JP2011184304A - Silane coupling agent and method for producing the same - Google Patents

Silane coupling agent and method for producing the same Download PDF

Info

Publication number
JP2011184304A
JP2011184304A JP2010047882A JP2010047882A JP2011184304A JP 2011184304 A JP2011184304 A JP 2011184304A JP 2010047882 A JP2010047882 A JP 2010047882A JP 2010047882 A JP2010047882 A JP 2010047882A JP 2011184304 A JP2011184304 A JP 2011184304A
Authority
JP
Japan
Prior art keywords
formula
represented
integer
perfluoroalkyl
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010047882A
Other languages
Japanese (ja)
Inventor
Norio Yoshino
則夫 好野
Atsushi Taniguchi
淳 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2010047882A priority Critical patent/JP2011184304A/en
Publication of JP2011184304A publication Critical patent/JP2011184304A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silane coupling agent that strongly binds to a substrate and has excellent heat resistance, mold releasability and antifouling property such that a surface modified by the compound does not show any decrease in contact angle even when exposed to an atmosphere at ≥350°C for 4 h or longer. <P>SOLUTION: The silane coupling agent is represented by formula (1) (wherein Rf is perfluoroalkyl group represented by the formula: F(CF<SB>2</SB>)<SB>m</SB>; m is an integer of 4-14; n is an integer of 3-4; and X is a halogen atom or isocyanate group). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規なシランカップリング剤及びその製造方法に関する。   The present invention relates to a novel silane coupling agent and a method for producing the same.

近年、特にシランカップリング剤を離型剤として用い、母型に形成された微細パターンを再現性・解像性良く被転写部材に転写する技術の研究が盛んに行われている。
転写は、母型の微細パターン上に形成した離型剤層上に被転写部材を覆った後、離型剤層から被転写部材を剥離して行われるが、金属を真空蒸着によって、あるいは樹脂を熱硬化させて被転写部材として離型剤層上に設ける場合、離型剤としては高温耐熱性であることが要求される。しかしながら、従来から知られている離型剤にはこの要求に応えられるものがなかった。
In recent years, research has been actively conducted on techniques for transferring a fine pattern formed on a matrix to a member to be transferred with good reproducibility and resolution, particularly using a silane coupling agent as a release agent.
The transfer is performed by covering the member to be transferred on the release agent layer formed on the fine pattern of the mother mold and then peeling the member to be transferred from the release agent layer. Is provided on the release agent layer as a member to be transferred, the release agent is required to have high temperature heat resistance. However, none of the conventionally known release agents can meet this requirement.

そこで、本発明者等は、先に、特に耐熱性及び離型性の点に優れた下記一般式(A)で表されるビフェニルアルキル基を有するシランカップリング剤を開発した(特許文献1参照)。   Accordingly, the present inventors have previously developed a silane coupling agent having a biphenylalkyl group represented by the following general formula (A), which is particularly excellent in heat resistance and releasability (see Patent Document 1). ).

Figure 2011184304
(式(A)中、RfはF(CFのペルフルオロアルキル基を示し、nは1〜14の整数を示す。)
Figure 2011184304
(In the formula (A), Rf represents a perfluoroalkyl group of F (CF 2 ) n , and n represents an integer of 1 to 14.)

上記一般式(A)で表されるシランカップリング剤を用いると、上述のような真空蒸着あるいは熱硬化のような高温プロセスによって被転写部材を形成する場合でも、1μm未満の高さでアスペクト比が2以上あるような超微細な突起群を含むような母型のパターンを、再現性・解像性良く被転写部材に転写することができる。   When the silane coupling agent represented by the above general formula (A) is used, even when the member to be transferred is formed by a high temperature process such as vacuum vapor deposition or thermosetting as described above, the aspect ratio is less than 1 μm. Can be transferred to the transfer member with good reproducibility and resolution.

国際公開第2008/108438号International Publication No. 2008/108438

ところで、離型剤層を形成する際には、母型表面にシランカップリング剤を含む液を塗布した後に、シランカップリング剤を強固に固定させるように、加熱処理等が行われる。
しかしながら、例えば、微細パターン表面に離型剤としてシランカップリング剤層が形成された母型を金型として繰り返し使用して、パターンが転写された被転写部材を数多く作製していくと、離型剤が徐々に微細パターン表面から剥離してしまうことがある。
そこで、このような問題が発生しないような、母型の基質との結合力が高いシランカップリング剤の出現が期待されている。
By the way, when forming the release agent layer, after applying a liquid containing a silane coupling agent to the surface of the matrix, heat treatment or the like is performed so that the silane coupling agent is firmly fixed.
However, for example, when a mold having a silane coupling agent layer formed as a mold release agent on the surface of a fine pattern is repeatedly used as a mold, a large number of members to which a pattern is transferred are produced. The agent may gradually peel from the surface of the fine pattern.
Therefore, the appearance of a silane coupling agent that has a high binding force with the matrix substrate so that such a problem does not occur is expected.

本発明は、上記事情に鑑みてなされたものであり、その第一の課題は基質との結合力の高いシランカップリング剤を提供することにある。さらに第二の課題は耐熱性、離型性、及び防汚性の良好な、特に350℃以上の温度においても、これら化合物による改質表面接触角の低下が見られない等の優れた物性を有するシランカップリング剤を提供することにある。   The present invention has been made in view of the above circumstances, and a first object thereof is to provide a silane coupling agent having a high binding force with a substrate. Further, the second problem is excellent physical properties such as good heat resistance, releasability, and antifouling properties, such as no deterioration of the contact angle of the modified surface due to these compounds even at a temperature of 350 ° C. or higher. It is in providing the silane coupling agent which has.

本発明者等は、特定の一般式で表されるビフェニルアルキル基を有するシランカップリング剤によれば上記課題を解決できることを見出し、本発明を完成させた。より具体的には、本発明は下記のとおりである。   The present inventors have found that the above problems can be solved by a silane coupling agent having a biphenylalkyl group represented by a specific general formula, and have completed the present invention. More specifically, the present invention is as follows.

[1] 下記一般式(1)で表されるビフェニルアルキル基を有するシランカップリング剤。

Figure 2011184304
(式(1)中、RfはF(CFのペルフルオロアルキル基を示し、mは4〜14の整数を示し、nは3〜4の整数を示し、Xはハロゲン原子又はイソシアナト基を示す。) [1] A silane coupling agent having a biphenylalkyl group represented by the following general formula (1).
Figure 2011184304
(In the formula (1), Rf represents a perfluoroalkyl group of F (CF 2 ) m , m represents an integer of 4 to 14, n represents an integer of 3 to 4, and X represents a halogen atom or an isocyanate group. Show.)

[2] 下記一般式(2)

Figure 2011184304
で表される4,4’−ジブロモビフェニルを、下記式(3)
Figure 2011184304
(式(3)中、RfはF(CFのペルフルオロアルキル基を示し、mは4〜14の整数を示す。)
で表されるペルフルオロアルキルヨージドと極性溶媒中で、銅ブロンズ粉触媒を用いて反応させて、下記一般式(4)
Figure 2011184304
で表される4−ペルフルオロアルキル−4’−ブロモビフェニルを合成し、
次いで、該4−ペルフルオロアルキル−4’−ブロモビフェニルを、下記式(5)
Figure 2011184304
(式(5)中、yは1〜2の整数を示す。)
で表されるアルケニルブロミドと極性溶媒中で、ヨウ化銅触媒を用いて反応させて、下記一般式(6)
Figure 2011184304
で表される4−ペルフルオロアルキル−4’−アルケニルビフェニルを合成し、
次いで、該4−ペルフルオロアルキル−4’−アルケニルビフェニルを、下記式(7)
Figure 2011184304
(式(7)中、Yはハロゲン原子を示す。)
で表されるトリハロゲン化シランと有機溶媒中で、塩化白金酸触媒を用いて反応させて、下記一般式(8)
Figure 2011184304
(式(8)中、nは3〜4の整数を示す。)
で表される(4−ペルフルオロアルキルビフェニル)アルキルトリハロゲン化シランを得る、シランカップリング剤の製造方法。 [2] The following general formula (2)
Figure 2011184304
4,4′-dibromobiphenyl represented by the following formula (3)
Figure 2011184304
(In the formula (3), Rf represents a perfluoroalkyl group of F (CF 2 ) m , and m represents an integer of 4 to 14.)
Is reacted with a perfluoroalkyl iodide represented by the following formula (4) using a copper bronze powder catalyst:
Figure 2011184304
4-perfluoroalkyl-4′-bromobiphenyl represented by the formula:
Subsequently, the 4-perfluoroalkyl-4′-bromobiphenyl is represented by the following formula (5):
Figure 2011184304
(In formula (5), y represents an integer of 1 to 2)
Is reacted with a copper iodide catalyst in a polar solvent with a alkenyl bromide represented by the following general formula (6):
Figure 2011184304
4-perfluoroalkyl-4′-alkenylbiphenyl represented by the formula:
Subsequently, the 4-perfluoroalkyl-4′-alkenylbiphenyl is represented by the following formula (7):
Figure 2011184304
(In formula (7), Y represents a halogen atom.)
Is reacted with a trihalogenated silane represented by the formula (8) in an organic solvent using a chloroplatinic acid catalyst.
Figure 2011184304
(In formula (8), n represents an integer of 3 to 4.)
The manufacturing method of the silane coupling agent which obtains (4-perfluoroalkyl biphenyl) alkyl trihalogenated silane represented by these.

[3] 下記一般式(8)

Figure 2011184304
(式(8)中、RfはF(CFのペルフルオロアルキル基を示し、mは4〜14の整数を示し、nは3〜4の整数を示し、Yはハロゲン原子を示す。)
で表される(4−ペルフルオロアルキルビフェニル)アルキルトリハロゲン化シランを有機溶媒中で、シアン酸銀と反応させて、下記式(9)
Figure 2011184304
で表される4−ペルフルオロアルキルビフェニル)アルキルトリイソシアナトシランを得る、シランカップリング剤の製造方法。 [3] The following general formula (8)
Figure 2011184304
(In the formula (8), Rf represents a perfluoroalkyl group of F (CF 2 ) m , m represents an integer of 4 to 14, n represents an integer of 3 to 4, and Y represents a halogen atom.)
(4-perfluoroalkylbiphenyl) alkyltrihalogenated silane represented by the following formula (9) is reacted with silver cyanate in an organic solvent.
Figure 2011184304
A process for producing a silane coupling agent to obtain 4-perfluoroalkylbiphenyl) alkyltriisocyanatosilane represented by the formula:

[4] 下記一般式(1)で表されるシランカップリング剤と溶剤とを含む離型剤。

Figure 2011184304
(式(1)中、RfはF(CFのペルフルオロアルキル基を示し、mは4〜14の整数を示し、nは3〜4の整数を示し、Xはハロゲン原子又はイソシアナト基を示す。) [4] A mold release agent containing a silane coupling agent represented by the following general formula (1) and a solvent.
Figure 2011184304
(In the formula (1), Rf represents a perfluoroalkyl group of F (CF 2 ) m , m represents an integer of 4 to 14, n represents an integer of 3 to 4, and X represents a halogen atom or an isocyanate group. Show.)

本発明のシランカップリング剤は、基質との結合力が高く、しかも350℃以上の雰囲気に4時間以上曝露しても、これら化合物による改質表面の接触角の低下が見られないというほどの優れた耐熱性、離型性、及び防汚性を有するものであり、格別の効果と有用性を有する。   The silane coupling agent of the present invention has a high binding force to the substrate, and even when exposed to an atmosphere of 350 ° C. or higher for 4 hours or longer, the contact angle of the modified surface due to these compounds is not reduced. It has excellent heat resistance, releasability, and antifouling properties, and has exceptional effects and usefulness.

8F2PBのNMRスペクトルである(実施例1)。It is a NMR spectrum of 8F2PB (Example 1). 8F2PBのIRスペクトルである(実施例1)。It is IR spectrum of 8F2PB (Example 1). 8F2PBのMassスペクトルである(実施例1)。It is a mass spectrum of 8F2PB (Example 1). 8F2PAのNMRスペクトルである(実施例1)。It is a NMR spectrum of 8F2PA (Example 1). 8F2PAのIRスペクトルである(実施例1)。It is IR spectrum of 8F2PA (Example 1). 8F2PAのMassスペクトルである(実施例1)。It is a mass spectrum of 8F2PA (Example 1). 10F2PBのNMRスペクトルである(実施例3)。It is a NMR spectrum of 10F2PB (Example 3). 10F2PBのIRスペクトルである(実施例3)。It is IR spectrum of 10F2PB (Example 3). 10F2PBのMassスペクトルである(実施例3)。It is a mass spectrum of 10F2PB (Example 3). 10F2PAのNMRスペクトルである(実施例3)。It is a NMR spectrum of 10F2PA (Example 3). 10F2PAのIRスペクトルである(実施例3)。It is IR spectrum of 10F2PA (Example 3). 10F2PAのMassスペクトルである(実施例3)。It is a mass spectrum of 10F2PA (Example 3). 10F2P3S3CのIRスペクトルである(実施例3)。It is IR spectrum of 10F2P3S3C (Example 3). 10F2P3S3IのIRスペクトルである(実施例4)。It is IR spectrum of 10F2P3S3I (Example 4).

本発明のシランカップリング剤は下記一般式(1)で表されるものである。   The silane coupling agent of the present invention is represented by the following general formula (1).

Figure 2011184304
(式(1)中、RfはF(CFのペルフルオロアルキル基を示し、mは4〜14の整数を示し、nは3〜4の整数を示し、Xはハロゲン原子又はイソシアナト基を示す。)
Figure 2011184304
(In the formula (1), Rf represents a perfluoroalkyl group of F (CF 2 ) m , m represents an integer of 4 to 14, n represents an integer of 3 to 4, and X represents a halogen atom or an isocyanate group. Show.)

上記一般式(1)で表されるシランカップリング剤のうち、Xがハロゲン原子であるものは、下記のようにして製造することができる。   Among the silane coupling agents represented by the general formula (1), those in which X is a halogen atom can be produced as follows.

すなわち、下記一般式(2)

Figure 2011184304
で表される4,4’−ジブロモビフェニルを、下記式(3)
Figure 2011184304
(式(3)中、RfはF(CFのペルフルオロアルキル基を示し、mは4〜14の整数を示す。)
で表されるペルフルオロアルキルヨージドと極性溶媒中で、銅ブロンズ粉触媒を用いて反応させて、下記一般式(4)
Figure 2011184304
で表される4−ペルフルオロアルキル−4’−ブロモビフェニルを合成し、
次いで、該4−ペルフルオロアルキル−4’−ブロモビフェニルを、下記式(5)
Figure 2011184304
(式(5)中、yは1〜2の整数を示す。)
で表されるアルケニルブロミドと極性溶媒中で、ヨウ化銅触媒を用いて反応させて、下記一般式(6)
Figure 2011184304
で表される4−ペルフルオロアルキル−4’−アルケニルビフェニルを合成し、
次いで、該4−ペルフルオロアルキル−4’−アルケニルビフェニルを、下記式(7)
Figure 2011184304
(式(7)中、Yはハロゲン原子を示す。)
で表されるトリハロゲン化シランと有機溶媒中で、塩化白金酸触媒を用いて反応させることにより、下記一般式(8)
Figure 2011184304
(式(8)中、nは3〜4の整数を示す。)
で表される本発明の(4−ペルフルオロアルキルビフェニル)アルキルトリハロゲン化シランを得ることができる。 That is, the following general formula (2)
Figure 2011184304
4,4′-dibromobiphenyl represented by the following formula (3)
Figure 2011184304
(In the formula (3), Rf represents a perfluoroalkyl group of F (CF 2 ) m , and m represents an integer of 4 to 14.)
Is reacted with a perfluoroalkyl iodide represented by the following formula (4) using a copper bronze powder catalyst:
Figure 2011184304
4-perfluoroalkyl-4′-bromobiphenyl represented by the formula:
Subsequently, the 4-perfluoroalkyl-4′-bromobiphenyl is represented by the following formula (5):
Figure 2011184304
(In formula (5), y represents an integer of 1 to 2)
Is reacted with a copper iodide catalyst in a polar solvent with a alkenyl bromide represented by the following general formula (6):
Figure 2011184304
4-perfluoroalkyl-4′-alkenylbiphenyl represented by the formula:
Subsequently, the 4-perfluoroalkyl-4′-alkenylbiphenyl is represented by the following formula (7):
Figure 2011184304
(In formula (7), Y represents a halogen atom.)
In the organic solvent with a trihalogenated silane represented by the following general formula (8)
Figure 2011184304
(In formula (8), n represents an integer of 3 to 4.)
The (4-perfluoroalkylbiphenyl) alkyltrihalogenated silane of the present invention represented by

また、上記一般式(1)で表されるシランカップリング剤のうち、Xがイソシアナト基であるものは、下記のようにして製造することができる。   Moreover, among the silane coupling agents represented by the general formula (1), those in which X is an isocyanato group can be produced as follows.

すなわち、上記(4−ペルフルオロアルキルビフェニル)アルキルトリハロゲン化シランを有機溶媒中で、シアン酸銀と反応させることにより、下記式(9)

Figure 2011184304
で表される本発明の4−ペルフルオロアルキルビフェニル)アルキルトリイソシアナトシランを得ることができる。 That is, by reacting the (4-perfluoroalkylbiphenyl) alkyltrihalogenated silane with silver cyanate in an organic solvent, the following formula (9)
Figure 2011184304
4-perfluoroalkylbiphenyl) alkyltriisocyanatosilane of the present invention represented by

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these Examples.

[実施例1]
F(CF(CCHCHCHSiCl[8F2P3S3C]の合成
[Example 1]
Synthesis of F (CF 2 ) 8 (C 6 H 4 ) 2 CH 2 CH 2 CH 2 SiCl 3 [8F2P3S3C]

・F(CF(CBr[8F2PB]の合成

Figure 2011184304
Synthesis of F (CF 2 ) 8 (C 6 H 4 ) 2 Br [8F2PB]
Figure 2011184304

500mlナス型フラスコを窒素雰囲気に置換し、銅ブロンズ粉63.6g(1.0mol)、4,4’−ジブロモビフェニル62.4g(200mmol)、ペルフルオロオクチルヨージド115g(210mmol)、溶媒としてジメチルスルホキシド(DMSO)300mlを加え、140℃で40時間加熱撹拌した。溶液を室温まで冷却し、吸引濾過により過剰の銅粉と白色固体(粗製8F2PB)とを濾別し、DMSOで洗浄した。続いて酢酸エチルを溶媒に用い、銅粉と白色固体の混合物とをソックスレー抽出し、粗製8F2PBを得た。抽出液を飽和食塩水で洗浄し、さらに抽出液を硫酸マグネシウムで脱水し、酢酸エチルを減圧除去した。残留物を減圧蒸留して、留出物を得た。
得られた留出物についてMassスペクトルを分析した結果、m/z(分子量)651により、8F2PBであると同定した。NMR、IR、Massの各スペクトルを図1、図2、図3に示す。
The 500 ml eggplant type flask was replaced with a nitrogen atmosphere, copper bronze powder 63.6 g (1.0 mol), 4,4′-dibromobiphenyl 62.4 g (200 mmol), perfluorooctyl iodide 115 g (210 mmol), dimethyl sulfoxide as a solvent (DMSO) 300 ml was added, and the mixture was heated and stirred at 140 ° C. for 40 hours. The solution was cooled to room temperature, excess copper powder and white solid (crude 8F2PB) were filtered off by suction filtration and washed with DMSO. Subsequently, using ethyl acetate as a solvent, a mixture of copper powder and white solid was subjected to Soxhlet extraction to obtain crude 8F2PB. The extract was washed with saturated brine, and the extract was dehydrated with magnesium sulfate, and ethyl acetate was removed under reduced pressure. The residue was distilled under reduced pressure to obtain a distillate.
As a result of analyzing a Mass spectrum for the obtained distillate, it was identified as 8F2PB by m / z (molecular weight) 651. Each spectrum of NMR, IR, and Mass is shown in FIG. 1, FIG. 2, and FIG.

収量 68.0g(104mmol)
収率 52%
沸点 130−135℃/30Pa
性状 白色固体
Yield 68.0 g (104 mmol)
Yield 52%
Boiling point 130-135 ° C / 30Pa
Property White solid

・F(CF(CCHCH=CH[8F2PA]の合成

Figure 2011184304
Synthesis of F (CF 2 ) 8 (C 6 H 4 ) 2 CH 2 CH═CH 2 [8F2PA]
Figure 2011184304

1Lナス型フラスコを窒素置換し、氷冷下に冷却した後、2.76M n−ブチルリチウム ヘキサン溶液32.6ml(90.0mmol)を加え、続いて0.77M i−プロピルマグネシウムブロミド/THF溶液58.4ml(45.0mmol)を加え、氷冷下で1時間撹拌した。その後、750mlのジエチルエーテルに溶解させた8F2PB 19.5gg(30.0mmol)を滴下し、氷冷下で1時間撹拌した。触媒としてヨウ化銅2.0g(10.5mmol)を加えた後、アリルブロミド18.2g(150mmol)を滴下し、室温で67時間撹拌後、飽和塩化アンモニウム水溶液を沈殿が生じなくなるまで加え、反応を止めた。反応溶液を酢酸エチルで抽出し、有機層を硫酸マグネシウムで脱水後、溶媒を減圧留去した。得られた黄色固体を減圧蒸留し、さらにヘキサンを展開溶剤としてシリカゲルカラムクトマトグラフィー(ワコーゲルC−300)により精製した。
Massスペクトルを分析した結果、m/z(分子量)612により、8F2PAであると同定した。NMR、IR、Massの各スペクトルを図4、図5、図6に示す。
The 1 L eggplant-shaped flask was purged with nitrogen and cooled under ice cooling, followed by addition of 32.6 ml (90.0 mmol) of a 2.76 M n-butyllithium hexane solution, followed by a 0.77 M i-propylmagnesium bromide / THF solution. 58.4 ml (45.0 mmol) was added, and the mixture was stirred for 1 hour under ice cooling. Thereafter, 19.5 mg (30.0 mmol) of 8F2PB dissolved in 750 ml of diethyl ether was added dropwise, and the mixture was stirred for 1 hour under ice cooling. After adding 2.0 g (10.5 mmol) of copper iodide as a catalyst, 18.2 g (150 mmol) of allyl bromide was dropped, and after stirring at room temperature for 67 hours, a saturated aqueous solution of ammonium chloride was added until no precipitation occurred. Stopped. The reaction solution was extracted with ethyl acetate, the organic layer was dehydrated with magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained yellow solid was distilled under reduced pressure, and further purified by silica gel column chromatography (Wakogel C-300) using hexane as a developing solvent.
As a result of analyzing the mass spectrum, it was identified as 8F2PA by m / z (molecular weight) 612. Each spectrum of NMR, IR, and Mass is shown in FIG. 4, FIG. 5, and FIG.

収量 14.7g(24.0mmol)
収率 80%
沸点 130−135℃/20Pa
性状 白色固体
Yield 14.7 g (24.0 mmol)
Yield 80%
Boiling point 130-135 ° C / 20Pa
Property White solid

・F(CF(CCHCHCHSiCl[8F2P3S3C]の合成

Figure 2011184304
Synthesis of F (CF 2 ) 8 (C 6 H 4 ) 2 CH 2 CH 2 CH 2 SiCl 3 [8F2P3S3C]
Figure 2011184304

100ml肉厚ガラスアンプル管に撹拌子を入れ、ここに8F2PA 2.00g(3.27mmol)、THF10mlを採取し、窒素雰囲気に置換し、外部を液体窒素で冷却し、トリクロロシラン1.0g(8.2mmol)、触媒の0.1M HPtCl/THF溶液0.1ml(0.01mmol)を採取した。アンプル管内部の試薬類を完全に固化させた後、真空ポンプを用いて40Paに減圧し、その状態で酸素バーナーにてガラスアンプル管を溶封した。これを室温に戻した後、80℃で2時間、さらに100℃で20時間撹拌した。放冷後開管し、生じた黒色粉末状沈殿(Pt)を濾別除去した。濾液中からTHF、トリメクロロシランを減圧留去した。
得られた化合物についてMassスペクトルを分析した結果、m/z(分子量)747により、8F2P3S3Cであると同定した。また、NMRスペクトルをとったところ、実施例3の10F2P3S3Cのものとほぼ同じであった。
A stirrer was placed in a 100 ml thick glass ampule tube, and 2.00 g (3.27 mmol) of 8F2PA and 10 ml of THF were collected therein, and the atmosphere was replaced with a nitrogen atmosphere. The outside was cooled with liquid nitrogen, and 1.0 g of trichlorosilane (8 g 0.2 mmol), 0.1 ml (0.01 mmol) of 0.1 M H 2 PtCl 6 / THF solution of the catalyst was collected. After the reagents in the ampule tube were completely solidified, the pressure was reduced to 40 Pa using a vacuum pump, and in that state, the glass ampule tube was sealed with an oxygen burner. After returning to room temperature, the mixture was stirred at 80 ° C. for 2 hours and further at 100 ° C. for 20 hours. After standing to cool, the tube was opened, and the resulting black powdery precipitate (Pt) was removed by filtration. THF and trimechlorosilane were distilled off from the filtrate under reduced pressure.
As a result of analyzing a mass spectrum for the obtained compound, it was identified as 8F2P3S3C by m / z (molecular weight) 747. Moreover, when the NMR spectrum was taken, it was substantially the same as that of 10F2P3S3C of Example 3.

収量 2.32g
収率 95%
性状 白色固体
Yield 2.32g
Yield 95%
Property White solid

[実施例2]
F(CF(CCHCHCHSi(NCO)[8F2P3S3I]の合成

Figure 2011184304
[Example 2]
Synthesis of F (CF 2 ) 8 (C 6 H 4 ) 2 CH 2 CH 2 CH 2 Si (NCO) 3 [8F2P3S3I]
Figure 2011184304

実施例1で得られた8F2P3S3C 2.0g(2.7mmol)を100mlナスフラスコに取り、THF20mlに溶解し、シアン酸銀2.00g(13.3mmol)を加えて沸点で撹拌し、加熱還流操作を5時間行った。室温まで冷却し、生じた塩化銀、未反応のシアン酸銀を濾別除去した。濾液中の揮発成分を減圧除去した。
Massスペクトルを分析した結果、m/z(分子量)767により、8F2P3S3Iであると同定した。また、NMRスペクトルをとったところ、実施例4の10F2P3S3Iのものとほぼ同じであった。
Take 8F2P3S3C (2.0 g, 2.7 mmol) obtained in Example 1 in a 100 ml eggplant flask, dissolve in 20 ml of THF, add 2.00 g (13.3 mmol) of silver cyanate, stir at the boiling point, and heat to reflux. For 5 hours. After cooling to room temperature, the resulting silver chloride and unreacted silver cyanate were removed by filtration. Volatile components in the filtrate were removed under reduced pressure.
As a result of analyzing the Mass spectrum, it was identified as 8F2P3S3I by m / z (molecular weight) 767. Moreover, when the NMR spectrum was taken, it was almost the same as that of 10F2P3S3I of Example 4.

収量 1.97g(2.5mmol)
収率 93%
性状 白色固体
Yield 1.97 g (2.5 mmol)
Yield 93%
Property White solid

[実施例3]
F(CF10(CCHCHCHSiCl[10F2P3S3C]の合成
[Example 3]
Synthesis of F (CF 2 ) 10 (C 6 H 4 ) 2 CH 2 CH 2 CH 2 SiCl 3 [10F2P3S3C]

・F(CF10(CBr[10F2PB]の合成

Figure 2011184304
Synthesis of F (CF 2 ) 10 (C 6 H 4 ) 2 Br [10F2PB]
Figure 2011184304

500mlナス型フラスコを窒素雰囲気に置換し、銅ブロンズ粉63.6g(1.0mol)、4,4’−ジブロモビフェニル64.0g(205mmol)、ペルフルオロデシルヨージド137g(212mmol)、溶媒としてDMSO350mlを加えた後、140℃で40時間加熱撹拌した。溶液を室温まで冷却し、吸引濾過により過剰の銅粉と白色固体(粗製10F2PB)とを濾別し、DMSOで洗浄した。続いて酢酸エチルを溶媒に用い、銅粉と白色固体との混合物をソックスレー抽出し、粗製10F2PBを得た。抽出液を飽和食塩水で洗浄し、さらに抽出液を硫酸マグネシウムで脱水し、酢酸エチルを減圧除去した。残留物を減圧蒸留し、さらにクロロホルム可溶部からクロロホルムを減圧除去し、白色固体として10F2PBを得た。
Massスペクトルを分析した結果、m/z(分子量)751により、10F2PBであると同定した。NMR、IR、Massの各スペクトルを図7、図8、図9に示す。
The 500 ml eggplant type flask was replaced with a nitrogen atmosphere, and copper bronze powder 63.6 g (1.0 mol), 4,4′-dibromobiphenyl 64.0 g (205 mmol), perfluorodecyl iodide 137 g (212 mmol), DMSO 350 ml as a solvent. After the addition, the mixture was heated and stirred at 140 ° C. for 40 hours. The solution was cooled to room temperature, excess copper powder and white solid (crude 10F2PB) were filtered off by suction filtration and washed with DMSO. Subsequently, using ethyl acetate as a solvent, a mixture of copper powder and white solid was subjected to Soxhlet extraction to obtain crude 10F2PB. The extract was washed with saturated brine, and the extract was dehydrated with magnesium sulfate, and ethyl acetate was removed under reduced pressure. The residue was distilled under reduced pressure, and further, chloroform was removed under reduced pressure from the chloroform soluble portion to obtain 10F2PB as a white solid.
As a result of analyzing the Mass spectrum, it was identified as 10F2PB by m / z (molecular weight) 751. Each spectrum of NMR, IR, and Mass is shown in FIG. 7, FIG. 8, and FIG.

収量 59.4g(79.1mmol)
収率 39%
沸点 140−145℃/15Pa
性状 白色固体
Yield 59.4 g (79.1 mmol)
Yield 39%
Boiling point 140-145 ° C / 15Pa
Property White solid

・F(CF10(CCHCH=CH[10F2PA]の合成

Figure 2011184304
Synthesis of F (CF 2 ) 10 (C 6 H 4 ) 2 CH 2 CH═CH 2 [10F2PA]
Figure 2011184304

1Lナス型フラスコを窒素置換し、氷冷下に冷却した後、2.76M n−ブチルリチウム ヘキサン溶液30.6ml(84.5mmol)を加え、続いて0.77M i−プロピルマグネシウムブロミド/THF溶液52.6ml(40.5mmol)を加え、氷冷下で1時間撹拌した。その後、750mlのジエチルエーテルに溶解させた10F2PB 21.0gg(27.9mmol)を滴下し、氷冷下で1時間撹拌した。触媒としてヨウ化銅1.74g(9.14mmol)を加えた後、アリルブロミド26.9g(222mmol)を滴下し、室温で67時間撹拌後、飽和塩化アンモニウム水溶液を沈殿が生じなくなるまで加え、反応を止めた。反応溶液を酢酸エチルで抽出し、有機層を硫酸マグネシウムで脱水後、溶媒を減圧留去した。得られた黄色固体を減圧蒸留し、さらにヘキサンを展開溶剤としてシリカゲルカラムクトマトグラフィー(ワコーゲルC−300)により精製した。
Massスペクトルを分析した結果、m/z(分子量)712により、10F2PAであると同定した。NMR、IR、Massの各スペクトルを図10、図11、図12に示す。
The 1 L eggplant-shaped flask was purged with nitrogen and cooled under ice cooling, followed by addition of 30.6 ml (84.5 mmol) of a 2.76 M n-butyllithium hexane solution, followed by a 0.77 M i-propylmagnesium bromide / THF solution. 52.6 ml (40.5 mmol) was added, and the mixture was stirred for 1 hour under ice cooling. Thereafter, 21.0 g (27.9 mmol) of 10F2PB dissolved in 750 ml of diethyl ether was added dropwise and stirred for 1 hour under ice cooling. After adding 1.74 g (9.14 mmol) of copper iodide as a catalyst, 26.9 g (222 mmol) of allyl bromide was dropped, and after stirring at room temperature for 67 hours, a saturated aqueous solution of ammonium chloride was added until no precipitation occurred. Stopped. The reaction solution was extracted with ethyl acetate, the organic layer was dehydrated with magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained yellow solid was distilled under reduced pressure, and further purified by silica gel column chromatography (Wakogel C-300) using hexane as a developing solvent.
As a result of analyzing the Mass spectrum, it was identified as 10F2PA by m / z (molecular weight) 712. Each spectrum of NMR, IR, and Mass is shown in FIG. 10, FIG. 11, and FIG.

収量 16.5g(23.2mmol)
収率 83%
沸点 115−120℃/15Pa
性状 白色固体
Yield 16.5 g (23.2 mmol)
Yield 83%
Boiling point 115-120 ° C / 15Pa
Property White solid

・F(CF10(CCHCHCHSiCl[10F2P3S3C]の合成

Figure 2011184304
Synthesis of F (CF 2 ) 10 (C 6 H 4 ) 2 CH 2 CH 2 CH 2 SiCl 3 [10F2P3S3C]
Figure 2011184304

100ml肉厚ガラスアンプル管に撹拌子を入れ、ここに10F2PA 2.00g(3.07mmol)、THF10mlを採取し、窒素雰囲気に置換し、外部を液体窒素で冷却し、トリクロロシラン1.0g(8.2mmol)、触媒の0.1M HPtCl/THF溶液0.1ml(0.01mmol)を採取した。アンプル管内部の試薬類を完全に固化させた後、真空ポンプを用いて40Paに減圧し、その状態で酸素バーナーにてガラスアンプル管を溶封した。これを室温に戻した後、80℃で2時間、さらに100℃で20時間撹拌した。放冷後開管し、生じた黒色粉末状沈殿(Pt)を濾別除去した。濾液中からTHF、トリメクロロシランを減圧留去した。 A stirrer was placed in a 100 ml thick glass ampoule tube, and 2.00 g (3.07 mmol) of 10F2PA and 10 ml of THF were collected therein, replaced with a nitrogen atmosphere, the outside was cooled with liquid nitrogen, and 1.0 g of trichlorosilane (8 g 0.2 mmol), 0.1 ml (0.01 mmol) of 0.1 M H 2 PtCl 6 / THF solution of the catalyst was collected. After the reagents in the ampule tube were completely solidified, the pressure was reduced to 40 Pa using a vacuum pump, and in that state, the glass ampule tube was sealed with an oxygen burner. After returning to room temperature, the mixture was stirred at 80 ° C. for 2 hours and further at 100 ° C. for 20 hours. After standing to cool, the tube was opened, and the resulting black powdery precipitate (Pt) was removed by filtration. THF and trimechlorosilane were distilled off from the filtrate under reduced pressure.

得られた化合物についてMassスペクトルを分析した結果、m/z(分子量)847により、10F2P3S3Cであると同定した。
また、10F2P3S3CのIRスペクトルを図13に示す。1100〜1200cm−1の大きな吸収はC−F伸縮振動を示しているが、2290cm−1付近の吸収ピークがなく、−N=C=Oがないことを示している。
また、10F2P3S3CのNMRスペクトルは、以下の通りであった(Hは、下線プロトンの積分比を示す。)。
0.9113−0.9389ppm:多重線 −C −Si 2H
1.8588ppm:多重線 −C −CH−Si 2H
2.7162ppm:多重線 −C −CH−CH−Si 2H
7.2960−7.7147ppm:ベンゼン環プロトン 8H
As a result of analyzing the mass spectrum of the obtained compound, it was identified as 10F2P3S3C by m / z (molecular weight) 847.
FIG. 13 shows the IR spectrum of 10F2P3S3C. Large absorption at 1100 to 1200 cm −1 indicates CF stretching vibration, but there is no absorption peak near 2290 cm −1 , indicating that there is no —N═C═O.
Further, the NMR spectrum of 10F2P3S3C was as follows (H represents the integral ratio of underline protons).
0.9113-0.9389Ppm: multiplet -C H 2 -Si 2H
1.8588Ppm: multiplet -C H 2 -CH 2 -Si 2H
2.7162Ppm: multiplet -C H 2 -CH 2 -CH 2 -Si 2H
7.2960-7.7147 ppm: benzene ring proton 8H

収量 2.35g
収率 98%
性状 白色固体
Yield 2.35g
Yield 98%
Property White solid

[実施例4]
F(CF10(CCHCHCHSi(NCO)[10F2P3S3I]の合成

Figure 2011184304
[Example 4]
Synthesis of F (CF 2 ) 10 (C 6 H 4 ) 2 CH 2 CH 2 CH 2 Si (NCO) 3 [10F2P3S3I]
Figure 2011184304

実施例3で得られた10F2P3S3C 2.30g(2.71mmol)を100mlナスフラスコに取り、THF20mlに溶解し、シアン酸銀2.00g(13.3mmol)を加えて沸点で撹拌し、加熱還流操作を5時間行った。室温まで冷却し、生じた塩化銀、未反応のシアン酸銀を濾別除去した。濾液中の揮発成分を減圧除去した。
得られた化合物についてMassスペクトルを分析した結果、m/z(分子量)867により、10F2P3S3Iであると同定した。
また、10F2P3S3IのIRスペクトルを図14に示す。1100〜1200cm−1の大きな吸収はC−F伸縮振動を示しており、2290cm−1の吸収ピークが−N=C=Oによる特徴的なピークである。
また、10F2P3S3IのNMRスペクトルは、以下の通りであった(Hは、下線プロトンの積分比を示す。)。
0.9199ppm:多重線 −C −Si 2H
1.8439ppm:多重線 −C −CH−Si 2H
2.7115ppm:多重線 −C −CH−CH−Si 2H
7.2935−7.6991ppm:ベンゼン環プロトン 8H
Take 2.30 g (2.71 mmol) of 10F2P3S3C obtained in Example 3 in a 100 ml eggplant flask, dissolve in 20 ml of THF, add 2.00 g (13.3 mmol) of silver cyanate, and stir at the boiling point. For 5 hours. After cooling to room temperature, the resulting silver chloride and unreacted silver cyanate were removed by filtration. Volatile components in the filtrate were removed under reduced pressure.
As a result of analyzing the mass spectrum of the obtained compound, it was identified as 10F2P3S3I by m / z (molecular weight) 867.
FIG. 14 shows the IR spectrum of 10F2P3S3I. Large absorption at 1100 to 1200 cm −1 indicates CF stretching vibration, and an absorption peak at 2290 cm −1 is a characteristic peak due to —N═C═O.
The NMR spectrum of 10F2P3S3I was as follows (H represents the integral ratio of underline protons).
0.9199 ppm: Multiplex -C H 2 -Si 2H
1.8439Ppm: multiplet -C H 2 -CH 2 -Si 2H
2.7115Ppm: multiplet -C H 2 -CH 2 -CH 2 -Si 2H
7.2935-7.6991 ppm: benzene ring proton 8H

収量 2.30g
収率 97%
性状 白色固体
Yield 2.30g
Yield 97%
Property White solid

[実施例5]
F(CF12(CCHCHCHSiCl[12F2P3S3C]の合成
[Example 5]
Synthesis of F (CF 2 ) 12 (C 6 H 4 ) 2 CH 2 CH 2 CH 2 SiCl 3 [12F2P3S3C]

・F(CF12(CBr[12F2PB]の合成

Figure 2011184304
Synthesis of F (CF 2 ) 12 (C 6 H 4 ) 2 Br [12F2PB]
Figure 2011184304

100mlナス型フラスコを窒素雰囲気に置換し、銅ブロンズ粉6.4g(0.1mol)、4,4’−ジブロモビフェニル6.3g(20mmol)、ペルフルオロドデシルヨージド15.7g(21mmol)、溶媒としてDMSO30mlを加え、140℃で40時間加熱撹拌した。溶液を室温まで冷却し、吸引濾過により過剰の銅粉と白色固体12F2PB(粗製)とを濾別し、DMSOで洗浄した。続いて、酢酸エチルを溶媒に用い、銅粉と白色固体との混合物をソックスレー抽出し、粗製12F2PBを得た。抽出した溶液を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを減圧除去した。残留物を減圧蒸留し、さらにクロロホルム可溶部からクロロホルムを減圧除去し、白色固体として12F2PBを得た。
Massスペクトルを分析した結果、m/z(分子量)851により、12F2PBであると同定した。また、NMRスペクトルをとったところ、実施例3の10F2PBのものとほぼ同じであった。
The 100 ml eggplant type flask was replaced with a nitrogen atmosphere, copper bronze powder 6.4 g (0.1 mol), 4,4′-dibromobiphenyl 6.3 g (20 mmol), perfluorododecyl iodide 15.7 g (21 mmol), as a solvent DMSO (30 ml) was added, and the mixture was stirred with heating at 140 ° C. for 40 hours. The solution was cooled to room temperature, excess copper powder and white solid 12F2PB (crude) were filtered off by suction filtration, and washed with DMSO. Subsequently, using ethyl acetate as a solvent, a mixture of copper powder and white solid was subjected to Soxhlet extraction to obtain crude 12F2PB. The extracted solution was washed with saturated brine, dried over magnesium sulfate, and ethyl acetate was removed under reduced pressure. The residue was distilled under reduced pressure, and further chloroform was removed under reduced pressure from the chloroform soluble part to obtain 12F2PB as a white solid.
As a result of analyzing the mass spectrum, it was identified as 12F2PB by m / z (molecular weight) 851. Moreover, when the NMR spectrum was taken, it was almost the same as that of 10F2PB of Example 3.

収量 8.5g(10mmol)
収率 50%
沸点 145−150℃/18Pa
性状 白色固体
Yield 8.5 g (10 mmol)
Yield 50%
Boiling point: 145-150 ° C / 18Pa
Property White solid

・F(CF12(CCHCH=CH[12F2PA]の合成

Figure 2011184304
Synthesis of F (CF 2 ) 12 (C 6 H 4 ) 2 CH 2 CH═CH 2 [12F2PA]
Figure 2011184304

100mlナス型フラスコを窒素置換し、氷冷下に冷却した後、2.76M n−ブチルリチウム ヘキサン溶液3.3ml(9.2mmol)を加え、続いて0.77M i−プロピルマグネシウムブロミド/THF溶液5.8ml(4.5mmol)を加え、氷冷下で1時間撹拌した。その後、20mlのジエチルエーテルに溶解させた12F2PB 2.0g(2.4mmol)を滴下し、氷冷下で1時間撹拌した。触媒としてヨウ化銅0.2g(1.0mmol)を加えた後、アリルブロミド1.3ml(10.7mmol)を滴下し、室温で67時間撹拌後、飽和塩化アンモニウム水溶液を沈殿が生じなくなるまで加え、反応を止めた。反応溶液を酢酸エチルで抽出し、有機層を硫酸マグネシウムで脱水後、溶媒を減圧留去した。得られた黄色固体を減圧蒸留し、さらに展開溶媒にヘキサンを用いたシリカゲルカラムクトマトグラフィー(ワコーゲルC−300)により精製した。
Massスペクトルを分析した結果、m/z(分子量)812により、12F2PAであると同定した。
The 100 ml eggplant type flask was purged with nitrogen, cooled to ice, and then added with 3.3 ml (9.2 mmol) of a 2.76 M n-butyllithium hexane solution, followed by a 0.77 M i-propylmagnesium bromide / THF solution. 5.8 ml (4.5 mmol) was added, and the mixture was stirred for 1 hour under ice cooling. Thereafter, 2.0 g (2.4 mmol) of 12F2PB dissolved in 20 ml of diethyl ether was added dropwise, and the mixture was stirred for 1 hour under ice cooling. After adding 0.2 g (1.0 mmol) of copper iodide as a catalyst, 1.3 ml (10.7 mmol) of allyl bromide was dropped, and after stirring at room temperature for 67 hours, a saturated aqueous ammonium chloride solution was added until no precipitation occurred. Stopped the reaction. The reaction solution was extracted with ethyl acetate, the organic layer was dehydrated with magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained yellow solid was distilled under reduced pressure, and further purified by silica gel column chromatography (Wakogel C-300) using hexane as a developing solvent.
As a result of analyzing the Mass spectrum, it was identified as 12F2PA by m / z (molecular weight) 812.

収量 1.5g(1.85mmol)
収率 80%
沸点 135−140℃/20Pa
性状 白色固体
Yield 1.5 g (1.85 mmol)
Yield 80%
Boiling point 135-140 ° C / 20Pa
Property White solid

・F(CF12(CCHCHCHSiCl[12F2P3S3C]の合成

Figure 2011184304
Synthesis of F (CF 2 ) 12 (C 6 H 4 ) 2 CH 2 CH 2 CH 2 SiCl 3 [12F2P3S3C]
Figure 2011184304

50ml肉厚ガラスアンプル管に撹拌子を入れ、窒素雰囲気に置換し、外部を液体窒素で冷却した状態でTHF20ml、12F2PA 1.00g(1.23mmol)、トリクロロシラン1.0g(7.4mmol)、触媒として0.1M HPtCl/THF溶液0.1ml(0.01mmol)を採取した。アンプル管内部の試薬類を完全に固化させた後、真空ポンプを用いて40Paに減圧し、その状態で酸素バーナーにてガラスアンプル管を溶封した。これを室温に戻した後、80℃で2時間、さらに100℃で20時間撹拌した。放冷後開管し、内容物から黒色粉末状固体(Pt)を濾別除去した。濾液中の揮発成分であるTHF、トリメクロロシランを減圧留去した。
得られた化合物について、Massスペクトルを分析した結果、m/z(分子量)947により、12F2P3S3Cであると同定した。また、NMRスペクトルをとったところ、実施例3の10F2P3S3Cのものとほぼ同じであった。
In a 50 ml thick glass ampoule tube, a stirring bar was placed, and the atmosphere was replaced with a nitrogen atmosphere. With the outside cooled with liquid nitrogen, 20 ml of THF, 1.00 g (1.23 mmol) of 12F2PA, 1.0 g (7.4 mmol) of trichlorosilane, As a catalyst, 0.1 ml (0.01 mmol) of a 0.1 MH 2 PtCl 6 / THF solution was collected. After the reagents in the ampule tube were completely solidified, the pressure was reduced to 40 Pa using a vacuum pump, and in that state, the glass ampule tube was sealed with an oxygen burner. After returning to room temperature, the mixture was stirred at 80 ° C. for 2 hours and further at 100 ° C. for 20 hours. After standing to cool, the tube was opened, and the black powdery solid (Pt) was removed by filtration from the contents. THF and trimechlorosilane which are volatile components in the filtrate were distilled off under reduced pressure.
As a result of analyzing a mass spectrum about the obtained compound, it was identified as 12F2P3S3C by m / z (molecular weight) 947. Moreover, when the NMR spectrum was taken, it was substantially the same as that of 10F2P3S3C of Example 3.

収量 1.05g
収率 90%
性状 白色固体
Yield 1.05g
Yield 90%
Property White solid

[実施例6]
F(CF12(CCHCHCHSi(NCO)[12F2P3S3I]の合成

Figure 2011184304
[Example 6]
Synthesis of F (CF 2) 12 (C 6 H 4) 2 CH 2 CH 2 CH 2 Si (NCO) 3 [12F2P3S3I]
Figure 2011184304

実施例5で得られた12F2P3S3C 1.05g(1.1mmol)を100mlナスフラスコに取り、THF20mlに溶解し、シアン酸銀1.5g(10mmol)を加えて沸点で撹拌し、加熱還流操作を5時間行った。室温まで冷却し、生じた塩化銀、未反応のシアン酸銀を濾別除去した。濾液中の揮発成分を減圧除去した。
得られた化合物についてMassスペクトルを分析した結果、m/z(分子量)967により、12F2P3S3Iであると同定した。また、NMRスペクトルをとったところ、実施例4の10F2P3S3Iのものとほぼ同じであった。
Take 1.05 g (1.1 mmol) of 12F2P3S3C obtained in Example 5 in a 100 ml eggplant flask, dissolve in 20 ml of THF, add 1.5 g (10 mmol) of silver cyanate and stir at the boiling point. Went for hours. After cooling to room temperature, the resulting silver chloride and unreacted silver cyanate were removed by filtration. Volatile components in the filtrate were removed under reduced pressure.
As a result of analyzing a mass spectrum for the obtained compound, it was identified as 12F2P3S3I by m / z (molecular weight) 967. Moreover, when the NMR spectrum was taken, it was almost the same as that of 10F2P3S3I of Example 4.

収量 0.96g
収率 90%
性状 白色固体
Yield 0.96g
Yield 90%
Property White solid

[実施例7]
以下に、物性の測定について詳述する。物性の測定は、基質として、ガラスを用いて行った。
(ガラスの洗浄)
スライドガラス(マツナミ製S−7214)を1N水酸化カリウム水溶液(pH>9)に2時間浸した後に取り出し、蒸留水で十分に洗浄した。その後、スライドガラスをデシケーター中で乾燥し、次の表面改質に使用した。
(改質溶液の調製)
実施例4で合成した10F2P3S3Iのシランカップリング剤を用い、THFを溶媒とした3%溶液を準備した。
(ガラスの表面改質)
200ml広口受器に前記の方法で洗浄済みのスライドガラスを入れ、窒素置換を行った。これに対して、上記の改質溶液を広口受器に加え、改質溶液中にスライドガラスを完全に浸し、7時間加熱還流を行った。冷却後、取り出したガラスをTHFで洗浄し、さらに室温で水に5分間浸漬した後、室温で一昼夜自然乾燥した。
[Example 7]
Below, the measurement of a physical property is explained in full detail. The physical properties were measured using glass as a substrate.
(Washing glass)
A slide glass (manufactured by Matsunami S-7214) was immersed in a 1N aqueous potassium hydroxide solution (pH> 9) for 2 hours and then taken out and washed thoroughly with distilled water. Thereafter, the slide glass was dried in a desiccator and used for the next surface modification.
(Preparation of modified solution)
Using the 10F2P3S3I silane coupling agent synthesized in Example 4, a 3% solution using THF as a solvent was prepared.
(Surface modification of glass)
The glass slide that had been washed by the above method was placed in a 200 ml wide-mouth receiver, and nitrogen substitution was performed. On the other hand, the above-mentioned modified solution was added to the wide-mouth receiver, the slide glass was completely immersed in the modified solution, and heated and refluxed for 7 hours. After cooling, the taken out glass was washed with THF, further immersed in water at room temperature for 5 minutes, and then naturally dried overnight at room temperature.

(改質ガラスの接触角の測定)
シランカップリング剤として用いた10F2P3S3Iの改質ガラスに対する水の接触角を測定した。接触角の測定は、ニック製LSE−B100L型接触角測定装置を使用し、0.9μlの水滴を水平なガラス板上に滴下して接触角を測定する液滴法を用いた。
(Measurement of contact angle of modified glass)
The contact angle of water with respect to the modified glass of 10F2P3S3I used as the silane coupling agent was measured. The contact angle was measured by using a droplet method in which a contact angle was measured by dropping 0.9 μl of water droplets onto a horizontal glass plate using a LSE-B100L contact angle measuring device manufactured by Nick.

(10F2P3S3Iを用いた改質ガラスの耐熱性試験)
上記改質ガラスそのものの接触角は115.1度であった。
次に、上記改質ガラスを130℃にて30分間のキュアリングを行ったものの接触角は、111.7度であった。
引き続いて、350℃で30分間の熱暴露を行ってから接触角を測定したところ、107.4度であり、耐熱性があることが分かった。
さらに続けて、350℃で120分間の熱暴露を行ってから接触角を測定したところ、96.7度であった(ここまでで、350℃での熱暴露合計時間は2時間30分である)。
続けて、350℃にて60分間の熱暴露を行ってから接触角を測定したところ、90.9度であった(ここまでで、350℃の熱暴露合計時間は合計3時間30分である)。
以上の接触角の値の変化状況から、10F2P3S3Iは十分耐熱性があり、また、接触角のデータは満足できる離型性があると言える。
(Heat resistance test of modified glass using 10F2P3S3I)
The contact angle of the modified glass itself was 115.1 degrees.
Next, the modified glass was cured at 130 ° C. for 30 minutes, and the contact angle was 111.7 degrees.
Subsequently, when the contact angle was measured after heat exposure at 350 ° C. for 30 minutes, it was found to be 107.4 degrees and heat resistance.
Further, when the contact angle was measured after 120 minutes of heat exposure at 350 ° C., it was 96.7 degrees (so far, the total heat exposure time at 350 ° C. is 2 hours 30 minutes. ).
Subsequently, when the contact angle was measured after 60 minutes of heat exposure at 350 ° C., it was 90.9 degrees (so far, the total heat exposure time at 350 ° C. is 3 hours 30 minutes. ).
From the above changes in the value of the contact angle, it can be said that 10F2P3S3I has sufficient heat resistance, and that the contact angle data has satisfactory releasability.

以上のデータに示した水との接触角が高いということは、表面自由エネルギーが低いことを示しており、離型性及び防汚性が高いことを示している。
なお、具体的なデータは示さないが、特開2004−107274号公報と同様に、本発明のシランカップリング剤は、耐酸性、耐酸化性も高いものである。
The high contact angle with water shown in the above data indicates that the surface free energy is low, indicating that the releasability and antifouling properties are high.
Although specific data is not shown, the silane coupling agent of the present invention has high acid resistance and oxidation resistance as in JP-A-2004-107274.

以上説明したように、本発明のペルフルオロアルキル基及びビフェニルアルキル基を有するシランカップリング剤は、耐熱性、耐久性、離型性、及び防汚性がいずれも高いものである。
また、特に、NCO基及びハロゲン基は基質の水酸基との結合性が高いことから、改質表面がモノレーヤー(分子一層)であることも加わって、精密な離型処理が可能な優れた耐熱耐久離型剤として、一般の離型剤としてばかりでなく、ミクロなパターニングを施したSOGのようなシリコン材料、グラシーカーボンのような炭素材料、金属、石英、ニッケル電鋳等に最も適した離型剤となり得る上に、繰り返し転写しても離型剤の剥離を生じない利点を有するものである。
また、近い将来大きな発展が見込まれるナノインプリント用耐熱耐久離型剤として、現段階では最も優れた離型剤となる。
もちろん、耐熱性の高い撥水撥油性表面改質剤として、例えば、電子レンジ内でも使用可能な防汚性のガラス容器等の表面改質剤として使用できる。
また、いずれのシランカップリング剤も、基質や粉体の表面に使用でき、それらの表面を改質できるものである。
さらに、融点が300℃以上の耐熱性プラスチック、エンジニアリングプラスチックス等に対する離型剤、カップリング剤として格別の効果と有用性を有するものである。
As described above, the silane coupling agent having a perfluoroalkyl group and a biphenylalkyl group of the present invention has high heat resistance, durability, releasability, and antifouling properties.
In particular, since NCO groups and halogen groups have high bonding properties with the hydroxyl groups of the substrate, the modified surface is a monolayer (single molecule), and has excellent heat resistance and durability that enables precise mold release treatment. Not only as a general mold release agent, but also as a mold release agent, it is most suitable for micropatterned silicon materials such as SOG, carbon materials such as glassy carbon, metals, quartz, nickel electroforming, etc. In addition to being a mold agent, it has the advantage that the release agent does not peel off even if it is repeatedly transferred.
Moreover, as a heat-resistant and durable mold release agent for nanoimprint, which is expected to develop greatly in the near future, it is the most excellent mold release agent at this stage.
Of course, it can be used as a water- and oil-repellent surface modifier having high heat resistance, for example, as a surface modifier such as an antifouling glass container that can be used in a microwave oven.
In addition, any silane coupling agent can be used on the surface of a substrate or powder, and the surface can be modified.
Furthermore, it has a special effect and usefulness as a release agent and coupling agent for heat-resistant plastics and engineering plastics having a melting point of 300 ° C. or higher.

Claims (4)

下記一般式(1)で表されるビフェニルアルキル基を有するシランカップリング剤。
Figure 2011184304
(式(1)中、RfはF(CFのペルフルオロアルキル基を示し、mは4〜14の整数を示し、nは3〜4の整数を示し、Xはハロゲン原子又はイソシアナト基を示す。)
A silane coupling agent having a biphenylalkyl group represented by the following general formula (1).
Figure 2011184304
(In the formula (1), Rf represents a perfluoroalkyl group of F (CF 2 ) m , m represents an integer of 4 to 14, n represents an integer of 3 to 4, and X represents a halogen atom or an isocyanate group. Show.)
下記一般式(2)
Figure 2011184304
で表される4,4’−ジブロモビフェニルを、下記式(3)
Figure 2011184304
(式(3)中、RfはF(CFのペルフルオロアルキル基を示し、mは4〜14の整数を示す。)
で表されるペルフルオロアルキルヨージドと極性溶媒中で、銅ブロンズ粉触媒を用いて反応させて、下記一般式(4)
Figure 2011184304
で表される4−ペルフルオロアルキル−4’−ブロモビフェニルを合成し、
次いで、該4−ペルフルオロアルキル−4’−ブロモビフェニルを、下記式(5)
Figure 2011184304
(式(5)中、yは1〜2の整数を示す。)
で表されるアルケニルブロミドと極性溶媒中で、ヨウ化銅触媒を用いて反応させて、下記一般式(6)
Figure 2011184304
で表される4−ペルフルオロアルキル−4’−アルケニルビフェニルを合成し、
次いで、該4−ペルフルオロアルキル−4’−アルケニルビフェニルを、下記式(7)
Figure 2011184304
(式(7)中、Yはハロゲン原子を示す。)
で表されるトリハロゲン化シランと有機溶媒中で、塩化白金酸触媒を用いて反応させて、下記一般式(8)
Figure 2011184304
(式(8)中、nは3〜4の整数を示す。)
で表される(4−ペルフルオロアルキルビフェニル)アルキルトリハロゲン化シランを得る、シランカップリング剤の製造方法。
The following general formula (2)
Figure 2011184304
4,4′-dibromobiphenyl represented by the following formula (3)
Figure 2011184304
(In the formula (3), Rf represents a perfluoroalkyl group of F (CF 2 ) m , and m represents an integer of 4 to 14.)
Is reacted with a perfluoroalkyl iodide represented by the following formula (4) using a copper bronze powder catalyst:
Figure 2011184304
4-perfluoroalkyl-4′-bromobiphenyl represented by the formula:
Subsequently, the 4-perfluoroalkyl-4′-bromobiphenyl is represented by the following formula (5):
Figure 2011184304
(In formula (5), y represents an integer of 1 to 2)
Is reacted with a copper iodide catalyst in a polar solvent with a alkenyl bromide represented by the following general formula (6):
Figure 2011184304
4-perfluoroalkyl-4′-alkenylbiphenyl represented by the formula:
Subsequently, the 4-perfluoroalkyl-4′-alkenylbiphenyl is represented by the following formula (7):
Figure 2011184304
(In formula (7), Y represents a halogen atom.)
Is reacted with a trihalogenated silane represented by the formula (8) in an organic solvent using a chloroplatinic acid catalyst.
Figure 2011184304
(In formula (8), n represents an integer of 3 to 4.)
The manufacturing method of the silane coupling agent which obtains (4-perfluoroalkyl biphenyl) alkyl trihalogenated silane represented by these.
下記一般式(8)
Figure 2011184304
(式(8)中、RfはF(CFのペルフルオロアルキル基を示し、mは4〜14の整数を示し、nは3〜4の整数を示し、Yはハロゲン原子を示す。)
で表される(4−ペルフルオロアルキルビフェニル)アルキルトリハロゲン化シランを有機溶媒中で、シアン酸銀と反応させて、下記式(9)
Figure 2011184304
で表される4−ペルフルオロアルキルビフェニル)アルキルトリイソシアナトシランを得る、シランカップリング剤の製造方法。
The following general formula (8)
Figure 2011184304
(In the formula (8), Rf represents a perfluoroalkyl group of F (CF 2 ) m , m represents an integer of 4 to 14, n represents an integer of 3 to 4, and Y represents a halogen atom.)
(4-perfluoroalkylbiphenyl) alkyltrihalogenated silane represented by the following formula (9) is reacted with silver cyanate in an organic solvent.
Figure 2011184304
A process for producing a silane coupling agent to obtain 4-perfluoroalkylbiphenyl) alkyltriisocyanatosilane represented by the formula:
下記一般式(1)で表されるシランカップリング剤と溶剤とを含む離型剤。
Figure 2011184304
(式(1)中、RfはF(CFのペルフルオロアルキル基を示し、mは4〜14の整数を示し、nは3〜4の整数を示し、Xはハロゲン原子又はイソシアナト基を示す。)
A mold release agent containing a silane coupling agent represented by the following general formula (1) and a solvent.
Figure 2011184304
(In the formula (1), Rf represents a perfluoroalkyl group of F (CF 2 ) m , m represents an integer of 4 to 14, n represents an integer of 3 to 4, and X represents a halogen atom or an isocyanate group. Show.)
JP2010047882A 2010-03-04 2010-03-04 Silane coupling agent and method for producing the same Pending JP2011184304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047882A JP2011184304A (en) 2010-03-04 2010-03-04 Silane coupling agent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047882A JP2011184304A (en) 2010-03-04 2010-03-04 Silane coupling agent and method for producing the same

Publications (1)

Publication Number Publication Date
JP2011184304A true JP2011184304A (en) 2011-09-22

Family

ID=44791023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047882A Pending JP2011184304A (en) 2010-03-04 2010-03-04 Silane coupling agent and method for producing the same

Country Status (1)

Country Link
JP (1) JP2011184304A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167785A (en) * 1987-01-08 1987-07-24 Matsumoto Seiyaku Kogyo Kk Production of silicon isocyanate
JPH029888A (en) * 1988-06-28 1990-01-12 Shin Etsu Chem Co Ltd 3-(3,4-dimethoxyphenyl)propyltrichlorosilane
JPH07188257A (en) * 1993-03-10 1995-07-25 Yoshisaki Abe Production of triisocynatosilane
JPH08311082A (en) * 1995-02-15 1996-11-26 Neos Co Ltd Polyfluoroaralkylsilane derivative and its production
JPH09192494A (en) * 1996-01-23 1997-07-29 Shin Etsu Chem Co Ltd Catalyst for synthesis of 3-chloropropyltrichlorosilane and production of 3-chloropropyltrichlorosilane
JPH09315923A (en) * 1996-05-29 1997-12-09 Norio Yoshino Surface modifying agent for tooth and modification of tooth surface using the agent
JP2003236819A (en) * 2001-12-11 2003-08-26 Asahi Kasei Corp Mold release agent for form, and form
JP2007523854A (en) * 2003-06-20 2007-08-23 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Method for synthesizing compound for forming self-assembled monolayer film, compound for forming self-assembled monolayer film, and layered structure for semiconductor component
WO2008108438A1 (en) * 2007-03-06 2008-09-12 Tokyo University Of Science Educational Foundation Administrative Organization Silane coupling agents with heat resistance, durability, releasability, and antifouling property and process for producing these compounds
WO2010027076A1 (en) * 2008-09-05 2010-03-11 学校法人東京理科大学 Method for producing transferred structure and mother die for use in the method
JP2011187510A (en) * 2010-03-04 2011-09-22 Tokyo Univ Of Science Metal fine structure, method of manufacturing the same, and method of manufacturing resin molding

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167785A (en) * 1987-01-08 1987-07-24 Matsumoto Seiyaku Kogyo Kk Production of silicon isocyanate
JPH029888A (en) * 1988-06-28 1990-01-12 Shin Etsu Chem Co Ltd 3-(3,4-dimethoxyphenyl)propyltrichlorosilane
JPH07188257A (en) * 1993-03-10 1995-07-25 Yoshisaki Abe Production of triisocynatosilane
JPH08311082A (en) * 1995-02-15 1996-11-26 Neos Co Ltd Polyfluoroaralkylsilane derivative and its production
JPH09192494A (en) * 1996-01-23 1997-07-29 Shin Etsu Chem Co Ltd Catalyst for synthesis of 3-chloropropyltrichlorosilane and production of 3-chloropropyltrichlorosilane
JPH09315923A (en) * 1996-05-29 1997-12-09 Norio Yoshino Surface modifying agent for tooth and modification of tooth surface using the agent
JP2003236819A (en) * 2001-12-11 2003-08-26 Asahi Kasei Corp Mold release agent for form, and form
JP2007523854A (en) * 2003-06-20 2007-08-23 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Method for synthesizing compound for forming self-assembled monolayer film, compound for forming self-assembled monolayer film, and layered structure for semiconductor component
WO2008108438A1 (en) * 2007-03-06 2008-09-12 Tokyo University Of Science Educational Foundation Administrative Organization Silane coupling agents with heat resistance, durability, releasability, and antifouling property and process for producing these compounds
WO2010027076A1 (en) * 2008-09-05 2010-03-11 学校法人東京理科大学 Method for producing transferred structure and mother die for use in the method
JP2011187510A (en) * 2010-03-04 2011-09-22 Tokyo Univ Of Science Metal fine structure, method of manufacturing the same, and method of manufacturing resin molding

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
YOSHINO,N ET.AL.: "Syntheses and reactions of metal organics. XXI. Syntheses of (1H,1H,2H,2H-polyfluoroalkyl)triisocyan", JOURNAL OF FLUORINE CHEMISTRY, vol. 79, JPN6014006906, pages 87 - 91, XP004020716, ISSN: 0002750539, DOI: 10.1016/0022-1139(96)03472-0 *
佐藤智彦 外: "ビフェニル構造を有する新規フッ素系シランカップリング剤の合成", 油化学創立50周年記念大会 第41回日本油化学会年会 講演要旨集, JPN6014006900, 19 September 2002 (2002-09-19), pages 115, ISSN: 0002750536 *
好野則夫 外: "400℃に耐えるフッ素系シランカップリング剤 −ナノインプリント用耐熱離型剤−", プラスチックスエージ12, vol. 第55巻,12月号,第676号, JPN6014006902, 1 December 2009 (2009-12-01), pages 92 - 96, ISSN: 0002750537 *
水谷洋介 外: "耐熱性を有するフッ素系芳香族シランカップリング剤の合成と物性に関する研究(2)", 第46回日本油化学会年会 講演要旨集, JPN6014006903, 6 September 2007 (2007-09-06), pages 129, ISSN: 0002750538 *
近藤行成 外: "フッ素系芳香族シランカップリング剤の合成とガラスの表面改質", 日本化学会第79春季年会 講演予稿集I, JPN6014006898, 15 March 2001 (2001-03-15), pages 439, ISSN: 0002750535 *

Similar Documents

Publication Publication Date Title
TWI374130B (en)
JP4487037B2 (en) Heat resistance, durability, releasability, and antifouling silane coupling agent, and method for producing these compounds
TW201439109A (en) Silicon compound containing hexafluoroisopropanol groups, method for producing same, and polymer compound obtained by polymerizing same
TWI641596B (en) Method of producing biphenyl skeleton-containing epoxy resin
JP5115099B2 (en) Silicone copolymer having acyloxy group and method for producing the same
JP4186311B2 (en) Fluorene derivative with oxetane ring
JPH06166746A (en) Thiophene-silole copolymer and its production
JP2009132637A (en) Biphenyl compound comprising epoxy group, method of preparing the same, surface modifier, adhesion aid, and adhesive
JPWO2006009123A1 (en) Polycarbosilane and method for producing the same
JP2011184304A (en) Silane coupling agent and method for producing the same
JP3939226B2 (en) Heat-resistant silane coupling agent and method for producing these compounds
TW201425398A (en) Siloxane compound and curable composition and cured body comprising same
CN103288866B (en) Fluorine-containing maleimide compound and manufacture method thereof
US6780471B2 (en) Curable silicone resin composition and reactive silicon compounds
JP5874378B2 (en) Sulfonated arylamine polymer and process for producing the same
JP2004107274A5 (en)
JPH036232A (en) New polymer and its use
JP5650959B2 (en) Luminescent material having phthalocyanine in side chain and method for producing the same
JP5792033B2 (en) Fullerene derivative and method for producing the same, fullerene derivative composition, fullerene derivative solution, and fullerene derivative film
JP2008137960A (en) Adamantane compound and its manufacturing method
JP5311091B2 (en) Polycarbosilane and method for producing the same
JP4564998B2 (en) Method for producing fluorine-containing polysilane compound
JP2696109B2 (en) New diamine derivative
WO2019151419A1 (en) Polycarbonyl compound, derivative thereof, and production method therefor
TW202302509A (en) Novel trisallyl ether compound having triphenylalkane skeleton

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708