JP2005290496A - Rolling parts and rolling bearing - Google Patents

Rolling parts and rolling bearing Download PDF

Info

Publication number
JP2005290496A
JP2005290496A JP2004108957A JP2004108957A JP2005290496A JP 2005290496 A JP2005290496 A JP 2005290496A JP 2004108957 A JP2004108957 A JP 2004108957A JP 2004108957 A JP2004108957 A JP 2004108957A JP 2005290496 A JP2005290496 A JP 2005290496A
Authority
JP
Japan
Prior art keywords
rolling
steel
carbide
hydrogen
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004108957A
Other languages
Japanese (ja)
Inventor
Yukio Matsubara
幸生 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004108957A priority Critical patent/JP2005290496A/en
Priority to PCT/JP2005/003966 priority patent/WO2005098057A1/en
Publication of JP2005290496A publication Critical patent/JP2005290496A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/36Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for balls; for rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • F16C33/366Tapered rollers, i.e. rollers generally shaped as truncated cones

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide rolling parts and rolling bearing composed of steel having excellent hydrogen fatigue resistance characteristics. <P>SOLUTION: The rolling parts and rolling bearing are composed of steel containing 0.5 to 1.2wt% C, 0.1 to 1wt% Si, 0.1 to 1.5wt% Mn, and 0.1 to 2wt% Cr, and is dispersed with ≥0.1wt% fine V carbide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、転動部品および転がり軸受に関し、より具体的には、高荷重、稀薄潤滑、滑りを伴う転がり、異物混入潤滑、水混入潤滑などの厳しい条件下において耐久性が要求される用途に適した転動部品および転がり軸受に関するものである。   The present invention relates to rolling parts and rolling bearings, and more specifically to applications that require durability under severe conditions such as high load, lean lubrication, rolling with sliding, lubrication with foreign matter, and lubrication with water. It relates to suitable rolling parts and rolling bearings.

転がり軸受をはじめとする転動部品は、高荷重、稀薄潤滑、転がり滑り、異物混入潤滑、水混入潤滑などの厳しい条件下で使用されると、潤滑剤が分解して水素が発生し、それが鋼中に侵入することにより早期剥離が生じ易くなる。水素は鋼の疲労強度を著しく低下させるため、実用条件下において転動表面または表層内部から容易に亀裂が発生し、伝播して早期剥離に至る。しかし、その早期剥離のうちの多くは、転動表面に繰返し作用する周方向の引張応力が重畳して起きると考えられる。今後、自動車などのコンパクト化や省エネ化に対応するため、転動部品の使用条件は益々厳しくなる傾向にあり、耐水素疲労特性に優れた鋼材が必要となる。   When rolling parts such as rolling bearings are used under severe conditions such as high load, lean lubrication, rolling slip, foreign matter lubrication, and water lubrication, the lubricant decomposes and generates hydrogen. When the steel penetrates into the steel, early peeling is likely to occur. Since hydrogen significantly reduces the fatigue strength of steel, cracks are easily generated from the rolling surface or inside the surface layer under practical conditions, and propagate to reach early peeling. However, it is considered that most of the early peeling occurs due to overlapping of circumferential tensile stress that repeatedly acts on the rolling surface. In the future, in order to cope with the downsizing and energy saving of automobiles and the like, the usage conditions of rolling parts tend to become more severe, and steel materials with excellent hydrogen fatigue resistance are required.

鋼材の耐水素疲労特性を向上させるために、Cr含有率を高め、鋼表面に不動態膜を形成しやすくすることにより、鋼中への水素の侵入を抑制する技術が開示されている(特許文献1)。
特開2000−282178号公報
In order to improve the hydrogen fatigue resistance characteristics of steel materials, a technology for suppressing the penetration of hydrogen into steel by increasing the Cr content and facilitating the formation of a passive film on the steel surface has been disclosed (patent) Reference 1).
JP 2000-282178 A

しかしながら、Cr含有率を高めると炭化物が粗大化し、それが応力集中部となって早期剥離が生じることがある。また、不動態膜は水素の拡散を遅らせる効果があるが、発生した水素が鋼表面に吸着するのを促進する効果も併せ持つ。間をおいて時々使われる転動部品であれば、停止時に水素が散逸するため、鋼中への水素の侵入を遅らせることは、早期剥離の防止に有効である。しかし、装置に組み込まれて連続して使われるものであれば、不動態膜が多くの水素を吸着する分、鋼中に侵入する水素量が増すため、早期剥離が生ずることになる。今後、無人で連続稼働される転動部品が増えることが予想され、そのような用途に対しては上記の技術では不十分である。   However, when the Cr content is increased, the carbide is coarsened, which may become a stress concentration part and cause early peeling. In addition, the passive film has the effect of delaying the diffusion of hydrogen, but also has the effect of promoting the adsorption of the generated hydrogen on the steel surface. If rolling parts are used at intervals, hydrogen is dissipated at the time of stopping. Therefore, delaying the penetration of hydrogen into the steel is effective in preventing early peeling. However, if it is incorporated in the apparatus and used continuously, the amount of hydrogen that penetrates into the steel increases as the passive film adsorbs a lot of hydrogen, so that early delamination occurs. In the future, it is expected that the number of rolling parts that are continuously operated unattended will increase, and the above technique is insufficient for such applications.

本発明は、上記のような問題を解決するものであって、耐水素疲労特性に優れた鋼材からなる転動部品および転がり軸受を提供することを目的とする。   This invention solves the above problems, and it aims at providing the rolling components and rolling bearing which consist of steel materials excellent in hydrogen fatigue resistance.

本発明の転動部品は、C:0.5〜1.2wt%、Si:0.1〜1wt%、Mn:0.1〜1.5wt%、Cr:0.1〜2wt%を含み、かつ0.1wt%以上の微細なV炭化物が分散する鋼から構成される。   The rolling component of the present invention includes C: 0.5-1.2 wt%, Si: 0.1-1 wt%, Mn: 0.1-1.5 wt%, Cr: 0.1-2 wt%, And it is comprised from the steel which 0.1 wt% or more of fine V carbide disperses.

V炭化物は疲労強度の低下を招く拡散性水素を強力にトラップし、剥離の起点になる非金属介在物などの応力集中源への拡散性水素の集積を抑制する効果がある。上記の拡散性水素をトラップする作用は、焼入れ温度で未固溶状態で残存する微細なV炭化物が有する。   V carbide strongly traps diffusible hydrogen that causes a decrease in fatigue strength, and has the effect of suppressing the accumulation of diffusible hydrogen in stress concentration sources such as non-metallic inclusions that are the starting point of delamination. The action of trapping the diffusible hydrogen has the fine V carbide remaining in an insoluble state at the quenching temperature.

転動部品の転動接触部には、通常、高硬さが要求されるため、焼入れした後に低温焼戻して用いられる。上記微細なV炭化物は、焼入れ加熱時または浸炭時にV炭化物として安定に存在する。上記微細なV炭化物は、焼入れした後に低温焼戻ししても安定に残存する。   Since the rolling contact portion of the rolling component is usually required to have high hardness, it is used after being tempered at a low temperature. The fine V carbide exists stably as V carbide during quenching heating or carburizing. The fine V carbide remains stable even after quenching and low temperature tempering.

なお、Vは炭素と結合してV炭化物を生成するが、窒素とも結合しやすい。鋼中には、Nが0.025wt%以下程度含まれるので微細なV炭化物には窒素も含まれる場合がある。しかし、炭素濃度が非常に高いのでV炭化物と呼ぶこととする。   In addition, although V couple | bonds with carbon and produces | generates V carbide | carbonized_material, it is easy to couple | bond with nitrogen. In steel, N is contained in an amount of about 0.025 wt% or less, so fine V carbide may contain nitrogen. However, since the carbon concentration is very high, it will be called V carbide.

Mo炭化物やTi炭化物もV炭化物ほどではないものの同様の効果がある。しかしながら、Moは高濃度に含有しないと焼入れ加熱時または浸炭時ではMo炭化物としては存在せず母地に溶けてしまうため、焼入れした後に低温焼戻しした状態ではMo炭化物は残存しない。Tiは窒素との親和性が強く、非金属介在物の1つであるTi窒化物を形成するため、剥離の起点となる応力集中源が増えることになる。   Mo carbide and Ti carbide have similar effects, though not as much as V carbide. However, if Mo is not contained in a high concentration, it does not exist as Mo carbide during quenching heating or carburizing and dissolves in the base metal, so that Mo carbide does not remain in a state of low temperature tempering after quenching. Ti has a strong affinity with nitrogen and forms Ti nitride, which is one of non-metallic inclusions. Therefore, the stress concentration source that becomes the starting point of peeling increases.

なお、Vは素材硬さを高めるので、中炭素鋼のように焼鈍せずに用いる鋼材の場合は、V含有率が高すぎると加工性が損なわれる。このため、必要とされる他の合金元素の含有率との兼ね合いで、それぞれの含有率を適当に調整する必要がある。   In addition, since V raises material hardness, in the case of the steel materials used without annealing like medium carbon steel, workability will be impaired when V content rate is too high. For this reason, it is necessary to adjust each content rate appropriately in consideration of the required content rate of other alloy elements.

C:0.5〜1.2wt%
Cの下限を0.5wt%としたのは、高周波焼入れ鋼は通常中炭素鋼であるが、Cが0.5wt%未満では高周波焼入れ後に転動接触部に必要とされる硬度が得られなくなるためである。一方、Cの上限を1.2wt%としたのは、ずぶ焼き鋼の場合、焼入れ焼戻し後に残存する未溶解炭化物が粗大化し、靭性が低下するためである。なお、ここでいうC濃度すなわち炭素含有率は、転動接触部におけるCのことであり、浸炭鋼の場合には浸炭後の表層の炭素含有率を指す。
C: 0.5-1.2 wt%
The reason why the lower limit of C is set to 0.5 wt% is that the induction-hardened steel is usually medium carbon steel, but if C is less than 0.5 wt%, the hardness required for the rolling contact portion cannot be obtained after induction hardening. Because. On the other hand, the upper limit of C is set to 1.2 wt% because, in the case of tempered steel, undissolved carbide remaining after quenching and tempering becomes coarse and toughness decreases. The C concentration, that is, the carbon content here is C in the rolling contact portion, and in the case of carburized steel, it indicates the carbon content of the surface layer after carburizing.

Si:0.1〜1wt%
Siの下限を0.1wt%としたのは、元々Siは精錬における脱酸のために添加されるもので、0.1wt%以下に減らすこと自体が困難であり、そうすることの意味もないからである。Siは焼戻しによる軟化を抑える効果があり、高温用途で用いる安価な鋼材には欠かせない。しかし、1wt%を超えると冷間加工性、熱間加工性が低下するので、それを上限とする。
Si: 0.1 to 1 wt%
The reason why the lower limit of Si is 0.1 wt% is that Si is originally added for deoxidation in refining, and it is difficult to reduce it to 0.1 wt% or less, and there is no point in doing so. Because. Si has the effect of suppressing softening due to tempering, and is indispensable for inexpensive steel materials used in high temperature applications. However, if it exceeds 1 wt%, the cold workability and hot workability deteriorate, so this is the upper limit.

Mn:0.1〜1.5wt%
Mnの下限を0.1wt%としたのは、Mnは鋼中に不可避的に含まれるSと化合してMnSを析出するため、Sの粒界偏析およびそれに起因する脆化を抑制するためである。また、Siと同様にMnも精錬における脱酸処理などのために鋼中に添加されるものなので、0.1wt%以下に減らすこと自体が困難であり、そうすることの意味もないからである。Mnは鋼材の焼入性を向上させる有効な元素である。しかし、Mnは含有率が高すぎると素材硬度を上昇させすぎて加工性や被削性を低下させる。そのため、Mnの上限は1.5wt%とした。
Mn: 0.1 to 1.5 wt%
The reason why the lower limit of Mn is set to 0.1 wt% is that Mn combines with S inevitably contained in the steel to precipitate MnS, thereby suppressing grain boundary segregation of S and embrittlement caused thereby. is there. Moreover, since Mn is added to steel for deoxidation treatment in refining as well as Si, it is difficult to reduce it to 0.1 wt% or less, and there is no point in doing so. . Mn is an effective element that improves the hardenability of the steel material. However, if the content of Mn is too high, the material hardness is excessively increased and the workability and machinability are lowered. Therefore, the upper limit of Mn is 1.5 wt%.

Cr:
Crの下限を0.1wt%としたのは、その程度の量は不純物として含まれ、それより低くすることで各種機械的特性が向上することはないためである。一方、含有率が高すぎることで炭化物が粗大化するため、それが応力集中源となって早期剥離が生じることがある。また、不動態膜(Cr酸化物膜)は水素の拡散を遅くする効果はあるが、発生した水素が鋼表面に吸着するのを促進する効果も併せ持つためである。したがって、Crの上限は2wt%とする。
Cr:
The reason why the lower limit of Cr is set to 0.1 wt% is that such an amount is contained as an impurity, and various mechanical properties are not improved by making it lower than that. On the other hand, if the content is too high, the carbides become coarse, and this may become a stress concentration source and cause early peeling. Further, the passive film (Cr oxide film) has an effect of slowing the diffusion of hydrogen, but also has an effect of promoting the adsorption of the generated hydrogen to the steel surface. Therefore, the upper limit of Cr is 2 wt%.

C、Si、Mn、Crの個々の上下限を設定した根拠は上記のとおりだが、それらの組合せについて注意すべきことが2つある。1つは、Siは高温でもフェライトを安定にするため、C含有率が共析組成の範囲で、かつSi含有率が高い場合にはA3点が上昇する。このため、MnおよびCrの含有率によっては焼入れ加熱温度が低過ぎると完全にオーステナイト化しないため焼入れ性が不足することである。もう1つは、MnやCrは低温でもオーステナイトを安定にするため、上記Cの下限または上限で、かつMnやCrの含有率が高い場合には、焼入れ加熱温度または浸炭温度が高過ぎるとV炭化物が安定に存在しなくなることである。なお、これらの確認には多元系合金の平衡状態図を用いればよい。現在では、多元系合金の平衡状態相を計算により精度よく容易に求めることができる。   The grounds for setting the upper and lower limits of C, Si, Mn, and Cr are as described above, but there are two things to be careful about their combination. First, since Si stabilizes ferrite even at high temperatures, the A3 point increases when the C content is within the eutectoid composition range and the Si content is high. For this reason, depending on the content of Mn and Cr, if the quenching heating temperature is too low, the austenite is not completely formed, so that the hardenability is insufficient. The other is that Mn and Cr stabilize austenite even at low temperatures, so if the quenching heating temperature or carburizing temperature is too high at the lower limit or upper limit of C and the content of Mn or Cr is high, V It is that the carbide does not exist stably. In addition, what is necessary is just to use the equilibrium diagram of a multicomponent system alloy for these confirmation. At present, the equilibrium phase of a multi-component alloy can be easily and accurately obtained by calculation.

微細なV炭化物を含む鋼材により転動部品を構成することで、高荷重、稀薄潤滑、転がり滑り条件、異物混入潤滑、水混入潤滑などの厳しい条件下で使用され、潤滑剤が分解して水素が発生しても、それが鋼中に侵入することで生じる早期剥離を防止することができる。   By making rolling parts with steel material containing fine V carbide, it is used under severe conditions such as high load, dilute lubrication, rolling slip condition, foreign matter lubrication, water lubrication, and the lubricant decomposes to hydrogen Even if this occurs, it is possible to prevent premature peeling caused by the penetration into steel.

つぎに図面を用いて本発明の実施の形態について説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1〜図3は、本発明の実施の形態における転動部品が用いられる軸受を示す図である。図1は、深みぞ玉軸受を示すが、溝が設けられた内輪3と外輪4との間に、保持器6に収納された転動体のボール5が配置されている。上記内輪3、外輪4およびボール5の少なくとも1つに本発明の転動部品が用いられている。上記深みぞ玉軸受は、上記内輪、外輪およびボールを備え、溝の形状が上記深みぞ玉軸受と異なるアンギュラ玉軸受であってもよい。深みぞ玉軸受もまたアンギュラ玉軸受も本発明の転動部品を少なくとも1つ備える転がり軸受である。   1-3 is a figure which shows the bearing in which the rolling components in embodiment of this invention are used. FIG. 1 shows a deep groove ball bearing, and a rolling element ball 5 housed in a cage 6 is arranged between an inner ring 3 and an outer ring 4 provided with grooves. The rolling component of the present invention is used for at least one of the inner ring 3, the outer ring 4 and the ball 5. The deep groove ball bearing may be an angular ball bearing including the inner ring, the outer ring, and a ball, and having a groove shape different from that of the deep groove ball bearing. Both the deep groove ball bearing and the angular ball bearing are rolling bearings having at least one rolling component of the present invention.

図2は、本発明の別の実施の形態である円筒ころ軸受(転がり軸受)を示す図である。この円筒ころ軸受は、転動体5の形状が円筒形である点が図1に示す転がり軸受と相違するだけで他の構成は図1に示す構成と同じである。   FIG. 2 is a view showing a cylindrical roller bearing (rolling bearing) according to another embodiment of the present invention. This cylindrical roller bearing is the same as the configuration shown in FIG. 1 except that the rolling element 5 has a cylindrical shape and is different from the rolling bearing shown in FIG.

また、図3は、本発明のさらに別の実施の形態の円すいころ軸受(転がり軸受)を示す図である。図3に示す円すいころ軸受は円すいの傾きが大きい高傾斜型円すいころ軸受である。転がり軸受であり、内輪3と外輪4と転動体5とが含まれ、それらのうちの少なくとも1つが本発明の転動部品である限り、上記傾斜角度の大小によらず、本発明の実施の形態に対応する。   FIG. 3 is a view showing a tapered roller bearing (rolling bearing) according to still another embodiment of the present invention. The tapered roller bearing shown in FIG. 3 is a high-inclined tapered roller bearing with a large cone inclination. As long as it is a rolling bearing and includes an inner ring 3, an outer ring 4, and a rolling element 5, and at least one of them is a rolling part of the present invention, the embodiment of the present invention is performed regardless of the magnitude of the inclination angle. Corresponds to the form.

上記転動部品は、浸炭焼入れ、高周波焼入れを含め、焼入れされたまま、またはその後に焼戻されて用いられる鋼材からなる転動部品である。特に高荷重、稀薄潤滑、滑りを伴う条件、異物混入潤滑、水混入潤滑などの厳しい条件下において耐久性が要求される用途に適した転動部品およびその転動部品を内輪、外輪および転動体の少なくとも1つに用いた軸受である。たとえば転がり軸受の深溝玉軸受、円筒ころ軸受、円錐ころ軸受などである。   The rolling component is a rolling component made of a steel material that is used after being quenched or tempered, including carburizing and induction quenching. Rolling parts suitable for applications that require durability under severe conditions such as high loads, dilute lubrication, slipping conditions, foreign matter-mixed lubrication, and water-mixed lubrication, and the rolling parts as inner rings, outer rings, and rolling elements It is the bearing used for at least one of these. For example, it is a deep groove ball bearing, a cylindrical roller bearing, a tapered roller bearing or the like of a rolling bearing.

上記の転動部品は、C:0.5〜1.2wt%、Si:0.1〜1wt%、Mn:0.1〜1.5wt%、Cr:0.1〜2wt%を含み、かつ0.1wt%以上の微細なV炭化物が分散する鋼から構成されることにより、耐水素疲労特性が大幅に向上する。上記の鋼は、800〜1000℃の温度域から焼入れられ、微細V炭化物は焼入れ加熱温度で残存していた析出物とすることができる。   The rolling component includes C: 0.5 to 1.2 wt%, Si: 0.1 to 1 wt%, Mn: 0.1 to 1.5 wt%, Cr: 0.1 to 2 wt%, and By comprising steel in which fine V carbide of 0.1 wt% or more is dispersed, hydrogen fatigue resistance is greatly improved. The above steel is quenched from a temperature range of 800 to 1000 ° C., and the fine V carbide can be a precipitate remaining at the quenching heating temperature.

さらに上記の転動部品を形成する鋼が次の(1)式および(2)式を満たすようにできる。   Furthermore, the steel forming the rolling part can satisfy the following expressions (1) and (2).

H=5.8[Si] + 11.5[Mn] + 56.2[V] + 15.2[Mo] ..........(1)
H≦70 ............................................(2)
上記(1)式および(2)式を満たすことにより被削性の劣化を防止することができる。なお、上記(1)式にはMoが含まれているが、鋼中にMoが含まれなくてもよい。
H = 5.8 [Si] + 11.5 [Mn] + 56.2 [V] + 15.2 [Mo] .......... (1)
H ≦ 70 ...................................... (2)
By satisfying the above formulas (1) and (2), it is possible to prevent deterioration of machinability. In addition, although Mo is contained in the said (1) Formula, Mo does not need to be contained in steel.

1.軸荷重疲労試験
表1に示す発明例A−1〜A−10および比較例A−11〜A−20の鋼材から、試験部の直径が4mmの疲労試験片を製作した。表1中に示した焼入れ加熱温度からずぶ焼入れした後、180℃で焼戻しを施した。熱処理後の硬さは、表1に示すように、いずれもHV700以上であった。
1. Axial Load Fatigue Test Fatigue test pieces having a test part diameter of 4 mm were manufactured from the steel materials of Invention Examples A-1 to A-10 and Comparative Examples A-11 to A-20 shown in Table 1. After quenching from the quenching heating temperature shown in Table 1, tempering was performed at 180 ° C. As shown in Table 1, the hardness after the heat treatment was HV700 or more.

Figure 2005290496
Figure 2005290496

表1中のHの値はSi、Mn、V、Moを(1)式に代入して求めた値である。また表1中のV炭化物量は、焼入れ加熱温度において平衡状態にあるときに、安定に存在し得るV炭化物量の計算値である。比較例のうちVを含まない鋼材にはV炭化物は存在しないので「−」と記した。なお、比較例A−11、A−12はそれぞれJIS SUJ2、JIS SUJ3である。   The value of H in Table 1 is a value obtained by substituting Si, Mn, V, and Mo into the equation (1). The amount of V carbide in Table 1 is a calculated value of the amount of V carbide that can exist stably when in an equilibrium state at the quenching heating temperature. Among the comparative examples, steels that do not contain V do not have V carbides, and are therefore indicated as “−”. Comparative examples A-11 and A-12 are JIS SUJ2 and JIS SUJ3, respectively.

表2に示す本発明例B−1〜B−4および比較例B−5〜B−10の鋼材から、試験部の直径が4mmの疲労試験片を製作した。試験部の炭素濃度が内部まで均一に0.8wt%となるように、適切な浸炭温度で浸炭し、表2に示した焼入れ加熱温度に下げてから焼入れし、次いで180℃で焼戻しを施した。熱処理後の硬さは、表2に示すように、いずれもHV700以上であった。表中のHの値はSi、Mn、V、Moを(1)式に代入して求めた値である。表中のV炭化物量は、焼入れ加熱温度において平衡状態にあるときに、安定に存在し得るV炭化物量の計算値である。それが0.01wt%未満の鋼材には「<0.01」と記した。比較例のうちVを含まない鋼材にはV炭化物は存在しないので「−」と記した。なお、比較例B−5はJIS SCM420である。   From the steel materials of Invention Examples B-1 to B-4 and Comparative Examples B-5 to B-10 shown in Table 2, fatigue test pieces having a test part diameter of 4 mm were manufactured. Carburization was carried out at an appropriate carburizing temperature so that the carbon concentration in the test part was uniformly 0.8 wt% to the inside, and the quenching was performed after being lowered to the quenching heating temperature shown in Table 2, followed by tempering at 180 ° C. . As shown in Table 2, the hardness after the heat treatment was HV700 or more. The value of H in the table is a value obtained by substituting Si, Mn, V, and Mo into the equation (1). The amount of V carbide in the table is a calculated value of the amount of V carbide that can exist stably when in equilibrium at the quenching heating temperature. The steel material with less than 0.01 wt% was marked with “<0.01”. Among the comparative examples, steels that do not contain V do not have V carbides, and are therefore indicated as “−”. In addition, Comparative Example B-5 is JIS SCM420.

Figure 2005290496
Figure 2005290496

表3に示す本発明例C−1および比較例C−2〜C−12の各鋼材から、試験部の直径が4mmの疲労試験片を製作した。そして、試験部が内部まで均一に硬化するように、表3に示した焼入れ加熱温度を狙って高周波加熱し、次いで焼入れして、150℃で焼戻しを施した。熱処理後の硬さは、表3に示すように、いずれもHV700以上であった。表中のHの値はSi、Mn、V、Moを(1)式に代入して求めた値である。表中のV炭化物量は、高周波加熱温度において平衡状態にあるときに、安定に存在し得るV炭化物量の計算値である。それが0.01wt%未満の鋼材には「<0.01」と記した。比較例のうちVを含まない鋼材にはV炭化物は存在しないので「−」と記した。なお、比較例C−2はJIS S53Cである。   A fatigue test piece having a test part diameter of 4 mm was manufactured from each steel material of Invention Example C-1 and Comparative Examples C-2 to C-12 shown in Table 3. Then, high-frequency heating was performed aiming at the quenching heating temperature shown in Table 3 so that the test portion was uniformly cured to the inside, followed by quenching and tempering at 150 ° C. As shown in Table 3, the hardness after the heat treatment was HV700 or more. The value of H in the table is a value obtained by substituting Si, Mn, V, and Mo into the equation (1). The amount of V carbide in the table is a calculated value of the amount of V carbide that can exist stably when in an equilibrium state at a high-frequency heating temperature. The steel material with less than 0.01 wt% was marked with “<0.01”. Among the comparative examples, steels that do not contain V do not have V carbides, and are therefore indicated as “−”. Comparative example C-2 is JIS S53C.

Figure 2005290496
Figure 2005290496

疲労試験に先立ち、試験片に陰極電解法により水素チャージを施した。水素チャージには、1.4g/lのチオ尿素を含む0.05mol/lの希硫酸水溶液を用いた。鋼材の鋼種によって水素の拡散速度が異なり、また、鋼種が異なると同じ電流密度でも表面の水素濃度が異なる。それらを予め求めた上で、電流密度とチャージ時間を調整し、試験部の内部まで拡散性水素量が均一に3wtppmとなるようにした。なおここでいう拡散性水素量とは、180℃/hで常温から350℃まで昇温したときにサンプルから放出される水素重量のサンプル重量に対する分率のことである。   Prior to the fatigue test, the test piece was charged with hydrogen by a cathodic electrolysis method. For hydrogen charging, a 0.05 mol / l dilute sulfuric acid aqueous solution containing 1.4 g / l thiourea was used. The diffusion rate of hydrogen differs depending on the steel type of the steel material, and the hydrogen concentration on the surface varies with the same current density if the steel type is different. After obtaining them in advance, the current density and charging time were adjusted so that the amount of diffusible hydrogen was uniformly 3 wtppm up to the inside of the test section. Here, the diffusible hydrogen amount is a fraction of the weight of hydrogen released from the sample when the temperature is raised from room temperature to 350 ° C. at 180 ° C./h with respect to the sample weight.

試験片に水素チャージした後、直ちに常温大気中で疲労試験を行なった。試験における応力比はR=−1であり、負荷周波数は20kHzである。負荷回数が108回に達しても未破断であった場合は試験を打ち切った。なお、試験片に導入された拡散性水素は、常温でも鋼中を拡散し、時間が経てば散逸してしまう。しかし、今回行なった試験では高速負荷とし、極短時間で負荷回数が108回に達するので、拡散性水素が散逸する余地がない。したがって、疲労強度に及ぼす拡散性水素の影響を合理的に評価することができる。 After the test piece was charged with hydrogen, a fatigue test was immediately conducted at room temperature in the atmosphere. The stress ratio in the test is R = -1, and the load frequency is 20 kHz. Even if the number of loadings reached 10 8 times, the test was aborted if there was no breakage. In addition, the diffusible hydrogen introduced into the test piece diffuses in the steel even at room temperature and dissipates over time. However, in this test, a high-speed load is used, and the number of loads reaches 10 8 in an extremely short time, so there is no room for diffusible hydrogen to dissipate. Therefore, the influence of diffusible hydrogen on fatigue strength can be rationally evaluated.

ずぶ焼入れ鋼の疲労試験結果を、日本材料学界標準JSMS−SD−6−02の連続降下型片対数曲線モデルに当てはめてSN回帰曲線を求め、それから107回における10%疲労強度を求めた。表4にその値を示す。V炭化物が焼入れ加熱温度においてある程度安定に存在する本発明例では、そうでない比較例に対して107回における10%疲労強度は高かった。 The SN test curve was obtained by applying the fatigue test result of the sub-hardened steel to the continuous descent type semi-logarithmic curve model of JSMS-SD-6-02, a Japanese material academia standard, and then 10% fatigue strength at 10 7 times was obtained. Table 4 shows the values. In the example of the present invention in which V carbide is present to some extent at the quenching heating temperature, the 10% fatigue strength at 10 7 times was higher than that of the comparative example.

Figure 2005290496
Figure 2005290496

上記ずぶ焼入れ鋼と同様にして求めた浸炭焼入れ鋼、高周波焼入れ鋼の107回における10%疲労強度を、それぞれ表5、6に示す。これらの場合もずぶ焼入れ鋼の場合と同様に、V炭化物が焼入れ加熱温度においてある程度安定に存在する発明鋼は、そうでない比較例に対して107回における10%疲労強度が高かった。 Tables 5 and 6 show the 10% fatigue strength of 10 7 times of carburized quenched steel and induction-hardened steel obtained in the same manner as the above-mentioned hardened steel. In these cases, as in the case of the case-hardened steel, the invention steel in which V carbide is present to some extent at the quenching heating temperature has a higher 10% fatigue strength at 10 7 times than the comparative example.

Figure 2005290496
Figure 2005290496

Figure 2005290496
Figure 2005290496

転動部品の実用最大接触面圧は高くても4GPa程度であり、4GPaの最大面圧が作用したときに転走表面に繰返し作用する周方向の引張り応力は、転がり摩擦を考慮しても計算上700MPa程度である。また、今回の疲労試験では、3wtppmの拡散性水素を強制的に導入して影響を見たが、実際にはそれほど高濃度の水素が侵入するのは稀なケースと考えられる。すなわち、107回における10%疲労強度が700MPa以上であれば、実用に十分耐え得るものと考えられる。この観点から表1〜3を見ると、ずぶ焼入れ、浸炭焼入れ、高周波焼入れを問わず、本発明例はいずれもV炭化物を0.1wt%以上含んでおり、700MPa以上の10%疲労強度を有している。 The practical maximum contact surface pressure of rolling parts is about 4 GPa at the highest, and the circumferential tensile stress that repeatedly acts on the rolling surface when the maximum surface pressure of 4 GPa is applied is calculated even considering the rolling friction. The upper limit is about 700 MPa. In this fatigue test, 3 wtppm of diffusible hydrogen was forcibly introduced and the effect was observed. However, in reality, it is considered rare that high concentration of hydrogen penetrates. That is, if the 10% fatigue strength at 10 7 times is 700 MPa or more, it is considered that the 10% fatigue strength can sufficiently withstand practical use. From this point of view, Tables 1 to 3 show that all of the examples of the present invention contain 0.1 wt% or more of V carbides and have 10% fatigue strength of 700 MPa or more regardless of whether they are full quenching, carburizing quenching or induction quenching. doing.

一方、比較例の107回における10%疲労強度はすべて700MPa未満である。したがって、合金元素として少なくともVを含有し、かつ焼入れ加熱温度において0.1wt%以上のV炭化物が安定に存在することが、耐水素疲労強度を良好に保つための必要条件といえる。
2.加工性試験
上記のように、Vは耐水素疲労強度の向上に不可欠である。しかし、V含有率が高すぎると加工性が損なわれる。そこで、加工性を確認するため、表1の発明例および比較例に対して同一条件で球状化焼鈍した後、厚さ10mmの試験片を製作した。それに直径2mmのドリルで一定条件で孔をあけ、ドリルが破損するまでに開けられる孔の数を調べた。
On the other hand, the 10% fatigue strength at 10 7 times in the comparative example is less than 700 MPa. Accordingly, it can be said that a stable presence of 0.1 wt% or more V carbide at the quenching heating temperature at least V as an alloy element is a necessary condition for maintaining good hydrogen fatigue strength.
2. Workability Test As described above, V is essential for improving hydrogen fatigue resistance. However, if the V content is too high, workability is impaired. Therefore, in order to confirm the workability, the inventive example of Table 1 and the comparative example were subjected to spheroidizing annealing under the same conditions, and then a test piece having a thickness of 10 mm was manufactured. A hole with a diameter of 2 mm was drilled under a certain condition, and the number of holes that could be drilled before the drill broke was examined.

図4に表1におけるHの値と開けた孔数との関係を示す。図4によれば、Hの値が70程度以下ではドリルの寿命は緩やかに低下し、それを超えると急激に寿命が低下した。(1)式からわかるように、V含有率はHの値に対する寄与が最も大きい。したがって、耐水素疲労特性と加工性とのバランスを良好に保つためには、むやみにV含有率を高くせずに、かつSi、Mn、Mo含有率を適正に調整することにより、Hの値を70以下とすることが望ましい。   FIG. 4 shows the relationship between the value of H in Table 1 and the number of holes opened. According to FIG. 4, when the value of H is about 70 or less, the life of the drill gradually decreases, and when it exceeds that, the life rapidly decreases. As can be seen from the equation (1), the V content has the largest contribution to the value of H. Therefore, in order to maintain a good balance between the hydrogen fatigue resistance and workability, the value of H is not adjusted by increasing the V content and appropriately adjusting the Si, Mn, and Mo content. Is desirably 70 or less.

上記において、本発明の実施の形態について説明を行ったが、上記に開示された本発明の実施の形態は、あくまで例示であって、本発明の範囲はこれらこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   While the embodiments of the present invention have been described above, the embodiments of the present invention disclosed above are merely examples, and the scope of the present invention is not limited to these embodiments of the present invention. . The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明の転動部品を用いることにより、微細なV炭化物が鋼中に安定に分布して鋼中に侵入した水素をトラップするので水素に起因する繰り返し負荷による早期剥離を抑制することができる。さらにV等の組成を調整することにより被削性の劣化を防止することができる。このため、高荷重、稀薄潤滑、滑りを伴う転がり、異物混入潤滑、水混入潤滑などの厳しい条件下において耐久性が要求される用途に広範に用いられることが期待される。   By using the rolling component of the present invention, fine V carbide is stably distributed in the steel and traps hydrogen that has entered the steel, so that early peeling due to repetitive load caused by hydrogen can be suppressed. Furthermore, the machinability can be prevented from being deteriorated by adjusting the composition of V or the like. For this reason, it is expected to be widely used in applications that require durability under severe conditions such as high load, dilute lubrication, rolling with slipping, foreign matter contamination lubrication, and water contamination lubrication.

本発明の実施の形態における深みぞ玉軸受を示す図である。It is a figure which shows the deep groove ball bearing in embodiment of this invention. 本発明の別の実施の形態における円筒ころ軸受を示す図である。It is a figure which shows the cylindrical roller bearing in another embodiment of this invention. 本発明のさらに別の実施の形態における円すいころ軸受を示す図である。It is a figure which shows the tapered roller bearing in another embodiment of this invention. 本発明の実施例におけるHと、ドリルによる孔あけ数との関係を示す図である。It is a figure which shows the relationship between H in the Example of this invention, and the number of holes drilled.

符号の説明Explanation of symbols

3 内輪、4 外輪、5 転動体(ボール、円筒、円すい)、6 保持器。   3 inner ring, 4 outer ring, 5 rolling elements (ball, cylinder, cone), 6 cage.

Claims (4)

C:0.5〜1.2wt%、Si:0.1〜1wt%、Mn:0.1〜1.5wt%、Cr:0.1〜2wt%を含み、かつ0.1wt%以上の微細なV炭化物が分散する鋼から構成される、転動部品。   C: 0.5 to 1.2 wt%, Si: 0.1 to 1 wt%, Mn: 0.1 to 1.5 wt%, Cr: 0.1 to 2 wt%, and 0.1 wt% or more Rolling parts composed of steel in which various V carbides are dispersed. 前記転動部品は800〜1000℃の温度域から焼き入れられ、前記微細V炭化物は800〜1000℃の温度域で残存していた析出物である、請求項1に記載の転動部品。   The rolling part according to claim 1, wherein the rolling part is quenched from a temperature range of 800 to 1000 ° C., and the fine V carbide is a precipitate remaining in a temperature range of 800 to 1000 ° C. 2. 前記鋼が、次の(1)式および(2)式を満たす、請求項1または2に記載の転動部品。
H=5.8[Si] + 11.5[Mn] + 56.2[V] + 15.2[Mo] ..........(1)
H≦70 ............................................(2)
The rolling component according to claim 1 or 2, wherein the steel satisfies the following expressions (1) and (2).
H = 5.8 [Si] + 11.5 [Mn] + 56.2 [V] + 15.2 [Mo] .......... (1)
H ≦ 70 ...................................... (2)
請求項1〜3のいずれかに記載の転動部品を、内輪、外輪および転動体のうちの少なくとも1つに用いた、転がり軸受。   A rolling bearing in which the rolling component according to claim 1 is used for at least one of an inner ring, an outer ring, and a rolling element.
JP2004108957A 2004-04-01 2004-04-01 Rolling parts and rolling bearing Withdrawn JP2005290496A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004108957A JP2005290496A (en) 2004-04-01 2004-04-01 Rolling parts and rolling bearing
PCT/JP2005/003966 WO2005098057A1 (en) 2004-04-01 2005-03-08 Rolling part and ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108957A JP2005290496A (en) 2004-04-01 2004-04-01 Rolling parts and rolling bearing

Publications (1)

Publication Number Publication Date
JP2005290496A true JP2005290496A (en) 2005-10-20

Family

ID=35125092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108957A Withdrawn JP2005290496A (en) 2004-04-01 2004-04-01 Rolling parts and rolling bearing

Country Status (2)

Country Link
JP (1) JP2005290496A (en)
WO (1) WO2005098057A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250797A (en) * 2008-04-07 2009-10-29 Ntn Corp Lubricity evaluation device of lubricant for rolling bearing and lubricity evaluation method
WO2013156091A1 (en) * 2012-04-20 2013-10-24 Aktiebolaget Skf Steel Alloy
JP2019026882A (en) * 2017-07-28 2019-02-21 新日鐵住金株式会社 Steel member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014053385A1 (en) * 2012-10-03 2014-04-10 Aktiebolaget Skf Steel alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148585A (en) * 1991-11-26 1993-06-15 Japan Steel Works Ltd:The High wear resistant working roll for cold rolling
JP3413975B2 (en) * 1994-08-08 2003-06-09 日本精工株式会社 Rolling bearing with excellent wear resistance
JP2002213556A (en) * 2001-01-16 2002-07-31 Ntn Corp Power roller bearing for toroidal type continuously variable transmission and toroidal continuously variable transmission
JP2003278768A (en) * 2002-03-27 2003-10-02 Nsk Ltd Rolling bearing for belt type continuously variable transmission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250797A (en) * 2008-04-07 2009-10-29 Ntn Corp Lubricity evaluation device of lubricant for rolling bearing and lubricity evaluation method
WO2013156091A1 (en) * 2012-04-20 2013-10-24 Aktiebolaget Skf Steel Alloy
JP2019026882A (en) * 2017-07-28 2019-02-21 新日鐵住金株式会社 Steel member

Also Published As

Publication number Publication date
WO2005098057A1 (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4800444B2 (en) Steel for machine structure for surface hardening and parts for machine structure
JP6205060B2 (en) Carbonitriding bearing parts
WO2012056785A9 (en) Steel for surface hardening for machine structural use, and steel component for machine structural use and process for producing same
WO2014192117A1 (en) Soft-nitrided induction-quenched steel component
US20080047632A1 (en) Method for Thermally Treating a Component Consisting of a Fully Hardenable, Heat-Resistant Steel and a Component Consisting of Said Steel
JP5477111B2 (en) Nitriding induction hardening steel and nitriding induction hardening parts
WO2013084800A1 (en) Rolling bearing and method for producing same
JP2013011010A (en) Rolling bearing and method of manufacturing the same
JP2010196107A (en) Roller bearing
JP5260032B2 (en) Induction hardened steel excellent in cold workability, rolling member made of the steel, and linear motion device using the rolling member
JP4102266B2 (en) Method for manufacturing surface hardened component and surface hardened component
JP2006241480A (en) Rolling support device, method for manufacturing rolling member of rolling support device, and heat treatment process for steel
JP2015218359A (en) Surface-hardened component, steel for surface-hardened component, and method for producing the surface-hardened component
WO2005098057A1 (en) Rolling part and ball bearing
JP2005042188A (en) Carbonitrided bearing steel with excellent rolling fatigue life under debris-contaminated environment
JP5991026B2 (en) Manufacturing method of rolling bearing
JP2015230080A (en) Rolling bearing for hydrogen gas atmosphere
JP2006138376A (en) Radial needle roller bearing
JP5119717B2 (en) Method for manufacturing rolling bearing component and rolling bearing
JP6146381B2 (en) Case-hardened steel for bearings with excellent rolling fatigue characteristics and method for producing the same
JP2006118680A (en) Bearing for alternator
US20240124950A1 (en) Method for heat treating a steel component
JP2009079253A (en) Shaft and manufacturing method therefor
JPH11209844A (en) Induction hardening steel, induction hardened steel immune to foreign-matter environment, and rectilinear motion device
JP2006138377A (en) Thrust needle roller bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605