不十分であった。   An example of an epoxy group-containing silicone resin is disclosed as a material having crack resistance, which is an important characteristic (see Patent Document 1). However, although the crack resistance is excellent, it cannot withstand a heat treatment step of 300 ° C. or higher, and the heat resistance is insufficient.

一方、LSI素子の高速化、高集積化が進むにつれ、層間絶縁膜としてシルセスキオキサンが使用されている例が報告されている(特許文献2参照)。しかし、ここに記載されている材料では、可視光領域での透過率にすぐれ、かつ耐熱性にすぐれた材料を提供することができるが、1μm以上の膜厚の場合クラックが入りやすく厚膜化できない、また絶縁膜を形成する工程中に使用される溶剤に対する耐性に課題があった。
特開2001−040094号公報 特開2000−281904号公報
On the other hand, an example in which silsesquioxane is used as an interlayer insulating film has been reported as the speed and integration of LSI elements increase (see Patent Document 2). However, the materials described here can provide materials with excellent transmittance in the visible light region and excellent heat resistance. However, when the film thickness is 1 μm or more, cracks easily occur and the film thickness is increased. In addition, there is a problem in resistance to the solvent used during the process of forming the insulating film.
JP 2001-040094 A JP 2000-281904 A

本発明は、可視光領域の波長における透過性にすぐれ、耐熱性が高く、クラック耐性や耐溶剤性に優れた膜を形成できる特性を有する新規シリコーン共重合体を提供することを目的としてなされたものである。   The present invention was made for the purpose of providing a novel silicone copolymer having excellent transparency at a wavelength in the visible light region, high heat resistance, and the ability to form a film excellent in crack resistance and solvent resistance. Is.

本発明は、特定の構造をもつアシロキシ基を含有するシルセスキオキサン単位を持つシリコーン共重合体である。 The present invention is a silicone copolymer having silsesquioxane units of which contain an acyloxy group having a specific structure.

本発明のシリコーン共重合体は、アシロキシ基を含有するシルセスキオキサンを含有することにより、可視光領域における透過性にすぐれ、かつ加熱により膜を形成したとき、クラック耐性と耐溶剤性が非常に優れた材料となり、また、芳香族炭化水素基または脂環式炭化水素基を含有するシルセスキオキサン単位を導入することにより、300℃以上の耐熱性が向上した材料になる。   The silicone copolymer of the present invention contains silsesquioxane containing an acyloxy group, so that it has excellent transparency in the visible light region, and has a very high crack resistance and solvent resistance when a film is formed by heating. In addition, by introducing a silsesquioxane unit containing an aromatic hydrocarbon group or an alicyclic hydrocarbon group, a material having improved heat resistance at 300 ° C. or higher is obtained.

また、アシロキシ基は、アルカリによって容易に脱離して水酸基となることから、水酸基を有する耐熱性材料や水酸基を拠点に反応させることにより別の置換基を有する耐熱性材料となる。よって、本発明のシリコーン共重合体は電子部品に限らず、塗料や接着剤等、幅広い分野に応用できる。     In addition, since an acyloxy group is easily eliminated by an alkali to form a hydroxyl group, a heat-resistant material having a hydroxyl group or a heat-resistant material having another substituent by reacting a hydroxyl group as a base. Therefore, the silicone copolymer of the present invention can be applied not only to electronic parts but also to a wide range of fields such as paints and adhesives.

本発明のアシロキシ基を有するシリコーン共重合体は、可視光領域の波長における透明性が良く、耐熱性、クラック耐性にすぐれ、かつ耐溶剤性にすぐれている。   The silicone copolymer having an acyloxy group of the present invention has good transparency at a wavelength in the visible light region, is excellent in heat resistance, crack resistance, and solvent resistance.

本発明のシリコーン共重合体は、下記一般式   The silicone copolymer of the present invention has the following general formula:

Figure 0005115099
Figure 0005115099

(式中、Aはプロピレン基、Bは炭素数1〜5の直鎖状炭化水素基を示し、Rはフェニル基またはノルボルネニル基を示す。a、b、cはそれぞれモル%を示し、aは10〜40モル%、bは40〜70モル%、cは20〜50モル%を示す。ただしa+b+c=100である。)
で示され、重量平均分子量が500〜20,000、分散度が1.1〜1.8であるシリコーン共重合体である。
(In the formula, A represents a propylene group, B represents a linear hydrocarbon group having 1 to 5 carbon atoms, R represents a phenyl group or a norbornenyl group. A, b and c each represents mol%, and a represents 10 to 40 mol%, b represents 40 to 70 mol%, and c represents 20 to 50 mol%, provided that a + b + c = 100.
The weight average molecular weight is 500-20,000, and the silicone copolymer whose dispersity is 1.1-1.8.

本発明のシリコーン共重合体は、重量平均分子量(ポリスチレン換算)が500〜20,000である。本発明のシリコーン共重合体は、分散度が、1.1〜1.8である。 The silicone copolymer of the present invention has a weight average molecular weight (in terms of polystyrene) of 500 to 20,000 . Silicone copolymers of the present invention, the dispersion degree is 1.1 to 1.8.

本発明のシリコーン共重合体は、好ましくは、有機溶媒に可溶であり、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン溶媒、メタノール、エタノール、イソプロパノール、n−ブタノール、シクロへキサノール等のアルコール溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル等のエステル溶媒、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン等のエーテル溶媒、アセトニトリル、ベンゾニトリル等のニトリル系溶媒、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒に可溶である。   The silicone copolymer of the present invention is preferably soluble in an organic solvent, and is a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methylcyclohexanone, methanol, ethanol, isopropanol, n-butanol, cyclohexanol. Alcohol solvents such as benzene, toluene, xylene, etc., ester solvents such as methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, ether solvents such as diethyl ether, dibutyl ether, tetrahydrofuran, acetonitrile, benzonitrile Soluble in glycol solvents such as nitrile solvents such as propylene glycol dimethyl ether, propylene glycol diethyl ether and propylene glycol monomethyl ether acetate.

本発明のシリコーン共重合体では、下記骨格は、   In the silicone copolymer of the present invention, the following skeleton is:

Figure 0005115099
Figure 0005115099

シルセスキオキサン骨格を示し、各ケイ素原子が3個の酸素原子に結合し、各酸素原子が2個のケイ素原子に結合していることを示す。 A silsesquioxane skeleton is shown, and each silicon atom is bonded to three oxygen atoms, and each oxygen atom is bonded to two silicon atoms.

また、本発明のシリコーン共重合体は、例えば、下記一般式   Moreover, the silicone copolymer of the present invention has, for example, the following general formula:

Figure 0005115099
Figure 0005115099

(式中、Aはプロピレン基、Bは炭素数1〜5の直鎖状炭化水素基、Xはメチル基を示し、Rはフェニル基またはノルボルネニル基を示す。a、b、cはそれぞれモル%を示し、aは10〜40モル%、bは40〜70モル%、cは20〜50モル%を示す。ただしa+b+c=100である。)
に示す構造式で表すことができる。
(In the formula, A represents a propylene group, B represents a linear hydrocarbon group having 1 to 5 carbon atoms, X represents a methyl group, R represents a phenyl group or a norbornenyl group. A, b and c are each mol%. A represents 10 to 40 mol%, b represents 40 to 70 mol%, and c represents 20 to 50 mol%, provided that a + b + c = 100.
Can be represented by the structural formula shown below.

また、本発明のシリコーン共重合体は、例えば、下記一般式   Moreover, the silicone copolymer of the present invention has, for example, the following general formula:

Figure 0005115099
Figure 0005115099

(式中、A、B、Xは炭化水素基を示し、Rは芳香族炭化水素基または脂環式炭化水素基を示す。a、b、cはそれぞれモル%を示し、aは1〜99モル%、bは1〜99モル%、cは1〜99モル%を示す。ただしa+b+c=100である。)
に示すラダー型シリコーン共重合体でも良い。
(In the formula, A, B and X represent a hydrocarbon group, R represents an aromatic hydrocarbon group or an alicyclic hydrocarbon group. A, b and c each represents mol%, and a represents 1 to 99. (Mol%, b represents 1 to 99 mol%, and c represents 1 to 99 mol%, provided that a + b + c = 100.)
The ladder type silicone copolymer shown in FIG.

ここで、本発明のシリコーン共重合体である下記一般式 Here, the following general formula which is the silicone copolymer of the present invention

Figure 0005115099
Figure 0005115099

(式中、Aはプロピレン基、Bは炭素数1〜5の直鎖状炭化水素基を示し、Rはフェニル基またはノルボルネニル基を示す。a、b、cはそれぞれモル%を示し、aは10〜40モル%、bは40〜70モル%、cは20〜50モル%を示す。ただしa+b+c=100である。)
(In the formula, A represents a propylene group, B represents a linear hydrocarbon group having 1 to 5 carbon atoms, R represents a phenyl group or a norbornenyl group. A, b and c each represents mol%, and a represents 10 to 40 mol%, b represents 40 to 70 mol%, and c represents 20 to 50 mol%, provided that a + b + c = 100.
of

は、プロピレン基である、 A is a flop propylene group,

Rは、熱的安性と R is thermal stable properties

料入手の観点から、フェニル基、ノルボルネニル基である。 From the point of view of raw materials available, a phenyl group, Ru Roh Ruboruneniru based Der.

は、メチル基、エチル基、プロピル基等の炭素数1〜5の直鎖状炭化水素基であり、立体的に小さい置換基を導入することにより、分子内のシリコン含有率(ポリマ中のSiOが占める割合)を上げることができ、シロキサンの特性を十分生かすことができるようになる。 B is methylation group, an ethyl group, a linear hydrocarbon group having 1 to 5 carbon atoms such as a propyl group, by introducing a sterically smaller substituent group, a silicon content in the molecule (in the polymer The ratio of SiO 2) can be increased, and the characteristics of siloxane can be fully utilized.

本発明のシリコーン共重合体の特に好ましい例を下記一般式に示す。   Particularly preferred examples of the silicone copolymer of the present invention are shown in the following general formula.

Figure 0005115099
Figure 0005115099

(式中、Aはプロピレン基を示す。a、b、cはそれぞれモル%を示し、aは10〜40モル%、bは40〜70モル%、cは20〜50モル%を示す。ただしa+b+c=100である。)
ここで、本発明のシリコーン共重合体の組成比としては、aは10〜40モル%、bは40〜70モル%、cは20〜50モル%、ただしa+b+c=100となる。
ここで、a成分はアシロキシ基を含有する置換基を有するシリコーン部位を示し、耐熱性、耐溶剤性を満たすため、10モル%以上である。
(In the formula, A represents a propylene group, a, b and c each represents mol%, a represents 10 to 40 mol%, b represents 40 to 70 mol%, and c represents 20 to 50 mol%. a + b + c = 100.)
Here, as a composition ratio of the silicone copolymer of the present invention, a is 10 to 40 mol%, b is 40 to 70 mol%, c is 20 to 50 mol%, provided that a + b + c = 100.
Here, a component shows the silicone site | part which has a substituent containing an acyloxy group, and in order to satisfy heat resistance and solvent resistance, it is 10 mol% or more.

また、b成分はフェニル基またはノルボルネニル基を示すが、熱的に安定なシリコーン共重合体にするには、40モル%以上である。 The component b represents a phenyl group or a norbornenyl group , but is 40 mol% or more for making a thermally stable silicone copolymer .

c成分のBは炭素数1〜5の直鎖状炭化水素基を含む組成を示し、溶剤特性を向上させ、またポリマ中のシリコン含有率(ポリマ中のSiOが占める割合)を向上させることから、20モル%以上である。 c component of the B is shows a composition comprising a linear hydrocarbon group having 1 to 5 carbon atoms, to improve Solvent properties and improved silicon content in the polymer (the ratio of the SiO in polymer) Therefore , it is 20 mol% or more .

ここで、本発明のシリコーン共重合体である下記一般式 Here, the following general formula which is the silicone copolymer of the present invention

Figure 0005115099
Figure 0005115099

(式中、Aはプロピレン基、Bは炭素数1〜5の直鎖状炭化水素基を示し、Rはフェニル基またはノルボルネニル基を示す。a、b、cはそれぞれモル%を示し、aは10〜40モル%、bは40〜70モル%、cは20〜50モル%を示す。ただしa+b+c=100である。)
で示されるシリコーン共重合体を製造する場合、例えば、下記で示される水を用いた加水分解反応、重縮合反応で合成することができる。
(In the formula, A represents a propylene group, B represents a linear hydrocarbon group having 1 to 5 carbon atoms, R represents a phenyl group or a norbornenyl group. A, b and c each represents mol%, and a represents 10 to 40 mol%, b represents 40 to 70 mol%, and c represents 20 to 50 mol%, provided that a + b + c = 100.
In the case of producing a silicone copolymer represented by the following, for example, it can be synthesized by a hydrolysis reaction or a polycondensation reaction using water shown below.

Figure 0005115099
Figure 0005115099

(式中、Aはプロピレン基、Bは炭素数1〜5の直鎖状炭化水素基、Xはメチル基を示し、Rはフェニル基またはノルボルネニル基を示す。Yは加水分解性基を示す。a、b、cはそれぞれモル%を示し、aは10〜40モル%、bは40〜70モル%、cは20〜50モル%を示す。ただしa+b+c=100である。)
ここで、Yは加水分解性基を示すが、塩素、臭素、ヨウ素のハロゲン原子、もしくはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基が好ましく、特に塩素原子、メトキシ基、エトキシ基が原料入手と反応性が高いことから特に好ましい。
(In the formula, A represents a propylene group, B represents a linear hydrocarbon group having 1 to 5 carbon atoms, X represents a methyl group, R represents a phenyl group or a norbornenyl group, and Y represents a hydrolyzable group. a, b and c each represent mol%, a represents 10 to 40 mol%, b represents 40 to 70 mol%, and c represents 20 to 50 mol%, provided that a + b + c = 100.
Here, Y represents a hydrolyzable group, preferably a halogen atom of chlorine, bromine or iodine, or an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group or a butoxy group, particularly a chlorine atom, a methoxy group or an ethoxy group. Is particularly preferred because of the availability of raw materials and high reactivity.

この加水分解、重縮合反応は水を用いて行うが、通常触媒を加えて行うことが好ましい。アシロキシ基は塩基性条件に弱いことから、酸性条件で行うことが好ましく、塩酸、酢酸、クエン酸、シュウ酸等の触媒を使用することが特に好ましい。この触媒使用量は原料モノマーのモル数に対して0.01〜1.0当量が好ましく、0.05〜0.5当量がさらに好ましい。   This hydrolysis and polycondensation reaction is carried out using water, but it is usually preferred to carry out by adding a catalyst. Since the acyloxy group is weak to basic conditions, it is preferably carried out under acidic conditions, and it is particularly preferred to use a catalyst such as hydrochloric acid, acetic acid, citric acid, or oxalic acid. The amount of the catalyst used is preferably 0.01 to 1.0 equivalent, more preferably 0.05 to 0.5 equivalent, relative to the number of moles of the raw material monomer.

加水分解、重縮合条件として、反応温度0〜100℃が好ましく、触媒を使用することにより反応が容易に進行することから、10〜40℃がより好ましい。   As the hydrolysis and polycondensation conditions, a reaction temperature of 0 to 100 ° C. is preferable, and the reaction proceeds easily by using a catalyst, and therefore 10 to 40 ° C. is more preferable.

この加水分解、重縮合反応には水が必要であるが、原料モノマーのモル数に対して3〜100当量使用することが好ましく、5〜50当量使用することが特に好ましい。   Although water is required for this hydrolysis and polycondensation reaction, it is preferable to use 3 to 100 equivalents, particularly preferably 5 to 50 equivalents, based on the number of moles of the raw material monomer.

この反応では、有機溶媒を使用することが好ましく、有機溶媒としては、トルエン、キシレン等の非プロトン性溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、メタノール、エタノール、2−プロパノール等のアルコール溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル溶媒、等の溶媒を使用することができる。   In this reaction, an organic solvent is preferably used. Examples of the organic solvent include aprotic solvents such as toluene and xylene, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and alcohol solvents such as methanol, ethanol and 2-propanol. , Ether solvents such as diethyl ether and tetrahydrofuran, and the like can be used.

反応終了後は、非極性溶媒を添加して反応生成物と水とを分離して、有機溶媒に溶解した反応生成物を回収し、水で洗浄後に溶媒を留去することにより目的の生成物を得ることができる。   After completion of the reaction, a non-polar solvent is added to separate the reaction product and water, and the reaction product dissolved in an organic solvent is recovered. After washing with water, the solvent is distilled off to obtain the desired product. Can be obtained.

このようにしてアシロキシ基をもつシリコーン共重合体を合成することができる。   In this way, a silicone copolymer having an acyloxy group can be synthesized.

以下、実施例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

以下の実施例において、測定には下記装置を使用し、原料は試薬メーカー(東京化成品、和光純薬品、ナカライテスク品、アズマックス品、信越化学品)から購入した一般的な試薬を用いた。   In the following examples, the following apparatus was used for the measurement, and general reagents purchased from reagent manufacturers (Tokyo Chemicals, Wako Pure Chemicals, Nacalai Tesque, Azmax, Shin-Etsu Chemical) were used as raw materials.

測定装置
NMR測定・・・日本電子製400MHz NMR測定器
IR測定・・・島津製IR Prestige-21。KBr板に合成品を少量塗布し、別のKBr板に挟んで赤外を透過させて測定した。
measuring device
NMR measurement: JEOL 400MHz NMR measuring instrument
IR measurement: IR Prestige-21 made by Shimadzu. A small amount of a synthetic product was applied to a KBr plate, and sandwiched between other KBr plates to transmit infrared light.

GPC測定・・・東ソー製HLC-8220
GC測定・・・島津製GC-2010シリーズ 。
GPC measurement: Tosoh HLC-8220
GC measurement: Shimadzu GC-2010 series.

合成例1
3−アセトキシプロピルトリメトキシシランの合成例
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた1L4つ口フラスコに、トルエン500g、3−クロロプロピルトリメトキシシラン250.0g(1.258モル)と酢酸カリウム129.6g(1.321モル)を加えて撹拌し、テトラn−ブチルアンモニウムブロマイド5.84g(0.0181モル)を加えて90〜100℃で2時間反応させた。次に、冷却後生成した塩を吸引ろ過し黄色溶液を得た。得られた溶液をエバポレーターでトルエンを減圧留去し、さらに減圧蒸留を行い0.4kPaの減圧度で留出温度80〜81℃の無色透明の留分を162.8g(0.732モル)得た。得られた留分のGC分析の結果、GC純度99.0%、NMRとIR分析の結果、3−アセトキシプロピルトリメトキシシランであった。
Synthesis example 1
Example of synthesis of 3-acetoxypropyltrimethoxysilane To a 1 L four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 500 g of toluene, 250.0 g of 3-chloropropyltrimethoxysilane (1.258 mol) And 129.6 g (1.321 mol) of potassium acetate were added and stirred, and 5.84 g (0.0181 mol) of tetra-n-butylammonium bromide was added and reacted at 90-100 ° C. for 2 hours. Next, the salt produced after cooling was suction filtered to obtain a yellow solution. Toluene was distilled off under reduced pressure with an evaporator, and further distilled under reduced pressure to obtain 162.8 g (0.732 mol) of a colorless transparent fraction having a distillation degree of 80 to 81 ° C. at a reduced pressure of 0.4 kPa. It was. As a result of GC analysis of the obtained fraction, GC purity was 99.0%. As a result of NMR and IR analysis, it was 3-acetoxypropyltrimethoxysilane.

得られた化合物のスペクトルデータを下記に示す。   The spectrum data of the obtained compound is shown below.

赤外線吸収スペクトル(IR)データ
2841,2945cm-1 (-CH3)、1740cm-1 (-CO-)、1086 cm-1(Si-O)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3)
0.644-0.686(dd、2H、-CH2-)、1.703-1.779(m、2H、-CH2-)、2.045(s、3H、CH3CO-)、3.575(s、9H、CH3O-)、4.019-4.052(t、2H、-COO-CH2-) 。
Infrared absorption spectrum (IR) data
2841,2945cm -1 (-CH3), 1740cm -1 (-CO -), 1086 cm -1 (Si-O)
Nuclear magnetic resonance spectra (NMR) data (1 H-NMR δ (ppm ), solvent: CDCl?)
0.644-0.686 (dd, 2H, -CH2-), 1.703-1.779 (m, 2H, -CH2-), 2.045 (s, 3H, CH3CO-), 3.575 (s, 9H, CH3O-), 4.019-4.052 ( t, 2H, -COO-CH2-).

合成例2
(5−アセトキシノルボルナン−2(または3)−イル)トリエトキシシランの合成例
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた1L4つ口フラスコに、5−ノルボルネン−2−イルアセテート400.0g(2.63モル)に0.1mol/L塩化白金酸のイソプロピルアルコール溶液を6mL加え、80〜90℃の反応温度でトリエトキシラン453.3g(2.76モル)を滴下し、滴下終了後同温度で2時間熟成した。次に冷却後減圧蒸留を行い0.2kPaの減圧度で留出温度110〜115℃の無色透明の留分を507.4g(1.60モル)得た。得られた留分のGC分析とGCMS分析の結果、GC純度は96.3%、NMRとIR分析の結果、(5−アセトキシノルボルナン−2(または3)−イル)トリエトキシシランであった。
Synthesis example 2
Synthesis example of (5-acetoxynorbornane-2 (or 3) -yl) triethoxysilane Into a 1 L 4-neck flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 5-norbornen-2-yl acetate 60.0 mL of an isopropyl alcohol solution of 0.1 mol / L chloroplatinic acid was added to 400.0 g (2.63 mol), and 453.3 g (2.76 mol) of triethoxylane was added dropwise at a reaction temperature of 80 to 90 ° C. After completion of dropping, the mixture was aged at the same temperature for 2 hours. Next, vacuum distillation was performed after cooling to obtain 507.4 g (1.60 mol) of a colorless and transparent fraction having a distillation pressure of 110 to 115 ° C. at a reduced pressure of 0.2 kPa. As a result of GC analysis and GCMS analysis of the obtained fraction, the GC purity was 96.3%. As a result of NMR and IR analysis, it was (5-acetoxynorbornane-2 (or 3) -yl) triethoxysilane.

得られた化合物のスペクトルデータを下記に示す。   The spectrum data of the obtained compound is shown below.

赤外線吸収スペクトル(IR)データ
2880-3060cm-1 (-CH2-,-CH3)、1730cm-1 (-CO-)、1080-1170 cm-1(Si-O)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3)
0.787-0.828(m、1H)、1.016-1.049(m、1H)、1.165-1.206(m、9H)、1.267-1.744(m、4H)、1.852-2.030(m、1H)、1.997(s、3H)、2.278-2.489(m、2H)、3.760-3.821(m、6H)、4.540-4.944(m、1H) 。
Infrared absorption spectrum (IR) data
2880-3060cm -1 (-CH2-,-CH3), 1730cm -1 (-CO-), 1080-1170 cm -1 (Si-O)
Nuclear magnetic resonance spectra (NMR) data (1 H-NMR δ (ppm ), solvent: CDCl?)
0.787-0.828 (m, 1H), 1.016-1.049 (m, 1H), 1.165-1.206 (m, 9H), 1.267-1.744 (m, 4H), 1.852-2.030 (m, 1H), 1.997 (s, 3H ), 2.278-2.489 (m, 2H), 3.760-3.821 (m, 6H), 4.540-4.944 (m, 1H).

実施例1
下記構造式(3−アセトキシプロピルシルセスキオキサン・フェニルシルセスキオキサン・メチルシルセスキオキサン共重合体)の合成
Example 1
Synthesis of the following structural formula (3-acetoxypropylsilsesquioxane / phenylsilsesquioxane / methylsilsesquioxane copolymer)

Figure 0005115099
Figure 0005115099

(構造式中の20:50:30は使用原料のモル比)
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、トルエン55.8gと水35.7gを仕込み、35%塩酸を3.12g(0.03モル)を加えた。次に3−アセトキシプロピルトリメトキシシラン13.5g(0.0605モル)、フェニルトリメトキシシラン30.0g(0.151モル)とメチルトリメトキシシラン12.4g(0.0908モル)のトルエン27.9gの溶液を20〜30℃で滴下した。滴下終了後、同温度で2時間熟成させた。このときの反応溶液をGCで分析した結果、原料は残っていないことが分かった。次にトルエンと水を加えて抽出し、炭酸水素ナトリウム水溶液で洗浄後に、水で溶液が中性になるまで洗浄した。トルエン油層を回収し、トルエンを除去して、目的の粘性液体状の化合物34.6gを得た。
(20:50:30 in the structural formula is the molar ratio of the raw materials used)
A 500 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer was charged with 55.8 g of toluene and 35.7 g of water, and 3.12 g (0.03 mol) of 35% hydrochloric acid was added. . Next, 13.5 g (0.0605 mol) of 3-acetoxypropyltrimethoxysilane, 30.0 g (0.151 mol) of phenyltrimethoxysilane and 12.4 g (0.0908 mol) of methyltrimethoxysilane in toluene 27. 9 g of the solution was added dropwise at 20-30 ° C. After completion of dropping, the mixture was aged at the same temperature for 2 hours. As a result of analyzing the reaction solution at this time by GC, it was found that no raw material remained. Next, toluene and water were added for extraction, and after washing with an aqueous sodium hydrogen carbonate solution, the solution was washed with water until the solution became neutral. The toluene oil layer was recovered, and toluene was removed to obtain 34.6 g of the target viscous liquid compound.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1030-1134cm-1(Si-O)、1271 cm-1(-O-)、1713 cm-1(-CO-)、2970-3073 cm-1(C-H)、3080-3700 cm-1(Si-OH)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3
0.17(bs)、0.51-0.81(m)、1.50-2.10(m)、3.60-4.20(m)、6.90-7.47(m)、7.47-7.70(m)
GPC分析データ:Mw=1,020、Mw/Mn=1.22(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1030-1134cm -1 (Si-O), 1271 cm -1 (-O-), 1713 cm -1 (-CO-), 2970-3073 cm -1 (CH), 3080-3700 cm -1 (Si- OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
0.17 (bs), 0.51-0.81 (m), 1.50-2.10 (m), 3.60-4.20 (m), 6.90-7.47 (m), 7.47-7.70 (m)
GPC analysis data: Mw = 1,020, Mw / Mn = 1.22 (polystyrene conversion).

実施例2
下記構造式(3−アセトキシプロピルシルセスキオキサン・2−ノルボルネニルシルセスキオキサン・メチルシルセスキオキサン共重合体)の合成
Example 2
Synthesis of the following structural formula (3-acetoxypropylsilsesquioxane / 2-norbornenylsilsesquioxane / methylsilsesquioxane copolymer)

Figure 0005115099
Figure 0005115099

(構造式中の20:50:30は使用原料のモル比)
実施例1に記載の原料であるフェニルトリメトキシシランを2−ノルボルネニルトリエトキシシラン39.0g(0.151モル)に変更した以外は実施例1と同様の操作で目的の化合物38.7gを得た。
(20:50:30 in the structural formula is the molar ratio of the raw materials used)
The target compound, 38.7 g, was prepared in the same manner as in Example 1 except that phenyltrimethoxysilane, which is the raw material described in Example 1, was changed to 39.0 g (0.151 mol) of 2-norbornenyltriethoxysilane. Got.

赤外線吸収スペクトル(IR)データ
1047-1123cm-1(Si-O)、1269 cm-1(-O-)、1713 cm-1(-CO-)、2866-2965 cm-1(C-H)、3080-3700 cm-1(Si-OH)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3
0.16(bs)、0.60-1.79(m)、1.79-2.62(m)、6.95-7.49(m)、7.49-7.70(m)
GPC分析データ:Mw=2,140、Mw/Mn=1.33(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1047-1123cm -1 (Si-O), 1269 cm -1 (-O-), 1713 cm -1 (-CO-), 2866-2965 cm -1 (CH), 3080-3700 cm -1 (Si- OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
0.16 (bs), 0.60-1.79 (m), 1.79-2.62 (m), 6.95-7.49 (m), 7.49-7.70 (m)
GPC analysis data: Mw = 2,140, Mw / Mn = 1.33 (polystyrene conversion).

実施例3
下記構造式(5−アセトキシノルボルナン−2(または3)−イル)シルセスキオキサン・フェニルシルセスキオキサン・メチルシルセスキオキサン共重合体)の合成
Example 3
Synthesis of the following structural formula (5-acetoxynorbornane-2 (or 3) -yl) silsesquioxane / phenylsilsesquioxane / methylsilsesquioxane copolymer)

Figure 0005115099
Figure 0005115099

(構造式中の20:50:30は使用原料のモル比)
実施例1に記載の原料である3−アセトキシプロピルトリメトキシシランを(5−アセトキシノルボルナン−2(または3)−イル)トリエトキシシラン39.0g(0.151モル)に変更した以外は実施例1と同様の操作で目的の化合物38.7gを得た。
(20:50:30 in the structural formula is the molar ratio of the raw materials used)
Example 3 except that 3-acetoxypropyltrimethoxysilane, which is the raw material described in Example 1, was changed to 39.0 g (0.151 mol) of (5-acetoxynorbornane-2 (or 3) -yl) triethoxysilane In the same manner as in Example 1, 38.7 g of the target compound was obtained.

赤外線吸収スペクトル(IR)データ
1030-1134cm-1(Si-O)、1271 cm-1(-O-)、1713 cm-1(-CO-)、2872-3073 cm-1(C-H)、3080-3700 cm-1(Si-OH)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3
0.16(bs)、0.60-1.79(m)、1.79-2.62(m)、4.70-5.00(m)、6.90-7.47(m)、7.47-7.80(m)
GPC分析データ:Mw=1,230、Mw/Mn=1.31(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1030-1134cm -1 (Si-O), 1271 cm -1 (-O-), 1713 cm -1 (-CO-), 2872-3073 cm -1 (CH), 3080-3700 cm -1 (Si- OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
0.16 (bs), 0.60-1.79 (m), 1.79-2.62 (m), 4.70-5.00 (m), 6.90-7.47 (m), 7.47-7.80 (m)
GPC analysis data: Mw = 1,230, Mw / Mn = 1.31 (polystyrene conversion).

参考例1
下記構造式(3−アセトキシプロピルシルセスキオキサン・フェニルシルセスキオキサン共重合体)の合成
Reference example 1
Synthesis of the following structural formula (3-acetoxypropylsilsesquioxane / phenylsilsesquioxane copolymer)

Figure 0005115099
Figure 0005115099

(構造式中の20:80は使用原料のモル比)
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、メタノール38.4gと水21.0gを仕込み、酢酸を1.13g(0.0189モル)を加えた。次に3−アセトキシプロピルトリメトキシシラン8.41g(0.0378モル)、フェニルトリメトキシシラン30.0g(0.151モル)のメタノール19.2gの溶液を20〜30℃で滴下した。滴下終了後、同温度で2時間熟成させた。このときの反応溶液をGCで分析した結果、原料は残っていないことが分かった。次にトルエンを加えて抽出し、炭酸水素ナトリウム水溶液で洗浄後に、水で溶液が中性になるまで洗浄した。トルエン油層を回収し、トルエンを除去して、目的の粘性液体状の化合物24.6gを得た。
(20:80 in the structural formula is the molar ratio of the raw materials used)
A 500 mL four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer was charged with 38.4 g of methanol and 21.0 g of water, and 1.13 g (0.0189 mol) of acetic acid was added. Next, a solution of 19.2 g of methanol containing 8.41 g (0.0378 mol) of 3-acetoxypropyltrimethoxysilane and 30.0 g (0.151 mol) of phenyltrimethoxysilane was added dropwise at 20 to 30 ° C. After completion of dropping, the mixture was aged at the same temperature for 2 hours. As a result of analyzing the reaction solution at this time by GC, it was found that no raw material remained. Next, toluene was added for extraction, and after washing with an aqueous sodium hydrogen carbonate solution, the solution was washed with water until the solution became neutral. The toluene oil layer was recovered and toluene was removed to obtain 24.6 g of the target viscous liquid compound.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1030-1134cm-1(Si-O)、1274cm-1(-O-)、1713 cm-1(-CO-)、2893-3073 cm-1(C-H)、3080-3700 cm-1(Si-OH)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3
0.10-0.78(m)、1.33-2.10(m)、3.20-4.20(m)、6.80-7.47(m)、7.47-7.70(m)
GPC分析データ:Mw=1,430、Mw/Mn=1.36(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1030-1134cm -1 (Si-O), 1274cm -1 (-O-), 1713 cm -1 (-CO-), 2893-3073 cm -1 (CH), 3080-3700 cm -1 (Si-OH )
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
0.10-0.78 (m), 1.33-2.10 (m), 3.20-4.20 (m), 6.80-7.47 (m), 7.47-7.70 (m)
GPC analysis data: Mw = 1,430, Mw / Mn = 1.36 (polystyrene conversion).

比較例1
下記構造式(フェニルシルセスキオキサン)の合成
Comparative Example 1
Synthesis of the following structural formula (phenylsilsesquioxane)

Figure 0005115099
Figure 0005115099

(構造式中の20:80は使用原料のモル比)
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、トルエン55.8gと水35.7gを仕込み、35%塩酸を3.12g(0.03モル)を加えた。次にフェニルトリメトキシシラン48.0g(0.242モル)のトルエン27.9gの溶液を20〜30℃で滴下した。滴下終了後、同温度で2時間熟成させた。このときの反応溶液をGCで分析した結果、原料は残っていないことが分かった。次にトルエンと水を加えて抽出し、炭酸水素ナトリウム水溶液で洗浄後に、水で溶液が中性になるまで洗浄した。トルエン油層を回収し、トルエンを除去して、目的の粘性液体状の化合物34.6gを得た。
(20:80 in the structural formula is the molar ratio of the raw materials used)
A 500 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer was charged with 55.8 g of toluene and 35.7 g of water, and 3.12 g (0.03 mol) of 35% hydrochloric acid was added. . Next, a solution of 27.9 g of toluene in 48.0 g (0.242 mol) of phenyltrimethoxysilane was added dropwise at 20 to 30 ° C. After completion of dropping, the mixture was aged at the same temperature for 2 hours. As a result of analyzing the reaction solution at this time by GC, it was found that no raw material remained. Next, toluene and water were added for extraction, and after washing with an aqueous sodium hydrogen carbonate solution, the solution was washed with water until the solution became neutral. The toluene oil layer was recovered, and toluene was removed to obtain 34.6 g of the target viscous liquid compound.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1047-1123cm-1(Si-O)、2978-3073 cm-1(C-H)
核磁気共鳴スペクトル(NMR)データ(1H-NMR δ(ppm)、溶媒:CDCl3
6.70-7.80(m)
GPC分析データ:Mw=1,410、Mw/Mn=1.31(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1047-1123cm -1 (Si-O), 2978-3073 cm -1 (CH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
6.70-7.80 (m)
GPC analysis data: Mw = 1,410, Mw / Mn = 1.31 (polystyrene conversion).

<絶縁被膜の製造>
実施例1〜4、及び比較例1に従って製造されたシリコーン化合物を、それぞれ酢酸プロピレングリコールモノメチルエーテルに溶解し、固形分濃度が30重量%になるように調整した溶液を得た。その後、当該溶液をPTFE製のフィルタで濾過し、シリコンウエハまたはガラス基板上に、溶媒除去した後の膜厚が3.0μmになるような回転数で30秒回転塗布した。その後150℃/2分かけて溶媒除去し、次いで、O2濃度が1000ppm未満にコントロールされている石英チューブ炉で350℃/30分間かけて被膜を最終硬化し絶縁被膜とした。
<Manufacture of insulation coating>
The silicone compounds produced according to Examples 1 to 4 and Comparative Example 1 were each dissolved in propylene glycol monomethyl ether acetate to obtain a solution adjusted to a solid content concentration of 30% by weight. Thereafter, the solution was filtered with a PTFE filter, and applied on a silicon wafer or glass substrate by spin-coating for 30 seconds at a rotational speed such that the film thickness after removal of the solvent was 3.0 μm. Thereafter, the solvent was removed over 150 ° C./2 minutes, and then the film was finally cured over 350 ° C./30 minutes in a quartz tube furnace in which the O 2 concentration was controlled to less than 1000 ppm to obtain an insulating coating.

<被膜評価>
上記成膜方法により成膜された被膜に対して、以下の方法で膜評価を行った。
<Evaluation of coating>
The film was evaluated by the following method for the film formed by the film forming method.

〔透過率の測定〕
可視光領域に吸収がないガラス基板上に塗布された被膜について、日立製UV3310を用いて300nm〜800nmの透過率を測定した。
(Measurement of transmittance)
The transmittance of 300 nm to 800 nm was measured using Hitachi UV3310 for the coating applied on the glass substrate having no absorption in the visible light region.

〔耐熱性の評価〕
シリコンウエハ上に形成された最終硬化被膜について、溶媒除去した後の膜厚と最終硬化後の膜厚が、膜厚減少率として10%未満の場合○、10%以上の場合×と判定した。なお、膜厚測定は、ガートナー製のエリプソメータL116Bで測定された膜厚であり、具体的には被膜上にHe−Neレーザー照射し、照射により生じた位相差から求められる膜厚を用いた。
[Evaluation of heat resistance]
Regarding the final cured film formed on the silicon wafer, the film thickness after removal of the solvent and the film thickness after final curing were determined to be ○ when the film thickness reduction rate was less than 10%, and when the film thickness was 10% or more. The film thickness was measured with an ellipsometer L116B manufactured by Gartner. Specifically, the film thickness obtained from the phase difference caused by irradiation with He—Ne laser on the coating was used.

〔クラック耐性の評価〕
シリコンウエハ上に形成された最終硬化被膜について、金属顕微鏡により10倍〜100倍の倍率による面内のクラックの有無を確認した。クラックの発生がない場合は○、クラックが見られた場合を×と判定した。
[Evaluation of crack resistance]
With respect to the final cured film formed on the silicon wafer, the presence or absence of in-plane cracks at a magnification of 10 to 100 times was confirmed with a metal microscope. The case where no crack was generated was judged as ◯, and the case where a crack was seen was judged as ×.

〔耐溶剤性の評価〕
シリコンウエハ上に形成された最終硬化被膜について、90℃の温度に加温されたジメチルスルホキシドの溶剤中に120分間浸漬して膜表面の荒れ、膜のハガレ、溶解の有無を試験した。膜表面の荒れ、膜のハガレ、溶解のない場合を○、膜表面の荒れ、膜のハガレ、溶解のいずれかが確認された場合を×と判定した
<評価結果>
絶縁皮膜の評価結果を下記の表1に示した。
[Evaluation of solvent resistance]
The final cured film formed on the silicon wafer was immersed in a dimethyl sulfoxide solvent heated to a temperature of 90 ° C. for 120 minutes to test whether the film surface was rough, the film peeled, or dissolved. When the film surface was rough, the film was peeled off, or the film was not dissolved, it was judged as ○, and when the film surface was rough, the film was peeled or melted, it was judged as x. <Evaluation Result>
The evaluation results of the insulating film are shown in Table 1 below.

Figure 0005115099
Figure 0005115099

このように、アシロキシ基を導入することにより、耐熱性、クラック耐性、耐溶剤性すべてを満足する材料となる。   Thus, by introducing an acyloxy group, the material satisfies all of heat resistance, crack resistance and solvent resistance.

Claims (3)

下記一般式
Figure 0005115099
(式中、Aはプロピレン基、Bは炭素数1〜5の直鎖状炭化水素基を示し、Rはフェニル基またはノルボルネニル基を示す。a、b、cはそれぞれモル%を示し、aは10〜40モル%、bは40〜70モル%、cは20〜50モル%を示す。ただしa+b+c=100である。)
で示され、重量平均分子量が500〜20,000、分散度が1.1〜1.8であるシリコーン共重合体。
The following general formula
Figure 0005115099
(In the formula, A represents a propylene group, B represents a linear hydrocarbon group having 1 to 5 carbon atoms, R represents a phenyl group or a norbornenyl group. A, b and c each represents mol%, and a represents 10 to 40 mol%, b represents 40 to 70 mol%, and c represents 20 to 50 mol%, provided that a + b + c = 100.
A silicone copolymer having a weight average molecular weight of 500 to 20,000 and a dispersity of 1.1 to 1.8.
有機溶媒に可溶である請求項1に記載のシリコーン共重合体 The silicone copolymer according to claim 1, which is soluble in an organic solvent . 下記一般式
Figure 0005115099
(式中、Aはプロピレン基、Xはメチル基を示し、Yは加水分解性基を示す。)
と下記一般式
Figure 0005115099
(式中、Rはフェニル基またはノルボルネニル基を示し、Yは加水分解性基を示す。)
と下記一般式
Figure 0005115099
(式中、Bは炭素数1〜5の直鎖状炭化水素基を示し、Yは加水分解性基を示す。)
で示されるモノマーを酸性条件で加水分解して製造する請求項1に記載のシリコーン共重合体の製造方法。
The following general formula
Figure 0005115099
(In the formula, A represents a propylene group, X represents a methyl group, and Y represents a hydrolyzable group.)
And the following general formula
Figure 0005115099
(In the formula, R represents a phenyl group or a norbornenyl group, and Y represents a hydrolyzable group.)
And the following general formula
Figure 0005115099
(In the formula, B represents a linear hydrocarbon group having 1 to 5 carbon atoms, and Y represents a hydrolyzable group.)
The method for producing a silicone copolymer according to claim 1, wherein the monomer is produced by hydrolysis under acidic conditions.
JP2007219847A 2006-09-04 2007-08-27 Silicone copolymer having acyloxy group and method for producing the same Expired - Fee Related JP5115099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007219847A JP5115099B2 (en) 2006-09-04 2007-08-27 Silicone copolymer having acyloxy group and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006238591 2006-09-04
JP2006238591 2006-09-04
JP2007219847A JP5115099B2 (en) 2006-09-04 2007-08-27 Silicone copolymer having acyloxy group and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008088415A JP2008088415A (en) 2008-04-17
JP5115099B2 true JP5115099B2 (en) 2013-01-09

Family

ID=39372885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007219847A Expired - Fee Related JP5115099B2 (en) 2006-09-04 2007-08-27 Silicone copolymer having acyloxy group and method for producing the same

Country Status (1)

Country Link
JP (1) JP5115099B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI518137B (en) * 2010-02-10 2016-01-21 Lintec Corp A hardened composition, a hardened product, and a hardened composition
TWI504681B (en) * 2010-03-08 2015-10-21 Lintec Corp A hardening composition, a hardened product, and a hardening composition
TWI509023B (en) * 2010-03-09 2015-11-21 Lintec Corp A hardened composition, a hardened product, and a hardening composition
JP2015052075A (en) * 2013-09-09 2015-03-19 東レ・ファインケミカル株式会社 Polyorganosiloxane and production method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846267B2 (en) * 2004-05-28 2011-12-28 東レ・ファインケミカル株式会社 Silicone copolymer having hydroxyl group and method for producing the same
JP4491283B2 (en) * 2004-06-10 2010-06-30 信越化学工業株式会社 Pattern formation method using antireflection film-forming composition
EP1819844B1 (en) * 2004-12-17 2008-07-09 Dow Corning Corporation Method for forming anti-reflective coating

Also Published As

Publication number Publication date
JP2008088415A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP6323225B2 (en) Positive photosensitive resin composition, film production method using the same, and electronic component
JP5369629B2 (en) Crosslinkable silicon compound, method for producing the same, crosslinkable composition, siloxane polymer, silicone film, silicon compound as a raw material for the crosslinkable silicon compound, and method for producing the same
JP7510060B2 (en) Resin composition, photosensitive resin composition, cured film, method for producing cured film, patterned cured film, and method for producing patterned cured film
JP5158594B2 (en) Silicone polymer having naphthalene ring and composition thereof
JP6281288B2 (en) Silicon compound containing hexafluoroisopropanol group, method for producing the same, and polymer compound obtained by polymerization thereof
JP5115099B2 (en) Silicone copolymer having acyloxy group and method for producing the same
WO2019167771A1 (en) Silicon-containing layer-forming composition, and method for producing pattern-equipped substrate which uses same
JP5376210B2 (en) Silicone copolymer having condensed polycyclic hydrocarbon group and process for producing the same
JP5854385B2 (en) Silicone polymer
JP5915878B2 (en) Method for producing silicone polymer
JP2009132637A (en) Biphenyl compound comprising epoxy group, method of preparing the same, surface modifier, adhesion aid, and adhesive
WO2016111112A1 (en) Silicone copolymer and method for producing same
JP2008308541A (en) Silicone copolymer having sulfur functional group and method for producing the same
JP5158589B2 (en) Silicone copolymer
JP6557075B2 (en) Method for producing siloxane compound
JP4564998B2 (en) Method for producing fluorine-containing polysilane compound
JP5396694B2 (en) Crosslinkable prepolymer and production method and use thereof
JP2011184304A (en) Silane coupling agent and method for producing the same
JP2014237614A (en) Silicone compound and residue inhibitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R150 Certificate of patent or registration of utility model

Ref document number: 5115099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees