KR20090111341A - Cage-cleavable siloxane resin having functional group and method for production thereof - Google Patents

Cage-cleavable siloxane resin having functional group and method for production thereof Download PDF

Info

Publication number
KR20090111341A
KR20090111341A KR1020097017813A KR20097017813A KR20090111341A KR 20090111341 A KR20090111341 A KR 20090111341A KR 1020097017813 A KR1020097017813 A KR 1020097017813A KR 20097017813 A KR20097017813 A KR 20097017813A KR 20090111341 A KR20090111341 A KR 20090111341A
Authority
KR
South Korea
Prior art keywords
group
cage
siloxane resin
cleavage type
type siloxane
Prior art date
Application number
KR1020097017813A
Other languages
Korean (ko)
Other versions
KR101494850B1 (en
Inventor
아키코 야마사키
타카시 사이토
토시히로 카와타니
히데키 안도
Original Assignee
신닛테츠가가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신닛테츠가가쿠 가부시키가이샤 filed Critical 신닛테츠가가쿠 가부시키가이샤
Publication of KR20090111341A publication Critical patent/KR20090111341A/en
Application granted granted Critical
Publication of KR101494850B1 publication Critical patent/KR101494850B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/10Equilibration processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Polymers (AREA)

Abstract

Disclosed is a cage-cleavable siloxane resin having a vinyl, alkyl, phenyl, (meth)acryloyl or aryl group or an oxirane ring, which is compatible with other resin and is controlled in molecular weight distribution and molecular structure. Also disclosed is a method for producing the cage-cleavable siloxane resin in high yield. A cage-cleavable siloxane compound can be produced by hydrolyzing at least one silicon compound represented by the general formula (1) in a non-polar solvent, a polar solvent or a mixture thereof in the presence of a basic catalyst and also partially condensing the compound, re-condensing the resulting polycondensation product in a non-polar solvent in the presence of a basic catalyst, and equilibrating the re-condensed product with a disiloxane compound. R1SiX3 (1) wherein R1 represents a vinyl, alkyl, phenyl, (meth)acryloyl or aryl group or a group having an oxirane ring; X represents a hydroxylable group selected from an alkoxy group, a halogen atom and a hydroxyl group.

Description

관능기를 가지는 케이지 개열형 실록산수지와 그 제조방법{CAGE-CLEAVABLE SILOXANE RESIN HAVING FUNCTIONAL GROUP AND METHOD FOR PRODUCTION THEREOF}Cage-CLEAVABLE SILOXANE RESIN HAVING FUNCTIONAL GROUP AND METHOD FOR PRODUCTION THEREOF}

본 발명은, 케이지 개열형 실록산수지 및 그 제조방법에 관한 것으로서, 상세하게는 규소원자에 비닐기, 알킬기, 페닐기, (메타)아크릴기, 알릴기 또는 옥시란(oxirane) 환으로부터 선택된 1종 또는 2종 이상의 유기 관능기를 가지고, 그 중 적어도 2개는 비닐기, (메타)아크릴기 또는 알릴기로부터 선택된 불포화 이중 결합을 포함하는 반응성 유기 관능기를 가진 케이지 개열형 실록산수지 및 그 제조방법에 관한 것이다.The present invention relates to a cage cleavage type siloxane resin and a method for producing the same. Specifically, a silicon atom is selected from a vinyl group, an alkyl group, a phenyl group, a (meth) acryl group, an allyl group, or an oxirane ring. Cage cleavage type siloxane resin having two or more organic functional groups, at least two of which have a reactive organic functional group containing an unsaturated double bond selected from a vinyl group, a (meth) acryl group or an allyl group, and a method for producing the same .

폴리페닐실록산은, 내열성, 전기 절연성 등이 뛰어나기 때문에 코팅재, 실링재, 층간 절연막 그 외에 이용되고 있다. 이 폴리페닐실록산의 제조방법의 일례로서는, 페닐트리클로로실란을 유기 용제 중에서 가수분해하여 페닐트리히드록시실란으로 하여, 상기 가수분해물을 물이 없는 용매 중에서 알칼리성 전이 및 축합 촉매를 사용해 가열하고, 탈수 축중합(縮重合)시켜 케이지형 옥타페닐실록산을 얻는 방법(특허문헌 1), 상기 케이지형 옥타페닐실록산을 분리하고, 다시 알칼리성 전이 및 축합 촉매를 사용해 가열 중합하여 고유 점도가 낮은 페닐실록산 프리 폴리머를 얻는 방법(특허문헌 2), 그것을 또한 알칼리성 전이 및 축중합 촉매를 사용해 가열 중합시켜 페닐실록산 중합체를 제조하는 방법(비특허문헌 1) 등이 알려져 있다.Since polyphenylsiloxane is excellent in heat resistance, electrical insulation, etc., it is used other than a coating material, a sealing material, an interlayer insulation film. As an example of the method for producing this polyphenylsiloxane, phenyltrichlorosilane is hydrolyzed in an organic solvent to form phenyltrihydroxysilane, and the hydrolyzate is heated using an alkaline transition and condensation catalyst in a solvent free of water and dehydrated. A method of obtaining a cage-type octaphenylsiloxane by condensation polymerization (Patent Literature 1), the cage-type octaphenylsiloxane is separated, and heat-polymerized again using an alkaline transition and a condensation catalyst to lower the intrinsic viscosity of the phenylsiloxane prepolymer. The method of obtaining (patent document 2), and also the method of heat-polymerizing it using an alkaline transition and a polycondensation catalyst (nonpatent literature 1), etc. are known.

또한 케이지형을 형성하는 실록산수지의 일부의 실록산 결합이 끊어져, 케이지의 일부가 개열된 케이지 개열형 실록산수지의 합성법으로서, 시클로헥실기를 가지는 실록산의 합성법이 Feher,F.J.에 의해 보고되어 있고(비특허문헌 2 참조), 그 이외에도, 예를 들면 페닐기와 비닐기를 가지는 케이지 개열형 실록산수지의 제조방법이 보고되어 있다(특허문헌 3 참조).In addition, as a synthesis method of a cage cleavage siloxane resin in which part of the siloxane resin forming the cage form is broken and a part of the cage is cleaved, a synthesis method of siloxane having a cyclohexyl group has been reported by Feher, FJ (Non In addition, the manufacturing method of the cage cleavage type | mold siloxane resin which has a phenyl group and a vinyl group, for example is reported (refer patent document 3).

또한 상기 특허문헌 3에서는, 실라놀기를 포함하지 않는 케이지형 폴리페닐실세스퀴옥산의 분자쇄 말단의 SiO 전부 또는 일부에, 반응성 관능기를 가지는 트리오르가노실릴기가 결합한 실리콘화합물을, 유기 용제 중 알칼리성 전이 및 축합 촉매의 존재하에서 가열하고, 평형 반응시켜 반응성 관능기를 가지는 페닐실록산 중합체의 제조방법이 기재되어 있다.Moreover, in the said patent document 3, the silicon compound which the triorgano silyl group which has a reactive functional group couple | bonded with all or one part of SiO of the molecular chain terminal of cage-type polyphenylsilsesquioxane which does not contain a silanol group is alkaline in an organic solvent. A method for producing a phenylsiloxane polymer having a reactive functional group by heating and equilibrating in the presence of a transition and condensation catalyst is described.

[특허문헌 1] 일본국 공고특허공보 소40-1598900호[Patent Document 1] Japanese Patent Publication No. 40-1598900

[특허문헌 2] 일본국 공개특허공보 소50-139900호[Patent Document 2] Japanese Patent Application Laid-open No. 50-139900

[특허문헌 3] 일본국 공개특허공보 평10-251407호[Patent Document 3] Japanese Patent Application Laid-Open No. 10-251407

[비특허문헌 1] J.Polymer Sci. Part C No.1, PP.83-97(1963)[Non-Patent Document 1] J. Polymer Sci. Part C No. 1, pp. 83-97 (1963)

[비특허문헌 2] J.Am. Chem. Soc. 111, 1741-8(1989)[Non-Patent Document 2] J. Am. Chem. Soc. 111, 1741-8 (1989)

상술한 바와 같은 종래의 케이지 개열형 실록산수지의 합성방법은, 긴 반응 시간을 요하고 고수율로 목적물이 얻어지지 않으며, 경화성을 가지는 반응성 관능기의 수가 적기 때문에 충분한 탄성율이나 열선팽창율 등의 물성이 얻어지지 않는다. 한편, 경화성을 가지는 반응성 관능기 1종류만을 모든 규소원자에 가지는 케이지형 실록산은 분자 구조의 대칭성이 좋기 때문에 결정성이 높다. 그 때문에, 다른 수지와의 상용성이 좋지 않아 다른 수지와 혼합하여 물성을 개질한 다양한 성형체를 작성하는 것이 곤란하다.The conventional method of synthesizing cage cleaved siloxane resins as described above requires a long reaction time, does not yield the desired product in high yield, and obtains sufficient physical properties such as elastic modulus and thermal expansion coefficient because the number of reactive functional groups having curability is small. I do not lose. On the other hand, cage-type siloxanes having only one type of curable reactive functional group on all silicon atoms have high crystallinity because of their good symmetry in molecular structure. Therefore, compatibility with other resin is not good, and it is difficult to produce various molded objects which mixed with other resin and modified physical property.

본 발명의 목적은, 종래의 결점을 해소하여, 다른 수지와 상용성이 있고, 분자량 분포 및 분자 구조가 제어된 비닐기, 알킬기, 페닐기, (메타)아크릴로일기, 알릴기 또는 옥시란 환을 가지는 케이지 개열형 실록산수지를 제공하는 것에 있다. 또한 이러한 케이지 개열형 실록산수지를 고수율로 제조하는 방법을 제공하는 것에 있다.SUMMARY OF THE INVENTION An object of the present invention is to solve a conventional drawback and to use a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group, or an oxirane ring having compatibility with other resins and having controlled molecular weight distribution and molecular structure. Eggplant is to provide a cage cleavage type siloxane resin. In addition, the present invention provides a method for producing such a cage cleavage type siloxane resin in high yield.

본 발명자들은, 상기 과제를 해결하기 위해 예의 검토를 거듭한 결과, 특정 반응 조건에 의해 이것을 해결할 수 있는 것을 발견하여, 본 발명을 완성하기에 이르렀다.MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to solve the said subject, the present inventors discovered that this could be solved by specific reaction conditions, and came to complete this invention.

즉, 본 발명은, 하기 일반식(2)That is, this invention is the following general formula (2)

Figure 112009052349567-PCT00001
Figure 112009052349567-PCT00001

[단, R1은 비닐기, 알킬기, 페닐기, (메타)아크릴로일기, 알릴기 또는 옥시란 환을 가지는 기이고, (m+n)개의 R1 중의 적어도 2개는 불포화 이중 결합을 가지는 비닐기, (메타)아크릴로일기 또는 알릴기로부터 선택된 반응성 유기 관능기이며, R2는 메틸기를 나타낸다. m은 1~4의 정수, n은 8~16의 정수이고, m과 n의 합은 10~20이다.]로 표현되는 케이지 개열형 실록산수지이다.[Wherein R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and at least two of (m + n) R 1 's have a vinyl having an unsaturated double bond A reactive organic functional group selected from the group, the (meth) acryloyl group or the allyl group, and R 2 represents a methyl group. m is an integer of 1-4, n is an integer of 8-16, and the sum of m and n is 10-20.] It is a cage cleavage type siloxane resin represented by.

또한 본 발명은, 하기 일반식(1)Moreover, this invention is following General formula (1)

Figure 112009052349567-PCT00002
Figure 112009052349567-PCT00002

[단, R1은 비닐기, 알킬기, 페닐기, (메타)아크릴로일기, 알릴기 또는 옥시란 환을 가지는 기이고, X는 알콕시기, 할로겐원자 또는 히드록실기로부터 선택된 가수분해성 기를 나타낸다.]로 표현되는 규소화합물의 1종 또는 2종 이상을, 염기성 촉매 존재하, 비극성 용매 또는 극성 용매의 어느 한 쪽 또는 양 쪽을 합친 용매 중에서 가수분해 반응시키는 동시에 일부 축합시키고, 얻어진 중축합물을 또한 비극성 용매 및 염기성 촉매의 존재하에서 재축합시켜, 얻어진 재축합물에 디실록산화합물을 평형화 반응시킴으로써 얻어지는 케이지 개열형 실록산수지이다.[Wherein R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and X represents a hydrolyzable group selected from an alkoxy group, a halogen atom or a hydroxyl group.] One or two or more of the silicon compounds represented by the above is hydrolyzed in the presence of a basic catalyst or in a solvent in which one or both of the polar solvents are combined, and at the same time partially condensed, and the resulting polycondensate is also nonpolar. A cage cleavage type siloxane resin obtained by equilibrating a disiloxane compound to the recondensate obtained by recondensing in the presence of a solvent and a basic catalyst.

또한 본 발명은, 하기 일반식(1)Moreover, this invention is following General formula (1)

Figure 112009052349567-PCT00003
Figure 112009052349567-PCT00003

[단, R1은 비닐기, 알킬기, 페닐기, (메타)아크릴로일기, 알릴기 또는 옥시란 환을 가지는 기이고, X는 알콕시기, 할로겐원자 또는 히드록실기로부터 선택된 가수분해성 기를 나타낸다.]로 표현되는 규소화합물의 1종 또는 2종 이상을, 염기성 촉매 존재하, 비극성 용매 또는 극성 용매의 어느 한 쪽 또는 양 쪽을 합친 용매 중에서 가수분해 반응시키는 동시에 일부 축합시키고, 얻어진 중축합물을 또한 비극성 용매 및 염기성 촉매의 존재하에서 재축합시켜, 얻어진 재축합물에 디실록산화합물을 평형화 반응시키는 것을 특징으로 하는 케이지 개열형 실록산수지의 제조방법이다.[Wherein R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and X represents a hydrolyzable group selected from an alkoxy group, a halogen atom or a hydroxyl group.] One or two or more of the silicon compounds represented by the above is hydrolyzed in the presence of a basic catalyst or in a solvent in which one or both of the polar solvents are combined, and at the same time partially condensed, and the resulting polycondensate is also nonpolar. A method for producing a cage cleaved siloxane resin, wherein the disiloxane compound is equilibrated with the recondensate obtained by recondensing in the presence of a solvent and a basic catalyst.

본 발명에서의 케이지 개열형 실록산수지의 구조식의 예를 하기 식(4)~(10)에 나타낸다. 여기서, 구조식(4)은 일반식(2)에 있어서 m=2 및 n=8의 경우이고, 이하 마찬가지로 (5)는 m=3, n=9, (6)은 m=2, n=10, (7)은 m=3, n=11, (8)은 m=2, n=12, (9)는 m=3, n=13, (10)은 m=2, n=14이다. 또한 본 발명의 케이지 개열형 실록산수지는 이들 이외의 m, n 수를 취하는 것도 있어, 이에 한정되지 않는다. 또한 구조식(4)~(10)에서의 R1 및 R2는 일반식(2)의 경우와 같다.Examples of the structural formula of the cage cleavage type siloxane resin in the present invention are shown in the following formulas (4) to (10). Here, structural formula (4) is the case of m = 2 and n = 8 in general formula (2), and (5) is m = 3, n = 9, (6) is m = 2, n = 10 similarly below (7) is m = 3, n = 11, (8) is m = 2, n = 12, (9) is m = 3, n = 13, and (10) is m = 2 and n = 14. Moreover, the cage cleavage type siloxane resin of this invention may take m and n numbers other than these, but it is not limited to this. In addition, R <1> and R <2> in structural formula (4)-(10) are the same as that of the general formula (2).

Figure 112009052349567-PCT00004
Figure 112009052349567-PCT00004

Figure 112009052349567-PCT00005
Figure 112009052349567-PCT00005

본 발명의 케이지 개열형 실록산수지의 제조방법에서는, 우선 일반식(1)로 표현되는 규소화합물을, 염기성 촉매 존재하, 비극성 용매 또는 극성 용매의 어느 한 쪽 또는 양 쪽을 합친 용매 중에서 가수분해 반응을 행한다. 일반식(1) 중 R1은 비닐기, 페닐기, 알킬기, (메타)아크릴로일기, 알릴기 또는 옥시란 환을 가지는 기로부터 선택되는 유기기이고, 경화성을 부여하기 위해 불포화 이중 결합을 가지는 기를 포함한다.In the cage cleavage type siloxane resin production method of the present invention, first, a silicon compound represented by the general formula (1) is hydrolyzed in a solvent in which one or both of a nonpolar solvent and a polar solvent are combined in the presence of a basic catalyst. Is done. In general formula (1), R <1> is an organic group chosen from the group which has a vinyl group, a phenyl group, an alkyl group, a (meth) acryloyl group, an allyl group, or an oxirane ring, and group which has an unsaturated double bond in order to provide curability. Include.

일반식(1)에 있어서, X는 가수분해성 기이고, 구체적으로는 알콕시기, 할로겐원자 또는 히드록실기를 들 수 있는데, 알콕실기인 것이 바람직하다. 알콕시기로서는 메톡시기, 에톡시기, n- 및 i-프로폭시기, n-, i- 및 t-부톡시기 등을 들 수 있다. 이 중 반응성이 높은 메톡시기인 것이 바람직하다.In General formula (1), X is a hydrolysable group, Specifically, Although an alkoxy group, a halogen atom, or a hydroxyl group is mentioned, It is preferable that it is an alkoxyl group. As an alkoxy group, a methoxy group, an ethoxy group, n- and i-propoxy group, n-, i-, and t-butoxy group etc. are mentioned. It is preferable that it is a methoxy group with high reactivity among these.

일반식(1)로 표현되는 규소화합물에 대하여, 바람직한 화합물의 구체예를 나타내면, 페닐트리메톡시실란, 페닐트리에톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, n-프로필트리메톡시실란, n-프로필트리에톡시실란, 부틸트리메톡시실란, 부틸트리에톡시실란, 펜틸트리메톡시실란, 펜틸트리에톡시실란, 옥틸트리메톡시실란, 옥틸트리에톡시실란, 메타크릴옥시메틸트리메톡시실란, 메타크릴옥시메틸트리에톡시실란, 3-메타크릴옥시프로필트리메톡시실란, 3-메타크릴옥시프로필트리에톡시실란, 3-아크릴옥시프로필트리메톡시실란, 3-아크릴옥시프로필트리에톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 2-(3,4-에폭시시클로헥실에틸)트리메톡시실란, 알릴트리메톡시실란, 알릴트리에톡시실란, p-스티릴트리에톡시실란, p-스티릴트리메톡시실란, 비닐트리메톡시실란, 및 비닐트리에톡시실란 등을 들 수 있다. 그 중에서도, 원료의 입수가 용이한 페닐트리메톡시실란, 메틸트리에톡시실란, 3-메타크릴옥시프로필트리메톡시실란, 3-글리시독시프로필트리메톡시실란, 및 비닐트리메톡시실란이 보다 바람직하다.About the silicon compound represented by General formula (1), when a specific example of a preferable compound is shown, phenyl trimethoxysilane, phenyl triethoxysilane, methyl trimethoxysilane, methyl triethoxysilane, ethyltrimethoxysilane , Ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, pentyltrimethoxysilane, pentyltriethoxysilane, octyltrimeth Methoxysilane, octyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3 -Acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclo Hexylethyl) trimethoxysilane, allyltrimeth Sisilran, it is in the allyl triethoxysilane, p- styryl triethoxysilane, p- styryl trimethoxysilane, vinyl trimethoxysilane, vinyl triethoxysilane, and the and the like silane. Among them, phenyltrimethoxysilane, methyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and vinyltrimethoxysilane, which are easily available, are available. More preferred.

상기 가수분해 반응에 사용되는 염기성 촉매로서는, 수산화칼륨, 수산화나트륨, 수산화세슘 등의 알칼리 금속 수산화물 외에 테트라메틸암모늄히드록시드, 테트라에틸암모늄히드록시드, 테트라부틸암모늄히드록시드, 벤질트리메틸암모늄히드록시드, 벤질트리에틸암모늄히드록시드 등의 수산화암모늄 염이 예시된다. 이 중에서도, 촉매 활성이 높은 점에서 테트라메틸암모늄히드록시드가 바람직하게 사용된다. 염기성 촉매는 통상 수용액으로서 사용된다.As a basic catalyst used for the said hydrolysis reaction, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyl trimethylammonium hydroxide besides alkali metal hydroxides, such as potassium hydroxide, sodium hydroxide, and cesium hydroxide, are mentioned. Ammonium hydroxide salts, such as a lock seed and the benzyl triethylammonium hydroxide, are illustrated. Among them, tetramethylammonium hydroxide is preferably used in view of high catalytic activity. Basic catalysts are usually used as an aqueous solution.

가수분해 반응 조건에 대해서는, 반응 온도는 0~60℃가 바람직하고, 20~40℃가 보다 바람직하다. 반응 온도가 0℃보다 낮으면, 반응 속도가 늦어져 가수분해성 기가 미반응의 상태로 잔존해 버려 반응 시간을 많이 소비하는 결과가 된다. 한편, 60℃보다 높으면, 반응 속도가 지나치게 빠르기 때문에 복잡한 축합 반응이 진행되어 결과적으로 가수분해 생성물의 고분자량화가 촉진된다. 또한 반응 시간은 2시간 이상이 바람직하다. 반응 시간이 2시간에 미치지 못하면, 가수분해 반응이 충분히 진행되지 않아 가수분해성 기가 미반응의 상태로 잔존해 버리는 상태가 된다.About hydrolysis reaction conditions, 0-60 degreeC is preferable and 20-40 degreeC of reaction temperature is more preferable. If reaction temperature is lower than 0 degreeC, reaction rate will become slow and a hydrolysable group will remain in an unreacted state, resulting in a large consumption of reaction time. On the other hand, if it is higher than 60 DEG C, the reaction rate is too fast, so that a complicated condensation reaction proceeds, and as a result, the high molecular weight of the hydrolysis product is promoted. Moreover, 2 hours or more of reaction time is preferable. If the reaction time is less than 2 hours, the hydrolysis reaction does not proceed sufficiently and the hydrolyzable groups remain in an unreacted state.

가수분해 반응은 물의 존재가 필수인데, 이것은 염기성 촉매의 수용액으로부터 공급할 수도 있고, 별도의 물로서 첨가해도 된다. 물의 양은 가수분해성 기를 가수분해하기에 충분한 양 이상, 바람직하게는 이론량의 1.0~1.5배량인 것이 좋다. 또한 가수분해시에는 비극성 용매 또는 극성 용매 중의 한 개 혹은 양 쪽 합쳐 사용한다. 바람직하게는 양 쪽 사용하거나, 극성 용매만 사용하는 것이 좋다. 극성 용매로서는 메탄올, 에탄올, 2-프로판올 등의 알코올류, 혹은 다른 극성 용매를 사용할 수 있다. 바람직하게는, 물과 용해성이 있는 탄소수 1~6인 저급 알코올류이고, 2-프로판올을 사용하는 것이 보다 바람직하다. 비극성 용매만을 사용하면 반응계가 균일해지지 않아 반응 중 고분자체가 석출하기 쉽다.The presence of water is essential for the hydrolysis reaction, which may be supplied from an aqueous solution of a basic catalyst or may be added as separate water. The amount of water is more than an amount sufficient to hydrolyze the hydrolyzable group, preferably 1.0 to 1.5 times the theoretical amount. In the case of hydrolysis, one or both of a nonpolar solvent and a polar solvent may be used. Preferably, both are used, or only polar solvent is used. As a polar solvent, alcohol, such as methanol, ethanol, 2-propanol, or another polar solvent can be used. Preferably, it is C1-C6 lower alcohols which are soluble in water, and it is more preferable to use 2-propanol. If only the non-polar solvent is used, the reaction system is not uniform and the polymer is easily precipitated during the reaction.

가수분해 반응 종료 후는, 반응 용액을 약산성 용액으로 중화하여 중성 혹은 산성에 가깝게 한 후 물 또는 물 함유 반응 용매를 분리한다. 물 또는 물 함유 반응 용매의 분리는, 이 용액을 식염수 등으로 세정해 수분이나 그 외의 불순물을 충분히 제거하고, 그 후 무수 황산마그네슘 등의 건조제로 건조시키는 등의 수단을 채용할 수 있다. 극성 용매를 사용한 경우는, 감압 증발 등의 수단을 채용할 수 있고, 극성 용매를 제거한 후 비극성 용매를 첨가해 중축합물을 용해시키고 상기와 같이 세정, 건조를 행한다. 약산성 용액에 대해서는, 황산 희석 용액, 염산 희석 용액, 구연산 용액, 아세트산, 염화 암모니아 수용액, 사과산 용액, 인산 용액, 옥살산 용액 등이 사용된다. 비극성 용매는, 증발 등의 수단으로 분리하면 가수분해 반응 생성물을 회수할 수 있지만, 비극성 용매가 다음 반응에서 사용하는 비극성 용매로서 사용 가능하면 이것을 분리할 필요는 없다.After completion of the hydrolysis reaction, the reaction solution is neutralized with a weakly acidic solution to approximate neutrality or acidity, and then water or a water-containing reaction solvent are separated. Separation of water or a water-containing reaction solvent may be carried out by washing the solution with brine or the like to sufficiently remove moisture and other impurities, and then drying the solution with a drying agent such as anhydrous magnesium sulfate. When a polar solvent is used, means, such as evaporation under reduced pressure, can be employ | adopted, after removing a polar solvent, a nonpolar solvent is added, a polycondensate is melt | dissolved, and washing and drying are performed as mentioned above. As for the weakly acidic solution, sulfuric acid dilute solution, hydrochloric acid dilute solution, citric acid solution, acetic acid, aqueous ammonia chloride solution, malic acid solution, phosphoric acid solution, oxalic acid solution and the like are used. If the nonpolar solvent is separated by means of evaporation or the like, the hydrolysis reaction product can be recovered. However, if the nonpolar solvent can be used as the nonpolar solvent used in the next reaction, it is not necessary to separate it.

본 발명의 가수분해 반응에서는 가수분해와 함께 가수분해물의 축합 반응이 발생한다. 가수분해물의 축합 반응이 수반하는 중축합물은, 통상 수평균분자량이 500~7000인 무색의 점성 액체가 된다. 중축합물은, 반응 조건에 따라 다른데 수평균분자량이 500~3000인 수지(또는 올리고머)가 되고, 일반식(1)로 표현되는 가수분해성 기 X의 대부분, 바람직하게는 거의 전부가 OH기로 치환되고, 또한 그 OH기의 대부분, 바람직하게는 95%이상이 축합되어 있다.In the hydrolysis reaction of the present invention, the condensation reaction of the hydrolyzate occurs with the hydrolysis. The polycondensate with the condensation reaction of the hydrolyzate is usually a colorless viscous liquid having a number average molecular weight of 500 to 7000. The polycondensate is a resin (or oligomer) having a number average molecular weight of 500 to 3000, depending on the reaction conditions, and most, preferably almost all, of the hydrolyzable group X represented by the general formula (1) are substituted with OH groups Most of the OH groups, preferably 95% or more, are condensed.

중축합물의 구조에 대해서는, 복수 종의 케이지형, 사다리형, 랜덤형의 실록산으로서, 케이지형 구조를 취하고 있는 화합물에 대해서도 완전한 케이지형 구조의 비율은 적고, 케이지의 일부가 열려 있는 불완전한 케이지형의 구조가 주(主)가 되고 있다. 이 중축합물을 또한 비극성 용매 및 염기성 촉매의 존재하에서 가열하여, 실록산 결합을 축합(재축합이라 칭함)시킴으로써 재축합물(케이지형 구조의 실록산)을 선택적으로 제조한다.As for the structure of the polycondensate, as the plural types of cage type, ladder type, and random type siloxane, the ratio of the complete cage type to the compound having the cage type is small, and the incomplete cage type in which part of the cage is opened. The structure is the master. This polycondensate is also heated in the presence of a nonpolar solvent and a basic catalyst to selectively prepare a recondensate (siloxane of cage-like structure) by condensing siloxane bonds (called recondensation).

재축합물을 얻을 때에는, 물 또는 물 함유 반응 용매를 분리한 후 비극성 용매 및 염기성 촉매의 존재하에 재축합 반응을 행한다. 재축합 반응의 반응 조건에 대해서는, 반응 온도는 90~200℃의 범위가 바람직하고, 100~140℃가 보다 바람직하다. 반응 온도가 지나치게 낮으면, 재축합 반응을 시키기 위해 충분한 드라이빙 포스가 얻어지지 않아 반응이 진행되지 않는다. 반응 온도가 지나치게 높으면, 반응성 유기 관능기가 자기 중합 반응을 일으킬 가능성이 있으므로, 반응 온도를 억제하거나, 중합 금지제 등을 첨가할 필요가 있다. 반응 시간은 2~12시간이 바람직하다. 비극성 용매의 사용량은 가수분해 반응 생성물을 용해하기에 충분한 양인 것이 좋고, 염기성 촉매의 사용량은 재축합물에 대하여 0.1~5wt%의 범위이다. 보다 바람직하게는 0.5~2.Owt%의 범위이다.When obtaining a recondensate, water or a water containing reaction solvent is isolate | separated, and a recondensation reaction is performed in presence of a nonpolar solvent and a basic catalyst. About reaction conditions of recondensation reaction, the range of reaction temperature is preferable 90-200 degreeC, and 100-140 degreeC is more preferable. If the reaction temperature is too low, sufficient driving force is not obtained to cause the recondensation reaction and the reaction does not proceed. If the reaction temperature is too high, the reactive organic functional group may cause a self-polymerization reaction. Therefore, it is necessary to suppress the reaction temperature or add a polymerization inhibitor or the like. The reaction time is preferably 2 to 12 hours. The amount of the nonpolar solvent is preferably used in an amount sufficient to dissolve the hydrolysis reaction product, and the amount of the basic catalyst is in the range of 0.1 to 5 wt% based on the recondensate. More preferably, it is the range of 0.5-2.Owt%.

비극성 용매로서는, 물과 용해성이 없는 또는 거의 없는 것이면 되는데, 탄화수소계 용매가 바람직하다. 탄화수소계 용매로서는 톨루엔, 벤젠, 크실렌 등의 비점이 낮은 비극성 용매를 들 수 있고, 그 중에서도 톨루엔을 사용하는 것이 바람직하다. 한편, 염기성 촉매로서는, 가수분해 반응에 사용되는 염기성 촉매를 사용할 수 있고, 수산화칼륨, 수산화나트륨, 수산화세슘 등의 알칼리 금속 수산화물, 혹은 테트라메틸암모늄히드록시드, 테트라에틸암모늄히드록시드, 테트라부틸암모늄히드록시드, 벤질트리메틸암모늄히드록시드, 벤질트리에틸암모늄히드록시드 등의 수산화암모늄 염을 들 수 있는데, 테트라알킬암모늄 등의 비극성 용매에 가용성인 촉매가 바람직하다. 또한 일반식(1)의 규소화합물을 염기성 촉매 존재하에서 가수분해 반응시킬 때에 비극성 용매를 사용하는 경우, 상기에서 예시한 바와 같은 것을 사용할 수 있다. 가수분해 반응에서 사용하는 비극성 용매와 재축합물을 얻을 때에 사용하는 비극성 용매는 서로 같은 것을 사용해도 되고, 다른 것을 사용해도 되는데, 합성 순서 등을 간편하게 하기 위해 바람직하게는 서로 같은 것을 사용하는 것이 좋다.As a nonpolar solvent, what is necessary is just to have little or no solubility with water, and a hydrocarbon type solvent is preferable. Examples of the hydrocarbon solvent include nonpolar solvents having a low boiling point such as toluene, benzene, and xylene, and among them, toluene is preferable. On the other hand, as a basic catalyst, the basic catalyst used for a hydrolysis reaction can be used, Alkali metal hydroxides, such as potassium hydroxide, sodium hydroxide, and cesium hydroxide, or tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutyl Ammonium hydroxide salts, such as ammonium hydroxide, benzyl trimethylammonium hydroxide, benzyl triethylammonium hydroxide, etc. are mentioned, The catalyst which is soluble in nonpolar solvents, such as tetraalkylammonium, is preferable. In addition, when using a nonpolar solvent when hydrolyzing the silicon compound of General formula (1) in presence of a basic catalyst, the thing similar to what was illustrated above can be used. The nonpolar solvents used in the hydrolysis reaction and the nonpolar solvents used for obtaining the recondensate may be the same or different ones. In order to simplify the synthesis procedure and the like, the same ones are preferably used. .

또한 재축합에 사용하는 가수분해 생성물은 물 세정, 탈수하여 농축한 것을 사용하는 것이 바람직한데, 물 세정, 탈수를 행하지 않아도 사용할 수 있다. 이 반응시, 물은 존재해도 되는데, 적극적으로 첨가할 필요는 없고, 염기성 촉매 용액으로부터 들어오게 되는 수분 정도에 머무르는 것이 좋다. 또한 중축합물의 가수분해가 충분히 행해지지 않고 있는 경우는, 잔존하는 가수분해성 기를 가수분해하는데 필요한 이론량 이상의 수분이 필요하다. 재축합 반응 후는 촉매를 물 세정하여 제거해 농축하여 재축합물이 얻어진다.The hydrolysis product used for recondensation is preferably water washed, dehydrated and concentrated, but can be used without performing water washing and dehydration. In this reaction, although water may be present, it is not necessary to actively add, and it is better to stay at the moisture level coming from the basic catalyst solution. In addition, when the hydrolysis of the polycondensate is not sufficiently performed, water more than the theoretical amount necessary for hydrolyzing the remaining hydrolyzable group is required. After the recondensation reaction, the catalyst is washed with water to remove and concentrate to obtain a recondensate.

이어서, 상기에서 얻어진 재축합물에 디실록산화합물을 부가시킴으로써 케이지 개열형 실록산수지를 얻을 수 있다. 이 디실록산화합물에 대하여, 구체적으로는 하기 일반식(3)으로 나타낼 수 있다. 또한 재축합물에 디실록산화합물을 부가시킬 때의 반응에 대해서는 톨루엔, 벤젠, 크실렌 등의 비극성 용매, 및 테트라메틸암모늄히드록시드, 테트라에틸암모늄히드록시드, 테트라부틸암모늄히드록시드 등의 염기성 촉매의 존재하에서 행하는 것이 좋다.Subsequently, the cage cleavage type siloxane resin can be obtained by adding a disiloxane compound to the recondensate obtained above. About this disiloxane compound, it can be represented by following General formula (3) specifically. Moreover, about the reaction at the time of adding a disiloxane compound to recondensate, nonpolar solvents, such as toluene, benzene, and xylene, and basics, such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide, are mentioned. It is preferable to carry out in the presence of a catalyst.

Figure 112009052349567-PCT00006
Figure 112009052349567-PCT00006

(단, R1은 비닐기, 알킬기, 페닐기, (메타)아크릴로일기, 알릴기 또는 옥시란 환을 가지는 기로부터 선택되는 1종 또는 2종의 기이고, R2는 메틸기를 나타낸다.)(Wherein R 1 is one or two groups selected from a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and R 2 represents a methyl group.)

상기한 재축합물과 일반식(3)으로 표현되는 디실록산화합물 사이의 염기 촉매하에서의 부가 반응은 평형화 반응이고, 산소원자가 3/2개 결합한 규소원자 유닛(T 단위)으로 구성되는 재축합물의 개열, 혹은 재축합물 단독에 의한 고분자량화의 경쟁 반응이기 때문에 전자(前者)(재축합물의 개열)를 가능한한 우선적으로 행할 필요가 있다. 또한 본 발명에서의 반응은 기본적으로 평형 반응이기 때문에, 목적물의 말단에 반응성 관능기를 가지는 케이지 개열형 실록산의 수평균분자량 Mn, 수율, 및 생성 속도는 반응 온도, 반응 시간, 양 원료의 첨가량 비, 알칼리 촉매량 등에 의해 저절로 결정되기 때문에 이하에 기술한 조건하에서 행하는 것이 바람직하다.The addition reaction under the base catalyst between the recondensate described above and the disiloxane compound represented by the general formula (3) is an equilibrium reaction, and cleavage of the recondensate composed of silicon atom units (T units) having 3/2 oxygen atoms bonded thereto. Alternatively, the former (the cleavage of the recondensate) needs to be performed as preferentially as it is a competitive reaction of high molecular weight by the recondensate alone. In addition, since the reaction in the present invention is basically an equilibrium reaction, the number-average molecular weight Mn, the yield, and the production rate of the cage cleaved siloxane having a reactive functional group at the terminal of the target are reaction temperature, reaction time, ratio of addition amount of both raw materials, Since it determines by itself based on alkali catalyst amount etc., it is preferable to carry out on condition described below.

즉, 상기에서 얻어진 재축합물은 비극성 용매 및 염기성 촉매의 존재하에 일반식(3)으로 나타내는 디실록산화합물을 부가시키는 것이 좋다. 반응 조건에 대해서는, 반응 온도는 90~200℃의 범위가 바람직하고, 100~140℃가 보다 바람직하다. 그러나 일반식(3)으로 표현되는 디실록산화합물의 비점이 낮은 것에 관해서는 반응 온도가 비점 이상에 달하여 반응계 외로 증발할 가능성이 있으므로, 그 경우에는 비점 이하에서 장시간 반응시키는 것이 좋다. 염기성 조건하, 재축합물의 케이지를 형성하는 실록산 결합은 절단과 결합의 평형상태에 있는데, 디실록산화합물이 존재하면, 절단된 부분이 디실록산화합물과 반응하기 때문에 케이지의 일부분이 개열된 상태로 안정되어 케이지 개열형 실록산수지가 얻어진다. 여기서 말하는 케이지 개열형 실록산이란, 케이지 구조를 형성하고 있는 실록산 결합 중 적어도 한 개가 끊어짐으로써 불완전한 케이지 구조를 형성한 실록산 분자 구조를 나타낸다. 또한 반응 시간은 1~5시간이 바람직하다.That is, it is preferable that the recondensate obtained above adds the disiloxane compound represented by General formula (3) in presence of a nonpolar solvent and a basic catalyst. About reaction conditions, the range of 90-200 degreeC is preferable and, as for reaction temperature, 100-140 degreeC is more preferable. However, as for the low boiling point of the disiloxane compound represented by the general formula (3), the reaction temperature may be higher than the boiling point and may evaporate out of the reaction system. Under basic conditions, the siloxane bonds that form the cage of the recondensate are in the equilibrium state of cleavage and bond. If a disiloxane compound is present, a portion of the cage is stable with cleavage because the cleaved portion reacts with the disiloxane compound. The cage cleavage type siloxane resin is obtained. The cage cleavage siloxane here refers to a siloxane molecular structure in which at least one of the siloxane bonds forming the cage structure is broken to form an incomplete cage structure. Moreover, as for reaction time, 1-5 hours are preferable.

재축합물과 디실록산화합물의 평형화 반응에서 비극성 용매를 사용하는 경우, 비극성 용매의 사용량은 재축합물을 용해하는데 충분한 양인 것이 좋다. 한편, 재축합물과 디실록산화합물의 반응 비율에 대해서는, 재축합물의 T 단위 10개에 상당하는 [R1SiO1.5]10으로 표현되는 구조 단위 1몰에 대하여, 디실록산화합물을 0.5~4.0몰, 바람직하게는 1.0~2.0몰이 되도록 가수분해 부가시키는 것이 좋다. 디실록산화합물이 이 범위보다 적으면 반응이 진행되지 않고, 반대로 많으면 미반응물이 생성물의 물성에 악영향을 끼칠 우려가 있어 바람직하지 않다. 또한 예를 들면 헥사메틸디실록산, 1,3-디비닐-1,1,3,3-테트라메틸디실록산 등과 같이 휘발성이 높은 디실록산화합물을 사용한 경우에는, 반응 중에 휘산(揮散)하는 양도 고려하여 첨가량을 많게 설정해도 지장 없다. 또한 여기서 사용하는 비극성 용매의 예로서는, 재축합물을 얻을 때에 사용하는 것과 같은 것을 예시할 수 있으며, 재축합물을 얻을 때에 사용하는 것과 같아도 되고, 다른 것을 사용해도 된다.When using a nonpolar solvent in the equilibrium reaction of a recondensate and a disiloxane compound, the usage amount of a nonpolar solvent is good enough to melt | dissolve a recondensate. On the other hand, the reaction ratio between the recondensate and the disiloxane compound is 0.5 to 4.0 moles of the disiloxane compound per 1 mole of the structural unit represented by [R 1 SiO 1.5 ] 10 corresponding to 10 T units of the recondensate. Preferably, it is hydrolyzed and added so that it may become 1.0-2.0 mol. If the disiloxane compound is less than this range, the reaction does not proceed. On the contrary, if the disiloxane compound is too large, the unreacted substance may adversely affect the physical properties of the product. In addition, in the case of using a highly volatile disiloxane compound such as hexamethyldisiloxane, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, and the like, the amount of volatilized during the reaction is also considered. Even if you set a large amount of addition, it does not interfere. In addition, as an example of the nonpolar solvent used here, the same thing as what is used when obtaining a recondensate can be illustrated, It may be the same as what is used when obtaining a recondensate, and another thing may be used.

또한 재축합물과 디실록산화합물의 평형화 반응에서 염기성 촉매를 사용하는 경우, 염기성 촉매의 사용량에 대해서는, [R1SiO1.5]10으로 표현되는 재축합물의 구조 단위 1몰에 대하여, 염기성 촉매를 0.05~0.15몰, 바람직하게는 0.06~0.1몰이 되도록 첨가하는 것이 좋다.In addition, when using a basic catalyst in the equilibrium reaction of a recondensate and a disiloxane compound, about basic usage amount of a basic catalyst, a basic catalyst is 0.05 with respect to 1 mol of structural units of the recondensate represented by [R 1 SiO 1.5 ] 10 . It is good to add so that it may become -0.15 mol, Preferably it is 0.06-0.1 mol.

일반식(3)으로 표현되는 디실록산화합물에 대하여 바람직한 화합물의 구체예를 나타내면, 1,3-디페닐-1,1,3,3-테트라메틸디실록산, 헥사메틸디실록산, 헥사에틸디실록산, 헥사페닐디실록산, 펜타메틸디실록산, 1,1,3,3-테트라메틸디실록산, 1,1,3,3-테트라비닐디메틸디실록산, 1,3-디에틸-1,1,3,3-테트라메틸디실록산, 1,3-디n-프로필-1,1,3,3-테트라메틸디실록산, 1,3-디부틸-1,1,3,3-테트라메틸디실록산, 1,3-디펜틸-1,1,3,3-테트라메틸디실록산, 1,3-디옥틸-1,1,3,3-테트라메틸디실록산, 1,3-디메타크릴옥시메틸-1,1,3,3-테트라메틸디실록산, 1,3-디(3-메타크릴옥시프로필)-1,1,3,3-테트라메틸디실록산, 1,3-디아크릴옥시메틸-1,1,3,3-테트라메틸디실록산, 1,3-디(3-아크릴옥시프로필)-1,1,3,3-테트라메틸디실록산, 1,3-디(3-글리시독시프로필)-1,1,3,3-테트라메틸디실록산, 비스[2-(3,4-에폭시시클로헥실)에틸]-테트라메틸디실록산, 1,3-디알릴-1,1,3,3-테트라메틸디실록산, 1,2-디p-스티릴-1,1,3,3-테트라메틸디실록산, 및 1,3-디비닐-1,1,3,3-테트라메틸디실록산 등을 들 수 있다.When the specific example of a preferable compound is shown about the disiloxane compound represented by General formula (3), 1, 3- diphenyl- 1, 1, 3, 3- tetramethyl disiloxane, hexamethyl disiloxane, and hexaethyl disiloxane are shown. , Hexaphenyldisiloxane, pentamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, 1,1,3,3-tetravinyldimethyldisiloxane, 1,3-diethyl-1,1,3 , 3-tetramethyldisiloxane, 1,3-din-propyl-1,1,3,3-tetramethyldisiloxane, 1,3-dibutyl-1,1,3,3-tetramethyldisiloxane, 1,3-dipentyl-1,1,3,3-tetramethyldisiloxane, 1,3-dioctyl-1,1,3,3-tetramethyldisiloxane, 1,3-dimethacryloxymethyl- 1,1,3,3-tetramethyldisiloxane, 1,3-di (3-methacryloxypropyl) -1,1,3,3-tetramethyldisiloxane, 1,3-diacryloxymethyl-1 , 1,3,3-tetramethyldisiloxane, 1,3-di (3-acryloxypropyl) -1,1,3,3-tetramethyldisiloxane, 1,3-di (3-glycidoxypropyl ) -1,1,3,3-tetramethyldisiloxane, bis [2- (3,4-epoxy Chlohexyl) ethyl] -tetramethyldisiloxane, 1,3-diallyl-1,1,3,3-tetramethyldisiloxane, 1,2-dip-styryl-1,1,3,3-tetra Methyl disiloxane, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, and the like.

본 발명에 의해 얻어지는 케이지 개열형 실록산수지는, 일반식(2)의 m이 1~4, n이 8~16이고, m과 n의 합이 10~20으로 나타나는 구조식(4)~(10)으로 표현되는 화합물의 혼합물로서 얻어지는 경우가 많다. 또한 얻어지는 케이지 개열형 실록산수지의 수평균분자량 Mn은 통상 600~10000의 범위이다.Cage cleavage type siloxane resin obtained by this invention is structural formula (4)-(10) whose m of General formula (2) is 1-4, n is 8-16, and the sum of m and n is 10-20. It is often obtained as a mixture of compounds represented by these. In addition, the number average molecular weight Mn of the cage cleavage type siloxane resin obtained is the range of 600-10000 normally.

<발명의 효과>Effect of the Invention

본 발명의 케이지 개열형 실록산수지의 제조방법을 사용하면, 분자량 분산도가 낮은 구조 제어된 케이지 개열형 실록산수지를 고수율로 제조할 수 있다. 얻어진 케이지 개열형 실록산수지는 분자 구조의 대칭성이 낮고 저점도이며, 반응성 관능기를 가지는 실록산 올리고머와 임의로 배합할 수 있는 상용성을 가지므로, 경화성 수지 조성물의 원료로서 널리 사용할 수 있다. 또한 케이지 구조와 유사한 구조의 실록산이기 때문에, 본 발명의 케이지 개열형 실록산수지를 포함하는 경화성 수지 조성물을 경화시켜 얻은 성형체에는 무기 유리와 같은 강도, 투명성, 내열성, 및 치수 안정성을 구비하면서, 플라스틱과 같은 고인성(高靭性), 양호한 가공성이 부여되어, 예를 들면, 렌즈, 광 디스크, 광 섬유 및 플랫 패널 디스플레이 기판 등의 광학 용도나, 각종 수송 기계나 주택 등의 창재(窓材) 등에 적용 가능하고, 또한 경량성이나 고충격 강도 등이 요구되는 각종의 투명 부재에도 사용할 수 있어 이익, 임펙트 모두 크다.By using the cage cleavage siloxane resin production method of the present invention, a structure-controlled cage cleavage siloxane resin having a low molecular weight dispersion degree can be produced in high yield. The resulting cage cleaved siloxane resin has low molecular symmetry, low viscosity, and compatible compatibility with siloxane oligomers having reactive functional groups, and therefore can be widely used as a raw material for curable resin compositions. Moreover, since it is a siloxane of the structure similar to a cage structure, the molded object obtained by hardening | curing the curable resin composition containing the cage cleavage type | mold siloxane resin of this invention has the same strength, transparency, heat resistance, and dimensional stability as an inorganic glass, The same high toughness and good workability are imparted, and are applied to optical applications such as lenses, optical disks, optical fibers and flat panel display substrates, and window materials such as various transportation machines and houses. It can also be used for various transparent members that require light weight, high impact strength, and the like, and both benefits and impacts are large.

도 1은 R1이 CH2=CH-인 재축합물의 GPC 차트이다.1 is a GPC chart of a recondensate wherein R 1 is CH 2 = CH-.

도 2는 R1이 CH2=CH-, R2가 CH3-인 케이지 개열형 실록산수지 혼합물의 GPC 차트이다.FIG. 2 is a GPC chart of a cage cleaved siloxane resin mixture in which R 1 is CH 2 ═CH— and R 2 is CH 3 −.

도 3은 R1이 CH2=CH-, R2가 CH3-인 케이지 개열형 실록산수지 혼합물의 MS 스펙트럼이다.3 is an MS spectrum of a cage cleaved siloxane resin mixture in which R 1 is CH 2 = CH— and R 2 is CH 3 −.

도 4는 R1이 (CH3-:CH2=CH-=5:5)인 재축합물의 GPC 차트이다.4 is a GPC chart of the recondensate wherein R 1 is (CH 3- : CH 2 = CH- = 5: 5).

도 5는 R1이 (CH3-:CH2=CH-=5:7), R2가 CH3-인 케이지 개열형 실록산수지의 GPC 차트이다.5 is a GPC chart of a cage cleaved siloxane resin in which R 1 is (CH 3- : CH 2 = CH- = 5: 7) and R 2 is CH 3- .

도 6은 R1이 (CH3-:CH2=CH-=2:10), R2가 CH3-인 케이지 개열형 실록산수지 혼합물의 GPC 차트이다.6 is a GPC chart of a cage cleaved siloxane resin mixture in which R 1 is (CH 3- : CH 2 = CH- = 2: 10) and R 2 is CH 3- .

도 7은 R1 및 R2가 도면 중에 나타낸 바와 같은 경우의 케이지 개열형 실록산수지 혼합물의 GPC 차트이다.7 is a GPC chart of a cage cleavage type siloxane resin mixture when R 1 and R 2 are as shown in the figure.

도 8은 R1=(CH2=C(CH3)-COO-(CH2)3-:CH2=CH-=2:10), R2=CH3-인 케이지 개열형 실록산수지 혼합물의 GPC 차트이다.8 is a cage cleaved siloxane resin mixture with R 1 = (CH 2 = C (CH 3 ) -COO- (CH 2 ) 3- : CH 2 = CH- = 2: 10), R 2 = CH 3- GPC chart.

이하, 실시예에 근거하여 본 발명을 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail based on Examples.

<실시예 1><Example 1>

교반기, 적하 깔때기, 및 온도계를 구비한 반응 용기에, 용매로서 톨루엔 150㎖와 2-프로판올(IPA) 85㎖를 넣고, 또한 염기성 촉매로서 5% 테트라메틸암모늄히드록시드 수용액(TMAH 수용액) 37.2g을 넣었다. 적하 깔때기에 톨루엔 25㎖와 트리메톡시비닐실란(신에츠 가가쿠 가부시키가이샤 제품 KBM1OO3) 50.3g을 넣고, 반응 용기를 교반하면서 실온에서 트리메톡시비닐실란의 톨루엔 용액을 3시간 동안 적하하였다. 트리메톡시비닐실란 적하 종료 후 실온에서 2시간 교반하였다. 1시간 교반 후 교반을 정지하여 1일 정치(靜置)하였다. 반응 용액을 10% 구연산 수용액 23.0g으로 중화한 후 포화 식염수로 세정하고 무수 황산마그네슘으로 탈수하였다. 무수 황산마그네슘을 여과 분별하고, 농축함으로써 중축합물을 20.6g, 수율 77%로 얻었다. 이 중축합물은 다양한 유기 용제에 녹기 어려운 백색 고체였다. 또한 중축합물의 GPC를 측정한 결과, 수평균분자량은 Mn1188, 분자량 분산도(Mw/Mn)는 2.03이었다.Into a reaction vessel equipped with a stirrer, a dropping funnel and a thermometer, 150 ml of toluene and 85 ml of 2-propanol (IPA) were added as a solvent, and 37.2 g of a 5% aqueous tetramethylammonium hydroxide solution (TMAH aqueous solution) as a basic catalyst. Put it. 25 ml of toluene and 50.3 g of trimethoxyvinylsilane (KBM1OO3 manufactured by Shin-Etsu Chemical Co., Ltd.) were added to the dropping funnel, and the toluene solution of trimethoxyvinylsilane was added dropwise at room temperature for 3 hours while stirring the reaction vessel. After completion of the dropwise addition of trimethoxyvinylsilane, the mixture was stirred at room temperature for 2 hours. After stirring for 1 hour, stirring was stopped and left standing for 1 day. The reaction solution was neutralized with 23.0 g of 10% aqueous citric acid solution, washed with saturated brine, and dehydrated with anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to give 20.6 g of a polycondensate in a yield of 77%. This polycondensate was a white solid that was insoluble in various organic solvents. Moreover, as a result of measuring GPC of a polycondensate, the number average molecular weight was Mn1188 and molecular weight dispersion degree (Mw / Mn) was 2.03.

다음으로 교반기, 딘스타크(Dean-Stark), 냉각관, 및 온도계를 구비한 반응 용기에 상기에서 얻어진 중축합물 15.0g과 톨루엔 380㎖와 5% TMAH 수용액 1.72g을 넣고 120℃에서 물을 증류 제거하면서 톨루엔을 환류 가열하여 재축합 반응을 행하였다. 톨루엔 환류 후 3시간 교반한 후 실온으로 되돌려 반응을 종료하였다. 반응 용액을 10% 구연산 23.0g으로 중화한 후 포화 식염수로 세정하고 무수 황산마그네슘으로 탈수하였다. 무수 황산마그네슘을 여과 분별하고, 농축함으로써 재축합물을 14.5g 얻었다. 얻어진 재축합물은 백색 고체로 다양한 용매에 난용성(難溶性)을 나 타내었다. 이 재축합물의 GPC를 측정한 결과를 도 1에 나타낸다. [R1SiO1.5]n으로 표현되는 재축합물 중, n이 13 이상인 케이지형 실록산, 래더(ladder)형 실록산, 및 랜덤형 실록산을 포함하는 피크 1[수평균분자량 Mn1979(Mw/Mn2.03)]과 n이 12 이하인 케이지형 실록산을 포함하는 피크 2[수평균분자량 Mn747(Mw/Mn1.02)]가 얻어졌다.Next, 15.0 g of the polycondensate obtained above, 380 ml of toluene and 1.72 g of a 5% aqueous TMAH solution were added to a reaction vessel equipped with a stirrer, Dean-Stark, cooling tube, and thermometer, and the water was distilled off at 120 ° C. While toluene was heated to reflux to carry out a recondensation reaction. After toluene reflux, the mixture was stirred for 3 hours, and then returned to room temperature to terminate the reaction. The reaction solution was neutralized with 23.0 g of 10% citric acid, washed with saturated brine, and dehydrated with anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 14.5 g of a recondensate. The resulting recondensate was a white solid, poorly soluble in various solvents. The result of measuring GPC of this recondensate is shown in FIG. [R 1 SiO 1.5] of the re-condensation product, which is represented by n, n is 13 or more cage-siloxane, a ladder (ladder) type siloxane, and a peak including a random siloxane-type 1 [number average molecular weight Mn1979 (Mw / Mn2.03 )] And peak 2 (number average molecular weight Mn747 (Mw / Mn1.02)) containing cage-type siloxane whose n is 12 or less were obtained.

이어서, 교반기, 딘스타크, 및 냉각관을 구비한 반응 용기에 상기에서 얻어진 재축합물 14.5g, 톨루엔 300㎖, 5% TMAH 수용액 3.0g, 및 1,3-디비닐-1,1,3,3-테트라메틸디실록산(TMDVDS: 신에츠 가가쿠 고교 가부시키가이샤 제품 LS-7250) 9.76g을 넣고, 120℃에서 물을 증류 제거하면서 톨루엔을 환류 가열하여 평형화 반응을 행하였다. 톨루엔 환류 후 3시간 교반한 후 실온으로 되돌려 반응을 종료하였다. 반응 용액을 10% 구연산 3.24g으로 중화한 후 포화 식염수로 세정하고 무수 황산마그네슘으로 탈수하였다. 무수 황산마그네슘을 여과 분별하고, 농축함으로써 목적의 케이지 개열형 실록산(혼합물) 16.9g이 수율 88%로 얻어졌다. 얻어진 케이지 개열형 실록산수지는 다양한 유기 용매에 가용(可溶)인 무색의 점성 액체였다.Subsequently, 14.5 g of the recondensate obtained above, 300 ml of toluene, 3.0 g of a 5% TMAH aqueous solution, and 1,3-divinyl-1,1,3, were added to a reaction vessel equipped with a stirrer, a Dean Stark, and a cooling tube. 9.76 g of 3-tetramethyldisiloxane (TMDVDS: LS-7250, manufactured by Shin-Etsu Chemical Co., Ltd.) was added thereto, and toluene was heated to reflux at 120 ° C. to carry out equilibration reaction. After toluene reflux, the mixture was stirred for 3 hours and then returned to room temperature to terminate the reaction. The reaction solution was neutralized with 3.24 g of 10% citric acid, washed with saturated brine, and dehydrated with anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 16.9 g of the desired cage cleavage siloxane (mixture) in a yield of 88%. The obtained cage cleavage type siloxane resin was a colorless viscous liquid soluble in various organic solvents.

이 케이지 개열형 실록산수지의 GPC를 측정한 결과를 도 2에 나타낸다. 케이지 개열형 실록산수지의 수평균분자량은 MnlO49(피크 3:Mw/Mn1.17)로 얻어졌다. 디실록산화합물의 평형화 반응에 의해 재축합물의 피크 1(Mn1979)은 저분자측으로 시프트하고, 피크 2(Mn747)가 고분자측으로 시프트하였다(피크 3). 시프트한 피크의 수평균분자량은, 재축합물의 피크 2의 수평균분자량에 디실록산화합물이 1분자 부 가된 수치와 거의 일치하였다. 또한 피크 1에 관해서는, [R1SiO1.5]n의 n이 13 이상인 큰 화합물인데, 평형화 반응 중의 가열에서 실록산 결합의 절단과 결합이 반복되어 n이 작아져, 이것과 디실록산화합물이 반응했다고 생각된다. 이 결과로부터, 케이지 개열형 실록산수지는, 중축합물의 케이지를 형성하는 실록산 결합의 일부분이 절단되어 디실록산화합물과 반응함으로써 얻어진 것을 알 수 있다.The result of measuring GPC of this cage cleavage type siloxane resin is shown in FIG. The number average molecular weight of the cage cleaved siloxane resin was obtained as MnlO49 (peak 3: Mw / Mn1.17). Peak 1 (Mn1979) of the recondensate shifted to the low molecular side and peak 2 (Mn747) shifted to the polymer side by the equilibrium reaction of the disiloxane compound (peak 3). The number average molecular weight of the shifted peak was almost identical to the value in which one molecule of the disiloxane compound was added to the number average molecular weight of peak 2 of the recondensate. Also as to peak 1, [R 1 SiO 1.5] the great compound more than n 13 of n, the equilibration reaction is coupled is repeated with the cutting of a siloxane bond in the heating of n is made small, this and the disiloxane compound is that the reaction I think. From this result, it turns out that cage cleavage type | mold siloxane resin was obtained by cut | disconnecting a part of siloxane bond which forms the cage of a polycondensate, and reacting with a disiloxane compound.

또한 상기에서 얻어진 케이지 개열형 실록산수지의 1H-NMR을 측정한 바, 6.2~5.7ppm의 비닐기에 의한 5.8~6.2ppm의 멀티플렛(multiplet) 피크와, 0.17ppm의 메틸기에 의한 피크 적분비는, 비닐기 15.4에 대하여 메틸기 6이었다.Furthermore, when 1H-NMR of the cage cleavage type siloxane resin obtained above was measured, the 5.8-6.2 ppm multiplet peak by 6.2-5.7 ppm vinyl group, and the peak integral ratio by 0.17 ppm methyl group, It was methyl group 6 with respect to vinyl group 15.4.

또한 얻어진 케이지 개열형 실록산수지를 액체 크로마토그래피 대기압 이온화 분석계(LC/APCI-MS)에 의해 질량 분석을 행한 결과를 도 3에 나타낸다. 그와 더불어, 표 1에는 질량 분석하여 검출된 주된 피크와, 그에 상당하는 화학식(2)의 m, n에 해당하는 수치를 정리하여 나타낸다. 검출되는 피크 m/z는 하기 일반식(2)(단, m이 1~4, n이 8~16이고, m과 n의 합이 10~20)로 표현되는 케이지 개열형 실록산수지의 분자량에 암모늄 이온이 부가된 값이다. 이 질량 분석 결과로부터도 케이지 개열형 실록산수지는, 중축합물의 케이지를 형성하는 실록산 결합의 일부분이 절단되어 디실록산화합물과 반응함으로써 얻어진 것을 알 수 있다.Moreover, the result of having performed mass spectrometry by the obtained cage cleavage type | mold siloxane resin by the liquid chromatography atmospheric pressure ionization analyzer (LC / APCI-MS) is shown in FIG. In addition, Table 1 summarizes the main peaks detected by mass spectrometry and the numerical values corresponding to m and n in the general formula (2). The peak m / z to be detected is the molecular weight of the cage cleavage type siloxane resin represented by the following general formula (2) (wherein m is 1 to 4, n is 8 to 16, and the sum of m and n is 10 to 20). Ammonium ion is added value. From the mass spectrometry results, it can be seen that the cage cleavage siloxane resin was obtained by cleaving a part of the siloxane bonds forming the cage of the polycondensate and reacting with the disiloxane compound.

Figure 112009052349567-PCT00007
Figure 112009052349567-PCT00007

Figure 112009052349567-PCT00008
Figure 112009052349567-PCT00008

<실시예 2><Example 2>

실시예 1과 마찬가지로, 교반기, 적하 깔때기, 및 온도계를 구비한 반응 용기에 톨루엔 384㎖, 5% TMAH 수용액 40.0g, 2-프로판올(IPA) 192㎖, 트리메톡시비닐실란 43.6g, 트리메톡시메틸실란 47.4g, 및 IPA 128㎖의 용액을 3시간 동안 적하한 후 3시간 실온(20~25℃)에서 교반하였다. 이 반응 용액을 1일 정치하였다. 반응 용액은 10% 구연산 수용액으로 중화한 후 포화 식염수로 세정하고 무수 황산마그네슘으로 탈수하였다. 무수 황산마그네슘을 여과 분별하고, 농축함으로써 메틸기와 비닐기를 가지는 중축합물 46.6g을 수율 80%로 얻었다. 이 중축합물의 GPC를 측정한 결과, 수평균분자량은 Mn1447(Mw/Mn31.5)이었다.As in Example 1, in a reaction vessel equipped with a stirrer, a dropping funnel and a thermometer, 384 ml of toluene, 40.0 g of 5% TMAH aqueous solution, 192 ml of 2-propanol (IPA), 43.6 g of trimethoxyvinylsilane, trimethoxy A solution of 47.4 g of methylsilane and 128 ml of IPA was added dropwise for 3 hours, and then stirred at room temperature (20-25 ° C.) for 3 hours. This reaction solution was allowed to stand for 1 day. The reaction solution was neutralized with 10% aqueous citric acid solution, washed with saturated brine, and dehydrated with anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 46.6 g of a polycondensate having a methyl group and a vinyl group in a yield of 80%. As a result of measuring the GPC of this polycondensate, the number average molecular weight was Mn1447 (Mw / Mn31.5).

다음으로 교반기, 딘스타크, 냉각관, 및 온도계를 구비한 반응 용기에 상기에서 얻어진 중축합물 15.0g과 톨루엔 380㎖와 5% TMAH 수용액 1.72g을 넣고 120℃에서 물을 증류 제거하면서 톨루엔을 환류 가열하여 재축합 반응을 행하였다. 톨루엔 환류 후 3시간 교반한 후 실온으로 되돌려 반응을 종료하였다. 반응 용액을 10% 구연산 23.0g으로 중화한 후 포화 식염수로 세정하고 무수 황산마그네슘으로 탈수하였다. 무수 황산마그네슘을 여과 분별하고, 농축함으로써 재축합물을 14.5g 얻었다. 얻어진 재축합물은 무색 투명 액체가 얻어졌다. 이 재축합물의 GPC를 측정한 결과를 도 4에 나타낸다. [R1SiO1.5]n으로 표현되는 재축합물 중 n이 13 이상인 케이지형 실록산, 래더형 실록산, 및 랜덤형 실록산을 포함하는 피크 4[수평균분자량 Mn1676(Mw/Mn1.27)]와 n이 12 이하인 케이지형 실록산인 것을 포함하는 피크 5[수평균분자량 Mn645(Mw/Mn1.02)]가 얻어졌다. 단, 재축합물 [R1SiO1.5]n에서의 R1은 비닐기만을 가지는 것, 메틸기만을 가지는 것, 비닐기와 메틸기의 2종류를 가지는 것을 포함한다.Next, 15.0 g of the polycondensate obtained above, 380 ml of toluene and 1.72 g of a 5% aqueous TMAH solution were added to a reaction vessel equipped with a stirrer, a Dean Stark, a cooling tube, and a thermometer, and the toluene was heated to reflux at 120 ° C. while the water was distilled off. To carry out a recondensation reaction. After toluene reflux, the mixture was stirred for 3 hours, and then returned to room temperature to terminate the reaction. The reaction solution was neutralized with 23.0 g of 10% citric acid, washed with saturated brine, and dehydrated with anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 14.5 g of a recondensate. As a result, a colorless transparent liquid was obtained. The result of measuring GPC of this recondensate is shown in FIG. Peak 4 [number average molecular weight Mn1676 (Mw / Mn1.27)] and n containing cage type siloxane, ladder type siloxane, and random type siloxane in which n is 13 or more among the recondensates represented by [R 1 SiO 1.5 ] n ; The peak 5 (number average molecular weight Mn645 (Mw / Mn1.02)) containing this 12 or less cage type siloxane was obtained. However, R 1 in the recondensate [R 1 SiO 1.5 ] n includes one having only a vinyl group, one having only a methyl group, and one having two kinds of vinyl groups and methyl groups.

상기에서 얻어진 재축합물 10g, 톨루엔 342㎖, 5% TMAH 수용액 3.0g 및 TMDVDS 9.6g을 교반기, 딘스타크 및 냉각관을 구비한 반응 용기에 넣고, 120℃에서 물을 증류 제거하면서 톨루엔을 환류 가열하여 가수분해 부가 반응을 행하였다. 톨루엔 환류하면서 3시간 교반한 후 실온으로 되돌려 반응을 종료하였다. 반응 용액을 10% 구연산 1.2g으로 중화한 후 증류수로 세정하고 무수 황산마그네슘으로 탈수하였다. 무수 황산마그네슘을 여과 분별하고, 농축함으로써 목적의 케이지 개열형 실록산수지 11.4g을 수율 86%로 얻었다. 얻어진 케이지 개열형 실록산수지는 다양한 유기 용매에 가용인 무색의 점성 액체였다. 이 케이지 개열형 실록산수지의 GPC를 측정한 결과를 도 5에 나타낸다. 케이지 개열형 실록산의 수평균분자량은 Mn928(피크 6: Mw/Mn1.16)로 얻어졌다.10 g of the recondensate obtained above, 342 ml of toluene, 3.0 g of a 5% TMAH aqueous solution and 9.6 g of TMDVDS were placed in a reaction vessel equipped with a stirrer, a Dean Stark and a cooling tube, and toluene was heated to reflux at 120 ° C. while distilling off water. Hydrolysis addition reaction was performed. After stirring for 3 hours while refluxing toluene, the reaction was returned to room temperature to complete the reaction. The reaction solution was neutralized with 1.2 g of 10% citric acid, washed with distilled water, and dehydrated with anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 11.4 g of the desired cage cleavage type siloxane resin in a yield of 86%. The obtained cage cleavage type siloxane resin was a colorless viscous liquid soluble in various organic solvents. The result of measuring GPC of this cage cleavage type siloxane resin is shown in FIG. The number average molecular weight of the cage cleaved siloxane was obtained as Mn928 (peak 6: Mw / Mn1.16).

<실시예 3><Example 3>

실시예 1과 동일하게 하여 얻은 재축합물 7.95g, 헥사메틸디실록산 1.41g, 5% TMAH 수용액 0.47g 및 톨루엔 50㎖를 교반기, 딘스타크 및 냉각관을 구비한 반응 용기에 넣고, 80℃에서 3시간 교반한 후 100℃로 승온하여 1.5시간, 또한 130℃로 승온하여 1.5시간 교반하였다. 반응 용액을 실온으로 되돌려 구연산, 10% 구연산 3.24g으로 중화한 후 포화 식염수로 세정하고 무수 황산마그네슘으로 탈수하였다. 무수 황산마그네슘을 여과 분별하고, 농축함으로써 목적의 케이지 개열형 실록산수지 9.45g을 수율 94%로 얻었다. 얻어진 케이지 개열형 실록산은 다양한 유기 용매에 가용인 무색의 점성 액체였다. 이 케이지 개열형 실록산수지의 GPC를 측정한 결과를 도 6에 나타낸다. 케이지 개열형 실록산수지의 수평균분자량은 Mn939(피크 7: Mw/Mn1.12)로 얻어졌다.7.95 g of the recondensate obtained in the same manner as in Example 1, 1.41 g of hexamethyldisiloxane, 0.47 g of a 5% TMAH aqueous solution, and 50 ml of toluene were placed in a reaction vessel equipped with a stirrer, Dean Stark and a cooling tube, at 80 ° C. After stirring for 3 hours, the temperature was raised to 100 ° C, increased for 1.5 hours, and further heated to 130 ° C and stirred for 1.5 hours. The reaction solution was returned to room temperature, neutralized with citric acid and 3.24 g of 10% citric acid, washed with saturated brine, and dehydrated with anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 9.45 g of the desired cage cleavage type siloxane resin in a yield of 94%. The obtained cage cleavage siloxane was a colorless viscous liquid soluble in various organic solvents. The result of measuring GPC of this cage cleavage type siloxane resin is shown in FIG. The number average molecular weight of the cage cleaved siloxane resin was obtained as Mn939 (Peak 7: Mw / Mn1.12).

<실시예 4><Example 4>

실시예 1과 동일하게 하여 얻은 재축합물 5.00g, 1,3-디(3-글리시독시프로필)-1,1,3,3-테트라메틸디실록산(신에츠 가가쿠 고교 가부시키가이샤 제품 LS-7970) 2.28g, 5% TMAH 수용액 1.14g 및 톨루엔 63㎖를 교반기, 딘스타크 및 냉각관을 구비한 반응 용기에 넣고, 120℃에서 물을 증류 제거하면서 톨루엔을 환류 가열해 톨루엔을 환류하여 재축합 반응을 행하였다. 톨루엔 환류 후 5시간 교반한 후 실온으로 되돌려 반응을 종료하였다. 반응 용액을 포화 식염수로 세정하고, 무수 황산마그네슘으로 탈수하였다. 무수 황산마그네슘을 여과 분별하고, 농축함으로써 목적의 케이지 개열형 실록산수지, 재축합물, 및 1,3-비스(글리시독시프로필)-1,1,3,3-테트라메틸디실록산의 반응 혼합물 6.48g을 수량(收量) 89%로 얻었다. GPC에 있어서 원료인 디실록산의 피크(피크 9: Mn357)와, 케이지 개열형 실록산과 재축합물을 포함하는 피크(피크 8: Mn1242)를 확인할 수 있었다. 얻어진 반응 혼합물은 다양한 유기 용매에 가용인 투명의 점성 액체였다. 이 반응 혼합물의 GPC를 측정한 결과를 도 7에 나타낸다.5.00 g of recondensate obtained in the same manner as in Example 1, 1,3-di (3-glycidoxypropyl) -1,1,3,3-tetramethyldisiloxane (LS of Shin-Etsu Chemical Co., Ltd.) -7970) 2.28 g, 5% TMAH aqueous solution, 1.14 g and 63 ml of toluene were placed in a reaction vessel equipped with a stirrer, Dean Stark, and a cooling tube, and toluene was heated to reflux at reflux to remove water at 120 ° C. A condensation reaction was performed. After toluene reflux for 5 hours, the reaction mixture was returned to room temperature to complete the reaction. The reaction solution was washed with saturated brine and dehydrated with anhydrous magnesium sulfate. The reaction mixture of the desired cage cleavage type siloxane resin, the recondensate, and 1,3-bis (glycidoxypropyl) -1,1,3,3-tetramethyldisiloxane by filtration-separating anhydrous magnesium sulfate and concentrating. 6.48 g was obtained in 89% yield. In GPC, the peak (peak 9: Mn357) of the disiloxane which is a raw material, and the peak (peak 8: Mn1242) containing cage cleavage type siloxane and a recondensate were confirmed. The obtained reaction mixture was a transparent viscous liquid soluble in various organic solvents. The result of measuring GPC of this reaction mixture is shown in FIG.

<실시예 5><Example 5>

실시예 1과 동일하게 하여 얻은 재축합물 4.00g, 1,3-디(3-메타크릴옥시프로필)-1,1,3,3-테트라메틸디실록산 2.27g, 5% TMAH 수용액 1.07g 및 톨루엔 60㎖를 교반기, 딘스타크 및 냉각관을 구비한 반응 용기에 넣고, 120℃에서 물을 증류 제거하면서 톨루엔을 환류 가열하여 재축합 반응을 행하였다. 톨루엔 환류 후 5시간 교반한 후 실온으로 되돌려 반응을 종료하였다. 반응 용액을 포화 식염수로 세정하고, 무수 황산마그네슘으로 탈수하였다. 무수 황산마그네슘을 여과 분별하고, 농축함으로써 목적의 케이지 개열형 실록산수지와 재축합물, 1,3-디(3-메타크릴옥시프로필)-1,1,3,3-테트라메틸디실록산의 반응 혼합물 5.51g을 수량 91%로 얻었다. GPC에 있어서 원료인 디실록산의 피크(피크 11: Mn422)와, 케이지 개열형 실록산수지와 재축합물을 포함하는 피크(피크 10: Mn1122)를 확인할 수 있었다. 얻어진 케이지 개열형 실록산수지를 포함하는 반응 혼합물은 다양한 유기 용매에 가용인 투명의 점성 액체였다. 이 반응 혼합물의 GPC를 측정한 결과를 도 8에 나타낸다.4.00 g of the recondensate obtained in the same manner as in Example 1, 2.27 g of 1,3-di (3-methacryloxypropyl) -1,1,3,3-tetramethyldisiloxane, 1.07 g of a 5% aqueous TMAH solution, and 60 ml of toluene was placed in a reaction vessel equipped with a stirrer, Dean Stark and a cooling tube, and toluene was heated to reflux while distilling off water at 120 ° C to conduct a recondensation reaction. After toluene reflux for 5 hours, the reaction mixture was returned to room temperature to complete the reaction. The reaction solution was washed with saturated brine and dehydrated with anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to react the desired cage cleavage siloxane resin with the recondensate and 1,3-di (3-methacryloxypropyl) -1,1,3,3-tetramethyldisiloxane. 5.51 g of the mixture was obtained in a yield of 91%. In GPC, the peak (peak 11: Mn422) of the disiloxane which is a raw material, and the peak (peak 10: Mn1122) containing cage cleavage type | mold siloxane resin and the recondensate were confirmed. The reaction mixture containing the obtained cage cleavage type siloxane resin was a transparent viscous liquid soluble in various organic solvents. The result of measuring GPC of this reaction mixture is shown in FIG.

상기의 실시예 1~5에 있어서, 재축합물에 디실록산화합물을 평형화 반응시키는 반응시의 투입량을 이하의 표 2에 정리하여 나타낸다.In Examples 1 to 5 described above, the amounts added at the time of equilibrating the disiloxane compound to the recondensate are summarized in Table 2 below.

Figure 112009052349567-PCT00009
Figure 112009052349567-PCT00009

또한 하기 표 3에는, 상기 실시예 1~5에 있어서 얻어진 케이지 개열형 실록산수지의 GPC 계산 결과를 정리하여 나타낸다. 디실록산화합물의 평형화 반응에 의해 재축합물의 피크 1(Mn1979)은 저분자측으로 시프트하고, 피크 2(Mn747)가 고분자측으로 시프트하였다. 시프트한 피크의 수평균분자량은, 재축합물의 피크 2의 수평균분자량에 디실록산화합물이 1분자 부가된 수치와 거의 일치하였다. 또한 피크 1에 관해서는, [R1SiO1.5]n의 n이 13 이상인 큰 화합물로서, 평형화 반응 중의 가열에서 실록산 결합의 절단과 결합이 반복되어 n이 작아져, 이것에 디실록산화합물이 부가되었다고 생각된다. 이들 결과로부터 실시예 1~5에서 얻어진 케이지 개열형 실록산수지는, 중축합물의 케이지를 형성하는 실록산 결합의 일부분이 절단되어 디실록산화합물과 반응함으로써 얻어진 것을 알 수 있다.In addition, in Table 3 below, the results of GPC calculation of the cage cleavage type siloxane resin obtained in Examples 1 to 5 are collectively shown. By equilibration of the disiloxane compound, peak 1 (Mn1979) of the recondensate was shifted to the low molecular side, and peak 2 (Mn747) was shifted to the polymer side. The number average molecular weight of the shifted peak was almost identical to the value in which one molecule of the disiloxane compound was added to the number average molecular weight of peak 2 of the recondensate. Also as to peak 1, [R 1 SiO 1.5] as a large compound more than n 13 of n, the coupling is repeated with the cutting of a siloxane bond in the heating of the equilibrated reaction n is made small, which in the disiloxane compound that additional I think. These results show that the cage cleavage type siloxane resins obtained in Examples 1 to 5 were obtained by cleaving a part of the siloxane bonds forming the cage of the polycondensate and reacting with the disiloxane compound.

Figure 112009052349567-PCT00010
Figure 112009052349567-PCT00010

또한 상기 실시예 1~5에서 얻어진 케이지 개열형 실록산과 그 외의 실록산수지(11)~(14)의 상용성을 확인하였다. 결과를 표 4에 나타낸다. 이 결과로부터, 재축합물인 케이지상 실록산은 결정성이 높고, 다른 실록산수지와의 상용성은 거의 없지만, 평형화 반응에 의해 케이지형 구조의 일부의 실록산 결합을 개열한 케이지 개열형 실록산수지에서는, 다른 실록산수지와의 상용성이 크게 향상한 것을 알 수 있다. 또한 표 4에서의 기호는, "○: 상용성이 있음, ×: 상용성이 없음"을 나타낸다. 또한 상용성을 확인한 실록산수지(11), (12), (13), (14)는 하기에 나타내는 일반식으로 표현되는 화합물이다.In addition, the compatibility of the cage cleavage type siloxane obtained in the said Examples 1-5 with other siloxane resins (11)-(14) was confirmed. The results are shown in Table 4. From these results, cage-type siloxanes, which are recondensates, have high crystallinity and little compatibility with other siloxane resins, but in cage cleavage siloxane resins that cleave some siloxane bonds in a cage-like structure by equilibration reactions, other siloxanes. It can be seen that the compatibility with the resin is greatly improved. In addition, the symbol in Table 4 shows "(circle): compatibility, x: no compatibility". Moreover, the siloxane resins (11), (12), (13), and (14) which confirmed compatibility are compounds represented by the general formula shown below.

Figure 112009052349567-PCT00011
Figure 112009052349567-PCT00011

Figure 112009052349567-PCT00012
Figure 112009052349567-PCT00012

Figure 112009052349567-PCT00013
Figure 112009052349567-PCT00013

또한 하기의 표 5에는, 상기 실시예 1~5에 있어서 얻어진 케이지 개열형 실록산수지의 GPC 차트에 있어서, 원료인 디실록산화합물을 제외한 피크 3, 6, 7, 8, 10을 곡(谷) 피크로 분할하여 재계산을 행하여, 일반식(2)Table 5 below shows peaks 3, 6, 7, 8, and 10 except for the disiloxane compound as a raw material in the GPC chart of the cage cleavage type siloxane resin obtained in Examples 1 to 5, respectively. Recalculate by dividing by, and use the formula (2)

Figure 112009052349567-PCT00014
Figure 112009052349567-PCT00014

(단, m이 1~4, n이 8~16이고, m과 n의 합이 10~20)에 상당하는 분자량 범위의 수평균분자량과 그 면적 비율을 정리한 결과를 나타낸다.However, the result which puts together the number average molecular weight and the area ratio of the molecular weight range which correspond to (m is 1-4, n is 8-16, and the sum of m and n is 10-20) is shown.

Figure 112009052349567-PCT00015
Figure 112009052349567-PCT00015

Claims (10)

하기 일반식(2)General formula (2)
Figure 112009052349567-PCT00016
Figure 112009052349567-PCT00016
[단, R1은 비닐기, 알킬기, 페닐기, (메타)아크릴로일기, 알릴기 또는 옥시란 환을 가지는 기이고, (m+n)개의 R1 중 적어도 2개는 불포화 이중 결합을 가지는 비닐기, (메타)아크릴로일기 또는 알릴기로부터 선택된 반응성 유기 관능기이며, R2는 메틸기를 나타낸다. m은 1~4의 정수, n은 8~16의 정수이고, m과 n의 합은 10~20이다.][Wherein R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and at least two of (m + n) R 1 's have a vinyl having an unsaturated double bond A reactive organic functional group selected from the group, the (meth) acryloyl group or the allyl group, and R 2 represents a methyl group. m is an integer from 1 to 4, n is an integer from 8 to 16, and the sum of m and n is 10 to 20.] 로 표현되는 것을 특징으로 하는 케이지 개열형 실록산수지.Cage cleavage type siloxane resin, characterized in that represented by.
제1항에 있어서,The method of claim 1, 수평균분자량 Mn이 600~10000의 범위이고, GPC 차트에서의 최대 면적을 가지는 피크가 차지하는 비율이 50%이상인 것을 특징으로 하는 케이지 개열형 실록산수지.Cage cleavage type siloxane resin, characterized in that the number average molecular weight Mn is in the range of 600 to 10000, and the proportion of the peak having the largest area in the GPC chart is 50% or more. 제1항에 있어서,The method of claim 1, 수평균분자량 Mn이 900~2000의 범위이고, 분자량 분산도(Mw/Mn)가 1.0~3.5인 것을 특징으로 하는 케이지 개열형 실록산수지.Cage cleavage type siloxane resin whose number average molecular weight Mn is the range of 900-2000, and molecular weight dispersion degree (Mw / Mn) is 1.0-3.5. 하기 일반식(1)General formula (1)
Figure 112009052349567-PCT00017
Figure 112009052349567-PCT00017
[단, R1은 비닐기, 알킬기, 페닐기, (메타)아크릴로일기, 알릴기 또는 옥시란 환을 가지는 기이고, X는 알콕시기, 할로겐원자 또는 히드록실기로부터 선택된 가수분해성 기를 나타낸다.][Wherein R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and X represents a hydrolyzable group selected from an alkoxy group, a halogen atom or a hydroxyl group.] 로 표현되는 규소화합물의 1종 또는 2종 이상을, 염기성 촉매 존재하, 비극성 용매 또는 극성 용매의 어느 한 쪽 또는 양 쪽을 합친 용매 중에서 가수분해 반응시키는 동시에 일부 축합시키고, 얻어진 중축합물을 또한 비극성 용매 및 염기성 촉매의 존재하에서 재축합시켜, 얻어진 재축합물에 디실록산화합물을 평형화 반응시킴으로써 얻어지는 것을 특징으로 하는 케이지 개열형 실록산수지.One or two or more of the silicon compounds represented by the above is hydrolyzed in the presence of a basic catalyst or in a solvent in which one or both of the polar solvents are combined, and at the same time partially condensed, and the resulting polycondensate is also nonpolar. The cage cleavage type siloxane resin obtained by equilibrating a disiloxane compound with the recondensate obtained by recondensing in presence of a solvent and a basic catalyst.
제4항에 있어서,The method of claim 4, wherein 디실록산화합물이, 하기 일반식(3)The disiloxane compound is represented by the following general formula (3)
Figure 112009052349567-PCT00018
Figure 112009052349567-PCT00018
[단, R1은 비닐기, 알킬기, 페닐기, (메타)아크릴로일기, 알릴기 또는 옥시란 환을 가지는 기이고, R2는 메틸기를 나타낸다.][Wherein R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and R 2 represents a methyl group.] 으로 표현되는 것을 특징으로 하는 케이지 개열형 실록산수지.Cage cleavage type siloxane resin, characterized in that represented by.
제4항에 있어서,The method of claim 4, wherein 수평균분자량 Mn이 600~10000의 범위이고, 분자량 분산도(Mw/Mn)가 1.0~3.5인 것을 특징으로 하는 케이지 개열형 실록산수지.Cage cleavage type siloxane resin whose number average molecular weight Mn is the range of 600-10000, and molecular weight dispersion degree (Mw / Mn) is 1.0-3.5. 하기 일반식(1)General formula (1)
Figure 112009052349567-PCT00019
Figure 112009052349567-PCT00019
[단, R1은 비닐기, 알킬기, 페닐기, (메타)아크릴로일기, 알릴기 또는 옥시란 환을 가지는 기이고, X는 알콕시기, 할로겐원자 또는 히드록실기로부터 선택된 가수분해성 기를 나타낸다.][Wherein R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and X represents a hydrolyzable group selected from an alkoxy group, a halogen atom or a hydroxyl group.] 로 표현되는 규소화합물의 1종 또는 2종 이상을, 염기성 촉매 존재하, 비극성 용매 또는 극성 용매의 어느 한 쪽 또는 양 쪽을 합친 용매 중에서 가수분해 반응시키는 동시에 일부 축합시키고, 얻어진 중축합물을 또한 비극성 용매 및 염기성 촉매의 존재하에서 재축합시켜, 얻어진 재축합물에 디실록산화합물을 평형화 반응시키는 것을 특징으로 하는 케이지 개열형 실록산수지의 제조방법.One or two or more of the silicon compounds represented by the above is hydrolyzed in the presence of a basic catalyst or in a solvent in which one or both of the polar solvents are combined, and at the same time partially condensed, and the resulting polycondensate is also nonpolar. A method for producing a cage cleavage type siloxane resin, wherein the disiloxane compound is equilibrated with the recondensate obtained by recondensing in the presence of a solvent and a basic catalyst.
제7항에 있어서,The method of claim 7, wherein 케이지 개열형 실록산수지가, 하기 일반식(2)Cage cleavage type siloxane resin is following general formula (2)
Figure 112009052349567-PCT00020
Figure 112009052349567-PCT00020
[단, R1은 비닐기, 알킬기, 페닐기, (메타)아크릴로일기, 알릴기 또는 옥시란 환을 가지는 기이고, (m+n)개의 R1 중 적어도 2개는 불포화 이중 결합을 가지는 비닐기, (메타)아크릴로일기 또는 알릴기를 가지는 기로부터 선택된 반응성 유기 관능기이며, R2는 메틸기를 나타낸다. m은 1~4의 정수, n은 8~16의 정수이고, m과 n의 합은 10~20이다.][Wherein R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and at least two of (m + n) R 1 's have a vinyl having an unsaturated double bond A reactive organic functional group selected from the group having a group, a (meth) acryloyl group or an allyl group, and R 2 represents a methyl group. m is an integer from 1 to 4, n is an integer from 8 to 16, and the sum of m and n is 10 to 20.] 로 표현되는 것을 특징으로 하는 케이지 개열형 실록산수지의 제조방법.Method for producing a cage cleavage type siloxane resin, characterized in that.
제7항에 있어서,The method of claim 7, wherein 염기성 촉매의 사용량이 재축합물 중의 [R1SiO1.5]10으로 표현되는 구조 단위 1몰에 대하여 0.05~0.15몰의 범위이면서, 디실록산화합물이 하기 일반식(3)While the amount of the basic catalyst used is in the range of 0.05 to 0.15 moles with respect to 1 mole of the structural unit represented by [R 1 SiO 1.5 ] 10 in the recondensate, the disiloxane compound is represented by the general formula (3) [단, R1은 비닐기, 알킬기, 페닐기, (메타)아크릴로일기, 알릴기 또는 옥시란 환을 가지는 기이고, R2는 메틸기를 나타낸다.][Wherein R 1 is a group having a vinyl group, an alkyl group, a phenyl group, a (meth) acryloyl group, an allyl group or an oxirane ring, and R 2 represents a methyl group.] 으로 표현되는 것을 특징으로 하는 케이지 개열형 실록산수지의 제조방법.Method for producing a cage cleavage type siloxane resin, characterized in that represented by. 제7항에 있어서,The method of claim 7, wherein 얻어지는 케이지 개열형 실록산수지의 수평균분자량 Mn이 600~10000의 범위이고, 분자량 분산도(Mw/Mn)가 1.0~3.5인 것을 특징으로 하는 케이지 개열형 실록산수지의 제조방법.The number average molecular weight Mn of the cage cleavage type siloxane resin obtained is 600-10000, and molecular weight dispersion degree (Mw / Mn) is 1.0-3.5, The manufacturing method of cage cleavage type siloxane resin.
KR1020097017813A 2007-02-16 2008-02-13 Cage-cleavable siloxane resin having functional group and method for production thereof KR101494850B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2007-036006 2007-02-16
JP2007036006 2007-02-16
PCT/JP2008/052352 WO2008099850A1 (en) 2007-02-16 2008-02-13 Cage-cleavable siloxane resin having functional group and method for production thereof

Publications (2)

Publication Number Publication Date
KR20090111341A true KR20090111341A (en) 2009-10-26
KR101494850B1 KR101494850B1 (en) 2015-02-23

Family

ID=39690078

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097017813A KR101494850B1 (en) 2007-02-16 2008-02-13 Cage-cleavable siloxane resin having functional group and method for production thereof

Country Status (5)

Country Link
JP (1) JP5346593B2 (en)
KR (1) KR101494850B1 (en)
CN (1) CN101636433B (en)
TW (1) TWI431041B (en)
WO (1) WO2008099850A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5385832B2 (en) * 2010-03-23 2014-01-08 新日鉄住金化学株式会社 Curable resin composition and molded product obtained therefrom
KR101861774B1 (en) * 2011-03-31 2018-05-28 신닛테츠 수미킨 가가쿠 가부시키가이샤 Curable silicone resin composition and cured silicone resin
JP6021605B2 (en) * 2012-11-19 2016-11-09 新日鉄住金化学株式会社 Cage type silsesquioxane compound, curable resin composition and resin cured product using the same
KR102280925B1 (en) * 2014-07-25 2021-07-26 에스케이이노베이션 주식회사 Composition for making hard coating layer
CN113087907B (en) * 2019-12-23 2023-01-13 万华化学集团股份有限公司 Lithium silanol and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118973B2 (en) * 1997-03-14 2008-07-16 新日鐵化学株式会社 Silicone compound and method for producing the same
ES2273719T3 (en) * 1999-08-04 2007-05-16 Hybrid Plastics PROCEDURE FOR THE FORMATION OF POLYEDRIC OLIGOMERIC SILSESQUIOXANES.
JP4381636B2 (en) * 2001-11-05 2009-12-09 新日鐵化学株式会社 Silicone resin composition and silicone resin molded article
JP4142385B2 (en) * 2002-10-03 2008-09-03 新日鐵化学株式会社 Silicone resin composition and silicone resin molded article
JP4793547B2 (en) 2005-07-25 2011-10-12 信越化学工業株式会社 Method for producing imide bonded with organosiloxane, triorganosilyl ester of amic acid bonded with organosiloxane, and method for manufacturing the same

Also Published As

Publication number Publication date
CN101636433A (en) 2010-01-27
JPWO2008099850A1 (en) 2010-05-27
JP5346593B2 (en) 2013-11-20
KR101494850B1 (en) 2015-02-23
TW200904857A (en) 2009-02-01
TWI431041B (en) 2014-03-21
CN101636433B (en) 2012-08-15
WO2008099850A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5627458B2 (en) Process for controlled hydrolysis and condensation of epoxy functional organosilanes and cocondensation of the epoxy functional organosilanes with other organofunctional alkoxysilanes
US7053167B2 (en) Silsesquioxane derivative having functional group
JPH10251407A (en) Silicone compound and its production
JP5924286B2 (en) Organic functional group-containing polyether-modified alkoxysiloxane and method for producing the same
KR20130140900A (en) Siloxane compound and cured product thereof
US7956125B2 (en) (Thio)phenoxy phenyl silane compostion and method for making same
JP5018065B2 (en) Polysiloxane compound and method for producing the same
KR101494850B1 (en) Cage-cleavable siloxane resin having functional group and method for production thereof
CN106831845B (en) Boron-containing organosilicon compounds, method for the production and use thereof
JP3263177B2 (en) Epoxy group-containing silicone resin and method for producing the same
JP3848260B2 (en) Method for producing hydroxyalkylpolysiloxane
JP5698584B2 (en) Cage-type silsesquioxane resin and method for producing the same
JP2005015738A (en) Method of producing silsesquioxane derivative having functional group and silsesquioxane derivative
US7402648B2 (en) Method for producing cyclic organic silicon compound and organic silicon resin having alcoholic hydroxyl group
US10065975B2 (en) Amino-containing organosilicon compound and making method
KR20140024353A (en) Basket type silsesquioxane resin, basket type silsesquioxane copolymer and method for producing same
US7365213B2 (en) Organosilicon compound, organosilicon resin having diol, and processes for producing these
KR20080087741A (en) Novel silicon compound, material thereof and method for producing the same
KR101621576B1 (en) Process for producing silicon compound having oxetanyl group
KR101097570B1 (en) Method for Producing Cyclic Organic Silicon Compound
JPH11152337A (en) Production of hydroxyl-containing siloxane compound
EP3259277B1 (en) Silanes and silicones with distinct hydrophilic and oleophobic substitution
KR20230046258A (en) Cyclic silazane compound having alkoxysilyl group, method for producing same, and composition, cured product and covered substrate containing same
JP6225888B2 (en) Organopolysiloxane compound and method for producing the same
JP3257414B2 (en) Organopolysiloxane having cyclic ether group

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180119

Year of fee payment: 4