JP2003278768A - Rolling bearing for belt type continuously variable transmission - Google Patents

Rolling bearing for belt type continuously variable transmission

Info

Publication number
JP2003278768A
JP2003278768A JP2002087407A JP2002087407A JP2003278768A JP 2003278768 A JP2003278768 A JP 2003278768A JP 2002087407 A JP2002087407 A JP 2002087407A JP 2002087407 A JP2002087407 A JP 2002087407A JP 2003278768 A JP2003278768 A JP 2003278768A
Authority
JP
Japan
Prior art keywords
outer ring
continuously variable
variable transmission
rolling
type continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002087407A
Other languages
Japanese (ja)
Other versions
JP2003278768A5 (en
Inventor
Hiromichi Takemura
浩道 武村
Yoshitaka Hayashi
善貴 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002087407A priority Critical patent/JP2003278768A/en
Priority to EP03745009A priority patent/EP1489318A4/en
Priority to CNB038071096A priority patent/CN100400909C/en
Priority to AU2003236146A priority patent/AU2003236146A1/en
Priority to PCT/JP2003/003725 priority patent/WO2003081062A1/en
Publication of JP2003278768A publication Critical patent/JP2003278768A/en
Priority to US10/947,393 priority patent/US7189171B2/en
Publication of JP2003278768A5 publication Critical patent/JP2003278768A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Transmissions By Endless Flexible Members (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the efficiency of a belt type continuously variable transmission, while assuring durability by using a CVT fluid of low viscosity, and by providing sufficient durability even if the flow of the fluid is kept small. <P>SOLUTION: Rings including an outer ring 4 are made from an iron type alloy containing C of 0.15 to 0.5 wt.%, Si of 0.1 to 1.5 wt.%, Mn of 0.1 to 1.5 wt.%, and Cr of 0.5 to 3.0 wt.%. This material is subjected to carbonitriding, quenching, tempering, and finish grinding processes and a surface layer containing C of 0.8 to 1.2 wt.% and N of 0.05 to 0.50 wt.% is provided on the surface part of an outer raceway 6 provided on the inner peripheral surface of the outer ring 4. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、自動車のベルト
式無段変速機の回転軸を支持する為の転がり軸受の改良
に関する。具体的には、ベルトとプーリとの摩擦係合部
の摩擦係数を安定させると共に低燃費を実現すべく、C
VTフルード(ATF兼用油)として低粘度のものを用
いた場合でも、十分な耐久性を確保できる構造を実現す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a rolling bearing for supporting a rotary shaft of a belt type continuously variable transmission of an automobile. Specifically, in order to stabilize the friction coefficient of the frictional engagement portion between the belt and the pulley and realize low fuel consumption, C
Even if a low viscosity VT fluid (ATF combined oil) is used, a structure that can secure sufficient durability is realized.

【0002】[0002]

【従来の技術】自動車用の自動変速機用の変速ユニット
としてベルト式無段変速機が、例えば実公平8−305
26号公報等に記載されている様に、従来から各種考え
られ、その一部は実際に使用されている。図1は、この
様なベルト式無段変速機の基本構造を略示している。こ
のベルト式無段変速機は、互いに平行に配置された入力
側回転軸1と出力側回転軸2とを有する。これら各回転
軸1、2は、特許請求の範囲に記載した固定の部分であ
る、図示しない変速機ケースの内側に、それぞれ1対ず
つの転がり軸受3、3により、回転自在に支持してい
る。
2. Description of the Related Art A belt type continuously variable transmission is used as a transmission unit for an automatic transmission for an automobile, for example, in Japanese Utility Model No. 8-305.
As described in Japanese Laid-Open Patent Publication No. 26, etc., various kinds have been conventionally considered, and some of them are actually used. FIG. 1 schematically shows the basic structure of such a belt type continuously variable transmission. This belt type continuously variable transmission has an input side rotary shaft 1 and an output side rotary shaft 2 which are arranged in parallel with each other. Each of these rotary shafts 1 and 2 is rotatably supported by a pair of rolling bearings 3 and 3 inside a transmission case (not shown), which is a fixed portion described in the claims. .

【0003】これら各転がり軸受3、3はそれぞれ、図
2に詳示する様に、互いに同心に設けられた外輪4と内
輪5とを有する。このうちの外輪4は、内周面に外輪軌
道6を、内輪5は外周面に内輪軌道7を、それぞれ有す
る。そして、これら外輪軌道6と内輪軌道7との間に複
数の転動体8、8を、保持器9により保持した状態で、
転動自在に設けている。それぞれがこの様に構成され
る、上記各転がり軸受3、3は、それぞれの外輪4を上
記変速機ケースの一部に内嵌固定し、それぞれの内輪5
を上記入力側回転軸1又は上記出力側回転軸2に外嵌固
定している。そして、この構成により、これら両回転軸
1、2を上記変速機ケースの内側に、回転自在に支持し
ている。尚、上記各転がり軸受3、3として従来は、外
輪4、内輪5、各転動体8、8を、一般的な軸受鋼2種
(SUJ2)により造ったものを使用していた。
As shown in detail in FIG. 2, each of these rolling bearings 3 and 3 has an outer ring 4 and an inner ring 5 which are concentrically provided with each other. The outer ring 4 has an outer ring raceway 6 on the inner peripheral surface thereof, and the inner ring 5 has an inner ring raceway 7 on the outer peripheral surface thereof. Then, in a state where a plurality of rolling elements 8, 8 are held by the cage 9 between the outer ring raceway 6 and the inner ring raceway 7,
It is provided so that it can roll freely. In each of the rolling bearings 3 and 3 configured as described above, the outer ring 4 is fitted in and fixed to a part of the transmission case, and the inner ring 5 is formed.
Is externally fitted and fixed to the input side rotary shaft 1 or the output side rotary shaft 2. With this configuration, both rotary shafts 1 and 2 are rotatably supported inside the transmission case. Conventionally, as each of the rolling bearings 3 and 3, the outer ring 4, the inner ring 5, and the rolling elements 8 and 8 made of general bearing steel type 2 (SUJ2) were used.

【0004】上記両回転軸1、2のうちの入力側回転軸
1は、エンジン等の駆動源10により、トルクコンバー
タ或は電磁クラッチ等の発進クラッチ18を介して回転
駆動される。又、上記入力側回転軸1の中間部で1対の
転がり軸受3、3の間に位置する部分に駆動側プーリ1
1を設け、この駆動側プーリ11と上記入力側回転軸1
とが同期して回転する様にしている。この駆動側プーリ
11を構成する1 対の駆動側プーリ板12a、12b同
士の間隔は、駆動側アクチュエータ13で一方(図1の
左方)の駆動側プーリ板12aを軸方向に変位させる事
により調節自在である。即ち、上記駆動側プーリ11の
溝幅は、上記駆動側アクチュエータ13により拡縮自在
である。
The input side rotary shaft 1 of the two rotary shafts 1 and 2 is rotationally driven by a drive source 10 such as an engine via a starting clutch 18 such as a torque converter or an electromagnetic clutch. In addition, the drive-side pulley 1 is provided at a portion located between the pair of rolling bearings 3 and 3 in the intermediate portion of the input-side rotating shaft 1.
1, the drive side pulley 11 and the input side rotary shaft 1 are provided.
It is designed so that and rotate in synchronization. The distance between the pair of drive-side pulley plates 12a and 12b forming the drive-side pulley 11 is set by axially displacing one drive-side pulley plate 12a (left side in FIG. 1) by the drive-side actuator 13. It is adjustable. That is, the groove width of the drive pulley 11 can be expanded and contracted by the drive actuator 13.

【0005】一方、上記出力側回転軸2の中間部で1対
の転がり軸受3、3の間に位置する部分に従動側プーリ
14を設け、この従動側プーリ14と上記出力側回転軸
2とが同期して回転する様にしている。この従動側プー
リ14を構成する1対の従動側プーリ板15a、15b
同士の間隔は、従動側アクチュエータ16で一方(図1
の右方)の従動側プーリ板15aを軸方向に変位させる
事により調節自在である。即ち、上記従動側プーリ14
の溝幅は、上記従動側アクチュエータ16により拡縮自
在である。そして、この従動側プーリ14と上記駆動側
プーリ11とに、無端ベルト17を掛け渡している。こ
の無端ベルト17としては、金属製のものを使用してい
る。
On the other hand, a driven pulley 14 is provided at a portion located between the pair of rolling bearings 3 and 3 at an intermediate portion of the output rotary shaft 2, and the driven pulley 14 and the output rotary shaft 2 are connected to each other. Are designed to rotate synchronously. A pair of driven-side pulley plates 15a and 15b forming the driven-side pulley 14.
The space between them is set to one side (see FIG.
It is adjustable by displacing the driven pulley plate 15a (on the right side of FIG. 4) in the axial direction. That is, the driven pulley 14
The groove width can be expanded and contracted by the driven side actuator 16. An endless belt 17 is stretched around the driven pulley 14 and the drive pulley 11. The endless belt 17 is made of metal.

【0006】上述の様に構成するベルト式無段変速機で
は、前記駆動源10から上記発進クラッチ18を介して
上記入力側回転軸1に伝達された動力は、上記駆動側プ
ーリ11から上記無端ベルト17を介して、上記従動側
プーリ14に伝達される。尚、この無端ベルト17とし
て従来から、押し付け方向に動力を伝達するものと、引
っ張り方向に動力を伝達するものとが知られている。何
れにしても、上記従動側プーリ14に伝達された動力
は、上記出力側回転軸2から上記減速歯車列19、デフ
ァレンシャルギヤ20を介して駆動輪21、21に伝達
される。上記入力側回転軸1と出力側回転軸2との間の
変速比を変える場合には、上記両プーリ11、14の溝
幅を互いに関連させつつ拡縮する。
In the belt type continuously variable transmission configured as described above, the power transmitted from the drive source 10 to the input side rotary shaft 1 via the starting clutch 18 is transmitted from the drive side pulley 11 to the endless belt. It is transmitted to the driven pulley 14 via the belt 17. As the endless belt 17, conventionally, one that transmits power in the pressing direction and one that transmits power in the pulling direction are known. In any case, the power transmitted to the driven pulley 14 is transmitted from the output rotary shaft 2 to the drive wheels 21 and 21 via the reduction gear train 19 and the differential gear 20. When changing the gear ratio between the input-side rotary shaft 1 and the output-side rotary shaft 2, the groove widths of the pulleys 11 and 14 are expanded and contracted in association with each other.

【0007】例えば、上記入力側回転軸1と出力側回転
軸2との間の減速比を大きくする場合には、上記駆動側
プーリ11の溝幅を大きくすると共に、上記従動側プー
リ14の溝幅を小さくする。この結果、上記無端ベルト
17の一部でこれら両プーリ11、14に掛け渡された
部分の径が、上記駆動側プーリ11部分で小さく、上記
従動側プーリ14部分で大きくなり、上記入力側回転軸
1と出力側回転軸2との間で減速が行なわれる。反対に
上記入力側回転軸1と出力側回転軸2との間の増速比を
大きく(減速比を小さく)する湯合には、上記駆動側プ
ーリ11の溝幅を小さくすると共に、上記従動側プーリ
14の溝幅を大きくする。この結果、上記無端ベルト1
7の一部でこれら両プーリ11、14に掛け渡された部
分の径が、上記駆動側プーリ11部分で大きく、上記従
動側プーリ14部分で小さくなり、上記入力側回転軸1
と出力側回転軸2との間で増速が行なわれる。
For example, when the reduction ratio between the input-side rotary shaft 1 and the output-side rotary shaft 2 is increased, the groove width of the drive-side pulley 11 is increased and the groove width of the driven-side pulley 14 is increased. Reduce the width. As a result, the diameter of the part of the endless belt 17 which is stretched over the pulleys 11 and 14 is small at the drive side pulley 11 part and large at the driven side pulley 14 part, and the input side rotation is increased. Deceleration is performed between the shaft 1 and the output side rotating shaft 2. On the contrary, when the speed increasing ratio between the input side rotating shaft 1 and the output side rotating shaft 2 is increased (the reduction ratio is decreased), the groove width of the drive side pulley 11 is reduced and the driven side is driven. The groove width of the side pulley 14 is increased. As a result, the endless belt 1
The diameter of the part of the pulley 7 that is stretched over both the pulleys 11 and 14 is large in the drive pulley 11 part and small in the driven pulley 14 part.
And the output side rotary shaft 2 is accelerated.

【0008】上述の様に構成され作用するベルト式無段
変速機の運転時には、各可動部に潤滑油を供給して、こ
れら各可動部を潤滑する。ベルト式無段変速機の場合に
使用する潤滑油としては、CVTフルード(ATF兼用
油)を使用している。この理由は、金属製の無端ベルト
17と駆動側、従動側両プーリ11、14との摩擦係合
部の摩擦係数を増大し、且つ、安定させる為である。そ
して、上記CVTフルードを300cc/min 以上の流量
で上記摩擦部に循環させて、この摩擦部を潤滑してい
る。又、上記CVTフルードの一部は、前記各転がり軸
受3、3の内部を(例えば20cc/min 以上の流量で)
通過して、これら各転がり軸受3、3の転がり接触部を
潤滑する。従って、これら各転がり軸受3、3の内部
に、上記無端ベルト17と上記両プーリ11、14との
摩擦に伴って発生する摩耗紛や、前記減速歯車列19部
分での摩擦に伴って発生したギア紛等の異物が、CVT
フルードに混入した状態で入り込む可能性が高い。この
様な異物は、上記各転がり軸受3、3の転がり接触部を
損傷させてその耐久性を低下させる原因となる。この為
従来は、上記各転がり軸受3、3の軸受サイズを大きく
したり、或は各転動体8、8の直径(玉径)を大きくす
る等により、上記各転がり軸受3、3の基本動定格荷重
を大きくし、これら各転がり軸受3、3の寿命に余裕を
持たせていた。
During operation of the belt type continuously variable transmission constructed and operated as described above, lubricating oil is supplied to each movable portion to lubricate each movable portion. As the lubricating oil used in the case of the belt type continuously variable transmission, CVT fluid (ATF combined oil) is used. The reason for this is to increase and stabilize the friction coefficient of the frictional engagement portion between the endless belt 17 made of metal and the drive side and driven side pulleys 11 and 14. Then, the CVT fluid is circulated to the friction portion at a flow rate of 300 cc / min or more to lubricate the friction portion. In addition, a part of the CVT fluid is inside the rolling bearings 3 and 3 (for example, at a flow rate of 20 cc / min or more).
After passing through, the rolling contact portions of these rolling bearings 3 are lubricated. Therefore, inside each of the rolling bearings 3 and 3, abrasion dust generated by friction between the endless belt 17 and the pulleys 11 and 14 and friction at the reduction gear train 19 are generated. Foreign matter such as gear powder is CVT
There is a high possibility that it will get mixed in with the fluid. Such foreign matter causes damage to the rolling contact portions of the rolling bearings 3 and 3 and reduces durability thereof. Therefore, conventionally, by increasing the bearing size of each of the rolling bearings 3 and 3 or by increasing the diameter (ball diameter) of each of the rolling elements 8 and 8 or the like, the basic motion of each of the rolling bearings 3 and 3 is increased. The rated load was increased to allow the rolling bearings 3 and 3 to have a sufficient life.

【0009】[0009]

【発明が解決しようとする課題】近年、ベルト式無段変
速機の効率を確保し、運転時に発生する騒音を少なく抑
えると共に、駆動側、従動側両プーリ11、14や無端
ベルト17の摩耗を抑える事を目的に、CVTフルード
としてより粘度の低いものを使用する事が考えられてい
る。この様な場合に、入力側、出力側各回転軸1、2を
支持する為の転がり軸受3、3として標準的なものを使
用すると、異物混入による圧痕起点型剥離ではなく、油
膜形成不足による早期剥離が発生する可能性が大きくな
ると考えられる。即ち、粘性の低いCVTフルードを使
用した場合には、ベルト変動に伴うラジアル方向及びア
キシアル方向の振動の働きにより、外輪軌道6及び内輪
軌道7と転動体8、8の転動面との転がり接触部の油膜
形成状態が不足する可能性が大きくなる。そして、この
転がり接触部で、滑りによる早期剥離が発生する可能性
が大きくなると考えられる。
In recent years, the efficiency of a belt type continuously variable transmission is ensured, noise generated during operation is suppressed to a low level, and wear of both drive side and driven side pulleys 11 and 14 and endless belt 17 is prevented. For the purpose of suppressing, it is considered to use CVT fluid having a lower viscosity. In such a case, if standard ones are used as the rolling bearings 3 and 3 for supporting the rotary shafts 1 and 2 on the input side and the output side, the oil film is not sufficiently formed due to the indentation origin type peeling due to the inclusion of foreign matter. It is considered that the possibility of early peeling increases. That is, when a CVT fluid having a low viscosity is used, the outer ring raceway 6 and the inner ring raceway 7 are brought into rolling contact with the rolling surfaces of the rolling elements 8 by the action of vibration in the radial direction and the axial direction due to the belt fluctuation. There is a high possibility that the oil film formation state of the part will be insufficient. It is considered that the possibility of early peeling due to slippage at the rolling contact portion increases.

【0010】即ち、SUJ2等の一般的な軸受鋼により
造られた外輪4、内輪5及び転動体8、8により構成さ
れた転がり軸受3の場合、例えば基油の動粘度が40℃
時で40mm2 /sec (40×10-6 m2 /s )以下、1
00℃時で10mm2 /sec 以下と言った、低粘度のCV
Tフルードを使用すると、上記滑りによる早期剥離が発
生する可能性が大きくなると考えられる。何となれば、
ベルト式無段変速機の運転時に上記転がり軸受3の温度
は100℃を超える場合があり、この転がり軸受3の内
部に入り込んでこの転がり軸受3の転がり接触部を潤滑
する、CVTフルードの粘度は10mm2 /sec 以下の、
相当に低い値となる。この結果、上記転がり接触部に存
在する油膜の強度が低くなり、差動、公転、スピン等の
影響により、この転がり接触部分で油膜切れが起こり易
くなる。そして、油膜切れが起こった場合には、この転
がり接触部分で金属接触が発生し、表面層部分の疲労が
促進し、早期剥離が発生する。勿論、上記転がり軸受3
の基本動定格荷重を大きくし、この転がり軸受3の寿命
に余裕を持たせる事で、必要とする耐久性を確保する事
は可能ではあるが、大型化に伴う重量増大や転がり抵抗
の増大を招く為、好ましくない。又、上記転がり軸受3
を通過するCVTフルードの流量を多くする事で上記油
膜切れの発生を防止し、耐久性向上を図る事も可能では
ある。但し、この様な方法は、多量のCVTフルードを
循環させる事に基づくポンプ損失の増大により、ベルト
式無段変速機全体としての効率を低下させる原因となる
為、好ましくない。
That is, in the case of the rolling bearing 3 composed of the outer ring 4, the inner ring 5 and the rolling elements 8 made of a general bearing steel such as SUJ2, for example, the kinematic viscosity of the base oil is 40.degree.
40 mm 2 / sec (40 × 10 -6 m 2 / s) or less per hour, 1
CV of low viscosity, said to be 10 mm 2 / sec or less at 00 ° C
The use of T-fluid is considered to increase the possibility of premature peeling due to the slip. What if
The temperature of the rolling bearing 3 may exceed 100 ° C. during operation of the belt type continuously variable transmission, and the viscosity of the CVT fluid that enters the inside of the rolling bearing 3 to lubricate the rolling contact portion of the rolling bearing 3 is Less than 10 mm 2 / sec,
It is a fairly low value. As a result, the strength of the oil film existing at the rolling contact portion becomes low, and the oil film is easily broken at the rolling contact portion due to the influence of differential, revolution, spin and the like. When the oil film breaks, metal contact occurs at the rolling contact portion, fatigue of the surface layer portion is promoted, and early peeling occurs. Of course, the rolling bearing 3
Although it is possible to secure the required durability by increasing the basic dynamic load rating and increasing the life of the rolling bearing 3, it is possible to increase the weight and rolling resistance with the increase in size. It is not preferable because it invites. In addition, the rolling bearing 3
It is possible to prevent the occurrence of the oil film breakage and improve the durability by increasing the flow rate of the CVT fluid passing through. However, such a method is not preferable because it causes a decrease in the efficiency of the entire belt type continuously variable transmission due to an increase in pump loss caused by circulating a large amount of CVT fluid.

【0011】ところで、ベルト式無段変速機に組み込む
転がり軸受3に加わる荷重のうちの多くの部分は、無端
ベルト17から加わるラジアル荷重であり、このラジア
ル荷重の作用方向は常に一定である。又、上記転がり軸
受3の転がり接触部のうち、内輪軌道7及び各転動体
8、8の転動面は回転するが、外輪軌道6は回転しな
い。従って、上記表面層部分の疲労は、この外輪軌道6
のうちの特定部分(上記ラジアル荷重を支承する部分)
で最も進行する。言い換えれば、上記外輪軌道6が、転
がり疲れ寿命に関して最も厳しい条件に曝される。この
為、この外輪軌道6の転がり疲れ寿命の確保が、上記転
がり軸受3全体の耐久性確保の面から重要となる。
By the way, most of the load applied to the rolling bearing 3 incorporated in the belt type continuously variable transmission is the radial load applied from the endless belt 17, and the acting direction of this radial load is always constant. In the rolling contact portion of the rolling bearing 3, the inner ring raceway 7 and the rolling surfaces of the rolling elements 8, 8 rotate, but the outer ring raceway 6 does not rotate. Therefore, the fatigue of the surface layer portion is caused by the outer ring raceway 6
Part of the above (part supporting the above radial load)
The most advanced. In other words, the outer ring raceway 6 is exposed to the most severe conditions regarding rolling fatigue life. Therefore, ensuring the rolling fatigue life of the outer ring raceway 6 is important from the viewpoint of ensuring the durability of the rolling bearing 3 as a whole.

【0012】例えば、図3は、潤滑油として上記低粘度
のCVTフルードを使用した場合に於ける転がり接触部
の疲労度を、一般的なギヤ式の変速機とベルト式無段変
速機とに就いて、それぞれ疲労解析により求めた結果を
示している。尚、疲労解析とは、特公昭63−3442
3号公報に記載された、転がり疲れによる疲労度の測定
方法を言い、疲労度F=△B+K・△R(△B;マルテ
ンサイト相のX線回折半価幅減少量、K;材料によって
異なる定数、△R;残留オーステナイト減少量)で表さ
れる。即ち、上記疲労度Fを求めるには、金属材料の転
がり接触部の転がり疲労前および疲労後のマルテンサイ
ト相のX線回折半価幅と、残留オーステナイト量(容量
%)とを測定する。そして、金属部材の種類によつて決
まる定数をKとし、疲労していない状態での残留オース
テナイト量(容量%)と、疲労した状態での残留オース
テナイト量との差を△Rとする。又、疲労していない状
態でのマンテンサイト相のX線回折半価幅と、疲労した
状態でのX線回折半価幅との差を△Bとする。そして、
疲労度F=K・△R+△Bなる式に、上記の測定値に基
づくマルテンサイト相のX線回折半価幅の減少量△Rと
残留オーステナイト量の減少量△Rとを代入して、上記
疲労度Fを求める。そして、この疲労度Fを、予め作成
しておいた、各転がり接触部の各部位に応じた基準値と
対応させて評価し、これら各部位の疲労度を測定する。
For example, FIG. 3 shows the fatigue degree of the rolling contact portion when the above-mentioned low-viscosity CVT fluid is used as a lubricating oil in a general gear type transmission and a belt type continuously variable transmission. The results obtained by fatigue analysis are shown below. In addition, the fatigue analysis is Japanese Patent Publication No. 63-3442.
The method of measuring the fatigue degree due to rolling fatigue described in Japanese Patent No. 3 is called Fatigue degree F = ΔB + K · ΔR (ΔB; X-ray diffraction half-width reduction amount of martensite phase, K; depends on the material. Constant, ΔR; decrease in retained austenite). That is, in order to obtain the degree of fatigue F, the X-ray diffraction half width of the martensite phase before and after rolling fatigue of the rolling contact portion of the metal material and the amount of retained austenite (volume%) are measured. Then, a constant determined by the type of metal member is set to K, and a difference between the retained austenite amount (capacity%) in the non-fatigue state and the retained austenite amount in the fatigued state is set to ΔR. Further, the difference between the X-ray diffraction half width of the mantensite phase in the non-fatigue state and the X-ray diffraction half width in the fatigued state is ΔB. And
Substituting the decrease amount ΔR of the X-ray diffraction half width and the decrease amount ΔR of the retained austenite amount of the martensite phase based on the above measured values into the expression F = K · ΔR + ΔB The fatigue degree F is calculated. Then, the degree of fatigue F is evaluated in correspondence with a reference value prepared in advance corresponding to each part of each rolling contact portion, and the degree of fatigue of each part is measured.

【0013】この様な条件で行なった疲労解析の結果を
示す図3で、(A)は一般的なギヤ式の変速機に組み込
んだ転がり軸受の外輪軌道の、(B)はベルト式無段変
速機に組み込んだ転がり軸受の外輪軌道の、それぞれ疲
労度を表している。疲労度の値が高い程疲労が進んでお
り、剥離寿命が短くなる事を表す。図3(A)に示し
た、一般的なギヤ式の変速機に組み込んだ転がり軸受の
外輪軌道の表面の疲労度が1.4程度であったのに対し
て、図3(B)に示した、ベルト式無段変速機に関する
同部分の疲労度は2.8程度と、2倍も高くなった。
In FIG. 3 showing the results of the fatigue analysis conducted under such conditions, (A) is the outer ring raceway of a rolling bearing incorporated in a general gear type transmission, and (B) is a belt type stepless. The fatigue levels of the outer ring raceways of rolling bearings installed in the transmission are shown. The higher the value of the degree of fatigue, the more the fatigue progresses and the shorter the peeling life. The fatigue of the outer ring raceway surface of the rolling bearing incorporated in the general gear type transmission shown in FIG. 3 (A) was about 1.4, while that shown in FIG. 3 (B). The fatigue level of the belt type continuously variable transmission was about 2.8, which was twice as high.

【0014】この様な図3から明らかな通り、CVTフ
ルードとして粘性が低いものを使用した場合には、ベル
ト式無段変速機の回転支持部を構成する転がり軸受の外
輪軌道に早期剥離が発生し易くなる。本発明は、この様
な事情に鑑みて、優れた伝達効率と十分な耐久性とを有
するベルト式無段変速機を実現すべく、粘性の低いCV
Tフルードを使用した場合でも、プーリを回転自在に支
持する為の転がり軸受3、3の外輪軌道6に早期剥離等
の損傷が発生しにくいベルト式無段変速機用転がり軸受
を実現すべく発明したものである。
As is clear from FIG. 3, when a CVT fluid having a low viscosity is used, premature peeling occurs in the outer ring raceway of the rolling bearing which constitutes the rotation supporting portion of the belt type continuously variable transmission. Easier to do. In view of such circumstances, the present invention has a low viscosity CV in order to realize a belt type continuously variable transmission having excellent transmission efficiency and sufficient durability.
Even if T-fluid is used, the invention is to realize a rolling bearing for a belt type continuously variable transmission in which the outer ring raceways 6 of the rolling bearings 3 and 3 for rotatably supporting the pulley are less likely to be damaged such as premature peeling. It was done.

【0015】[0015]

【課題を解決するための手段】本発明のベルト式無段変
速機用転がり軸受は、前述した従来から知られているベ
ルト式無段変速機用転がり軸受と同様に、外輪と、内輪
と、複数個の転動体とを備える。このうちの外輪は、内
周面に外輪軌道を有する。又、上記内輪は、外周面に内
輪軌道を有する。又、上記各転動体は、上記外輪軌道と
内輪軌道との間に転動自在に設けられている。そして、
上記外輪を変速機ケース等の固定の部分に内嵌支持し、
上記内輪を、入力側、出力側各回転軸の端部又は中間部
等、ベルト式無段変速機を構成するプーリと共に回転す
る部分に外嵌支持して、このプーリを上記固定の部分に
回転自在に支持する。
The rolling bearing for a belt type continuously variable transmission according to the present invention has an outer ring, an inner ring, and the same as the previously known rolling bearing for a belt type continuously variable transmission. And a plurality of rolling elements. The outer ring of these has an outer ring raceway on its inner peripheral surface. Further, the inner ring has an inner ring raceway on the outer peripheral surface. The rolling elements are rollably provided between the outer ring raceway and the inner ring raceway. And
The outer ring is fitted in and supported by a fixed portion such as a transmission case,
The inner ring is externally fitted and supported on a portion that rotates together with a pulley that constitutes the belt type continuously variable transmission, such as an end portion or an intermediate portion of each of the input side and output side rotary shafts, and the pulley is rotated to the fixed portion. Support freely.

【0016】特に、本発明のベルト式無段変速機用転が
り軸受に於いては、少なくとも上記外輪が、0.15〜
0.5重量%のCと、0.1〜1.5重量%のSiと、
0.1〜1.5重量%のMnと、0.5〜3.0重量%の
Crとを含む鉄系合金製の素材に浸炭窒化、焼き入れ、焼
き戻し処理、研磨仕上を施す事により造られている。そ
して、上記外輪軌道の表面部分に、0.8〜1.2重量
%のCと、0.05〜0.50重量%のNとを含む表面
層を有する。
Particularly, in the rolling bearing for a belt type continuously variable transmission according to the present invention, at least the outer ring has a thickness of 0.15 to 0.15.
0.5 wt% C, 0.1 to 1.5 wt% Si,
0.1 to 1.5% by weight Mn and 0.5 to 3.0% by weight
It is made by carbonitriding, quenching, tempering, and polishing finishing of an iron-based alloy material containing Cr. The outer raceway surface has a surface layer containing 0.8 to 1.2% by weight of C and 0.05 to 0.50% by weight of N.

【0017】又、好ましくは請求項2に記載した様に、
上記表面層の表面硬さがHv720〜900であり、外輪
軌道の表面から最大剪断応力発生位置深さまでの部分
に、平均粒径が50〜500nmである炭化物又は炭窒
化物(M3 C、M73 )を分散析出させる。又、好ま
しくは請求項3に記載した様に、外輪軌道の表面下50
μmでの残留オーステナイト量を20〜45容量%と
し、外輪軌道の表面下50μmでの残留圧縮応力を15
0〜500MPaとする。更に、好ましくは請求項4に記
載した様に、0.1〜3.0重量%のMoと0.1〜3.
0重量%のVとのうちの少なくとも一方を含有させる。
尚、残留酸素濃度に関しては9ppm 以下、Pの含有量に
関しては0.02重量%以下、Sの含有量に関しては
0.02重量%以下に抑える事が好ましい。又、本発明
は、前述した理由により、転がり疲れ寿命に関して最も
条件が厳しい外輪軌道に関して適用する事が前提であ
る。但し、外輪軌道に加えて、内輪軌道及び各転動体の
転動面にも適用する事は自由である。
Also, preferably, as described in claim 2,
The surface hardness of the surface layer is Hv 720 to 900, and a carbide or carbonitride (M 3 C, M) having an average particle diameter of 50 to 500 nm is present in the portion from the surface of the outer ring raceway to the maximum shear stress generation position depth. 7 C 3 ) is dispersed and precipitated. Further, preferably, as described in claim 3, the subsurface 50 of the outer ring raceway is
The residual austenite amount at μm is 20 to 45% by volume, and the residual compressive stress at 50 μm below the surface of the outer ring raceway is 15
0 to 500 MPa. Further, preferably, as described in claim 4, 0.1 to 3.0% by weight of Mo and 0.1 to 3.
At least one of V and 0% by weight is included.
The residual oxygen concentration is preferably 9 ppm or less, the P content is 0.02% by weight or less, and the S content is preferably 0.02% by weight or less. Further, the present invention is premised on being applied to the outer ring raceway, which has the most severe conditions for rolling fatigue life, for the reasons described above. However, in addition to the outer ring raceway, it is free to apply to the inner ring raceway and the rolling surface of each rolling element.

【0018】[0018]

【作用】上述の様に構成する本発明のベルト式無段変速
機用転がり軸受の場合には、粘度の低いCVTフルード
を使用して、転がり接触部に介在させる油膜の強度を十
分に確保できない場合でも、剥離寿命を十分に確保する
事が可能になる。先ず、請求項1に記載した様に、適正
な組成を有する素材に適正な表面加工を施して適正な表
面層を形成すれば、使用時に特に厳しい条件に曝され
る、外輪軌道の転がり疲れ寿命を確保できる。
In the case of the rolling bearing for a belt type continuously variable transmission of the present invention constructed as described above, the strength of the oil film interposed in the rolling contact portion cannot be sufficiently secured by using CVT fluid having a low viscosity. Even in this case, the peeling life can be sufficiently secured. First, as described in claim 1, if a material having an appropriate composition is subjected to an appropriate surface treatment to form an appropriate surface layer, the rolling fatigue life of the outer ring raceway exposed to particularly severe conditions during use. Can be secured.

【0019】特に、請求項2に記載した様に、上記表面
層の表面硬さをHv720〜900とすると共に、所定部
分に、平均粒径が50〜500nmである炭化物又は炭
窒化物を分散析出させた場合には、上記転がり疲れ寿命
の確保をより効果的に行なえる。即ち、元々の粘度が低
いCVTフルードを使用し、しかも100℃以上の高温
条件下で運転する事でこのCVTフルードの粘度が更に
低下し、転がり接触部に存在する油膜の強度が低くなっ
て局所的な金属接触が発生した場合でも、この転がり接
触部の表面疲労の進行を遅延させる事ができる。
Particularly, as described in claim 2, the surface hardness of the surface layer is set to Hv 720 to 900, and a carbide or carbonitride having an average particle diameter of 50 to 500 nm is dispersed and precipitated in a predetermined portion. In such a case, the rolling fatigue life can be secured more effectively. That is, by using CVT fluid having a low original viscosity and operating under high temperature conditions of 100 ° C or higher, the viscosity of this CVT fluid is further reduced, and the strength of the oil film existing at the rolling contact portion is reduced, resulting in local loss. Even if a specific metal contact occurs, the progress of the surface fatigue of the rolling contact portion can be delayed.

【0020】又、請求項3に記載した様に、所定部分の
残留オーステナイト量を適正値にする事により、上述の
様にして発生する局所的な金属接触に拘らず、転がり接
触部の表面に発生する、微小剥離や線傷を緩和する事が
できる。更に、上記所定部分の残留圧縮応力を適正値に
する事により、上記転がり接触部の表面に微小な亀裂や
剥離が発生した場合でも、これら亀裂や剥離の伝播を抑
制できて、早期剥離を防止する効果をより向上させる事
ができる。
Further, as described in claim 3, by setting the amount of retained austenite in a predetermined portion to an appropriate value, the surface of the rolling contact portion is not affected by the local metal contact generated as described above. It is possible to alleviate the minute peeling and line scratches that occur. Further, by setting the residual compressive stress of the predetermined portion to an appropriate value, even if minute cracks or peeling occur on the surface of the rolling contact portion, it is possible to suppress the propagation of these cracks or peeling and prevent early peeling. It is possible to further improve the effect.

【0021】更に、請求項4に記載した様に、0.1〜
3.0重量%のMoと0.1〜3.0重量%のVとのうち
の少なくとも一方を含有させれば、上記炭化物又は炭窒
化物の粒径を制御して、これら炭化物又は炭窒化物を微
細析出させる事が可能になる。そして、マトリックス中
のCの量を減少させる事ができる。
Further, as described in claim 4, 0.1 to
If at least one of 3.0% by weight of Mo and 0.1 to 3.0% by weight of V is contained, the grain size of the above-mentioned carbide or carbonitride is controlled, and these carbides or carbonitrides are controlled. It is possible to make fine deposits. Then, the amount of C in the matrix can be reduced.

【0022】本発明のベルト式無段変速機用転がり軸受
は、以上に述べた作用により、転がり接触部に存在する
油膜の強度が弱く、局部的な金属接触が発生する様な状
況下での転がり疲れ寿命の確保を図れる。この為、必要
とする耐久性を確保する為に、転がり軸受として、基本
動定格荷重が大きい大型のものを使用する必要がなくな
る。この為、入力側回転軸及び出力側回転軸の回転支持
部を小型且つ軽量に構成でき、しかも回転抵抗の小さい
構造で、十分な耐久性を確保する事が可能となる。この
場合に、転がり軸受の内部に流通させる潤滑油の量を
(例えば20cc/min を大きく上回る程)多量にする必
要がなくなる。これらにより、小型且つ軽量で、しかも
転がり抵抗が小さい転がり軸受の転がり疲れ寿命を確保
して、ベルト式無段変速機の小型・軽量化及び伝達効率
の向上を図れる。
The rolling bearing for a belt type continuously variable transmission according to the present invention, due to the above-described action, has a low strength of the oil film existing in the rolling contact portion, which causes local metal contact. The rolling fatigue life can be secured. Therefore, in order to secure the required durability, it is not necessary to use a large-sized rolling bearing having a large basic dynamic load rating. For this reason, the rotation supporting portions of the input-side rotary shaft and the output-side rotary shaft can be made small and lightweight, and the structure with low rotation resistance can ensure sufficient durability. In this case, it is not necessary to increase the amount of lubricating oil that circulates inside the rolling bearing (for example, much higher than 20 cc / min). As a result, it is possible to secure the rolling fatigue life of the rolling bearing that is small and lightweight and has low rolling resistance, and to reduce the size and weight of the belt type continuously variable transmission and improve the transmission efficiency.

【0023】次に、本発明のベルト式無段変速機用転が
り軸受を造る為の鉄系合金製の素材に各元素を添加した
理由、並びにこれら各元素の含有量を含めて、本発明を
規定した各数値の限定理由に就いて説明する。上記素材
に含まれる各元素のうち、先ず、Cは、軌道表面の転が
り疲れ寿命を確保すべく、この表面の硬度を必要な値
(例えばHv720〜900)にまで高くする為の浸炭窒
化処理の為に含有させる。この浸炭窒化処理の処理時間
を徒に長くしない為には、Cを0.15重量%以上含有
させる必要がある。これに対して、Cを0. 50重量%
を超えて含有させると、上記素材の靱性が低下し、この
素材により造られた軌道輪の割れ強度が低下する他、高
温時の寸法安定性を確保する事が難しくなる。この為、
Cの含有量を0.15〜0.50重量%とした。
Next, the present invention will be described including the reason why each element was added to the raw material made of an iron-based alloy for producing the rolling bearing for a belt type continuously variable transmission of the present invention, and the content of each of these elements. The reason for limiting each specified numerical value will be explained. Of the elements contained in the above materials, first, C is carbonitrided to increase the hardness of the raceway surface to a required value (for example, Hv720-900) in order to ensure rolling fatigue life. It is included for the purpose. In order not to make the treatment time of this carbonitriding treatment unnecessarily long, it is necessary to contain 0.15% by weight or more of C. On the other hand, 0.50% by weight of C
If it is contained in excess of 10%, the toughness of the above-mentioned material is lowered, the cracking strength of the bearing ring made of this material is lowered, and it becomes difficult to secure the dimensional stability at high temperature. Therefore,
The C content was 0.15 to 0.50% by weight.

【0024】次に、Siは、転がり疲労下で見られる白色
組織変化を遅延させる効果がある他、焼き入れ性を向上
させる為に添加する。但し、Siの添加量が0. 1重量%
未満の場合には、焼き戻し軟化抵抗性が不十分となり、
熱処理後に於ける外輪軌道表面の硬度を十分に確保する
事が難しくなる。これに対して、Siを1.5重量%を超
えて含有させると、素材の加工性が著しく低下する。こ
の為、Siの含有量を0.1〜1.5重量%とした。
Next, Si is added to improve the hardenability as well as having the effect of delaying the white microstructure change observed under rolling fatigue. However, the amount of Si added is 0.1% by weight.
If less than, temper softening resistance is insufficient,
It becomes difficult to secure sufficient hardness of the outer ring raceway surface after the heat treatment. On the other hand, if Si is contained in an amount of more than 1.5% by weight, the workability of the material is significantly reduced. Therefore, the Si content is set to 0.1 to 1.5% by weight.

【0025】次に、Mnは、鋼(鉄系合金)の焼き入れ性
を向上させる為に添加する。但し、Mnの添加量が0.1
重量%未満の場合には、十分な焼き入れ性を確保する事
が難しい。これに対して、1.5重量%を超えて含有さ
せると、素材の加工性が低下する。この為、Mnの含有量
を0.1〜1.5重量%とした。
Next, Mn is added to improve the hardenability of steel (iron-based alloy). However, the amount of Mn added is 0.1
If it is less than wt%, it is difficult to secure sufficient hardenability. On the other hand, if the content is more than 1.5% by weight, the workability of the raw material is lowered. Therefore, the content of Mn is set to 0.1 to 1.5% by weight.

【0026】次に、Crは、焼き入れ性を向上させ、且
つ、炭化物の球状化を促進させる為に添加する。これら
の効果を得る為には、Crを0.5重量%以上を含有させ
る必要がある。これに対して、3.0重量%を超えて含
有させると、素材の被削性(削り易さ)を劣化させて外
輪軌道の加工が面倒になる場合がある。この為、Crの含
有量を0.5〜3.0重量%とした。
Next, Cr is added in order to improve the hardenability and accelerate the spheroidization of the carbide. In order to obtain these effects, it is necessary to contain Cr in an amount of 0.5% by weight or more. On the other hand, if the content is more than 3.0% by weight, the machinability of the material (easiness of cutting) may be deteriorated and the machining of the outer ring raceway may be troublesome. Therefore, the content of Cr is set to 0.5 to 3.0% by weight.

【0027】又、Moは、(本発明を実施する事に関して
必須ではないが)選択的に含有させる。含有させた場合
には、焼き戻し軟化抵抗性を向上させる他、微細な炭化
物の分散効果により、素材並びにこの素材により得られ
た外輪の硬度を高めて、高温強度を向上させる事ができ
る。この様な効果を期待して添加する場合には、0.1
重量%以上の添加量が必要である。この理由は、Moを添
加する事によりマトリックスに溶け込むC量を減少さ
せ、微細なMo系炭化物を析出させる為である。これに対
して、Moの添加量が3.0重量%を超えると、溶体化が
不十分となって炭化物が微細化せず、更に加工性が劣化
する可能性もある。そこで、Moを含有させる場合には、
その含有量を0.1〜3.0重量%とする。
Mo is selectively contained (though not essential for carrying out the present invention). When it is contained, in addition to improving the resistance to temper softening, the hardness of the raw material and the outer ring obtained from this raw material can be increased and the high temperature strength can be improved by the dispersing effect of fine carbide. When adding with the expectation of such effects, 0.1
An amount of addition of at least wt% is necessary. The reason for this is that the addition of Mo reduces the amount of C that dissolves in the matrix and precipitates fine Mo-based carbides. On the other hand, if the addition amount of Mo exceeds 3.0% by weight, solution treatment becomes insufficient and the carbide is not refined, and further workability may be deteriorated. Therefore, when Mo is contained,
Its content is 0.1 to 3.0% by weight.

【0028】又、Vに関しても、(本発明を実施する事
に関して必須ではないが)選択的に含有させる。含有さ
せた場合には、結晶粒界に析出して結晶粒の粗大化を抑
制し、又、鋼中の炭素と結合して微細な炭化物を形成す
る。そして、添加によって外輪の表面層の硬さが向上し
て耐摩耗性が向上する。又、水素トラップ効果により白
色組織変化を遅延させる効果も期待できる。この様な効
果は、Vの含有量が0.1重量%以上の場合に顕著にな
る。これに対して、Vの含有量が3.0重量%を越える
と、結晶粒界にVの巨大な炭化物が析出して、ピンニン
グ効果が低下し、更に加工性及び種々の機械的性質を劣
化させる。この為、Vを添加する場合には、その含有量
を0.1〜3.0重量%とする。
Further, V is also selectively contained (though not essential for carrying out the present invention). When it is contained, it precipitates at the grain boundaries to suppress the coarsening of the crystal grains, and also binds to carbon in the steel to form fine carbides. The addition improves the hardness of the surface layer of the outer ring and improves the wear resistance. In addition, the effect of delaying the change in white structure due to the hydrogen trap effect can be expected. Such an effect becomes remarkable when the V content is 0.1% by weight or more. On the other hand, when the content of V exceeds 3.0% by weight, huge carbides of V are precipitated at the grain boundaries, the pinning effect is reduced, and further the workability and various mechanical properties are deteriorated. Let Therefore, when V is added, its content is set to 0.1 to 3.0% by weight.

【0029】尚、MoやVを溶体化処理する事により、Mo
系、V系炭化物(M3 C、M73系)の粒径を制御
し、微細な炭化物を分散析出させる事が可能となり、そ
の結果としてマトリックス中のC量を減少させる。この
為、マトリックス疲労に於けるC拡散による組織変化の
発生を遅延させ、結果として転がり疲れ寿命を向上させ
る効果を有する。しかも、この様な分散析出効果は、亀
裂伝播を抑制する効果や、耐摩耗性を向上させる効果、
耐水素脆性を抑制する為の水素トラップ効果がある。
By subjecting Mo and V to solution treatment, Mo
It is possible to control the particle size of the system and V system carbides (M 3 C, M 7 C 3 system) and disperse and precipitate fine carbides, and as a result, reduce the amount of C in the matrix. For this reason, it has an effect of delaying the occurrence of the microstructural change due to C diffusion in matrix fatigue, and consequently improving the rolling fatigue life. Moreover, such a dispersed precipitation effect is an effect of suppressing crack propagation and an effect of improving wear resistance,
Has a hydrogen trap effect for suppressing hydrogen embrittlement resistance.

【0030】即ち、請求項1に記載した組成を有する鉄
系合金製の素材に適切な熱処理を施す事により、10μ
2 当り10個以上の炭化物又は炭窒化物(M3 C、M
7 3 )を分散析出させる事が可能になる。更に、上述
の様に、MoやVを溶体化処理する事により、Mo系、V系
炭化物(M3 C、M73 系)の粒径を制御すれば、1
0μm2 当り40個以上の炭化物を分散析出する事が可
能になり、より優れた耐久性向上効果を得られる。
That is, iron having the composition described in claim 1.
10μ by applying appropriate heat treatment to the material made of system alloy
m2 More than 10 carbides or carbonitrides (M3 C, M
7 C 3 ) Can be dispersed and precipitated. Furthermore, above
As shown in the figure, by subjecting Mo and V to solution treatment, Mo-based and V-based
Carbide (M3 C, M7 C3 If you control the particle size of
0 μm2 It is possible to disperse and deposit more than 40 carbides per
It is possible to obtain a better durability improving effect.

【0031】次に、軌道面の表面部分に設ける表面層中
のC及びNに就いて説明する。先ず、Cは、軌道輪に浸
炭窒化処理を施してから軌道面の表面部分を研磨仕上し
た後の状態で、この軌道面の転がり疲れ寿命を確保する
のに必要な硬度を得る為に含有させる。上記表面層に、
十分な転がり疲れ寿命を確保するのに必要な硬度(例え
ばHv720以上)を与える為には、Cを0.8重量%以
上含有させる事が必要である。これに対して、1.2重
量%を超えて含有させると、上記表面層部分に巨大炭化
物を生成し易くなり、亀裂等の損傷が発生する起点にな
り易くなる。そこで、上記表面層部分のCの含有量を、
0.8〜1.2重量%に規制した。
Next, C and N in the surface layer provided on the surface portion of the raceway surface will be described. First, C is contained in order to obtain the hardness required to secure the rolling fatigue life of this raceway after carbonitriding the raceway and polishing the surface of the raceway surface. . On the surface layer,
In order to provide the hardness (for example, Hv 720 or higher) required to secure a sufficient rolling fatigue life, it is necessary to contain 0.8% by weight or more of C. On the other hand, if the content is more than 1.2% by weight, a large carbide is likely to be generated in the surface layer portion, which easily becomes a starting point of damage such as cracking. Therefore, the content of C in the surface layer portion is
It was regulated to 0.8 to 1.2% by weight.

【0032】又、Nは、上記表面層部分の焼き戻し抵抗
性を向上させ、微細な炭・窒化物を分散析出させて強度
を向上させる為に含有させる。この様な効果を得る為に
は、Nの含有量を0.05重量%以上とする必要があ
る。これに対して、Nの含有量が0.50重量%を超え
ると、耐摩耗性が過度に向上し、外輪軌道の仕上加工と
して行なう研磨加工が困難になるだけでなく、上記表面
層の脆性割れ強度も低下する。そこで、Nの含有量を、
0.05〜0.50重量%に規制した。以上の説明は、
外輪のみに本発明を適用した場合に就いて行なったが、
外輪に加えた内輪或は転動体に就いて適用した場合で
も、当該部材に関して、同様の作用により、転がり疲れ
寿命の向上を図れる。
N is contained in order to improve the tempering resistance of the surface layer portion and to disperse and precipitate fine carbon / nitride to improve the strength. In order to obtain such an effect, the N content needs to be 0.05% by weight or more. On the other hand, when the content of N exceeds 0.50% by weight, the abrasion resistance is excessively improved, and not only the polishing work performed as the finishing work of the outer ring raceway becomes difficult, but also the brittleness of the surface layer is caused. The crack strength also decreases. Therefore, the content of N is
It was regulated to 0.05 to 0.50% by weight. The above explanation is
Although the present invention was applied to only the outer ring,
Even when it is applied to the inner ring or the rolling element added to the outer ring, the rolling fatigue life can be improved by the same action of the member.

【0033】尚、O、P、Sに就いては、何れも、添加
する事が本発明の目的を達成する面からは好ましくない
元素である為、何れも可及的に少なく抑える事が好まし
い。先ず、Oは、鋼中で酸化物系の介在物を生成し、曲
げ応力疲労時に於ける亀裂等の損傷の起点(フィッシュ
アイ)となる他、転がり疲れ寿命を低下させる非金属介
在物となり得る元素である。従って、Oの含有量は極力
少ない(可及的に0に近い)事が好ましい。この面か
ら、Oの含有量を9ppm 以下とする事が好ましい。次
に、Pは、転がり疲れ寿命及び靭性を低下させる元素で
ある。この為、Pの含有量は極力少ない事が好ましい。
この面から、Pの含有量を0.02重量%以下に抑える
事が好ましい。更に、Sは、被削性を向上させる元素で
はあるが、Mnと結合して転がり疲れ寿命を低下させる硫
化系介在物を形成する。又、被削性を向上させる事は、
Sを添加する事以外でも図れる。従って、外輪の転がり
疲れ寿命を確保する面からはSの含有量は極力少ない事
が好ましい。この面から、Sの含有量を0.02重量%
以下に抑える事が好ましい。
Regarding O, P and S, addition of any of them is an unfavorable element from the viewpoint of attaining the object of the present invention, so it is preferable to suppress all of them as much as possible. . First, O forms oxide-based inclusions in steel, and serves as a starting point of damage such as cracks during bending stress fatigue (fish eyes), and may also be non-metallic inclusions that reduce rolling fatigue life. It is an element. Therefore, it is preferable that the O content is as small as possible (as close to 0 as possible). From this viewpoint, it is preferable that the content of O is 9 ppm or less. Next, P is an element that reduces rolling fatigue life and toughness. Therefore, it is preferable that the content of P is as small as possible.
From this aspect, it is preferable to suppress the P content to 0.02% by weight or less. Further, S is an element that improves machinability, but forms a sulfide-based inclusion that reduces the rolling fatigue life by combining with Mn. Also, improving machinability is
Other than adding S, it can be achieved. Therefore, from the viewpoint of ensuring the rolling fatigue life of the outer ring, it is preferable that the content of S is as small as possible. From this aspect, the S content is 0.02% by weight.
It is preferable to suppress it to the following.

【0034】[0034]

【発明の実施の形態】本発明の特徴は、ベルト式無段変
速装置用の入力側、出力側両回転軸を支持する為の転が
り軸受を構成する外輪と内輪と複数の転動体とのうち、
少なくとも外輪の性状を工夫する事により、転がり軸受
全体としての耐久性向上を図る点にある。図面に表れる
構造に関しては、前述の図1に略示した構造を含めて、
従来から知られているベルト式無段変速機用転がり軸受
と同様である。よって、ベルト式無段変速機用転がり軸
受の具体的構造の説明に就いては省略する。
BEST MODE FOR CARRYING OUT THE INVENTION One of the features of the present invention is to provide an outer ring, an inner ring and a plurality of rolling elements which form a rolling bearing for supporting both input and output rotating shafts for a belt type continuously variable transmission. ,
At least by improving the properties of the outer ring, it is possible to improve the durability of the rolling bearing as a whole. Regarding the structure appearing in the drawing, including the structure schematically shown in FIG.
This is the same as a conventionally known rolling bearing for a belt type continuously variable transmission. Therefore, the description of the specific structure of the rolling bearing for a belt type continuously variable transmission will be omitted.

【0035】[0035]

【実施例】次に、本発明の効果を確認する為に行なった
実験に就いて説明する。実験では、次の表1に示す様
な、本発明の技術的範囲に属する10種類の試料(実施
例1〜10)と、本発明の技術的範囲からは外れる8種
類の試料(比較例1〜8)との、合計18種類の試料に
就いて、同表に示す熱処理を施してから、それぞれの耐
久性(疲労度及びL10寿命)を測定した。
EXAMPLES Next, experiments conducted to confirm the effects of the present invention will be described. In the experiment, as shown in the following Table 1, 10 kinds of samples belonging to the technical scope of the present invention (Examples 1 to 10) and 8 kinds of samples deviating from the technical scope of the present invention (Comparative Example 1) .About.8), a total of 18 types of samples were subjected to the heat treatments shown in the same table, and the durability (fatigue degree and L 10 life) of each was measured.

【0036】[0036]

【表1】 [Table 1]

【0037】上記表1中、化学元素の含有量を表す数値
の単位は重量%である。又、表1に示した元素以外は、
Fe及び不可避不純物である。又、表面C、Nとは、表面
層中に含まれるC及びNの含有量である。又、熱処理
とは、それぞれ図4(A)(B)に示す様な工程で行
なうものである。
In Table 1 above, the unit of the numerical value indicating the content of the chemical element is% by weight. Also, except for the elements shown in Table 1,
Fe and inevitable impurities. The surfaces C and N are the contents of C and N contained in the surface layer. Further, the heat treatment is performed in the steps as shown in FIGS. 4 (A) and 4 (B).

【0038】先ず、熱処理の場合には、図4(A)に
示す様に、先ず、吸熱型ガス及びエンリッチガスとアン
モニアガスの雰囲気中で920〜960℃に加熱した状
態で、5〜10時間かけて熱処理(浸炭窒化処理)す
る。その後、50〜150℃の油中でオイルクエンチ
(焼き入れ)する。次に、吸熱型ガスの雰囲気中で83
0〜870℃まで0.5〜3時間加熱(ずぶ焼き)して
から再び50〜150℃の油中でオイルクエンチ(焼き
入れ)を行なう。次いで、洗浄後これを温度が160〜
200℃の大気中で、1〜5時間加熱した後、冷却する
(焼き戻し)。
First, in the case of heat treatment, as shown in FIG. 4 (A), first, for 5 to 10 hours in a state of being heated to 920 to 960 ° C. in an atmosphere of endothermic gas, enriched gas and ammonia gas. Then, heat treatment (carbonitriding) is performed. After that, oil quench (quenching) is performed in oil at 50 to 150 ° C. Next, in an endothermic gas atmosphere,
After heating (soaking) to 0 to 870 ° C for 0.5 to 3 hours, oil quenching (quenching) is performed again in oil at 50 to 150 ° C. Then, after washing, the temperature of this is 160-
After heating in an atmosphere of 200 ° C. for 1 to 5 hours, it is cooled (tempering).

【0039】又、熱処理の場合には、図4(B)に示
す様に、吸熱型ガス及びエンリッチガスとアンモニアガ
スの雰囲気中で920〜960℃に過熱した状態で、5
〜10時間かけて熱処理(浸炭窒化処理)する。その
後、50〜150℃の油中でオイルクエンチ(焼き入
れ)する。次いで、洗浄後、180〜220℃で1次焼
き戻しを行なう。その後、吸熱型ガスの雰囲気中で83
0〜870℃まで0.5〜3時間加熱してから、再び5
0〜150℃の油中でオイルクエンチ(焼き入れ)を行
なう。次いで、洗浄後、180〜220℃の大気中で、
1〜5時間加熱した後、冷却する(2次焼き戻し)。
Further, in the case of heat treatment, as shown in FIG. 4 (B), when the heat treatment is performed at 920 to 960 ° C. in an atmosphere of endothermic gas, enriched gas and ammonia gas,
Heat treatment (carbonitriding treatment) is performed for 10 hours. After that, oil quench (quenching) is performed in oil at 50 to 150 ° C. Then, after washing, primary tempering is performed at 180 to 220 ° C. Then, in an endothermic gas atmosphere,
Heat to 0-870 ° C for 0.5-3 hours and then 5
Oil quench in oil at 0-150 ° C. Then, after washing, in the air at 180 to 220 ° C.,
After heating for 1 to 5 hours, it is cooled (secondary tempering).

【0040】前記表1に記載した様な組成を有し、所定
の熱処理及び仕上加工を施す事により得た外輪は、内輪
及び複数の転動体と組み合わせて転がり軸受ユニットと
し、図1に示す様なベルト式無段変速機に組み込んで、
入力側回転軸1を変速機ケースに対し回転自在に支持す
る為に利用した。軸受サイズは、JIS名番6208
(内径=40mm、外径=80mm、幅=18mm)とした。
転がり接触部を構成する各面の粗さは、通常の転がり軸
受と同様に、算術平均粗さRaで0.01〜0.03μ
mとした。又、保持器9は、鉄製の波型プレス保持器を
使用した。
The outer ring having the composition shown in Table 1 and obtained by subjecting it to predetermined heat treatment and finishing is combined with an inner ring and a plurality of rolling elements to form a rolling bearing unit, as shown in FIG. Built in a simple belt type continuously variable transmission,
It was used to rotatably support the input side rotating shaft 1 with respect to the transmission case. Bearing size is JIS name 6208
(Inner diameter = 40 mm, outer diameter = 80 mm, width = 18 mm).
The roughness of each surface that constitutes the rolling contact portion is 0.01 to 0.03 μ in terms of arithmetic average roughness Ra, as in a normal rolling bearing.
m. As the cage 9, an iron corrugated press cage was used.

【0041】そして、次述する条件下で、外輪軌道の耐
久性を測定した。尚、今回行なった実験では、入力側回
転軸1の回転支持部分に組み込む転がり軸受3、3の耐
久性を求める為、出力側回転軸2の回転支持部に組み込
んだ転がり軸受3、3に関しては、十分な量(200cc
/min )の潤滑油(CVTフルード)を供給した。又、
試験対象外の転がり軸受3、3を構成する転動体(玉)
8、8は、SUJ2に浸炭窒化処理を施したものを使用
した。そして、試験対象外の転がり軸受3、3に、試験
対象の転がり軸受3、3よりも前に損傷が発生しない様
にした。試験条件は次の通りである。
The durability of the outer ring raceway was measured under the conditions described below. In the experiment conducted this time, in order to determine the durability of the rolling bearings 3 and 3 incorporated in the rotation supporting portion of the input side rotating shaft 1, the rolling bearings 3 and 3 incorporated in the rotating supporting portion of the output side rotating shaft 2 will be described. , Sufficient amount (200cc
/ Min) of lubricating oil (CVT fluid) was supplied. or,
Rolling elements (balls) that make up rolling bearings 3 and 3 that are not tested
As for Nos. 8 and 8, SUJ2 carbonitrided was used. Then, the rolling bearings 3 and 3 which are not tested are not damaged before the rolling bearings 3 and 3 which are tested. The test conditions are as follows.

【0042】 試験装置 : 図1に示したベルト式無段変速機 試料個数 : 各試料毎に6個(うち疲労解析用1個) 判定方法 : 試験進行に伴って各転がり軸受を分解し
て破損の有無を確認 エンジンから入力側回転軸1への入力トルク : 20
0N・m 入力側回転軸1の回転速度 : 6000min-1 潤滑油 : CVTフルード{40℃での粘度=35×
10-6 m2 /s (35cSt )、100℃での粘度=7×
10-6 m2 /s (7cSt )} 潤滑油流量 : 10cc/min 軸受温度 : 120℃ 試験継続時間 : 1500時間 目標時間 : 1000時間 疲労解析 : 100時間経過した時点で、上記6個ず
つ用意した試料のうちの1個の試料を分析して疲労度を
求める。
Test device: Number of samples of belt type continuously variable transmission shown in FIG. 1: Six for each sample (one for fatigue analysis) Judgment method: Each rolling bearing was disassembled and damaged as the test progressed Check the presence or absence of input torque from the engine to the input side rotary shaft 1: 20
0 N ・ m Rotational speed of input side rotary shaft 1: 6000 min -1 Lubricating oil: CVT fluid {Viscosity at 40 ° C = 35 x
10 −6 m 2 / s (35 cSt), viscosity at 100 ° C. = 7 ×
10 -6 m 2 / s (7 cSt)} Lubricating oil flow rate: 10 cc / min Bearing temperature: 120 ° C Test duration: 1500 hours Target time: 1000 hours Fatigue analysis: After the lapse of 100 hours, the above 6 pieces were prepared. One of the samples is analyzed to determine fatigue.

【0043】上述の様な条件で行なった実験の結果、次
の事が分かる。先ず、実施例4、6に関しては、試験継
続時間終了までの間に、それぞれ2個ずつの試料に剥離
が発生した。但し、L10寿命に関しては、それぞれ10
15時間、1100時間と、目標の1000時間を達成
できた。実施例4、6が十分な耐久性を確保できた理由
は、残留オーステナイト量γR と残留圧縮応力σR とを
適正に規制した為である。この事は、100時間経過し
た時点での、外輪軌道表面の疲労度が、それぞれ、1.
8、1.7と、各比較例と比較して低い値となっている
事からも明らかである。
As a result of the experiment carried out under the above-mentioned conditions, the following can be understood. First, in Examples 4 and 6, peeling occurred in two samples each by the end of the test duration. However, the L 10 life is 10
I was able to achieve the target of 1000 hours, 15 hours and 1100 hours. The reason why Examples 4 and 6 could secure sufficient durability is that the residual austenite amount γ R and the residual compressive stress σ R were properly regulated. This means that the degree of fatigue of the outer ring raceway surface after 100 hours was 1.
This is also clear from the fact that the values are 8 and 1.7, which are lower than those of the comparative examples.

【0044】更に、実施例1〜3、5、7〜10に関し
ては、寿命の目標である1000時間よりも長い150
0時間に至っても、何れの試料に就いても剥離等の損傷
が発生せず、外輪軌道表面の疲労度は、総て1.5以下
であった。この事から、残留オーステナイト量γR を2
5〜45容量%にするか、残留圧縮応力σR を200〜
500MPaにする事で、よりすぐれた耐久性確保を図れ
る事が分かる。
Furthermore, regarding Examples 1 to 3, 5, and 7 to 150, which is longer than the target life of 1000 hours, is 150.
Even after 0 hour, no damage such as peeling occurred in any of the samples, and the degree of fatigue of the outer ring raceway surface was all 1.5 or less. From this, the amount of retained austenite γ R is set to 2
5 to 45% by volume, or the residual compressive stress σ R is 200 to
It can be seen that by setting the pressure to 500 MPa, superior durability can be ensured.

【0045】これに対して、標準的な軸受鋼であるSU
J2により外輪を構成した比較例1は、試料5個総てで
剥離が発生し、疲労度が2.8、L10寿命が158時間
となった。又、比較例2、6に関しては、外輪軌道の表
面層の表面硬さがHv615、680と低い為、疲労度が
2.6と高くなり、L10寿命も105、125時間と短
くなった。更に、比較例3〜5、7、8に関しては、残
留オーステナイト量γR と残留圧縮応力σR が何れも小
さい為、外輪軌道表面の疲労度が2.0よりも高く、試
料5個総てで剥離が発生し、L10寿命が255、13
5、185、215、295時間と、目標とする100
0時間の1/3以下しかなかった。
On the other hand, the standard bearing steel SU
In Comparative Example 1 in which the outer ring was made of J2, peeling occurred in all five samples, the fatigue degree was 2.8 and the L 10 life was 158 hours. Further, in Comparative Examples 2 and 6, the surface hardness of the outer ring raceway surface layer was as low as Hv 615 and 680, so the fatigue level was high at 2.6 and the L 10 life was also short at 105 and 125 hours. Furthermore, in Comparative Examples 3 to 5, 7, and 8, since the residual austenite amount γ R and the residual compressive stress σ R are both small, the fatigue degree of the outer ring raceway surface is higher than 2.0, and all five samples are Peeling occurred and the L 10 life was 255, 13
5, 185, 215, 295 hours and a target of 100
It was less than 1/3 of 0 hours.

【0046】尚、上述した実験では、シールリングを持
たない単列深溝型の玉軸受を用いた。但し、プーリとベ
ルトとの摩擦係合部等で発生する摩耗紛が多くなるユニ
ットの場合、転がり軸受の幅方向寸法に余裕があれば、
シール機構を設ける事もできる。この場合に使用するシ
ール機構としては、TMシールや金属板の非接触型のシ
ールドリング、或は接触型のアクリル製或はフッ素ゴム
製のシールリングを使用する事ができる。シール機構を
設ける場合、使用温度等に応じて、適正な構造を選択使
用する。
In the above experiment, a single row deep groove type ball bearing having no seal ring was used. However, in the case of a unit in which a large amount of wear powder is generated at the frictional engagement portion between the pulley and the belt, if there is a margin in the widthwise dimension of the rolling bearing,
A sealing mechanism can be provided. As the seal mechanism used in this case, a TM seal, a non-contact type shield ring of a metal plate, or a contact type seal ring made of acrylic or fluororubber can be used. When installing a seal mechanism, select and use an appropriate structure according to the operating temperature.

【0047】又、保持器の構造及び材質に関しては、特
に限定しないが、使用時の回転速度が特に早い場合に
は、合成樹脂製の冠型保持器を使用する事が、保持器と
転動体との間の摩擦を低減すると共に、硬い摩耗粉の発
生を抑えて長寿命化を図る面からは好ましい。
The structure and material of the cage are not particularly limited. However, when the rotational speed during use is particularly high, it is preferable to use a crown type cage made of a synthetic resin. It is preferable from the viewpoint of reducing the friction between and, and suppressing the generation of hard abrasion powder to prolong the life.

【0048】更に、上述した実験では、各試料の転がり
軸受の内部隙間はそれぞれ普通隙間とし、外輪軌道6及
び内輪軌道7の断面形状の曲率半径を、何れも各転動体
8、8の直径の52%した。これに対して、上記内部隙
間並びに上記各軌道6、7の断面形状の曲率半径を適正
に規制して(小さく抑えて)、ラジアル方向のがたつき
及びアキシアル方向のがたつきを抑制すれば、耐久性を
中心とする性能を、更に向上させる事も可能になる。
又、転がり軸受が、図示の様な単列深溝型玉軸受の場合
に限らず、アンギュラ型等の他の型式の玉軸受、更には
円筒ころ軸受や円すいころ軸受、ニードル軸受等、他の
軸受の場合でも、同様の作用・効果を得られる。
Further, in the above-mentioned experiment, the internal clearances of the rolling bearings of the respective samples were made normal clearances, and the radius of curvature of the cross-sectional shape of the outer ring raceway 6 and the inner ring raceway 7 was set to the diameter of each rolling element 8, 8. 52%. On the other hand, if the internal gaps and the radii of curvature of the cross-sectional shapes of the orbits 6 and 7 are properly regulated (reduced to be small), rattling in the radial direction and rattling in the axial direction can be suppressed. It is also possible to further improve the performance centered on durability.
Further, the rolling bearing is not limited to the single row deep groove type ball bearing as shown in the figure, but other types of ball bearings such as angular type, cylindrical roller bearings, tapered roller bearings, needle bearings, etc. In the case of, the same action and effect can be obtained.

【0049】[0049]

【発明の効果】本発明のベルト式無段変速機用転がり軸
受は、以上に述べた通り構成され作用するので、粘性の
低いCVTフルードを使用し、しかもその流量を少なく
抑えた場合でも十分な耐久性を得られる。この為、耐久
性を確保しつつ、ベルト式無段変速機の効率を向上させ
る事が可能になる。
Since the rolling bearing for a belt type continuously variable transmission according to the present invention is constructed and operates as described above, it is sufficient even when a CVT fluid having a low viscosity is used and the flow rate thereof is suppressed to a low level. You can get durability. Therefore, it is possible to improve the efficiency of the belt type continuously variable transmission while ensuring the durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の対象となる転がり軸受を備えたベルト
式無段変速機を組み込んだ車両の駆動系の略断面図。
FIG. 1 is a schematic cross-sectional view of a drive system of a vehicle incorporating a belt type continuously variable transmission including a rolling bearing which is an object of the present invention.

【図2】転がり軸受を取り出して示す拡大断面図。FIG. 2 is an enlarged sectional view showing a rolling bearing taken out.

【図3】一般的な歯車式変速機とベルト式無段変速機と
で、転がり疲れによる疲労度を示す線図。
FIG. 3 is a diagram showing the degree of fatigue due to rolling fatigue in a general gear type transmission and a belt type continuously variable transmission.

【図4】外輪の熱処理工程の2例を示す工程図。FIG. 4 is a process chart showing two examples of a heat treatment process for an outer ring.

【符号の説明】[Explanation of symbols]

1 入力側回転軸 2 出力側回転軸 3 転がり軸受 4 外輪 5 内輪 6 外輪軌道 7 内輪軌道 8 転動体 9 保持器 10 駆動源 11 駆動側プーリ 12a、12b 駆動側プーリ板 13 駆動側アクチュエータ 14 従動側プーリ 15a、15b 従動側プーリ板 16 従動側アクチュエータ 17 無端ベルト 18 発進クラッチ 19 減速歯車列 20 デファレンシャルギヤ 21 駆動輪 1 Input side rotary shaft 2 Output side rotating shaft 3 Rolling bearing 4 outer ring 5 inner ring 6 Outer ring track 7 Inner ring track 8 rolling elements 9 cage 10 drive source 11 Drive side pulley 12a, 12b Drive side pulley plate 13 Drive side actuator 14 Driven pulley 15a, 15b Driven pulley plate 16 Driven side actuator 17 endless belt 18 Starting clutch 19 Reduction gear train 20 differential gear 21 drive wheels

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/24 C22C 38/24 F16C 19/02 F16C 19/02 33/66 33/66 Z F16H 9/18 F16H 9/18 Z Fターム(参考) 3J050 AA02 BA03 CE05 DA02 3J101 AA02 AA32 AA42 AA62 BA53 BA54 BA70 DA02 DA03 DA05 EA03 EA04 EA66 EA78 FA32 FA41 GA01 GA11 4K042 AA22 BA03 CA06 CA08 CA13 DA01 DA02 DA06 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) C22C 38/24 C22C 38/24 F16C 19/02 F16C 19/02 33/66 33/66 Z F16H 9/18 F16H 9/18 ZF term (reference) 3J050 AA02 BA03 CE05 DA02 3J101 AA02 AA32 AA42 AA62 BA53 BA54 BA70 DA02 DA03 DA05 EA03 EA04 EA66 EA78 FA32 FA41 GA01 GA11 4K042 AA22 BA03 CA06 CA08 CA13 DA01 DA02 DA06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内周面に外輪軌道を有する外輪と、外周
面に内輪軌道を有する内輪と、これら外輪軌道と内輪軌
道との間に転動自在に設けられた複数個の転動体とを備
え、上記外輪を固定の部分に内嵌支持し、上記内輪をベ
ルト式無段変速機を構成するプーリと共に回転する部分
に外嵌支持して、このプーリを上記固定の部分に回転自
在に支持するベルト式無段変速機用転がり軸受に於い
て、少なくとも上記外輪が、0.15〜0.5重量%の
Cと、0.1〜1.5重量%のSiと、0.1〜1.5重
量%のMnと、0.5〜3.0重量%のCrとを含む鉄系合
金製の素材に浸炭窒化、焼き入れ、焼き戻し処理、研磨
仕上を施す事により造られて、上記外輪軌道の表面部分
に、0.8〜1.2重量%のCと、0.05〜0.50
重量%のNとを含む表面層を有するものである事を特徴
とするベルト式無段変速機用転がり軸受。
1. An outer ring having an outer ring raceway on an inner peripheral surface, an inner ring having an inner ring raceway on an outer peripheral surface, and a plurality of rolling elements rotatably provided between the outer ring raceway and the inner ring raceway. The outer ring is internally fitted and supported on a fixed portion, and the inner ring is externally fitted and supported on a portion that rotates together with a pulley constituting a belt type continuously variable transmission, and the pulley is rotatably supported on the fixed portion. In a rolling bearing for a belt type continuously variable transmission, at least the outer ring contains 0.15 to 0.5% by weight of C, 0.1 to 1.5% by weight of Si, and 0.1 to 1%. It is produced by carbonitriding, quenching, tempering, and polishing a material made of an iron-based alloy containing 0.5 wt% Mn and 0.5 to 3.0 wt% Cr. 0.8 to 1.2 wt% C and 0.05 to 0.50 on the surface of the outer ring raceway
A rolling bearing for a belt type continuously variable transmission, characterized in that it has a surface layer containing N by weight.
【請求項2】 表面層の表面硬さがHv720〜900で
あり、外輪軌道の表面から最大剪断応力発生位置深さま
での部分に、平均粒径が50〜500nmである炭化物
又は炭窒化物を分散析出させた、請求項1に記載したベ
ルト式無段変速機用転がり軸受。
2. The surface layer has a surface hardness of Hv 720 to 900, and a carbide or carbonitride having an average particle diameter of 50 to 500 nm is dispersed in the portion from the surface of the outer ring raceway to the depth of maximum shear stress generation position. The rolling bearing for a belt type continuously variable transmission according to claim 1, which is deposited.
【請求項3】 外輪軌道の表面下50μmでの残留オー
ステナイト量を20〜45容量%とし、外輪軌道の表面
下50μmでの残留圧縮応力を150〜500MPaとし
た、請求項1〜2の何れかに記載したベルト式無段変速
機用転がり軸受。
3. The residual austenite amount at 50 μm below the surface of the outer ring raceway is set to 20 to 45% by volume, and the residual compressive stress at 50 μm below the surface of the outer ring raceway is set to 150 to 500 MPa. A rolling bearing for a belt type continuously variable transmission as described in.
【請求項4】 0.1〜3.0重量%のMoと0.1〜
3.0重量%のVとのうちの少なくとも一方を含有させ
た、請求項2に記載した記載したベルト式無段変速機用
転がり軸受。
4. 0.1 to 3.0% by weight of Mo and 0.1 to
The rolling bearing for a belt type continuously variable transmission according to claim 2, wherein at least one of V and 3.0% by weight is contained.
JP2002087407A 2002-03-27 2002-03-27 Rolling bearing for belt type continuously variable transmission Pending JP2003278768A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002087407A JP2003278768A (en) 2002-03-27 2002-03-27 Rolling bearing for belt type continuously variable transmission
EP03745009A EP1489318A4 (en) 2002-03-27 2003-03-26 Rolling bearing for belt type non-stage transmission
CNB038071096A CN100400909C (en) 2002-03-27 2003-03-26 Rolling bearing for belt type non-stage transmission
AU2003236146A AU2003236146A1 (en) 2002-03-27 2003-03-26 Rolling bearing for belt type non-stage transmission
PCT/JP2003/003725 WO2003081062A1 (en) 2002-03-27 2003-03-26 Rolling bearing for belt type non-stage transmission
US10/947,393 US7189171B2 (en) 2002-03-27 2004-09-17 Rolling bearing for belt driven continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087407A JP2003278768A (en) 2002-03-27 2002-03-27 Rolling bearing for belt type continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2003278768A true JP2003278768A (en) 2003-10-02
JP2003278768A5 JP2003278768A5 (en) 2005-09-08

Family

ID=29233611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087407A Pending JP2003278768A (en) 2002-03-27 2002-03-27 Rolling bearing for belt type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2003278768A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098057A1 (en) * 2004-04-01 2005-10-20 Ntn Corporation Rolling part and ball bearing
JP2006009887A (en) * 2004-06-24 2006-01-12 Nsk Ltd Ball bearing and ball bearing for transmission
JP2006132750A (en) * 2004-11-09 2006-05-25 Ntn Corp Hub bearing
WO2006082673A1 (en) * 2005-02-04 2006-08-10 Ntn Corporation Environment-resistant bearing steel excellent in resistance to hydrogen embrittlement
WO2007097043A1 (en) * 2006-02-27 2007-08-30 Aisin Seiki Kabushiki Kaisha Clutch member and process for manufacturing the same
JP2008303926A (en) * 2007-06-06 2008-12-18 Nsk Ltd Rolling bearing
JP2010196107A (en) * 2009-02-25 2010-09-09 Nsk Ltd Roller bearing
JP2012031457A (en) * 2010-07-29 2012-02-16 Nsk Ltd Rolling bearing
JP2017106074A (en) * 2015-12-09 2017-06-15 株式会社ジェイテクト Bearing constitutional member and manufacturing method therefor, and rolling bearing
JP2019196540A (en) * 2018-05-11 2019-11-14 山陽特殊製鋼株式会社 Steel for shaft bearing excellent in rolling fatigue life under hydrogen intrusion environment
CN114651138A (en) * 2019-11-05 2022-06-21 Ntn株式会社 Hub bearing

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098057A1 (en) * 2004-04-01 2005-10-20 Ntn Corporation Rolling part and ball bearing
JP2006009887A (en) * 2004-06-24 2006-01-12 Nsk Ltd Ball bearing and ball bearing for transmission
JP2006132750A (en) * 2004-11-09 2006-05-25 Ntn Corp Hub bearing
WO2006082673A1 (en) * 2005-02-04 2006-08-10 Ntn Corporation Environment-resistant bearing steel excellent in resistance to hydrogen embrittlement
JP2006213981A (en) * 2005-02-04 2006-08-17 Ntn Corp Environment resistant bearing steel having excellent hydrogen embrittlement resistance
US8142576B2 (en) 2006-02-27 2012-03-27 Aisin Seiki Kabushiki Kaisha Clutch member and process for manufacturing the same
WO2007097043A1 (en) * 2006-02-27 2007-08-30 Aisin Seiki Kabushiki Kaisha Clutch member and process for manufacturing the same
JPWO2007097043A1 (en) * 2006-02-27 2009-07-09 アイシン精機株式会社 Clutch member and manufacturing method thereof
JP2008303926A (en) * 2007-06-06 2008-12-18 Nsk Ltd Rolling bearing
JP2010196107A (en) * 2009-02-25 2010-09-09 Nsk Ltd Roller bearing
JP2012031457A (en) * 2010-07-29 2012-02-16 Nsk Ltd Rolling bearing
JP2017106074A (en) * 2015-12-09 2017-06-15 株式会社ジェイテクト Bearing constitutional member and manufacturing method therefor, and rolling bearing
JP2019196540A (en) * 2018-05-11 2019-11-14 山陽特殊製鋼株式会社 Steel for shaft bearing excellent in rolling fatigue life under hydrogen intrusion environment
JP7057715B2 (en) 2018-05-11 2022-04-20 山陽特殊製鋼株式会社 Bearing steel with excellent rolling fatigue life in a hydrogen intrusion environment
CN114651138A (en) * 2019-11-05 2022-06-21 Ntn株式会社 Hub bearing

Similar Documents

Publication Publication Date Title
US7189171B2 (en) Rolling bearing for belt driven continuously variable transmission
JP4576842B2 (en) Rolling bearing and belt type continuously variable transmission using the same
JP4348964B2 (en) Rolling bearing for belt type continuously variable transmission and method for manufacturing the same
JP5529526B2 (en) Rolling bearing
WO2012066913A1 (en) Rolling element bearing, and method for producing rolling element bearing
JP2003278768A (en) Rolling bearing for belt type continuously variable transmission
JP2012107675A (en) Rolling bearing and method for manufacturing rolling bearing
JP2004011712A (en) Rolling bearing, and belt type continuously variable transmission using it
JP5538877B2 (en) Rolling bearing
JP2006009887A (en) Ball bearing and ball bearing for transmission
JP2002194438A (en) Rolling bearing
JP6368271B2 (en) Manufacturing method of rolling bearing
JP4114422B2 (en) Rolling bearing for belt type continuously variable transmission
JP2006045591A (en) Tapered roller bearing
WO2011040267A1 (en) Rolling bearing
JP4345417B2 (en) Rolling bearing
JP2003343577A (en) Roller bearing and belt type non-stage transmission using the same
JP2009041744A (en) Rolling bearing for belt type continuously variable transmission
JP2005076651A (en) Rolling bearing and belt-type continuously variable transmission using it
JP2009001847A (en) Rolling member for transmission and rolling bearing for transmission
JP3725735B2 (en) Tapered roller bearing and vehicle gear shaft support device
WO2006041184A1 (en) Roll/slide member, toroidal continuously variable transmission utilizing the same, and process for producing roll/slide member
JP2005121080A (en) Rolling bearing for supporting belt type continuously-variable transmission pulley shaft
JP2000234128A (en) Gear shaft support device of transmission for vehicle
Shibata Development of Long Life Rolling Bearings for Use in the Extreme Conditions Reference: Shibata, M., Goto, M., Ohta, A., and Toda, K.,“Development of Long Life Rolling Bearings for Use in the Extreme Conditions,” Bearing Steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Effective date: 20071030

Free format text: JAPANESE INTERMEDIATE CODE: A02