JPWO2015182767A1 - Ball screw device - Google Patents

Ball screw device Download PDF

Info

Publication number
JPWO2015182767A1
JPWO2015182767A1 JP2016523590A JP2016523590A JPWO2015182767A1 JP WO2015182767 A1 JPWO2015182767 A1 JP WO2015182767A1 JP 2016523590 A JP2016523590 A JP 2016523590A JP 2016523590 A JP2016523590 A JP 2016523590A JP WO2015182767 A1 JPWO2015182767 A1 JP WO2015182767A1
Authority
JP
Japan
Prior art keywords
amount
formula
screw shaft
less
retained austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016523590A
Other languages
Japanese (ja)
Inventor
成晃 阿部
成晃 阿部
秀幸 飛鷹
秀幸 飛鷹
渡辺 靖巳
靖巳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Publication of JPWO2015182767A1 publication Critical patent/JPWO2015182767A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Transmission Devices (AREA)

Abstract

ボールねじ装置のねじ軸が、高炭素軸受鋼またはMs点が172℃以下でDI値が2.8以上の鋼材を熱硬化処理してなり、かつ、(a)有効硬化層の割合、(b)非硬化層の金属組織、(c)平均残留オーステナイト量、(d)転動面の水素量、(e)溝底の炭化物面積率、(f)軌道面から深さ50μmでの残留オーステナイト量をそれぞれ特定範囲とする。The screw shaft of the ball screw device is a high carbon bearing steel or a steel material having an Ms point of 172 ° C. or less and a DI value of 2.8 or more, and (a) a ratio of an effective hardened layer, (b ) Metal structure of non-hardened layer, (c) Average amount of retained austenite, (d) Hydrogen amount on rolling surface, (e) Carbide area ratio at groove bottom, (f) Amount of retained austenite at 50 μm depth from raceway surface Is a specific range.

Description

本発明はボールねじ装置に関し、特に射出成形機用に適したボールねじ装置に関する。   The present invention relates to a ball screw device, and more particularly to a ball screw device suitable for an injection molding machine.

ボールねじ装置は、射出成形機用途と、搬送・位置決め用途とに大別される。また、近年では、自動車部品の軽量化が求められており、その一つの手段として部品の樹脂化が検討されている。このようなニーズの下、射出成形機に求められる出力が増大し、装置の大型化が必要になってくるが、それをできるだけ抑制するためにボールねじ装置の長寿命化が益々重要になっている。   Ball screw devices are roughly classified into injection molding machine applications and conveyance / positioning applications. In recent years, there has been a demand for weight reduction of automobile parts, and as one means for that purpose, resin conversion of parts has been studied. Under such needs, the output required for injection molding machines has increased, and it has become necessary to increase the size of the device. In order to suppress this as much as possible, it is becoming increasingly important to extend the life of the ball screw device. Yes.

ボールねじ装置に求められる性能としては、先ず、軸方向の移動が安定して行われることであり、そのためには長時間にわたってねじ溝に形状的な変化が生じないことが求められる。ねじ軸の形状変化の要因として軌道面の表面が部分的に欠損するはく離や摩耗、鋼材の膨張や収縮に起因した寸法変化がある。即ち、耐はく離性、耐摩耗性、寸法安定性に優れたねじ軸を備えることが、品質の良いボールねじ装置であると言える。   The performance required for the ball screw device is that the movement in the axial direction is first performed stably. For that purpose, it is required that the shape of the screw groove does not change over a long period of time. As a cause of the change in the shape of the screw shaft, there is a dimensional change due to separation or wear in which the surface of the raceway surface is partially lost or due to expansion or contraction of the steel material. That is, it can be said that providing a screw shaft excellent in peeling resistance, wear resistance, and dimensional stability is a high-quality ball screw device.

しかしながら、これらの耐久性を全て高いレベルで満足する製品を製造することは容易ではない。射出成形機ではボールねじ装置が推力源として使用されるため、ボールねじ装置には高い応力が繰り返し負荷されるので、耐はく離性を高める必要がある。ボールねじ装置ではナットがねじ軸に対して軸方向に移動するため、異物が混入しやすく、また、ボールがナットの循環部品を経由する際に傷つく場合があり、転動体の表面性状が劣化しやすいことから、「ピーリング」と呼ばれる表面起点型はく離が多くみられる。この形態のはく離については、ねじ軸の軌道面の残留オーステナイトの最適化が有効であり、そのために浸炭処理が用いられている。しかしながら、残留オーステナイトは長期間の使用中にマルテンサイトに変化しやすく、その密度差から膨張による寸法変化を起こす。そのため、耐はく離性を高めようとして浸炭処理を施すと、寸法安定性の低下をある程度許容しなければならない。   However, it is not easy to produce a product that satisfies all of these durability levels at a high level. In an injection molding machine, since a ball screw device is used as a thrust source, high stress is repeatedly applied to the ball screw device, so that it is necessary to improve the peel resistance. In the ball screw device, the nut moves in the axial direction with respect to the screw shaft, so foreign matter is likely to be mixed in, and the ball may be damaged when it passes through the circulating parts of the nut, which deteriorates the surface properties of the rolling element. Because it is easy, surface-origin type peeling called “peeling” is often observed. For this type of separation, optimization of the retained austenite on the raceway surface of the screw shaft is effective, and carburizing treatment is used for this purpose. However, retained austenite tends to change to martensite during long-term use, and causes a dimensional change due to expansion due to the density difference. Therefore, when carburizing treatment is performed in order to improve the peeling resistance, a reduction in dimensional stability must be allowed to some extent.

一方、寸法安定性に主眼を置いた場合、高周波熱処理を利用することが行われている。高周波処理は、誘導加熱により鋼材表面で発熱させることで、必要な部分のみ焼入れを行うことができる、高周波熱処理を利用したねじ軸の製造法としては、鋼材からなる丸棒に溝加工を施した後に硬化層を付与する方法と、丸棒に硬化層を付与した後に溝加工を施す方法とがある。何れの方法でも、寸法変化を生じさせる硬化層はねじ軸の表面だけであり、浸炭処理に比べて同等以上の性能が期待できる。しかしながら、高周波熱処理により、耐はく離性を向上させることは容易ではない。高周波熱処理では、発熱が表面で起こるために表面でオーバーヒートが生じやすく、炭素量が多い鋼材ではオーバーヒートによる割れが発生しやすくなる。そのため、高周波熱処理を行う場合には、一般的には中炭素鋼が使用されており、実際にねじ軸用としては0.5%CベースのSAE4150が使用されている。しかしながら、はく離に対して有効な残留オーステナイト量は、鋼中の炭素含有量に依存しており、0.5質量%程度の炭素含有量では寿命延長効果が殆ど期待できない。   On the other hand, when the focus is on dimensional stability, high-frequency heat treatment is used. High-frequency treatment can heat only the necessary part by generating heat on the steel surface by induction heating. As a method of manufacturing a screw shaft using high-frequency heat treatment, a round bar made of steel is grooved. There are a method of applying a hardened layer later and a method of applying a groove after applying a hardened layer to a round bar. In any method, the hardened layer causing the dimensional change is only on the surface of the screw shaft, and the same or better performance can be expected as compared with the carburizing treatment. However, it is not easy to improve the peel resistance by high-frequency heat treatment. In the high-frequency heat treatment, heat generation occurs on the surface, so overheating is likely to occur on the surface, and cracks due to overheating are likely to occur in steel materials with a large amount of carbon. Therefore, when performing high-frequency heat treatment, generally, medium carbon steel is used, and 0.5% C-based SAE4150 is actually used for the screw shaft. However, the amount of retained austenite effective for delamination depends on the carbon content in the steel, and a life extension effect can hardly be expected with a carbon content of about 0.5% by mass.

尚、ねじ軸の製造工程における高周波熱処理に関しては、例えば、特許文献1、2を参照することができる。   For example, Patent Documents 1 and 2 can be referred to for the induction heat treatment in the manufacturing process of the screw shaft.

また、射出成型機用のボールねじ装置では、使用環境が厳しくなると、特殊なはく離が生じることがある。このはく離は、「白色はく離」と呼ばれる組織変化を起点とするはく離であり、鋼中に侵入した水素によって引き起こされると考えられている。水素は、鋼中に元々存在するものと、使用中に潤滑油等が分解して発生し鋼中に侵入するものとが考えられる。そして、白色はく離が発生すると、残留オーステナイト量を増加させて長寿命化させた効果が薄れてしまう。   Further, in a ball screw device for an injection molding machine, special peeling may occur when the usage environment becomes severe. This exfoliation is an exfoliation starting from a structural change called “white exfoliation” and is considered to be caused by hydrogen that has penetrated into the steel. It is considered that hydrogen is originally present in steel and that hydrogen is generated by decomposition of lubricating oil during use and enters the steel. When white peeling occurs, the effect of extending the life by increasing the amount of retained austenite is diminished.

日本国特開2010−90924号公報Japanese Unexamined Patent Publication No. 2010-90924 日本国特開2005−299720号公報Japanese Unexamined Patent Publication No. 2005-299720

このように、寸法安定性とともに、耐はく離性や耐摩耗性を向上させて長寿命化を図かることは困難な状況にある、また、水素による白色はく離についてもこれまで検討されていない。そこで、本発明は、より優れた寸法安定性、白色はく離を含めたはく離への耐性、耐摩耗性を兼ね備えたねじ軸を提供することを目的とする。   As described above, it is difficult to extend the life by improving the peel resistance and wear resistance as well as the dimensional stability, and white peeling due to hydrogen has not been studied so far. Accordingly, an object of the present invention is to provide a screw shaft that has superior dimensional stability, resistance to peeling including white peeling, and wear resistance.

上記課題を解決するために発明者らが鋭意検討した結果、以下の知見を得た。先ず、白色はく離以外のはく離に対する耐性向上のためには、残留オーステナイト量の制御が有効であり、鋼材の高炭素化によって達成することができる。そして、表面の残留オーステナイト量を増加しつつ、寸法安定性を確保するために、寸法変化のメカニズムを詳細に調査した結果、浸炭鋼のようにマルテンサイトを基本組織とした場合には寸法変化が軸の径方向及び軸方向の両方に等方的に生じるが、芯部を熱的に安定なフェライト相をベースとし、かつ、その体積を一定以上確保することにより軸方向に殆ど変化しないことを見出した。ボールねじ装置に求められる寸法安定性とは軸方向に関するものであり、この現象を利用すれば寿命と寸法安定性とを両立させることができる。   As a result of intensive studies by the inventors to solve the above problems, the following findings have been obtained. First, in order to improve the resistance to peeling other than white peeling, it is effective to control the amount of retained austenite, which can be achieved by increasing the carbon of the steel material. And, in order to ensure the dimensional stability while increasing the amount of retained austenite on the surface, as a result of detailed investigation of the mechanism of dimensional change, when martensite is the basic structure like carburized steel, the dimensional change is It is generated isotropically in both the radial direction and the axial direction of the shaft, but the core is based on a thermally stable ferrite phase, and it is hardly changed in the axial direction by ensuring a certain volume or more. I found it. The dimensional stability required for the ball screw device relates to the axial direction, and if this phenomenon is used, both life and dimensional stability can be achieved.

尚、射出成形機用のボールねじ装置では主流ではないが、高周波熱処理によってねじ軸を作製する場合、丸棒に硬化層を付与した後に溝加工を施すことがあるが、この場合には高炭素化によりある程度の焼入れ性を確保することができるため、常識的な合金元素量の添加で必要な硬化層深さを確保でき、更にその硬化層深さでも寸法安定性に必要な芯部領域が確保できる。   Although it is not mainstream in ball screw devices for injection molding machines, when producing screw shafts by high-frequency heat treatment, groove processing may be performed after applying a hardened layer to a round bar. Since a certain degree of hardenability can be ensured by the conversion, a necessary hardened layer depth can be secured by adding a common amount of alloying elements, and there is a core region necessary for dimensional stability even at the hardened layer depth. It can be secured.

しかし、高炭素鋼と高周波熱処理との組み合わせは、焼き割れと、曲がり直し時の割れとの問題がある。前者は、周波数条件と厳密な温度管理とにより回避することが可能であるが、後者については曲がり直し作業を行わないことは現実的に難しく、回避することができない。焼入れを行うと、組織がオーステナイトからマルテンサイトに変化し、そのときの密度差が原因で熱変形が必ず起こる。上記のように硬化層付与後に溝加工することにより、このような変形を小さくすることができるが、射出成形機用のボールねじ装置では、機械部品として必要な形状を確保するために、溝加工後に高周波熱処理されることが多いため、熱処理による変形はねじ軸の曲がりとして現れ、これを曲げ加工により矯正する必要がある。ねじ軸には溝が形成されているため、曲げ加工の際に溝底が大きく変形し、許容量を超えるとクラックが発生する懸念が大きい。そこで、曲げ強度について組織の影響を詳細に調査した結果、溝底の炭化物量を一定以上にすることで回避できることを見出した。これは、炭化物によるピン止め効果により結晶粒が微細に維持されること、鋼材が高炭素鋼であり、炭素量が1質量%程度と多いため、炭化物量が多いほど基地に溶け込む炭素量が少なくなり、靭性を確保できることに起因している。   However, the combination of the high carbon steel and the induction heat treatment has a problem of burning cracking and cracking during rebending. The former can be avoided by frequency conditions and strict temperature management. However, it is practically difficult to avoid the latter re-bending operation and cannot be avoided. When quenching is performed, the structure changes from austenite to martensite, and thermal deformation always occurs due to the density difference. Such a deformation can be reduced by grooving after applying a hardened layer as described above, but in the ball screw device for an injection molding machine, the grooving is performed in order to secure the necessary shape as a machine part. Since it is often subjected to high-frequency heat treatment later, deformation due to heat treatment appears as bending of the screw shaft, and it is necessary to correct this by bending. Since a groove is formed on the screw shaft, the groove bottom is greatly deformed during bending, and there is a great concern that cracks will occur if the allowable amount is exceeded. Therefore, as a result of detailed investigation of the influence of the structure on the bending strength, it was found that this can be avoided by setting the amount of carbide at the groove bottom to a certain level or more. This is because the crystal grains are kept fine due to the pinning effect of carbide, and the steel is high carbon steel, and the amount of carbon is as high as 1% by mass, so the amount of carbon that dissolves into the base decreases as the amount of carbide increases. This is due to the fact that toughness can be ensured.

また、白色はく離について検討したところ、使用前の状態での鋼中の水素量を制限することにより、白色はく離の発生を抑制し、通常のはく離のみが生じるようになり、実質的に無害化できることを見出した。   In addition, when we examined white flaking, by limiting the amount of hydrogen in the steel before use, it was possible to suppress the occurrence of white flaking, and only normal flaking would occur, making it virtually harmless. I found.

本発明はこのような知見に基づきなされたものであり、下記のボールねじ装置を提供する。
(1)外周面に螺旋溝を有するねじ軸と、前記ねじ軸の螺旋溝に対向する螺旋溝を内周面に有するボールナットと、前記両螺旋溝間に介挿されるとともにボールナットに設けたボール循環路によって循環可能とされた複数個のボールとを備えるボールねじ装置において、
前記ねじ軸が、高炭素軸受鋼または下記式1で算出されるMs点が172℃以下で下記式2で算出されるDI値が2.8以上である鋼材を熱硬化処理してなり、かつ、
径方向断面における硬さがHV500以上である有効硬化層の割合が60%以下、
硬さがHV500未満である非硬化層がフェライト相及びセメンタイト相を含有する金属組織であり、
径方向断面における平均残留オーステナイト量が4.5%以下であり、
螺旋溝の転動面の水素量が0.61ppm以下であり、
溝底の炭化物面積率が1.5%以上であり、
軌道面から深さ50μmでの残留オーステナイト量が5〜40体積%
であることを特徴とするボールねじ装置。
式1=550−361[C]−39[Mn]−20[Cr]−17[Ni]−5[Mo]
式2=(0.2[C]+0.14)×(0.64[Si]+1)×(4.1[Mn]+1)×(2.33[Cr]+1)×(3.14[Mo]+1)×(0.52[Ni]+1)
(式中、[C]、[Si]、[Mn]、[Cr]、[Mo]、[Ni]は、鋼材中のC、Si、Mn、Cr、Mo、Niの各含有量(質量%)である。)
(2)前記ねじ軸の軌道面表面の硬さ(HRC)及び軌道面から深さ50μmでの残留オーステナイト量(γR)が、下記式3及び式4を満足することを特徴とする上記(1)記載のボールねじ装置。
式3:γR+0.15×HRC−19.1≧0
式4:γR+21.2×HRC−1176≧0
(3)前記ねじ軸の溝底の旧オーステナイト粒径が30μm以下であることを特徴とする上記(1)または(2)記載のボールねじ装置。
This invention is made | formed based on such knowledge, and provides the following ball screw apparatus.
(1) A screw shaft having a spiral groove on the outer peripheral surface, a ball nut having a spiral groove facing the spiral groove of the screw shaft on the inner peripheral surface, and interposed between the both spiral grooves and provided on the ball nut In a ball screw device comprising a plurality of balls that can be circulated by a ball circulation path,
The screw shaft is a high carbon bearing steel or a steel material having an Ms point calculated by the following formula 1 of 172 ° C. or less and a DI value calculated by the following formula 2 of 2.8 or more, and a thermosetting treatment; ,
The ratio of the effective hardened layer whose hardness in the radial cross section is HV500 or more is 60% or less,
The non-hardened layer having a hardness of less than HV500 is a metal structure containing a ferrite phase and a cementite phase,
The average retained austenite amount in the radial cross section is 4.5% or less,
The amount of hydrogen on the rolling surface of the spiral groove is 0.61 ppm or less,
The carbide area ratio of the groove bottom is 1.5% or more,
The amount of retained austenite at a depth of 50 μm from the raceway surface is 5 to 40% by volume.
A ball screw device.
Formula 1 = 550-361 [C] -39 [Mn] -20 [Cr] -17 [Ni] -5 [Mo]
Formula 2 = (0.2 [C] +0.14) × (0.64 [Si] +1) × (4.1 [Mn] +1) × (2.33 [Cr] +1) × (3.14 [ Mo] +1) × (0.52 [Ni] +1)
(In the formula, [C], [Si], [Mn], [Cr], [Mo], [Ni] are the contents of C, Si, Mn, Cr, Mo, Ni in the steel material (mass%). ).)
(2) The hardness (HRC) of the raceway surface of the screw shaft and the retained austenite amount (γR) at a depth of 50 μm from the raceway surface satisfy the following formulas (3) and (4): ) Ball screw device according to the description.
Formula 3: γR + 0.15 × HRC−19.1 ≧ 0
Formula 4: γR + 21.2 × HRC-1176 ≧ 0
(3) The ball screw device according to (1) or (2) above, wherein the prior austenite grain size at the groove bottom of the screw shaft is 30 μm or less.

本発明のボールねじ装置は、ねじ軸を特定の鋼材を熱硬化処理して(a)有効硬化層の割合、(b)非硬化層の金属組織、(c)平均残留オーステナイト量、(d)転動面の水素量、(e)溝底の炭化物面積率、(f)軌道面から深さ50μmでの残留オーステナイト量をそれぞれ特定範囲にしたことにより、これまでよりも優れた寸法安定性、白色はく離を含めたはく離への耐性、耐摩耗性を備えるようになる。そのため、特に射出成形機用のボールねじ装置に有用であり、高性能で長寿命となる。   In the ball screw device of the present invention, a specific steel material is heat-cured on a screw shaft (a) a ratio of an effective hardened layer, (b) a metal structure of a non-hardened layer, (c) an average retained austenite amount, (d) Dimensional stability that is superior to that of the past by making the amount of hydrogen on the rolling surface, (e) the carbide area ratio at the groove bottom, and (f) the amount of retained austenite at a depth of 50 μm from the raceway surface, respectively. It has resistance to peeling including white peeling and wear resistance. Therefore, it is particularly useful for a ball screw device for an injection molding machine, and has high performance and long life.

Ms点と、寿命比との関係を示すグラフである。It is a graph which shows the relationship between Ms point and life ratio. DI値と、寿命比との関係を示すグラフである。It is a graph which shows the relationship between DI value and lifetime ratio. 表面残留オーステナイト量と、寿命比との関係を示すグラフである。It is a graph which shows the relationship between the amount of surface residual austenite, and a life ratio. 硬さと、表面残留オーステナイト量との関係を示すグラフである。It is a graph which shows the relationship between hardness and the amount of surface retained austenite. 式3の値と、寿命比との関係を示すグラフである。It is a graph which shows the relationship between the value of Formula 3, and a life ratio. 式4の値と、寿命比との関係を示すグラフである。It is a graph which shows the relationship between the value of Formula 4, and a life ratio. 有効硬化層割合と、軸方向の寸法変化率との関係を示すグラフである。It is a graph which shows the relationship between an effective hardened layer ratio and the dimensional change rate of an axial direction. 溝底の炭化物面積率と、抗折強度比との関係を示すグラフである。It is a graph which shows the relationship between the carbide area ratio of a groove bottom, and bending strength ratio. 式5の値と、抗折強度比との関係を示すグラフである。It is a graph which shows the relationship between the value of Formula 5, and bending strength ratio. 水素量と、寿命比との関係を示すグラフである。It is a graph which shows the relationship between hydrogen amount and life ratio. 式6の値と、寿命比との関係を示すグラフである。It is a graph which shows the relationship between the value of Formula 6, and a life ratio.

以下、本発明に関して図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明のボールねじ装置は、外周面に螺旋溝を有するねじ軸と、前記ねじ軸の螺旋溝に対向する螺旋溝を内周面に有するボールナットと、前記両螺旋溝間に介挿されるとともにボールナットに設けたボール循環路によって循環可能とされた複数個のボールとを備えるが、ねじ軸を特定の高炭素軸受鋼製とし、これを熱処理して表面に有効硬化層を形成したものである。尚、ボールやボールナット等、ねじ軸以外には制限は無い。   The ball screw device according to the present invention is interposed between a screw shaft having a spiral groove on the outer peripheral surface, a ball nut having a spiral groove facing the spiral groove of the screw shaft on the inner peripheral surface, and both the spiral grooves. It has a plurality of balls that can be circulated by a ball circulation path provided on the ball nut, and the screw shaft is made of a specific high carbon bearing steel, which is heat-treated to form an effective hardened layer on the surface. is there. There are no restrictions other than the screw shaft, such as balls and ball nuts.

即ち、本発明で用いるねじ軸用の素材としては、高炭素軸受鋼または下記式1で算出されるMs点が173℃以下で下記式2で算出されるDI値が2.8以上である鋼材を用いる。
式1=550−361[C]−39[Mn]−20[Cr]−17[Ni]−5[Mo]
式2=(0.2[C]+0.14)×(0.64[Si]+1)×(4・1[Mn]+1)×(2.33[Cr]+1)×(3.14[Mo]+1)×(0.52[Ni]+1)
(式中、[C]、[Si]、[Mn]、[Cr]、[Mo]、[Ni]は、鋼材中のC、Si、Mn、Cr、Mo、Niの各含有量(質量%)である。)
That is, as a material for the screw shaft used in the present invention, a high carbon bearing steel or a steel material having an Ms point calculated by the following formula 1 of 173 ° C. or lower and a DI value calculated by the following formula 2 of 2.8 or higher. Is used.
Formula 1 = 550-361 [C] -39 [Mn] -20 [Cr] -17 [Ni] -5 [Mo]
Formula 2 = (0.2 [C] +0.14) × (0.64 [Si] +1) × (4.1 · 1 [Mn] +1) × (2.33 [Cr] +1) × (3.14 [ Mo] +1) × (0.52 [Ni] +1)
(In the formula, [C], [Si], [Mn], [Cr], [Mo], [Ni] are the contents of C, Si, Mn, Cr, Mo, Ni in the steel material (mass%). ).)

高炭素軸受鋼または式1及び式2を満足する鋼材であれば制限はないが、好ましくは、炭素を0.6質量%以上含有し、他にクロム及びマンガンを必須成分として含む軸受鋼である。炭素含有量が0.6質量%未満では、本発明で規定する熱処理品質が得られないので0.6質量%以上とすることが好ましい。より好ましくは、炭素含有量を0.95質量%以上にする。尚、炭素含有量の上限には制限はないが、2質量%を超えると、粗大な炭化物が残留するようになり、耐寿命性等に影響する。高炭素軸受鋼は、炭素を1質量%近く含有し、焼入れに必要な0.5質量%程度の炭素を基地に溶け込ませたとしても、十分な量の炭化物を軌道面に残存させることができ、耐摩耗性を向上させることができる。   There is no limitation as long as it is a high carbon bearing steel or a steel material that satisfies the formulas 1 and 2, but it is preferably a bearing steel containing 0.6% by mass or more of carbon and additionally containing chromium and manganese as essential components. . If the carbon content is less than 0.6% by mass, the heat treatment quality defined in the present invention cannot be obtained, so that the content is preferably 0.6% by mass or more. More preferably, the carbon content is 0.95% by mass or more. In addition, although there is no restriction | limiting in the upper limit of carbon content, when it exceeds 2 mass%, a coarse carbide | carbonized_material will remain | survive and it will affect lifetime resistance. High carbon bearing steel contains nearly 1% by mass of carbon, and even if about 0.5% by mass of carbon necessary for quenching is dissolved in the base, a sufficient amount of carbide can remain on the raceway surface. Abrasion resistance can be improved.

クロムは、焼入れ性を向上させる元素であり、0.9質量%以上含有することが好ましい。但し、クロムが過多になると、加工性が低下するようになるため、2質量%以下にすることが好ましい。マンガンもクロムと同様に焼入れ性を向上させる元素である。0.2質量%以上添加することが好ましい。但し、マンガンが過多になると加工性が低下するようになるため、2質量%以下にすることが好ましい。   Chromium is an element that improves hardenability and is preferably contained in an amount of 0.9% by mass or more. However, if the amount of chromium is excessive, the workability will decrease, so it is preferable to make it 2% by mass or less. Manganese is an element that improves hardenability as well as chromium. It is preferable to add 0.2% by mass or more. However, if manganese is excessive, the workability will be lowered, so it is preferable to make it 2% by mass or less.

また、モリブデンを含有することが好ましい。後述する実施例にも示すように、クロム及びマンガンとともにモリブデンの鋼中含有量が関係する式1の値を特定の範囲にすることにより、耐摩耗性をより向上させることができる。これは、クロム、マンガン及びモリブデンが炭化物に溶け込み、炭化物を硬質化するためであると推定される。   Moreover, it is preferable to contain molybdenum. As shown also in the Example mentioned later, wear resistance can be improved more by making the value of Formula 1 in which the content in the steel of molybdenum with chromium and manganese is related into a specific range. It is presumed that this is because chromium, manganese and molybdenum dissolve in the carbide and harden the carbide.

具体的には、JSI G 4805の高炭素クロム鋼や、ISO 683−17の軸受鋼、SUJ2〜5鋼、100CrMnSi6−4鋼等が挙げられるが、SUJ2〜5鋼、100CrMnSi6−4鋼が好ましい。   Specifically, high carbon chromium steel of JSI G 4805, bearing steel of ISO 683-17, SUJ2-5 steel, 100CrMnSi6-4 steel, etc. are mentioned, SUJ2-5 steel and 100CrMnSi6-4 steel are preferred.

そして、このような高炭素軸受鋼からなる丸棒を熱硬化処理して、表層部分に、硬さHv500以上の有効硬化層を形成する。熱硬化処理としては、浸炭処理でもよいが、高周波熱処理が好ましい、この高周波熱処理では、高周波電源に接続したコイルに、上記の鋼材からなる丸棒素材を挿通し、コイルに高周波電流を流す。それにより、高周波の電磁場によって丸棒素材の表面に渦電流が流れ、丸棒素材の表面が加熱される。そして、コイルを丸棒素材の軸方向に移動させることにより、丸棒素材を全長にわたり加熱する。加熱後、丸棒素材に水溶性焼入れ液を溶解した水溶液等を噴射して急冷する。   And the round bar which consists of such high carbon bearing steel is heat-hardened, and the effective hardened layer of hardness Hv500 or more is formed in a surface layer part. As the thermosetting treatment, carburizing treatment may be used, but high-frequency heat treatment is preferable. In this high-frequency heat treatment, a round bar material made of the above steel material is inserted into a coil connected to a high-frequency power source, and a high-frequency current is passed through the coil. Thereby, an eddy current flows on the surface of the round bar material by the high frequency electromagnetic field, and the surface of the round bar material is heated. And a round bar raw material is heated over the full length by moving a coil to the axial direction of a round bar raw material. After heating, it is quenched by spraying an aqueous solution in which a water-soluble quenching solution is dissolved in a round bar material.

有効硬化層は、ねじ軸の断面において、体積割合で60%以下とする。即ち、ねじ軸の直径に対し、有効硬化層が形成されている表面からの深さが60%以下になるように、処理条件(周波数や出力、加熱時間)を鋼材組成やねじ軸の直径などに応じて調整する。   The effective hardened layer has a volume ratio of 60% or less in the cross section of the screw shaft. That is, the processing conditions (frequency, output, heating time), steel composition, screw shaft diameter, etc. so that the depth from the surface on which the effective hardened layer is formed is 60% or less with respect to the screw shaft diameter. Adjust according to.

有効硬化層割合が60%以下であることは、硬さHV500未満である非硬化層の割合が40%以上になることを意味する。非硬化層は、フェライト相とセメンタイト相とを含有するバーライトであるが、フェライト相は炭素量が十分に低いため、長時間の使用中でも殆ど変化を起こさず、表層の硬化層が芯部に拘束される結果、熱処理により生じた表層の残留オーステナイト量が多くなっても軸方向の寸法変化を殆ど生じなくなる。このような効果を得るためには、非硬化層割合が40%以上であればよく、60%以上がより効果的である。   An effective cured layer ratio of 60% or less means that the ratio of an uncured layer having a hardness of less than HV500 is 40% or more. The non-hardened layer is a barite containing a ferrite phase and a cementite phase, but since the ferrite phase has a sufficiently low carbon content, it hardly changes even during long-time use, and the hardened layer of the surface layer is in the core. As a result of restraining, even if the amount of retained austenite of the surface layer generated by the heat treatment increases, the dimensional change in the axial direction hardly occurs. In order to obtain such an effect, the ratio of the non-cured layer may be 40% or more, and 60% or more is more effective.

また、径方向断面における平均残量オーステナイト量が4.5体積%以下である。この平均残留オーステナイト量が4.5体積%を超えると、寸法変化率が大きくなる。   The average remaining austenite amount in the radial cross section is 4.5% by volume or less. When the average retained austenite amount exceeds 4.5% by volume, the dimensional change rate increases.

更に、溝底において、炭化物面積率を1.5%以上とし、5.6%以上にすることにより後述する実施例の抗折試験で特に優れた抗折強度が得られ、曲がり直しにおける割れの防止に有効となる。また、割れ防止には、溝底における旧オーステナイト粒径が微細であることが好ましく、具体的には30μm以下が好ましく、18μm以下がより好ましい。   Furthermore, in the groove bottom, by making the carbide area ratio 1.5% or more and 5.6% or more, a particularly excellent bending strength is obtained in the bending test of the examples described later, and cracking in re-bending Effective for prevention. In order to prevent cracking, the prior austenite grain size at the groove bottom is preferably fine, specifically 30 μm or less, more preferably 18 μm or less.

また、軌道面から深さ50μmでの残留オーステナイト量(表面残留オーステナイト量)を5〜40体積%とする。ボールねじ装置ではねじ軸が露出しているため、異物によるはく離が起こりやすいが、寸法変化を抑えつつ、異物混入下での寿命向上を図るためには、この表面残留オーステナイト量を5〜40体積%、好ましくは9.7〜35体積%にする。   Further, the amount of retained austenite (surface retained austenite amount) at a depth of 50 μm from the raceway surface is set to 5 to 40% by volume. In the ball screw device, since the screw shaft is exposed, peeling due to foreign matter is likely to occur. However, in order to improve the life under foreign matter mixing while suppressing dimensional change, the surface retained austenite amount is 5 to 40 volumes. %, Preferably 9.7 to 35% by volume.

更には、白色はく離防止のために、転動面の水素量を0.61ppm以下にする。水素量は少ないほど好ましく、0.2ppm以下が好ましい。   Furthermore, in order to prevent white flaking, the amount of hydrogen on the rolling surface is made 0.61 ppm or less. The smaller the amount of hydrogen, the better, and 0.2 ppm or less is preferable.

以上に加えて、ねじ軸は、転動体との間に高い接触面圧が加わるため、軌道面表面における硬さ(HRC)が高いほど好ましいが、更に上記表面残留オーステナイト量(γR)との間で、下記式3及び式4を満足することが好ましい。
式3:γR+0.15×HRC−19.1≧0
式4:γR+21.2×HRC−1176≧0
In addition to the above, since a high contact surface pressure is applied between the screw shaft and the rolling element, the hardness (HRC) on the raceway surface is preferably as high as possible, but further between the surface retained austenite amount (γR). Therefore, it is preferable that the following expressions 3 and 4 are satisfied.
Formula 3: γR + 0.15 × HRC−19.1 ≧ 0
Formula 4: γR + 21.2 × HRC-1176 ≧ 0

以下に実施例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。   The present invention will be further described below with reference to examples, but the present invention is not limited thereto.

(試験1)
表1に示す合金組成の高炭素軸受鋼からなり、研磨による取り代を考慮して径を決定した棒状試験片を用意し、周波数100〜200kHzにて高周波熱処理による移動焼きを施した。次いで、160〜200℃で2時間の焼戻し処理を行い、研磨により黒皮表面から200μm除去した後、下記条件にて寿命試験に供した。尚、転動体は、ホールねじ装置の剥離を再現するために、下記に示すように、予め表面粗さを悪くしたボールを用いた。また、下記の式1からMs点を算出した。結果を表2及び図1に示すが、比較例2に対する相対値(寿命比)で示す。
式1=550−361[C]−39[Mn]−20[Cr]−17[Ni]−5[Mo]
<試験条件>
・試験片・・・φ12.6mm、棒状試験片
・転動体・・・材質:SUJ2、サイズ:1/2インチ、表面粗さ:0.3μmRa
・面圧・・・・5.5GPa
・潤滑・・・・油浴潤滑、VG68
(Test 1)
A rod-shaped test piece made of a high carbon bearing steel having an alloy composition shown in Table 1 and having a diameter determined in consideration of a removal allowance by polishing was prepared, and transfer firing was performed by induction heat treatment at a frequency of 100 to 200 kHz. Next, a tempering treatment was performed at 160 to 200 ° C. for 2 hours, and 200 μm was removed from the black skin surface by polishing, and then subjected to a life test under the following conditions. In addition, in order to reproduce peeling of a hole screw apparatus, the rolling element used the ball | bowl which worsened the surface roughness beforehand as shown below. Moreover, Ms point was computed from the following formula 1. The results are shown in Table 2 and FIG. 1, and are shown as relative values (lifetime ratio) with respect to Comparative Example 2.
Formula 1 = 550-361 [C] -39 [Mn] -20 [Cr] -17 [Ni] -5 [Mo]
<Test conditions>
・ Test specimen: φ12.6 mm, rod-shaped specimen, rolling element: Material: SUJ2, Size: 1/2 inch, Surface roughness: 0.3 μmRa
・ Surface pressure ... 5.5 GPa
・ Lubrication ... Oil bath lubrication, VG68

Figure 2015182767
Figure 2015182767

Figure 2015182767
Figure 2015182767

表2及び図1に示すように、実施例1〜5において寿命延長効果が認められており、Ms点が173℃以下であれば良いことがわかる。   As shown in Table 2 and FIG. 1, it can be seen that the life extension effect is recognized in Examples 1 to 5, and the Ms point should be 173 ° C. or lower.

(試験2)
表3に示すように表1に示す鋼材からなる棒状試験片を用い、この棒状試験片を周波数30〜100kHzにて高周波熱処理による移動焼きを施した後、160〜200℃で2時間の焼戻し処理を行い、研磨により黒皮表面から4mm除去した後、試験1と同様の寿命試験に供した。また、下記式2からDI値を算出した。結果を表3及び図3に示すが、比較例3に対する相対値(寿命比)で示す。
式2=(0.2[C]+0.14)×(0.64[Si]+1)×(4・1[Mn]+1)×(2.33[Cr]+1)×(3.14[Mo]+1)×(0.52[Ni]+1)
(Test 2)
As shown in Table 3, after using the rod-shaped test piece made of the steel material shown in Table 1, this rod-shaped test piece was subjected to transfer baking by induction heat treatment at a frequency of 30 to 100 kHz, and then tempered at 160 to 200 ° C. for 2 hours. After removing 4 mm from the surface of the black skin by polishing, it was subjected to a life test similar to Test 1. Further, the DI value was calculated from the following formula 2. The results are shown in Table 3 and FIG. 3, and are shown as relative values (lifetime ratio) with respect to Comparative Example 3.
Formula 2 = (0.2 [C] +0.14) × (0.64 [Si] +1) × (4.1 · 1 [Mn] +1) × (2.33 [Cr] +1) × (3.14 [ Mo] +1) × (0.52 [Ni] +1)

Figure 2015182767
Figure 2015182767

表3及び図2に示すように、実施例6〜10において寿命延長効果が認められており、DI値が2.8以上であれば良いことがわかる。また、実施例6と実施例8とはほぼ同じDI値であるが、実施例8の方が寿命が延びている。これは、4mmの取り代位置において、両者の品質の差異が生じたことに起因していると考えられる。即ち、実施例6では鋼材A(Ms点155℃)、実施例8では鋼材C(Ms点172℃)を使用しており、寿命延長効果には、一定水準以上の熱処理品質を得ることが必要であり、DI値とMs点との両方の影響を受けることがわかる。   As shown in Table 3 and FIG. 2, in Examples 6-10, the life extension effect is recognized and it turns out that DI value should just be 2.8 or more. In addition, the sixth embodiment and the eighth embodiment have substantially the same DI value, but the lifetime of the eighth embodiment is longer. This is considered to be due to the difference in quality between the two at the machining allowance position of 4 mm. That is, the steel material A (Ms point 155 ° C.) is used in Example 6, and the steel material C (Ms point 172 ° C.) is used in Example 8, and it is necessary to obtain a heat treatment quality of a certain level or more for the life extension effect. It can be seen that both the DI value and the Ms point are affected.

(試験3)
表4に示すように表1に示す鋼材からなる棒状試験片を用い、高周波熱処理し、溝加工を施してねじ軸を作製した。そして、作製したねじ軸の軌道面表面の硬さ及び表面残留オーステナイト量を測定した。また、作製したねじ軸を用いてボールねじ装置を作製し、試験1と同様の寿命試験に供した。結果を表4に示すが、比較例6に対する相対値(寿命比)で示す。また、寿命比と、表面残留オーステナイト量との関係を図3にグラフ化して示す。
(Test 3)
As shown in Table 4, a rod-shaped test piece made of the steel material shown in Table 1 was used, subjected to induction heat treatment, and grooved to produce a screw shaft. And the hardness of the raceway surface of the produced screw shaft and the amount of surface retained austenite were measured. A ball screw device was produced using the produced screw shaft and subjected to the same life test as in Test 1. The results are shown in Table 4 and are shown as relative values (lifetime ratio) with respect to Comparative Example 6. The relationship between the life ratio and the amount of surface retained austenite is shown in a graph in FIG.

Figure 2015182767
Figure 2015182767

比較例6で用いた鋼材Gは、高周波熱処理による表面残留オーステナイト量を高めることは難しく、寿命延長効果は認められない。これに対し実施例11〜39で用いた鋼材A,B,C,D,Eでは、高周波熱処理における出力を高めることにより、表面残留オーステナイト量を高くすることができ、9.7体積%以上にすることにより十分な寿命延長効果が得られ、13体積%以上にすることが好ましいことがわかる。   In the steel material G used in Comparative Example 6, it is difficult to increase the amount of surface retained austenite by high-frequency heat treatment, and the life extension effect is not recognized. On the other hand, in the steel materials A, B, C, D, and E used in Examples 11 to 39, the surface retained austenite amount can be increased by increasing the output in the high-frequency heat treatment, and is increased to 9.7% by volume or more. By doing so, it is understood that a sufficient life extension effect can be obtained, and it is preferably 13% by volume or more.

また、表面残留オーステナイト量が13体積%以上の範囲において、寿命にバラつきが見られる。検討の結果、表面残留オーステナイトと硬さ(HRC)との間に相関があることを見出した。図4に、比較例、並びに寿命比が1.6以上となる実施例について、それぞれの硬さと表面残留オーステナイト量との関係をグラフ化して示す。   Further, the lifespan varies in the range where the surface retained austenite amount is 13% by volume or more. As a result of the examination, it was found that there is a correlation between surface retained austenite and hardness (HRC). FIG. 4 is a graph showing the relationship between the hardness and the amount of retained austenite for the comparative example and the example with a life ratio of 1.6 or more.

更に、表面残留オーステナイトと硬さ(HRC)とで表される式3または式4と、寿命比との間にも相関があることを見出した。式3の値及び式4の値を表4に併記するとともに、式3の値と寿命比との関係を図5に、式4と寿命比との関係を図6にそれぞれグラフ化して示す。図示されるように、式3の値及び式4の値とも0以上で、寿命延長効果が得られている。式3及び式4を表面残留オーステナイトに関する関係式に変換し、それぞれを図4に直線で示すが、プロット「×」で示す比較例は、何れも式3または式4に関する2本の直線で囲まれた領域の範囲外にある。即ち、寿命延長には、式3と式4とを同時に満足することが好ましい。   Furthermore, it has been found that there is also a correlation between the life ratio and Formula 3 or Formula 4 expressed by surface retained austenite and hardness (HRC). The values of Equation 3 and Equation 4 are shown together in Table 4, and the relationship between the value of Equation 3 and the life ratio is graphed in FIG. 5, and the relationship between Equation 4 and the life ratio is graphed in FIG. As shown in the figure, the value of the expression 3 and the value of the expression 4 are 0 or more, and the life extension effect is obtained. Expressions 3 and 4 are converted into relational expressions related to surface retained austenite, and each is shown by a straight line in FIG. 4. The comparative example indicated by the plot “x” is surrounded by two straight lines related to Expression 3 or 4 It is outside the range of the specified area. That is, it is preferable to satisfy the expressions 3 and 4 simultaneously for extending the life.

(試験4)
表5に示すように表1に示す鋼材からなる棒状試験片を用い、高周波熱処理して有効硬化層の割合の異なるねじ軸を作製した。作製したねじ軸について、有効硬化層の割合(%)、とともに、表面残留オーステナイト量(体積%)及び平均残留オーステナイト量(体積%)を測定した。尚、表面残留オーステナイト量とは、軌道面表面から50μm深さにおける残留オーステナイト量であり、軌道面表面から50μm分表層を取り除いた後、X線により測定した。また、芯部(硬さHv500未満の領域)について化学分析して金属組織を求めた。更に、高周波熱処理後、再度低温で所定時間焼戻しを行う前後で、軸方向の寸法変化率を測定し、比較例9に対する相対値(寸法変化率比)を求めた。それぞれの結果を表5に併記するとともに、図7に有効硬化層割合と軸方向の寸法変化率との関係をグラフ化して示す。
(Test 4)
As shown in Table 5, the rod-shaped test pieces made of the steel materials shown in Table 1 were used, and screw shafts having different effective hardened layer ratios were produced by induction heat treatment. About the produced screw axis | shaft, the surface residual austenite amount (volume%) and the average residual austenite amount (volume%) were measured with the ratio (%) of the effective hardening layer. The surface residual austenite amount is the amount of retained austenite at a depth of 50 μm from the raceway surface, and was measured by X-ray after removing the surface layer by 50 μm from the raceway surface. Further, the core portion (region having a hardness of less than Hv500) was chemically analyzed to obtain a metal structure. Further, after the induction heat treatment, before and after tempering again at a low temperature for a predetermined time, the dimensional change rate in the axial direction was measured, and a relative value (dimensional change rate ratio) with respect to Comparative Example 9 was obtained. Each result is shown in Table 5, and FIG. 7 is a graph showing the relationship between the effective hardened layer ratio and the dimensional change rate in the axial direction.

Figure 2015182767
Figure 2015182767

実施例38〜45では、有効硬化層の割合が増加しても軸方向の寸法が殆ど変化しない。これに対し比較例7〜9では、有効硬化層の割合が増加するのに伴い軸方向の寸法も増加している。実施例は何れも有効硬化層の割合が60%以下であり、有効硬化層の割合を60%以下にすることにより、寸法安定性に優れるようになることがわかる。   In Examples 38 to 45, the axial dimension hardly changes even when the proportion of the effective cured layer increases. On the other hand, in Comparative Examples 7 to 9, the axial dimension increases as the proportion of the effective hardened layer increases. In each of the examples, the proportion of the effective cured layer is 60% or less, and it can be seen that the dimensional stability is improved by making the proportion of the effective cured layer 60% or less.

また、比較例9は、現行のボールねじ装置のねじ軸を模したものであるが、表面残留オーステナイト量が少ないのにも関わらず、実施例38〜45と同等の寸法変化量になっている。このことから、平均残留オーステナイト量を4.5体積%以下にすることも寸法安定性に有効であるといえる。   Moreover, although the comparative example 9 imitates the screw axis | shaft of the present ball screw apparatus, it is a dimensional change amount equivalent to Examples 38-45, although the surface residual austenite amount is small. . From this, it can be said that making the average retained austenite amount 4.5% by volume or less is also effective for dimensional stability.

更に、実施例38〜45では表面残留オーステナイト量が5〜40体積%であり、寸法変化率が小さい。このことから、表面残留オーステナイト量を5〜40体積%にすることも有効であるといえる。   Further, in Examples 38 to 45, the surface retained austenite amount is 5 to 40% by volume, and the dimensional change rate is small. From this, it can be said that it is also effective to set the surface retained austenite amount to 5 to 40% by volume.

尚、芯部の化学分析の結果、比較例9以外は、何れもフェライト相とセメンタイト相とからなるパーライトであった。   In addition, as a result of the chemical analysis of the core part, except for Comparative Example 9, all were pearlite composed of a ferrite phase and a cementite phase.

(試験5)
表6に示すように表1に示す鋼材からなる棒状素材(直径12.8mm)を用い、長手方向中央部の円周上に1.5Rの溝を形成した。溝深さは1.5mmであり、溝の幅は3mmである。その後、周波数10〜30kHzにて高周波熱処理してねじ軸を作製した。作製したねじ軸について、溝底の炭化物面積率及び旧オーステナイトの結晶粒径を測定した。結果を表6に併記する。
(Test 5)
As shown in Table 6, a rod-shaped material (diameter: 12.8 mm) made of a steel material shown in Table 1 was used, and a 1.5 R groove was formed on the circumference at the center in the longitudinal direction. The groove depth is 1.5 mm and the groove width is 3 mm. Then, the screw shaft was produced by high-frequency heat treatment at a frequency of 10 to 30 kHz. For the produced screw shaft, the carbide area ratio at the groove bottom and the crystal grain size of prior austenite were measured. The results are also shown in Table 6.

また、作製したねじ軸を4点曲げ試験に供し、抗折強度を測定した。結果を表6に併記するが、現行品を模した比較例10に対する相対値(抗折強度比)として示す。また、図8に溝底の炭化物面積率と抗折硬度比との関係をグラフ化して示す。尚、何れのねじ軸でも、溝底から亀裂が発生すると同時に、その亀裂は停止することなく、ねじ軸の破断に至ることを確認した。   Further, the produced screw shaft was subjected to a four-point bending test, and the bending strength was measured. Although a result is written together in Table 6, it shows as a relative value (bending strength ratio) with respect to the comparative example 10 which imitated the present product. FIG. 8 is a graph showing the relationship between the carbide area ratio at the groove bottom and the bending hardness ratio. In any screw shaft, it was confirmed that a crack occurred from the bottom of the groove, and at the same time, the crack did not stop and led to the fracture of the screw shaft.

Figure 2015182767
Figure 2015182767

比較例10は現行の鋼材を使用して、現行と同様の品質を模したものであるが、比較例11は、この比較例10よりも抗折強度が低下している。比較例11では、高周波熱処理において設定出力を高めにして炭素の溶け込み量を多くしており、マトリックスの変形能が低下したことが原因である。   Comparative Example 10 uses the current steel material and simulates the same quality as the current one, but Comparative Example 11 has a lower bending strength than Comparative Example 10. In Comparative Example 11, the set output is increased in the high-frequency heat treatment to increase the amount of carbon penetration, and this is because the deformability of the matrix is reduced.

実施例46〜56では、比較例11よりも設定出力を低くしており、現行の比較例10と同等以上の抗折強度を有している。抗折硬度は一般に、硬さが低下するほど高くなる傾向にあるが、本発明のように高炭素鋼を用いる場合、比較例11のように炭素の溶け込み量が多くなると柔らかい組織である残留オーステナイト量が多くなり、結果として硬さが低下するため、評価指標としては適さない。妥当な評価指標としては、マルテンサイト中の炭素の固溶量であるが、その固溶量を定量的に測定することは簡便ではない。本発明では、軸受鋼を用いるため、固溶炭素量は素材の炭素量から固溶していない炭素量、即ち残存炭化物量を差し引くことにより求めることができる。残存炭化物量が多い、即ち固溶炭素量が少ない状態において抗折強度が向上し、実施例46〜56から溝底での炭化物の面積率が1.5%以上において現行と同等以上の抗折強度が得られることがわかる。   In Examples 46 to 56, the set output is set lower than that of Comparative Example 11, and the bending strength is equal to or higher than that of the current Comparative Example 10. The bending hardness generally tends to increase as the hardness decreases. However, when high carbon steel is used as in the present invention, residual austenite which is a soft structure when the amount of carbon penetration increases as in Comparative Example 11 Since the amount increases and as a result the hardness decreases, it is not suitable as an evaluation index. A reasonable evaluation index is the solid solution amount of carbon in martensite, but it is not easy to quantitatively measure the solid solution amount. In the present invention, since bearing steel is used, the amount of solute carbon can be determined by subtracting the amount of carbon not dissolved in the material, that is, the amount of residual carbides, from the amount of carbon in the material. The bending strength is improved when the amount of residual carbide is large, that is, the amount of dissolved carbon is small. From Examples 46 to 56, when the area ratio of carbide at the groove bottom is 1.5% or more, the bending strength is equal to or higher than the current level. It can be seen that strength is obtained.

また、抗折強度と旧オーステナイト粒径との相関を調べたところ、比較例11と実施例46〜56との比較から、溝底における旧オーステナイトの粒径を30μm以下にすることが好ましいといえる。   Further, when the correlation between the bending strength and the prior austenite grain size was examined, it can be said that the grain size of the prior austenite at the groove bottom is preferably 30 μm or less from the comparison between Comparative Example 11 and Examples 46 to 56. .

更に、これらの結果から、溝底の炭化物面積率と旧オーステナイト粒径とに関する下記式5の値と、抗折強度比との間に相関があることを見出した。式5の値を表6に併記するとともに、抗折強度比との関係をグラフ化して図9に示すが、式5の値が22以上、好ましくは35以上であるときに、抗折強度比を大きくすることできる。
式5=溝底の炭化物面積率+50−旧オーステナイト粒径
Furthermore, from these results, it was found that there is a correlation between the value of the following formula 5 regarding the carbide area ratio of the groove bottom and the prior austenite grain size and the bending strength ratio. The value of Formula 5 is shown together in Table 6, and the relationship with the bending strength ratio is graphed and shown in FIG. 9. When the value of Formula 5 is 22 or more, preferably 35 or more, the bending strength ratio is Can be increased.
Formula 5 = Carbide bottom area ratio of groove bottom + 50−old austenite grain size

(試験6)
上記試験結果を基に、ボールねじ装置BS6316−10.5(呼び:JIS B1192 63×16×300−Ct7)を作製し、日本精工株式会社製のボールねじ耐久試験機に装着して耐久性試験を行った。試験条件は下記の通りである。また、実施例57〜61では高周波熱処理を行い、実施例62及び比較例12では浸炭処理を行ってエンリッチガスの量を調整することにより、軌道面の水素量に調整した。水素量は、試験前のねじ軸の軌道面を切断し、10mm四方の直立方体の上面が軌道面となる立体を形成した後、室温から400℃まで加熱して放出させた水素の総量を水素分析装置により測定した値である。寿命は、鋼材Gからなるねじ軸を用いたボールねじ装置の計算寿命に対する相対値(寿命比)で示す。結果を表7に示す。また、表7には、この水素量とともに、作製したねじ軸のDI値、Ms点及び表面残留オーステナイト量を併記する。更に、図10に水素量と寿命比との関係をグラフ化して示す。
<試験条件>
・ねじ軸の外径:63mm
・リード:16mm
・ボールの直径:12.7mm
・試験荷重:300kN
・最高回転速度:3200min−1(Dn:20万)
・ナットの素材:SCM420
・セパレータの材質:66ナイロン
・循環方式:リターンチューブ方式
・潤滑剤:リューベ株式会社製「YS2グリース」
(Test 6)
Based on the above test results, a ball screw device BS6316-10.5 (nominal: JIS B1192 63 × 16 × 300-Ct7) was prepared and mounted on a ball screw durability tester manufactured by NSK Ltd. for durability test. Went. The test conditions are as follows. Further, in Examples 57 to 61, high-frequency heat treatment was performed, and in Example 62 and Comparative Example 12, carburizing treatment was performed to adjust the amount of enriched gas, thereby adjusting the amount of hydrogen on the raceway surface. The amount of hydrogen is determined by cutting the raceway surface of the screw shaft before the test and forming a solid whose upper surface of a 10 mm square cube is the raceway surface, and then heating from room temperature to 400 ° C. to release the total amount of hydrogen released. This is a value measured by an analyzer. The life is indicated by a relative value (life ratio) to the calculated life of a ball screw device using a screw shaft made of steel G. The results are shown in Table 7. Table 7 also shows the DI value, Ms point, and surface retained austenite amount of the produced screw shaft together with this hydrogen amount. FIG. 10 is a graph showing the relationship between the amount of hydrogen and the life ratio.
<Test conditions>
-Screw shaft outer diameter: 63 mm
・ Lead: 16mm
-Ball diameter: 12.7 mm
・ Test load: 300kN
・ Maximum rotation speed: 3200 min −1 (Dn: 200,000)
・ Nut material: SCM420
・ Material of separator: 66 nylon ・ Circulation method: return tube method ・ Lubricant: “YS2 Grease” manufactured by Lube Co., Ltd.

Figure 2015182767
Figure 2015182767

表7に示すように、実施例57〜62は、Ms点が173℃以下、DI値が2.8以上、表面残留オーステナイト量が5〜40体積%であり、更に、軌道面の水素量が0.61ppm以下であり、何れも計算寿命に対して2倍以上の寿命を有する。   As shown in Table 7, in Examples 57 to 62, the Ms point is 173 ° C. or less, the DI value is 2.8 or more, the amount of surface retained austenite is 5 to 40% by volume, and the hydrogen amount on the raceway surface is further increased. It is 0.61 ppm or less, and all of them have a lifetime that is twice or more the calculated lifetime.

また、軌道面の水素量と表面残留オーステナイトで表される式6の値と、寿命比との間に相関があることを見出した。表7に式6の値を併記するとともに、図11に式6の値と寿命比との関係をグラフ化して示すが、式6の値が40.2以下であれば寿命比を大きく延長させることができる。
式6=(軌道面の水素量)×15+表面残留オーステナイト量
Further, the present inventors have found that there is a correlation between the value of Formula 6 expressed by the amount of hydrogen on the raceway surface and the surface retained austenite and the life ratio. Table 7 shows the value of Equation 6 together, and FIG. 11 is a graph showing the relationship between the value of Equation 6 and the life ratio. If the value of Equation 6 is 40.2 or less, the life ratio is greatly extended. be able to.
Formula 6 = (hydrogen amount of raceway surface) × 15 + surface retained austenite amount

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2014年5月30日出願の日本特許出願(特願2014−112386)、2014年6月10日出願の日本特許出願(特願2014−119697)、2014年11月4日出願の日本特許出願(特願2014−224033)、2015年1月26日出願の日本特許出願(特願2015−012610)、2015年1月27日出願の日本特許出願(特願2015−013626)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is a Japanese patent application filed on May 30, 2014 (Japanese Patent Application No. 2014-112386), a Japanese patent application filed on June 10, 2014 (Japanese Patent Application No. 2014-119969), and an application filed on November 4, 2014. Based on Japanese Patent Application (Japanese Patent Application No. 2014-2224033), Japanese Patent Application (Japanese Patent Application No. 2015-016610) filed on January 26, 2015, Japanese Patent Application (Japanese Patent Application No. 2015-013626) filed on January 27, 2015 The contents of which are incorporated herein by reference.

本発明のボールねじ装置は、これまでよりも優れた寸法安定性、白色はく離を含めたはく離への耐性及び耐摩耗性を備えるため、特に射出成形機用のボールねじ装置に有用であり、高性能で長寿命となる。   Since the ball screw device of the present invention has superior dimensional stability, resistance to peeling including white peeling, and wear resistance, it is particularly useful for ball screw devices for injection molding machines. Long life with performance.

Claims (3)

外周面に螺旋溝を有するねじ軸と、前記ねじ軸の螺旋溝に対向する螺旋溝を内周面に有するボールナットと、前記両螺旋溝間に介挿されるとともにボールナットに設けたボール循環路によって循環可能とされた複数個のボールとを備えるボールねじ装置において、
前記ねじ軸が、高炭素軸受鋼または下記式1で算出されるMs点が172℃以下で下記式2で算出されるDI値が2.8以上である鋼材を熱硬化処理してなり、かつ、
径方向断面における硬さがHV500以上である有効硬化層の割合が60%以下、
硬さがHV500未満である非硬化層がフェライト相及びセメンタイト相を含有する金属組織であり、
径方向断面における平均残留オーステナイト量が4.5%以下であり、
螺旋溝の転動面の水素量が0.61ppm以下であり、
溝底の炭化物面積率が1.5%以上であり、
軌道面から深さ50μmでの残留オーステナイト量が5〜40体積%
であることを特徴とするボールねじ装置。
式1=550−361[C]−39[Mn]−20[Cr]−17[Ni]−5[Mo]
式2=(0.2[C]+0.14)×(0.64[Si]+1)×(4.1[Mn]+1)×(2.33[Cr]+1)×(3.14[Mo]+1)×(0.52[Ni]+1)
(式中、[C]、[Si]、[Mn]、[Cr]、[Mo]、[Ni]は、鋼材中のC、Si、Mn、Cr、Mo、Niの各含有量(質量%)である。)
A screw shaft having a spiral groove on the outer peripheral surface, a ball nut having a spiral groove facing the spiral groove of the screw shaft on the inner peripheral surface, and a ball circulation path interposed between the spiral grooves and provided in the ball nut In a ball screw device comprising a plurality of balls circulated by
The screw shaft is a high carbon bearing steel or a steel material having an Ms point calculated by the following formula 1 of 172 ° C. or less and a DI value calculated by the following formula 2 of 2.8 or more, and a thermosetting treatment; ,
The ratio of the effective hardened layer whose hardness in the radial cross section is HV500 or more is 60% or less,
The non-hardened layer having a hardness of less than HV500 is a metal structure containing a ferrite phase and a cementite phase,
The average retained austenite amount in the radial cross section is 4.5% or less,
The amount of hydrogen on the rolling surface of the spiral groove is 0.61 ppm or less,
The carbide area ratio of the groove bottom is 1.5% or more,
The amount of retained austenite at a depth of 50 μm from the raceway surface is 5 to 40% by volume.
A ball screw device.
Formula 1 = 550-361 [C] -39 [Mn] -20 [Cr] -17 [Ni] -5 [Mo]
Formula 2 = (0.2 [C] +0.14) × (0.64 [Si] +1) × (4.1 [Mn] +1) × (2.33 [Cr] +1) × (3.14 [ Mo] +1) × (0.52 [Ni] +1)
(In the formula, [C], [Si], [Mn], [Cr], [Mo], [Ni] are the contents of C, Si, Mn, Cr, Mo, Ni in the steel material (mass%). ).)
前記ねじ軸の軌道面表面の硬さ(HRC)及び軌道面から深さ50μmでの残留オーステナイト量(γR)が、下記式3及び式4を満足することを特徴とする請求項1記載のボールねじ装置。
式3:γR+0.15×HRC−19.1≧0
式4:γR+21.2×HRC−1176≧0
2. The ball according to claim 1, wherein a hardness (HRC) of a raceway surface of the screw shaft and a retained austenite amount (γR) at a depth of 50 μm from the raceway surface satisfy the following expressions 3 and 4. Screw device.
Formula 3: γR + 0.15 × HRC−19.1 ≧ 0
Formula 4: γR + 21.2 × HRC-1176 ≧ 0
前記ねじ軸の溝底の旧オーステナイト粒径が30μm以下であることを特徴とする請求項1または2記載のボールねじ装置。   3. The ball screw device according to claim 1, wherein a prior austenite grain size at a groove bottom of the screw shaft is 30 [mu] m or less.
JP2016523590A 2014-05-30 2015-05-29 Ball screw device Pending JPWO2015182767A1 (en)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2014112386 2014-05-30
JP2014112386 2014-05-30
JP2014119697 2014-06-10
JP2014119697 2014-06-10
JP2014224033 2014-11-04
JP2014224033 2014-11-04
JP2015012610 2015-01-26
JP2015012610 2015-01-26
JP2015013626 2015-01-27
JP2015013626 2015-01-27
PCT/JP2015/065645 WO2015182767A1 (en) 2014-05-30 2015-05-29 Ball screw device

Publications (1)

Publication Number Publication Date
JPWO2015182767A1 true JPWO2015182767A1 (en) 2017-04-20

Family

ID=54699081

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016523587A Active JP6044744B2 (en) 2014-05-30 2015-05-29 Ball screw device
JP2016523590A Pending JPWO2015182767A1 (en) 2014-05-30 2015-05-29 Ball screw device
JP2016523585A Pending JPWO2015182761A1 (en) 2014-05-30 2015-05-29 Ball screw device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016523587A Active JP6044744B2 (en) 2014-05-30 2015-05-29 Ball screw device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016523585A Pending JPWO2015182761A1 (en) 2014-05-30 2015-05-29 Ball screw device

Country Status (3)

Country Link
JP (3) JP6044744B2 (en)
TW (3) TW201608152A (en)
WO (3) WO2015182764A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117387459A (en) * 2023-12-08 2024-01-12 天津德科智控股份有限公司 Qualitative measurement gauge for machining precision of ball nut internal thread raceway

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259451A (en) * 1997-01-20 1998-09-29 Nippon Seiko Kk Rolling bearing
JP2000326856A (en) * 1999-05-18 2000-11-28 Ntn Corp Motor-driven power steering device
JP2001065576A (en) * 1999-08-27 2001-03-16 Koyo Seiko Co Ltd Bearing part material
JP2004115903A (en) * 2002-09-30 2004-04-15 Ntn Corp Ball screw part and ball screw
JP2004257453A (en) * 2003-02-25 2004-09-16 Koyo Seiko Co Ltd Screw shaft, method for hardening screw shaft, and ball screw
JP2005240970A (en) * 2004-02-27 2005-09-08 Nsk Ltd Screw device
JP2006083988A (en) * 2004-09-17 2006-03-30 Nsk Ltd Ball screw
JP2009138777A (en) * 2007-12-03 2009-06-25 Nsk Ltd Rolling screw device and its manufacturing method
JP2009204036A (en) * 2008-02-27 2009-09-10 Nsk Ltd Ball screw device
JP2014084938A (en) * 2012-10-23 2014-05-12 Nsk Ltd Rolling bearing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076823A (en) * 2002-08-13 2004-03-11 Nsk Ltd Rolling device
JP2005155714A (en) * 2003-11-21 2005-06-16 Nsk Ltd Ball screw
JP4467349B2 (en) * 2004-04-07 2010-05-26 Ntn株式会社 Ball screw for automobile
JP5224354B2 (en) * 2008-10-03 2013-07-03 Thk株式会社 Ball screw
JP5737736B2 (en) * 2009-04-23 2015-06-17 Ntn株式会社 Ball screw screw shaft

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259451A (en) * 1997-01-20 1998-09-29 Nippon Seiko Kk Rolling bearing
JP2000326856A (en) * 1999-05-18 2000-11-28 Ntn Corp Motor-driven power steering device
JP2001065576A (en) * 1999-08-27 2001-03-16 Koyo Seiko Co Ltd Bearing part material
JP2004115903A (en) * 2002-09-30 2004-04-15 Ntn Corp Ball screw part and ball screw
JP2004257453A (en) * 2003-02-25 2004-09-16 Koyo Seiko Co Ltd Screw shaft, method for hardening screw shaft, and ball screw
JP2005240970A (en) * 2004-02-27 2005-09-08 Nsk Ltd Screw device
JP2006083988A (en) * 2004-09-17 2006-03-30 Nsk Ltd Ball screw
JP2009138777A (en) * 2007-12-03 2009-06-25 Nsk Ltd Rolling screw device and its manufacturing method
JP2009204036A (en) * 2008-02-27 2009-09-10 Nsk Ltd Ball screw device
JP2014084938A (en) * 2012-10-23 2014-05-12 Nsk Ltd Rolling bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117387459A (en) * 2023-12-08 2024-01-12 天津德科智控股份有限公司 Qualitative measurement gauge for machining precision of ball nut internal thread raceway
CN117387459B (en) * 2023-12-08 2024-02-27 天津德科智控股份有限公司 Qualitative measurement gauge for machining precision of ball nut internal thread raceway

Also Published As

Publication number Publication date
TW201608154A (en) 2016-03-01
WO2015182761A1 (en) 2015-12-03
JPWO2015182761A1 (en) 2017-04-20
TWI575171B (en) 2017-03-21
JP6044744B2 (en) 2016-12-14
JPWO2015182764A1 (en) 2017-04-20
TWI575170B (en) 2017-03-21
WO2015182764A1 (en) 2015-12-03
TW201608152A (en) 2016-03-01
TW201608153A (en) 2016-03-01
WO2015182767A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
US9394583B2 (en) Rolling bearing
JP2006348342A (en) Rolling supporter
JP2014020538A (en) Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment
JP2008223104A (en) Rolling shaft
JP2015042897A (en) Method of manufacturing screw shaft of ball screw, and ball screw
JP5298683B2 (en) Rolling bearing and manufacturing method thereof
JP2006241480A (en) Rolling support device, method for manufacturing rolling member of rolling support device, and heat treatment process for steel
JP2010025311A (en) Rolling bearing and method of manufacturing the same
JP2014122378A (en) Rolling bearing
JP2008150672A (en) Rolling shaft
WO2015182767A1 (en) Ball screw device
JP2005273759A (en) Rolling supporting device, manufacturing method for its component parts, and heat treatment process for steel
JP2005282854A (en) Rolling bearing
JP2015531029A (en) Method for heat treating steel components and steel components
JP6238124B2 (en) Carbon nitrided steel with excellent surface fatigue strength and carbonitrided parts using the same
JP2010031307A (en) Roller bearing
JP2008232212A (en) Rolling device
JP5966350B2 (en) Rolling bearing
JP2011080096A (en) Method for manufacturing rolling-slide member
JP2015045036A (en) Skin hardening steel for gear excellent in pitching resistance under hydrogen environment
JP7264319B1 (en) rolling bearing
JP5879681B2 (en) Manufacturing method of rolling shaft
JP2005290496A (en) Rolling parts and rolling bearing
JP2009079253A (en) Shaft and manufacturing method therefor
JP2009019713A (en) Rolling bearing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170801