JP2009041744A - Rolling bearing for belt type continuously variable transmission - Google Patents

Rolling bearing for belt type continuously variable transmission Download PDF

Info

Publication number
JP2009041744A
JP2009041744A JP2007210220A JP2007210220A JP2009041744A JP 2009041744 A JP2009041744 A JP 2009041744A JP 2007210220 A JP2007210220 A JP 2007210220A JP 2007210220 A JP2007210220 A JP 2007210220A JP 2009041744 A JP2009041744 A JP 2009041744A
Authority
JP
Japan
Prior art keywords
rolling
continuously variable
variable transmission
mass
type continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007210220A
Other languages
Japanese (ja)
Inventor
Toru Ueda
徹 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007210220A priority Critical patent/JP2009041744A/en
Publication of JP2009041744A publication Critical patent/JP2009041744A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmissions By Endless Flexible Members (AREA)
  • General Details Of Gearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing for a belt type continuously variable transmission capable of suppressing deterioration of surface roughness due to inclusion of foreign matters and fretting and suppressing tangential force applied between a rolling element and a bearing ring. <P>SOLUTION: In this rolling bearing for the belt type continuously variable transmission, at least one of an inner ring, an outer ring and the rolling element is formed by processing steel including 0.3-1.2 mass% of a carbon (C) content, 0.3-2.2 mass% of a silicon (Si) content and 0.2-2.0 mass% of a manganese (Mn) content to form a predetermined shape. Then, carbonitriding or nitriding is applied to a surface layer part of a raceway surface of the bearing. The nitrogen concentration of the surface layer part is set to be 0.2-2.0 mass%, and the area ratio of nitride including silicon (Si) and manganese (Mn) is set to be 1-20%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば自動車の自動変速機の変速ユニットとして用いられるベルト式無段変速機に係り、特に、ベルト式無段変速機の回転軸を支持するための転がり軸受の改良に関する。   The present invention relates to a belt-type continuously variable transmission used as, for example, a transmission unit of an automatic transmission of an automobile, and more particularly to improvement of a rolling bearing for supporting a rotating shaft of a belt-type continuously variable transmission.

この種のベルト式無段変速機は、例えば特許文献1に記載されているように、種々提案され、また、その一部は実用されている。図11は、この種のベルト式無段変速機の基本構造を略示している。
同図に示すように、このベルト式無段変速機は、互いに平行に配置された入力側回転軸1と出力側回転軸2とを有する。これら各回転軸1、2は、固定部である変速機ケース(不図示)の内側に、それぞれ1対ずつの転がり軸受3、3を介して回転自在に支持されている。
Various belt type continuously variable transmissions of this type have been proposed, for example, as described in Patent Document 1, and some of them have been put into practical use. FIG. 11 schematically shows the basic structure of this type of belt-type continuously variable transmission.
As shown in the figure, this belt-type continuously variable transmission has an input side rotating shaft 1 and an output side rotating shaft 2 arranged in parallel to each other. Each of these rotating shafts 1 and 2 is rotatably supported via a pair of rolling bearings 3 and 3 inside a transmission case (not shown) which is a fixed portion.

これら各転がり軸受3、3は、図12に示すように、互いに同心に設けられた外輪4と内輪5とをそれぞれ有する。このうちの外輪4は、内周面に外輪軌道6を、内輪5は外周面に内輪軌道7をそれぞれ転動面として有する。そして、これら外輪軌道6と内輪軌道7との間に複数の転動体8、8が、保持器9により保持された状態で転動自在に介装されている。   As shown in FIG. 12, each of the rolling bearings 3 and 3 has an outer ring 4 and an inner ring 5 provided concentrically with each other. Of these, the outer ring 4 has an outer ring raceway 6 on its inner peripheral surface, and the inner ring 5 has an inner ring raceway 7 on its outer peripheral surface as rolling surfaces. A plurality of rolling elements 8, 8 are interposed between the outer ring raceway 6 and the inner ring raceway 7 so as to roll freely while being held by a cage 9.

上記各転がり軸受3、3は、それぞれの外輪4を、変速機ケースの一部に内嵌支持し、それぞれの内輪5を上記入力側回転軸1または出力側回転軸2に外嵌支持して、これら両回転軸1、2を上記変速機ケースの内側に回転自在に支持している。尚、各転がり軸受3、3として、従来は、外輪4、内輪5、各転動体8、8を、一般的な軸受鋼2種(SUJ2)により造ったものを使用していた。   Each of the rolling bearings 3, 3 supports the outer ring 4 by fitting inside a part of the transmission case, and supports the inner ring 5 by fitting to the input side rotating shaft 1 or the output side rotating shaft 2. The rotary shafts 1 and 2 are rotatably supported inside the transmission case. Conventionally, as the respective rolling bearings 3 and 3, the outer ring 4, the inner ring 5, and the respective rolling elements 8 and 8 made of two types of general bearing steel (SUJ2) have been used.

上記両回転軸1、2のうちの入力側回転軸1は、エンジン等の駆動源10により、トルクコンバータ、あるいは電磁クラッチ等の発進クラッチ11を介して回転駆動される。また、上記入力側回転軸1の中間部で1対の転がり軸受3、3の間に位置する部分に駆動側プーリ12を設け、この駆動側プーリ12と上記入力側回転軸1とが同期して回転するようにしている。この駆動側プーリ12を構成する一対の駆動側プーリ板13a、13b同士の間隔は、駆動側アクチュエータ14で一方(図11の左方)の駆動側プーリ板13aを軸方向に変位させることにより調節自在である。すなわち、上記駆動側プーリ12の溝幅は、上記駆動側アクチュエータ14により拡縮自在である。   Of the rotary shafts 1 and 2, the input-side rotary shaft 1 is rotationally driven by a driving source 10 such as an engine via a starting clutch 11 such as a torque converter or an electromagnetic clutch. In addition, a drive pulley 12 is provided in a portion located between the pair of rolling bearings 3 and 3 in the intermediate portion of the input side rotary shaft 1, and the drive side pulley 12 and the input side rotary shaft 1 are synchronized. To rotate. The distance between the pair of drive side pulley plates 13a and 13b constituting the drive side pulley 12 is adjusted by displacing one drive side pulley plate 13a in the axial direction by the drive side actuator 14 (left side in FIG. 11). It is free. That is, the groove width of the driving pulley 12 can be expanded and contracted by the driving actuator 14.

一方、上記出力側回転軸2の中間部で一対の転がり軸受3、3の間に位置する部分に従動側プーリ15を設け、この従動側プーリ15と上記出力側回転軸2とが同期して回転するようにしている。この従動側プーリ15を構成する1対の従動側プーリ板16a、16b同士の間隔は、従動側アクチュエータ17で一方(図11の右方)の従動側プーリ板16aを軸方向に変位させることにより調節自在である。すなわち、上記従動側プーリ15の溝幅は、上記従動側アクチュエータ17により拡縮自在である。そして、この従動側プーリ15と上記駆動側プーリ12とに、無端ベルト18を掛け渡している。この無端ベルト18としては、金属製のものを使用している。   On the other hand, a driven pulley 15 is provided at a middle portion of the output side rotating shaft 2 between the pair of rolling bearings 3 and 3, and the driven pulley 15 and the output side rotating shaft 2 are synchronized with each other. I try to rotate. The distance between the pair of driven pulley plates 16a and 16b constituting the driven pulley 15 is determined by displacing one (right side in FIG. 11) driven pulley plate 16a in the axial direction by the driven actuator 17. It is adjustable. That is, the groove width of the driven pulley 15 can be expanded and contracted by the driven actuator 17. An endless belt 18 is stretched between the driven pulley 15 and the driving pulley 12. As the endless belt 18, a metal belt is used.

上述の構成を有するベルト式無段変速機では、駆動源10から発進クラッチ11を介して入力側回転軸1に伝達された動力は、駆動側プーリ12から無端ベルト18を介して、従動側プーリ15に伝達される。尚、この無端ベルト18として従来から、押し付け方向に動力を伝達するものと、引っ張り方向に動力を伝達するものとが知られている。何れにしても、上記従動側プーリ15に伝達された動力は、上記出力側回転軸2から減速歯車列19、デファレンシャルギヤ20を介して駆動輪21、21に伝達される。上記入力側回転軸1と出力側回転軸2との間の変速比を変える場合には、上記両プーリ12、15の溝幅を互いに関連させつつ拡縮する。   In the belt-type continuously variable transmission having the above-described configuration, the power transmitted from the driving source 10 to the input side rotating shaft 1 via the starting clutch 11 is transmitted from the driving side pulley 12 via the endless belt 18 to the driven side pulley. 15 is transmitted. Conventionally, as the endless belt 18, one that transmits power in the pressing direction and one that transmits power in the pulling direction are known. In any case, the power transmitted to the driven pulley 15 is transmitted from the output side rotating shaft 2 to the drive wheels 21 and 21 via the reduction gear train 19 and the differential gear 20. When changing the gear ratio between the input-side rotating shaft 1 and the output-side rotating shaft 2, the groove widths of the pulleys 12 and 15 are expanded and contracted while being associated with each other.

例えば、上記入力側回転軸1と出力側回転軸2との間の減速比を大きくする場合には、上記駆動側プーリ12の溝幅を大きくすると共に、上記従動側プーリ15の溝幅を小さくする。この結果、上記無端ベルト18の一部でこれら両プーリ12、15に掛け渡された部分の径が、上記駆動側プーリ12部分で小さく、上記従動側プーリ15部分で大きくなり、上記入力側回転軸1と出力側回転軸2との間で減速が行なわれる。   For example, when the reduction ratio between the input-side rotating shaft 1 and the output-side rotating shaft 2 is increased, the groove width of the driving pulley 12 is increased and the groove width of the driven pulley 15 is decreased. To do. As a result, the diameter of the part of the endless belt 18 that spans the pulleys 12 and 15 is small at the driving pulley 12 part and large at the driven pulley 15 part, and the input side rotation Deceleration is performed between the shaft 1 and the output side rotating shaft 2.

反対に上記入力側回転軸1と出力側回転軸2との間の増速比を大きく(減速比を小さく)する場合には、上記駆動側プーリ12の溝幅を小さくすると共に、上記従動側プーリ15の溝幅を大きくする。この結果、上記無端ベルト18の一部でこれら両プーリ12、15に掛け渡された部分の径が、上記駆動側プーリ12部分で大きく、上記従動側プーリ15部分で小さくなり、上記入力側回転軸1と出力側回転軸2との間で増速が行なわれる。   On the other hand, when increasing the speed increasing ratio between the input side rotating shaft 1 and the output side rotating shaft 2 (decreasing the speed reducing ratio), the groove width of the driving pulley 12 is decreased and the driven side is also decreased. The groove width of the pulley 15 is increased. As a result, the diameter of the portion of the endless belt 18 that spans the pulleys 12 and 15 is larger at the driving pulley 12 portion and smaller at the driven pulley 15 portion, and the input side rotation The speed is increased between the shaft 1 and the output side rotating shaft 2.

ここで、このベルト式無段変速機の運転時には、各可動部に潤滑油を供給して、これら各可動部を潤滑する。ベルト式無段変速機の場合に使用する潤滑油としては、CVTフルード(ATF兼用油)を使用している。この理由は、金属製の無端ベルト18と駆動側、従動側両プーリ12、15との摩擦係合部の摩擦係数を増大し、且つ安定させるためである。そして、このCVTフルードを300cc/min以上の流量で上記摩擦部に循環させて、この摩擦部を潤滑している。また、CVTフルードの一部は、前記各転がり軸受3、3の内部を(例えば20cc/min以上の流量で)通過して、これら各転がり軸受3、3の転がり接触部を潤滑する。従って、これら各転がり軸受3、3の内部に、上記無端ベルト18と両プーリ12、15との摩擦に伴って発生する摩耗粉や、減速歯車列19部分での摩擦に伴って発生したギア粉等の異物が、CVTフルードに混入した状態で入り込む可能性が高い。この様な異物は、各転がり軸受3、3の転がり接触部を損傷させてその耐久性を低下させる原因となる。   Here, during the operation of the belt-type continuously variable transmission, lubricating oil is supplied to each movable portion to lubricate each movable portion. CVT fluid (ATF combined oil) is used as the lubricating oil used in the belt type continuously variable transmission. The reason for this is to increase and stabilize the friction coefficient of the friction engagement portion between the metal endless belt 18 and both the drive side and driven side pulleys 12 and 15. The CVT fluid is circulated through the friction part at a flow rate of 300 cc / min or more to lubricate the friction part. Further, part of the CVT fluid passes through the inside of each of the rolling bearings 3 and 3 (for example, at a flow rate of 20 cc / min or more), and lubricates the rolling contact portion of each of the rolling bearings 3 and 3. Therefore, the wear powder generated due to the friction between the endless belt 18 and the pulleys 12 and 15 and the gear powder generated due to the friction in the reduction gear train 19 portion in each of the rolling bearings 3 and 3. There is a high possibility that foreign substances such as the like will enter the CVT fluid. Such foreign matters cause damage to the rolling contact portions of the respective rolling bearings 3 and 3 and reduce the durability thereof.

このため、従来は各転がり軸受3、3の軸受サイズを大きくしたり、あるいは各転動体8、8の直径(玉径)を大きくしたりする等により、各転がり軸受3、3の基本動定格荷重を大きくし、これら各転がり軸受3、3の寿命に余裕を持たせていた。また、これら各転がり軸受3、3の内部を流通する上記異物の量を少なく抑えるため、これら各転がり軸受3、3として、外輪4の内周面と内輪5の外周面との間で各転動体8、8を設置した転動体設置部分の両端開口部を塞ぐシール手段を有するものを使用することも考えられる。この場合には、転動体設置部分にグリースを充填して、各転動体8、8の転動面と外輪軌道6及び内輪軌道7との転がり接触部の潤滑を行なう。ただし、この場合でも、上記転動体設置部分にCVTフルードが全く流通しない状態にはならない。すなわち、この転動体設置部分には、比較的少量のCVTフルードが流通する。
実公平8−30526号公報
For this reason, conventionally, the basic dynamic rating of each rolling bearing 3, 3 is increased by increasing the bearing size of each rolling bearing 3, 3, or increasing the diameter (ball diameter) of each rolling element 8, 8. The load was increased so that the life of each of the rolling bearings 3 and 3 was given a margin. Further, in order to suppress the amount of the foreign matter flowing through the inside of each of the rolling bearings 3 and 3, each of the rolling bearings 3 and 3 is provided between the inner peripheral surface of the outer ring 4 and the outer peripheral surface of the inner ring 5. It is also conceivable to use one having sealing means for closing the opening portions at both ends of the rolling element installation portion where the moving bodies 8 and 8 are installed. In this case, the rolling element installation portion is filled with grease, and the rolling contact portions between the rolling surfaces of the rolling elements 8 and 8 and the outer ring raceway 6 and the inner ring raceway 7 are lubricated. However, even in this case, the CVT fluid does not circulate at all in the rolling element installation portion. That is, a relatively small amount of CVT fluid flows through the rolling element installation portion.
No. 8-30526

ところで、CVTフルードには、トルクコンバータ、歯車機構、油圧機構、湿式クラッチ等を円滑に作動させて動力を伝達する機能が求められる。そのため、上述の各プーリの回転軸を支持する転がり軸受をも含めてトラクション係数の高い(トラクション係数0.09以上)潤滑油が用いられている。そのため、ベルト式無段変速機に使用される転がり軸受は、軌道輪と転動体間に作用する接線力(トラクション)が大きくなるため、特有の表面起点型のはく離を生じ、寿命が短くなる。また、前述したように無段変速機で使用される転がり軸受には、ギア等の摩耗粉が侵入するため、転動体、軌道輪表面に圧痕が形成され、転動体の表面性状が悪化する。   By the way, the CVT fluid is required to have a function of transmitting power by smoothly operating a torque converter, a gear mechanism, a hydraulic mechanism, a wet clutch, and the like. For this reason, lubricating oil having a high traction coefficient (traction coefficient of 0.09 or more) is used, including the rolling bearing that supports the rotating shaft of each pulley described above. For this reason, the rolling bearing used in the belt-type continuously variable transmission has a large tangential force (traction) acting between the race and the rolling element, which causes a peculiar surface-origin separation and shortens its life. In addition, as described above, since wear powder such as gears enters the rolling bearing used in the continuously variable transmission, indentations are formed on the surfaces of the rolling elements and the races, and the surface properties of the rolling elements deteriorate.

さらに、ベルト式無段変速機用の転がり軸受は、その停止時にもベルト張力により荷重を受けており、その状態でエンジン等から振動が伝わると、転動体と軌道輪間でフレッチング(ミンドリンスリップ)を生じる。その場合、ミンドリンスリップが生じた部分の転動面、軌道面粗さが悪化する。そして、転動体と軌道輪間の表面性状が悪化すると転動体と軌道輪間に作用する接線力が大きくなるため寿命が短くなる。したがって、ベルト式無段変速機用の転がり軸受の更なる長寿命化を達成するためには、異物混入やミンドリンスリップによる表面粗さの悪化を抑制し、転動体と軌道輪間に作用する接線力を抑制することが重要である。   Furthermore, a rolling bearing for a belt-type continuously variable transmission receives a load due to belt tension even when it is stopped, and when vibration is transmitted from an engine or the like in that state, fretting (Mindlin slip) occurs between the rolling elements and the raceway. ) Is generated. In that case, the rolling surface and the raceway surface roughness of the part where the Mindlin slip occurs are deteriorated. And if the surface property between a rolling element and a bearing ring deteriorates, since the tangential force which acts between a rolling element and a bearing ring will become large, a lifetime will become short. Therefore, in order to achieve a longer life of the rolling bearing for the belt type continuously variable transmission, it is possible to suppress the deterioration of the surface roughness due to foreign matter contamination or Mindlin slip, and to act between the rolling elements and the raceway. It is important to suppress the tangential force.

上述したように、ベルト式無段変速機用転がり軸受の長寿命化に必要な機能としては、異物噛み込みによって圧痕が形成され難いこととミンドリンスリップを抑制することが求められる。
そこで、本発明者らは、表面起点型はく離寿命が短くなる環境で使用されるベルト式無段変速機用転がり軸受の長寿命化について鋭意研究を行い、転動体と軌道輪の表面性状の悪化を抑制して長寿命化を達成した。
As described above, the functions necessary for extending the life of the belt-type continuously variable transmission rolling bearing are required to prevent formation of indentation due to foreign object biting and to suppress the Mindlin slip.
Therefore, the present inventors have conducted intensive research on extending the life of rolling bearings for belt-type continuously variable transmissions used in an environment where the surface-originated peeling life is shortened, and the surface properties of the rolling elements and the raceway are deteriorated. To achieve long life.

すなわち、本発明に係るベルト式無段変速機用転がり軸受は、固定部と、無段変速のためのプーリを前記固定部に対して回転自在に支持する回転部と、を有するベルト式無段変速機に用いられ、内周面に転動面を有する外輪と、外周面に転動面を有する内輪と、前記外輪の転動面と内輪の転動面との間に転動自在に配設される複数の転動体とを備え、前記固定部に前記外輪が内嵌支持されるとともに、前記回転部に前記内輪が前記プーリと共に外嵌支持される転がり軸受であって、前記内輪、外輪および転動体のうちの少なくとも1つが、炭素(C)の含有率が0.3〜1.2質量%、珪素(Si)の含有率が0.3〜2.2質量%、マンガン(Mn)の含有率が0.2〜2.0質量%、残部鉄および不可避的不純物からなる鋼製の素材を所定形状に加工した後、その軌道面の表層部に浸炭窒化処理もしくは窒化処理が施されて得られ、その表層部の窒素濃度が0.2〜2.0質量%であり、更に、珪素(Si)およびマンガン(Mn)を含有した窒化物の面積率が1%以上20%以下であることを特徴とする。具体的な数値限定理由は後述するが、本発明に係るベルト式無段変速機用転がり軸受によれば、転動体と軌道輪の表面性状の悪化を抑制して長寿命化を達成することができる。   That is, the belt-type continuously variable transmission rolling bearing according to the present invention includes a fixed portion and a rotating portion that rotatably supports a pulley for continuously variable transmission with respect to the fixed portion. Used in a transmission, an outer ring having a rolling surface on the inner peripheral surface, an inner ring having a rolling surface on the outer peripheral surface, and a rollable arrangement between the rolling surface of the outer ring and the rolling surface of the inner ring. A rolling bearing in which the outer ring is fitted and supported by the fixed portion, and the inner ring is fitted and supported by the rotating portion together with the pulley, the inner ring and the outer ring. And at least one of the rolling elements has a carbon (C) content of 0.3 to 1.2 mass%, a silicon (Si) content of 0.3 to 2.2 mass%, and manganese (Mn). A steel material comprising 0.2 to 2.0 mass% of the content of iron, the remaining iron and unavoidable impurities After processing into a shape, the surface layer portion of the raceway surface is obtained by carbonitriding or nitriding treatment, and the nitrogen concentration of the surface layer portion is 0.2 to 2.0 mass%, and silicon (Si ) And manganese (Mn) -containing nitride have an area ratio of 1% to 20%. Although the specific reason for limiting the numerical value will be described later, according to the rolling bearing for a belt-type continuously variable transmission according to the present invention, it is possible to suppress the deterioration of the surface properties of the rolling elements and the raceway to achieve a long life. it can.

また、本発明に係るベルト式無段変速機用転がり軸受は、内外輪軌道面の残留オーステナイト量をγrAB(体積%)、前記転動体転動面の残留オーステナイト量をγr(体積%)とした場合に、γrAB−15≦γr≦γrAB+15(ただし、0(体積%)≦γrAB、γr≦50(体積%))とすることにより、大幅なコストアップを行わずに、ベルト式無段変速機用転がり軸受の高性能化が実現可能である。 In the rolling bearing for a belt type continuously variable transmission according to the present invention, the amount of retained austenite on the inner and outer ring raceway surfaces is γrAB (volume%), and the amount of retained austenite on the rolling element rolling surface is γr C (volume%). In this case, by setting γr AB −15 ≦ γr C ≦ γr AB +15 (where 0 (volume%) ≦ γr AB , γr C ≦ 50 (volume%)), without significant cost increase, High-performance rolling bearings for belt-type continuously variable transmissions can be realized.

また、本発明者らは転動体と軌道輪の表面粗さをそれぞれ小さくすると、軌道輪の表面粗さを小さくした場合と比較して、転動体の表面粗さを小さくした場合(表面粗さ・表面形状の悪化を抑制した場合)に効果的に表面起点型はく離を抑制できることを明らかにした。つまり、軌道輪よりむしろ転動体の表面粗さや表面形状の悪化を抑制することで効果的に軸受全体の寿命を延長させることができる。   In addition, when the surface roughness of the rolling element and the race is reduced, the present inventors reduce the surface roughness of the rolling element (surface roughness) compared to the case where the surface roughness of the race is reduced.・ When the deterioration of the surface shape was suppressed), it was clarified that the surface-origin type peeling can be effectively suppressed. That is, the life of the entire bearing can be effectively extended by suppressing the deterioration of the surface roughness and surface shape of the rolling elements rather than the race.

[作用]
上述の本発明に係るベルト式無段変速機用転がり軸受の作用について説明する。
[転動面の表層部の窒素濃度が0.2〜2.0質量%であり、更に、珪素(Si)およびマンガン(Mn)を含有した窒化物(以下、「Si・Mn系窒化物」ともいう)の面積率が1%以上20%以下]
本発明に係るベルト式無段変速機用転がり軸受においては、軌道輪または転動体の表面層に所定の窒素を富化させるために浸炭窒化処理を行う。窒素は炭素と同じようにマルテンサイトの固溶強化および残留オーステナイトの安定確保に作用するだけでなく、窒化物または炭窒化物を形成して耐圧痕性、耐摩耗性を向上させる作用がある。
[Action]
The operation of the above-described belt-type continuously variable transmission rolling bearing according to the present invention will be described.
[Nitride concentration in the surface layer portion of the rolling surface is 0.2 to 2.0% by mass and further contains silicon (Si) and manganese (Mn) (hereinafter referred to as “Si · Mn nitride”) The area ratio is also 1% or more and 20% or less]
In the rolling bearing for a belt type continuously variable transmission according to the present invention, carbonitriding is performed in order to enrich the surface layer of the raceway or rolling element with predetermined nitrogen. Nitrogen, like carbon, not only acts to strengthen the solid solution of martensite and to ensure the stability of retained austenite, but also forms nitrides or carbonitrides to improve the pressure resistance and wear resistance.

図4に耐圧痕性、耐摩耗性に及ぼす表面窒素濃度の影響の結果を示す。なお、同図(a)には図1に示す耐圧痕性試験により求めた耐圧痕性に及ぼす窒素の影響を示し、同図(b)には図2に示す2円筒摩耗試験により求めた耐摩耗性に及ぼす窒素の影響を示す。
耐圧痕性試験は直径2mmの鋼球を試料に5GPaで押付けた後、圧痕の深さを測定する方法で行った。一方、2円筒摩耗試験は面圧0.8GPaの条件下で、駆動側(高速側)を10min−1で回転させ、ギアで減速して従動側(低速側)を7min−1で回転させて強制的にすべりを与える方法であり、試験開始から20時間後の駆動側、従動側試験片の摩耗量の平均値を測定した。表面窒素量の測定には、電子線マイクロアナライザー(EPMA)を用いた。窒素濃度の効果のみを調査するため、表面窒素濃度以外の硬さや残留オーステナイト量については一定にしてある。
FIG. 4 shows the results of the influence of the surface nitrogen concentration on the pressure scar resistance and wear resistance. In addition, the same figure (a) shows the influence of nitrogen on the indentation resistance determined by the indentation resistance test shown in FIG. 1, and the same figure (b) shows the resistance to resistance determined by the two-cylinder abrasion test shown in FIG. The influence of nitrogen on wear is shown.
The pressure dent test was performed by pressing a steel ball having a diameter of 2 mm against a sample at 5 GPa and then measuring the depth of the dent. On the other hand, in the two-cylinder wear test, the driving side (high speed side) is rotated at 10 min −1 under the condition of a surface pressure of 0.8 GPa, the gear is decelerated and the driven side (low speed side) is rotated at 7 min −1. This was a method for forcibly giving a slip, and the average value of the amount of wear of the driving side and driven side test pieces 20 hours after the start of the test was measured. An electron beam microanalyzer (EPMA) was used for the measurement of the surface nitrogen amount. In order to investigate only the effect of the nitrogen concentration, the hardness other than the surface nitrogen concentration and the amount of retained austenite are kept constant.

図4(a)に示すように、表面窒素濃度が高いほど耐圧痕性に優れており、また、図4(b)に示すように、表面窒素濃度が高いほど耐摩耗性についても優れている。図4に示すように、耐圧痕性、耐摩耗性ともに、表面窒素濃度が0.2質量%を超えると顕著に効果が現れるが、より好ましくは0.45質量%以上とする。
一方、窒素濃度が高すぎると靭性や静的強度が低下してしまう欠点がある。転がり軸受の転動体にとって靭性や静的強度は必要な性能であるため、窒素濃度が高すぎるのは好ましくない。図5にシャルピー衝撃試験の結果を示す。図5に示すように、窒素濃度が2.0質量%を超えると急激に靭性が低下することがわかる。従って、本発明の窒素濃度の上限は2.0質量%とした。
上述したように、表面の窒素濃度が高いほど、材料の耐圧痕性、耐摩耗性が向上することが明らかになった。
As shown in FIG. 4 (a), the higher the surface nitrogen concentration, the better the pressure scar resistance, and as shown in FIG. 4 (b), the higher the surface nitrogen concentration, the better the wear resistance. . As shown in FIG. 4, both the indentation resistance and the abrasion resistance are remarkably effective when the surface nitrogen concentration exceeds 0.2% by mass, but more preferably 0.45% by mass or more.
On the other hand, if the nitrogen concentration is too high, there is a drawback that toughness and static strength are lowered. Since the toughness and static strength are necessary performances for rolling elements of a rolling bearing, it is not preferable that the nitrogen concentration is too high. FIG. 5 shows the result of the Charpy impact test. As shown in FIG. 5, it can be seen that when the nitrogen concentration exceeds 2.0 mass%, the toughness rapidly decreases. Therefore, the upper limit of the nitrogen concentration of the present invention is set to 2.0% by mass.
As described above, it has been clarified that the higher the nitrogen concentration on the surface, the higher the pressure scar resistance and wear resistance of the material.

しかし、本発明者らは、さらに窒素濃度が同じ場合でも材料内部の窒素の存在状態によって、耐圧痕性、耐摩耗性が変わるという知見を得た。窒素は材料内部に固溶して存在する場合と窒化物として析出して存在する場合がある。詳細な数値については後述するが、Si・Mnを多く含む材料を浸炭窒化処理した場合には、同じ窒素濃度でも材料中に固溶して存在する窒素量よりも、表面にSi・Mn系の窒化物を析出して存在する窒素量が多くなる。
図6に図1に示す耐圧痕性試験と図2に示す2円筒摩耗試験によって求めた耐圧痕性と耐摩耗性に及ぼすSi・Mn系窒化物の面積率の影響を示す。なお、同図(a)にはSi・Mn系窒化物の面積率と圧痕深さとの関係を示し、同図(b)はSi・Mn系窒化物の面積率と摩耗量との関係を示している。
However, the present inventors have further found that the pressure resistance and wear resistance change depending on the presence of nitrogen inside the material even when the nitrogen concentration is the same. Nitrogen may be present as a solid solution in the material or may be precipitated as a nitride. Although detailed numerical values will be described later, when carbonitriding a material containing a large amount of Si · Mn, the surface of the Si · Mn system is larger than the amount of nitrogen present in solid solution in the material even at the same nitrogen concentration. The amount of nitrogen present by precipitation of nitride increases.
FIG. 6 shows the influence of the area ratio of the Si / Mn nitride on the pressure scar resistance and the wear resistance obtained by the pressure scar resistance test shown in FIG. 1 and the two-cylinder wear test shown in FIG. The figure (a) shows the relationship between the area ratio of Si / Mn nitride and the depth of indentation, and the figure (b) shows the relation between the area ratio of Si / Mn nitride and the amount of wear. ing.

Si・Mn系窒化物の効果のみを調査するため、Si・Mn系窒化物の面積率以外の硬さや残留オーステナイト量、窒素濃度については一定にしてある。尚、Si・Mn系窒化物の面積率の測定は、電界放射型走査型電子顕微鏡(FE−SEM)を用いて、加速電圧10kVで転動面の観察を行い、倍率5000倍で最低3視野以上写真を撮影した後、その写真を2値化してから面像解析装置を用いて面積率を計算した。
図6(a)に示すように、Si・Mn系窒化物の面積率が高いほど耐圧痕性に優れており、また、図6(b)に示すように、Si・Mn系窒化物の面積率が高いほど耐摩耗性についても優れている。図6に示すように、耐圧痕性、耐摩耗性ともに、Si・Mn系窒化物の面積率が1%を超えると顕著に効果が現れるが、より好ましくは2%以上とする。
In order to investigate only the effect of the Si / Mn nitride, the hardness other than the area ratio of the Si / Mn nitride, the amount of retained austenite, and the nitrogen concentration are kept constant. The area ratio of the Si / Mn nitride was measured using a field emission scanning electron microscope (FE-SEM) by observing the rolling surface at an acceleration voltage of 10 kV and at least 3 fields of view at a magnification of 5000 times. After taking a photograph as described above, the area ratio was calculated using a surface image analyzer after binarizing the photograph.
As shown in FIG. 6 (a), the higher the area ratio of the Si / Mn nitride, the better the pressure resistance, and as shown in FIG. 6 (b), the area of the Si / Mn nitride. The higher the rate, the better the wear resistance. As shown in FIG. 6, both the indentation resistance and the wear resistance are remarkably effective when the area ratio of the Si · Mn nitride exceeds 1%, but more preferably 2% or more.

一方、上述した窒素濃度と同様に、Si・Mn系窒化物の析出量が多くなりすぎると靭性や静的強度が低下してしまう欠点がある。転がり軸受の転動体にとって靭性や静的強度は必要な性能であるため、Si・Mn系窒化物の析出量が多くなりすぎるのは好ましくない。
図7にシャルピー衝撃試験の結果を示す。同図に示すように、Si・Mn系窒化物の面積率が20%を超えると急激に靭性が低下することがわかる。従って、本発明のSi・Mn系窒化物の面積率の上限は20%としたが、より好ましくは10%とする。
On the other hand, similarly to the nitrogen concentration described above, there is a drawback that the toughness and the static strength are lowered when the amount of Si · Mn-based nitride deposited becomes too large. Since the toughness and static strength are necessary performances for rolling elements of a rolling bearing, it is not preferable that the amount of Si / Mn nitride precipitates is excessive.
FIG. 7 shows the result of the Charpy impact test. As shown in the figure, it can be seen that when the area ratio of the Si · Mn nitride exceeds 20%, the toughness rapidly decreases. Therefore, the upper limit of the area ratio of the Si / Mn nitride of the present invention is set to 20%, more preferably 10%.

また、1μmを越える窒化物は、材料の強化にあまり寄与しない。細かい窒化物が分散している方が強化される。この理由としては、析出強化の理論において析出物粒子間距離の小さい方が強化能に優れるので、Si・Mn系窒化物の面積率が同じであっても、析出粒子数が多ければ、相対的に粒子間距離が短くなり、強化される。すなわち、Si及びMnの含有量の多い鋼を用い、Si・Mn系窒化物の面積率が1〜20%の範囲で、平均粒径が0.05μm以上1μm以下の微細な窒化物の個数を増やすのがよい。また、0.05μm以上のSi・Mn系窒化物のうち、0.05μm〜0.50μmのSi・Mn系窒化物の個数の比率を20%以上とすることにより、更に強化することが可能になる。   Further, nitrides exceeding 1 μm do not contribute much to the strengthening of the material. The one where fine nitride is dispersed is strengthened. The reason for this is that, in the theory of precipitation strengthening, the smaller the distance between the precipitate particles, the better the strengthening ability. Therefore, even if the area ratio of the Si / Mn nitride is the same, if the number of precipitated particles is large, the relative In addition, the interparticle distance is shortened and strengthened. That is, the number of fine nitrides having an average particle size of 0.05 μm or more and 1 μm or less is used in a range where the area ratio of Si / Mn nitride is 1 to 20%, using steel with a high content of Si and Mn. It is good to increase. Further, among Si / Mn nitrides having a thickness of 0.05 μm or more, the ratio of the number of Si / Mn nitrides having a thickness of 0.05 μm to 0.50 μm is set to 20% or more, so that it can be further strengthened. Become.

具体的には、面積375μmの範囲で、0.05μm以上1μm以下のSi・Mn系窒化物が100個以上であることが好ましく、このような状態にする手法としては、浸炭窒化処理温度を800℃以上870℃以下とすることが好ましい。この温度を越えると、窒化物が粗大化して、微細なSi・Mn系窒化物の個数が減少する。また、この処理温度より温度が高くなると、窒素の固溶限が大きくなるため、窒化物の量が少なくなり、所望の面積率が得られなくなる場合がある。浸炭窒化工程の初期から、RXガスとエンリッチガスとアンモニウムガスの混合ガス雰囲気とし、CP値は1.2以上、アンモニアガスの流量はRXガス流量の少なくとも1/5以上とすることが好ましい。また、浸炭窒化後の焼入れは、油温60℃〜120℃の範囲で行うことが好ましい。この温度より高いと、十分な硬さが得られない場合がある。焼戻しは、160℃〜270℃の温度で行い、表面硬さの範囲としてはHV740以上、望ましくはHV780以上とする。また、必要に応じて、焼入れ処理後に、サブゼロ処理を行ってもよい。 Specifically, it is preferable that there are 100 or more Si · Mn nitrides having an area of 375 μm 2 and 0.05 μm or more and 1 μm or less. It is preferable that the temperature is 800 ° C. or higher and 870 ° C. or lower. When this temperature is exceeded, the nitride becomes coarse and the number of fine Si · Mn nitrides decreases. Further, when the temperature is higher than the treatment temperature, the solid solubility limit of nitrogen is increased, so that the amount of nitride is reduced and a desired area ratio may not be obtained. From the initial stage of the carbonitriding process, it is preferable that the mixed gas atmosphere of RX gas, enriched gas, and ammonium gas is used, the CP value is 1.2 or more, and the flow rate of ammonia gas is at least 1/5 of the RX gas flow rate. Moreover, it is preferable to perform the quenching after carbonitriding at an oil temperature in the range of 60 ° C to 120 ° C. If it is higher than this temperature, sufficient hardness may not be obtained. Tempering is performed at a temperature of 160 ° C. to 270 ° C., and the surface hardness range is HV 740 or more, preferably HV 780 or more. Moreover, you may perform a subzero process after a quenching process as needed.

また、図10に、0.05μm〜1μmのSi・Mn系窒化物の個数と寿命比率との関係を示す。同図から明らかなように、測定面積375μmの範囲内にSi・Mn系窒化物を100個以上分散させることにより、基地組織が強化され、異物混入潤滑下での寿命が延長する。
[炭素(C)の含有率が0.3〜1.2質量%]
炭素は鋼に必要な強度と寿命を得るために重要な元素である。炭素が少なすぎると十分な強度が得られないだけでなく、後述する浸炭窒化の際に必要な硬化層深さを得るための熱処理時間が長くなり、熱処理コストの増大につながる。そのため、炭素含有量は0.3質量%以上、好ましくは0.5質量%以上とする。また、炭素含有量が多すぎると製鋼時に巨大炭化物が生成され、その後の焼入れ特性や転動疲労寿命に悪影響を与えるほか、ヘッダー性が低下してコストの上昇を招くおそれがあるため上限を1.2質量%とした。
[珪素(Si)の含有率が0.3〜2.2質量%、マンガン(Mn)の含有率が0.2〜2.0質量%]
FIG. 10 shows the relationship between the number of Si · Mn nitrides of 0.05 μm to 1 μm and the life ratio. As can be seen from the figure, by dispersing 100 or more Si · Mn nitrides within a measurement area of 375 μm 2 , the base structure is strengthened and the life under lubrication with foreign matter is extended.
[Carbon (C) content is 0.3 to 1.2% by mass]
Carbon is an important element for obtaining the strength and life required for steel. If the amount of carbon is too small, not only a sufficient strength cannot be obtained, but also the heat treatment time required to obtain the hardened layer depth required for carbonitriding described later will be increased, leading to an increase in the heat treatment cost. Therefore, the carbon content is 0.3% by mass or more, preferably 0.5% by mass or more. In addition, if the carbon content is too large, giant carbides are produced during steelmaking, which adversely affects the subsequent quenching characteristics and rolling fatigue life, and the header property may be reduced, leading to an increase in cost. .2% by mass.
[Content of silicon (Si) is 0.3 to 2.2% by mass, content of manganese (Mn) is 0.2 to 2.0% by mass]

上述したように、Si・Mn系窒化物を十分に析出させるためには、SiおよびMnを多く含有した鋼材を用いる必要がある。一般的な軸受材料であるSUJ2(Si含有量0.25%、Mn含有量0.4%)では、浸炭窒化等で窒素を過剰に付加しても、Si・Mn系窒化物量が少ない。このため、SiおよびMnの含有量は、以下の値を臨界値とする。
<Si含有量:0.3〜2.2質量%>
As described above, in order to sufficiently precipitate the Si · Mn nitride, it is necessary to use a steel material containing a large amount of Si and Mn. In the case of SUJ2 (Si content 0.25%, Mn content 0.4%) which is a general bearing material, even if nitrogen is excessively added by carbonitriding or the like, the amount of Si · Mn nitride is small. For this reason, content of Si and Mn makes the following values critical values.
<Si content: 0.3 to 2.2% by mass>

本発明に係る窒化物の析出に必要な元素であり、Mnの存在によって、0.3質量%以上の添加で、窒素と効果的に反応して顕著に析出する。
<Mn含有量:0.2〜2.0質量%>
本発明に係る窒化物の析出に必要な元素であり、Siとの共存によって、0.2質量%以上の添加でSi・Mn窒化物の析出を促進させる作用がある。また、Mnはオーステナイトを安定化する働きがあるので、硬化熱処理後に残留オーステナイトが必要以上に増加するといった問題を引き起こすのを防止するため、2.0質量%以下とする。
[内輪および外輪の軌道面の残留オーステナイト量をγrAB(体積%)とし、転動体の転動面の残留オーステナイト量をγr(体積%)とした場合に、γrAB−15≦γr≦γrAB+15(ただし、0(体積%)≦γrAB、γr≦50(体積%))である転がり軸受]
It is an element necessary for the precipitation of the nitride according to the present invention, and due to the presence of Mn, it effectively reacts with nitrogen and precipitates significantly when added in an amount of 0.3% by mass or more.
<Mn content: 0.2 to 2.0 mass%>
It is an element necessary for precipitation of nitride according to the present invention, and has the effect of promoting the precipitation of Si · Mn nitride when added in an amount of 0.2% by mass or more by coexistence with Si. Further, since Mn has a function of stabilizing austenite, it is set to 2.0% by mass or less in order to prevent the problem that the retained austenite increases more than necessary after the heat treatment for curing.
[When the amount of retained austenite on the raceway surfaces of the inner ring and the outer ring is γr AB (volume%) and the amount of retained austenite on the rolling surface of the rolling element is γr C (volume%), γr AB −15 ≦ γr C ≦ γr AB +15 (where 0 (volume%) ≦ γr AB , γr C ≦ 50 (volume%))]

前述したように、残留オーステナイト量が少なくなると耐圧痕性、耐摩耗性が向上する一方で、表面の残留オーステナイト量が多いほどはく離寿命が延長することが明らかになっている。すなわち、転動体を中心に考えると、転動体表面のオーステナイト量が少ないほど転動体の耐圧痕性、耐摩耗性が向上し、軌道輪の寿命は延長するが、転動体自身の寿命は低下する。従って、最長軸受寿命とするのに最適な転動体の残留オーステナイト量が存在するが、その最適な範囲は、軌道輪の残留オーステナイト量によって異なる。軌道輪の残留オーステナイト量が多い場合には、軌道輪の寿命が長くなり、軌道輪の耐圧痕性が低下して軌道輪と転動体の間に作用する接線力も大きくなるため、転動体の耐圧痕性・耐摩耗性を上げるより、転動体の寿命を延ばす必要がある。そのため、軌道輪の残留オーステナイト量が多い場合には、転動体の残留オーステナイト量も多くしなければならない。   As described above, it has been clarified that when the amount of retained austenite is reduced, the pressure scar resistance and wear resistance are improved, while the peel life is extended as the amount of retained austenite on the surface is increased. In other words, considering rolling elements, the smaller the amount of austenite on the surface of the rolling elements, the better the pressure resistance and wear resistance of the rolling elements, and the life of the bearing rings is extended, but the life of the rolling elements themselves is reduced. . Accordingly, there is an optimum amount of retained austenite of the rolling elements to achieve the longest bearing life, but the optimum range varies depending on the amount of retained austenite of the race. When the amount of retained austenite in the raceway is large, the life of the raceway is prolonged, the pressure resistance of the raceway is reduced, and the tangential force acting between the raceway and the rolling element is also increased. It is necessary to extend the life of the rolling element rather than to improve the scratch resistance and wear resistance. Therefore, when the amount of retained austenite of the race is large, the amount of retained austenite of the rolling elements must also be increased.

すなわち、最長軸受寿命を達成する転動体の残留オーステナイト量(γr)の範囲は、軌道輪の残留オーステナイト量(γrAB)によって変化するため、γrAB−15≦γr≦γrAB+15(ただし0(体積%)≦γrAB、γr≦50(体積%))の形をとる(数値限定理由は後述する)。
また、残留オーステナイトが多すぎると硬さが下がり、耐圧痕性・耐摩耗性が低下するだけでなく、高温で使用される場合の寸法安定性も悪化するため上限値を50体積%とした。
That is, since the range of the retained austenite amount (γr C ) of the rolling element that achieves the longest bearing life varies depending on the retained austenite amount (γr AB ) of the raceway, γr AB −15 ≦ γr C ≦ γr AB +15 (however, 0 (volume%) ≦ γr AB , γr C ≦ 50 (volume%)) (the reason for the numerical limitation will be described later).
In addition, when the amount of retained austenite is too large, not only the hardness is lowered and the pressure resistance and wear resistance is lowered, but also the dimensional stability when used at a high temperature is deteriorated, so the upper limit is set to 50% by volume.

また、本発明では好ましくは転動面表面の硬さをHV≧750とする。耐圧痕性・耐摩耗性を向上させる材料因子として表面硬さがあるが、耐圧痕性、耐磨耗性に及ぼす表面硬さの影響を調査するため、図1に示す耐圧痕性試験と図2に示す2円筒摩耗試験を行った。図3に耐圧痕性、耐磨耗性に及ぼす表面硬さの影響を示す。なお、同図(a)には表面硬さと圧痕深さとの関係を示し、同図(b)には表面硬さと摩耗量との関係を示している。   In the present invention, the hardness of the rolling contact surface is preferably HV ≧ 750. Surface hardness is a material factor that improves pressure scar resistance and wear resistance. In order to investigate the effect of surface hardness on pressure scar resistance and wear resistance, the pressure scar resistance test and chart shown in FIG. A two-cylinder abrasion test shown in FIG. FIG. 3 shows the influence of the surface hardness on the pressure scar resistance and wear resistance. In addition, the same figure (a) shows the relationship between surface hardness and indentation depth, and the same figure (b) shows the relationship between surface hardness and wear amount.

図3(a)に示すように、表面硬さが大きいほど耐圧痕性に優れており、また、図3(b)に示すように、表面硬さが大きいほど耐摩耗性についても優れていることがわかる。特に耐摩耗性、耐圧痕性ともに表面の硬さがHV750以上になると顕著に表面硬さの効果が得られる。また、硬さが硬いほど疲労強度が上昇することが知られており、転動面の表面硬さを上げることで耐圧痕性・耐摩耗性だけでなく、はく離強度をも上げることが可能である。   As shown in FIG. 3 (a), the greater the surface hardness, the better the pressure resistance, and as shown in FIG. 3 (b), the greater the surface hardness, the better the wear resistance. I understand that. In particular, when the surface hardness is HV750 or more in both wear resistance and pressure scar resistance, the effect of surface hardness is remarkably obtained. In addition, it is known that the higher the hardness, the higher the fatigue strength. By increasing the surface hardness of the rolling surface, it is possible to increase not only the scratch resistance and wear resistance but also the peel strength. is there.

上述のように、本発明によれば、異物混入やミンドリンスリップによる表面粗さの悪化を抑制し、転動体と軌道輪間に作用する接線力を抑制して、更なる長寿命化を達成し得るベルト式無段変速機用の転がり軸受を提供することができる。   As described above, according to the present invention, it is possible to suppress the deterioration of the surface roughness due to foreign matter contamination and Mindlin slip, and to suppress the tangential force acting between the rolling elements and the raceway, thereby further extending the life. It is possible to provide a rolling bearing for a belt type continuously variable transmission.

以下、本発明に係るベルト式無段変速機用転がり軸受の一実施例、およびその実施例、並びに比較例について実施した寿命試験について説明する。
このベルト式無段変速機用転がり軸受は、上述の図11に示すベルト式無段変速機同様の基本構造のベルト式無段変速機に用いられるものであり、また、図12に示す構造のものである。具体的には、深溝玉軸受(6206)であって、その内輪5、外輪4、および転動体8のうち、本実施形態の例では、転動体8に本発明に係るベルト式無段変速機用転がり軸受を適用した。また、内外輪5,4については、高炭素クロム軸受鋼(SUJ2)を用いて、830〜850℃のRxガス+エンリッチガス+アンモニアガス雰囲気中で1〜3時間の浸炭窒化処理をした後、180〜240℃の焼戻しを施して、内外輪軌道面の残留オーステナイトが約10、20、30%の3種類の軌道輪を作成した。
表1にこの寿命試験に使用した転動体素材の成分および完成転動体の品質を示す。
Hereinafter, one example of a rolling bearing for a belt-type continuously variable transmission according to the present invention, an example thereof, and a life test performed on a comparative example will be described.
This rolling bearing for a belt-type continuously variable transmission is used in a belt-type continuously variable transmission having the same basic structure as the belt-type continuously variable transmission shown in FIG. 11 described above, and has the structure shown in FIG. Is. Specifically, it is a deep groove ball bearing (6206), and of the inner ring 5, the outer ring 4, and the rolling element 8, in the example of the present embodiment, the belt type continuously variable transmission according to the present invention is used as the rolling element 8. Rolling bearings were used. Further, for the inner and outer rings 5, 4, after carbonitriding for 1 to 3 hours in an atmosphere of Rx gas + enrich gas + ammonia gas at 830 to 850 ° C. using high carbon chromium bearing steel (SUJ2), The tempering at 180 to 240 ° C. was performed, and three types of bearing rings having residual austenite of the inner and outer ring raceway surfaces of about 10, 20, and 30% were prepared.
Table 1 shows the components of the rolling element material used in this life test and the quality of the finished rolling element.

Figure 2009041744
Figure 2009041744

この転動体8は、まず、上記表1に示す成分の線材を、ヘッダー加工、粗研削加工により製作し、浸炭窒化焼入れ(830℃X5〜20hr、Rxガス+エンリッチガス+アンモニアガス雰囲気)、180〜270℃焼戻しの熱処理および後工程を行った。転動体の表面窒素量の測定には電子線マイクロアナライザー(EPMA)を用い、定量分析を行った。また、表面層の残留オーステナイト量の測定は、X線回折法により測定した。いずれも、転動体表面を直接分析測定した。さらに、Si・Mn系窒化物の面積率の測定は、電界放射型走査型電子顕微鏡(FE−SEM)を用いて、加速電圧10kVで転動面の観察を行い、倍率5000倍で最低3視野以上写真を撮影した後、写真を2値化してから面像解析装置を用いて、面積率を計算した。   In this rolling element 8, first, wire rods having the components shown in Table 1 above are manufactured by header processing and rough grinding, and carbonitriding and quenching (830 ° C. X 5 to 20 hr, Rx gas + enrich gas + ammonia gas atmosphere), 180 A heat treatment and post-process of ˜270 ° C. tempering were performed. For the measurement of the surface nitrogen amount of the rolling element, an electron beam microanalyzer (EPMA) was used for quantitative analysis. The amount of retained austenite in the surface layer was measured by an X-ray diffraction method. In both cases, the rolling element surface was directly analyzed and measured. Furthermore, the area ratio of the Si / Mn nitride was measured using a field emission scanning electron microscope (FE-SEM) by observing the rolling surface at an acceleration voltage of 10 kV and at least 3 fields of view at a magnification of 5000 times. After taking a photograph as described above, the area ratio was calculated using a surface image analyzer after binarizing the photograph.

そして、この深溝玉軸受6206を用い、異物混入潤滑下で寿命試験をおこなった。寿命試験前に油圧式疲労試験機を用いて下記の条件で転動体と軌道輪にミンドリンスリップを形成した。
[ミンドリンスリップ形成条件]
荷重:20kNおよび5kNの繰り返し荷重を負荷
繰返し数:20Hz
繰返し数:1.0×10cycle
Using this deep groove ball bearing 6206, a life test was conducted under the contamination with foreign matter. Prior to the life test, a Mindlin slip was formed on the rolling elements and the races under the following conditions using a hydraulic fatigue tester.
[Mindrin slip formation conditions]
Load: Repetitive load of 20 kN and 5 kN is applied. Number of repetitions: 20 Hz
Number of repetitions: 1.0 × 10 5 cycle

また、寿命試験条件は以下の通りである。
[寿命試験条件]
試験荷重:Fr=6.4kN
回転数:0(3sec)⇔3000min−1(30sec)
潤滑油:CVTフルードNS2
異物の硬さ:HV870
異物サイズ:74〜147μm
異物混入量:0.05g
The life test conditions are as follows.
[Life test conditions]
Test load: Fr = 6.4 kN
Rotation speed: 0 (3 sec) ⇔ 3000 min −1 (30 sec)
Lubricant: CVT fluid NS2
Hardness of foreign matter: HV870
Foreign material size: 74-147 μm
Foreign matter contamination: 0.05g

上記表1に実施例、比較例の転動体素材の成分、品質と合わせて寿命試験結果を示す。寿命試験は各サンプルn=10行い、はく離が発生するまでの寿命時間を調査して、ワイブルプロットを作成し、ワイブル分布の結果からL10寿命を求め、寿命値とした。寿命は最も短寿命であった比較例1の値を1として比の値で示してある。また、図8はSi・Mn系窒化物の面積率と寿命比の関係をまとめたものである。   Table 1 shows the life test results together with the components and quality of the rolling element materials of Examples and Comparative Examples. The life test was performed for each sample n = 10, the life time until peeling occurred was investigated, a Weibull plot was created, the L10 life was obtained from the results of the Weibull distribution, and the life value was obtained. The lifetime is shown as a ratio value, with the value of Comparative Example 1 having the shortest lifetime as 1. FIG. 8 summarizes the relationship between the area ratio and the life ratio of Si / Mn nitrides.

表1より比較例6は硬さが不十分なため寿命が延びていない。表1、図8より、本発明範囲の鋼製の素材を用い、その軌道面の表層部を、窒素濃度0.2質量%以上2.0質量%以下、Si・Mn系窒化物面積率1%以上20%以下にした本発明に係る実施例は、比較例に比べて寿命延長効果が大きいことが確認された。なお、比較例5は、本発明範囲の鋼を用い、更に窒素量を0.2質量%以上にしているが、Si・Mn窒化物の折出藍が面積率で1%以下になっているため、寿命が延びていない。   From Table 1, the life of Comparative Example 6 is not extended because of insufficient hardness. From Table 1 and FIG. 8, the steel material within the scope of the present invention was used, and the surface layer portion of the raceway surface thereof had a nitrogen concentration of 0.2% by mass to 2.0% by mass, a Si / Mn nitride area ratio of 1 It was confirmed that the examples according to the present invention having a ratio of not less than 20% and not more than 20% have a longer life extension effect than the comparative example. In Comparative Example 5, steel within the scope of the present invention was used, and the nitrogen content was further 0.2 mass% or more, but the Si / Mn nitride protrusions were 1% or less in area ratio. Therefore, the lifetime has not been extended.

図9に軌道輪軌道面の残留オーステナイトが10、20、30%の場合の転動体転動面の残留オーステナイトと寿命比の関係を示す。
同図に示すように、軌道輪軌道面の残留オーステナイトが多いほど長寿命の傾向を示すが、その寿命は転動体転動面の残留オーステナイト量に依存しており、転動体の残留オーステナイト量を本発明範囲内に規定することにより、軸受全体として長寿命を達成している。また転動体の残留オーステナイト量が本発明に規定する範囲未満の場合はすべて転動体が破損し、また、本発明に規定する範囲よりも多い場合にはすべて軌道輪が破損しており、本発明に規定する好適範囲内にすることにより、転動体と軌道輪の寿命をバランスよく延ばし、軸受全体として長寿命が達成できていることが分かる。
FIG. 9 shows the relationship between the remaining austenite of the rolling element rolling surface and the life ratio when the retained austenite of the raceway surface is 10, 20, and 30%.
As shown in the figure, the longer the retained austenite on the raceway surface, the longer the life expectancy.The lifetime depends on the amount of retained austenite on the rolling element rolling surface. By defining within the scope of the present invention, a long life is achieved as a whole bearing. In addition, when the amount of retained austenite of the rolling element is less than the range specified in the present invention, the rolling element is all damaged, and when it is more than the range specified in the present invention, all the raceway rings are damaged. It can be seen that the lifespan of the rolling elements and the bearing rings is extended in a well-balanced manner, and a long life can be achieved for the entire bearing.

このように、本発明に係るベルト式無段変速機用の転がり軸受によれば、異物混入やミンドリンスリップによる表面粗さの悪化を抑制し、転動体と軌道輪間に作用する接線力を抑制して、更なる長寿命化を達成することができる。なお、上記実施例は、転動体に対して本発明を適用した例を示したが、内輪および外輪のいずれか、または内輪、外輪および転動体すべてに適用しても同様の効果が得られる。   As described above, according to the rolling bearing for the belt type continuously variable transmission according to the present invention, the deterioration of the surface roughness due to foreign matter contamination and Mindlin slip is suppressed, and the tangential force acting between the rolling element and the raceway is reduced. It can suppress and can achieve further life extension. In addition, although the said Example showed the example which applied this invention with respect to the rolling element, the same effect is acquired even if it applies to either an inner ring and an outer ring, or all of an inner ring, an outer ring, and a rolling element.

なおまた、特開平5−25609号公報に記載されているように、残留オーステナイトが増えると異物混入潤滑環境下で寿命が延びる結果は本試験結果でも得られている。しかし、単にそれだけでは不十分であり、相手材の残留オーステナイト量をも規定することで上記実施例に示したような長寿命化が可能となる。また、本発明はコスト的な理由や使用条件の問題から残留オーステナイトを増やして長寿命化が行えない場合にも、効果的に寿命を延ばす範囲を規定し、寿命を延ばす手法を提供するものである。   Further, as described in Japanese Patent Laid-Open No. 5-25609, the result of extending the life in a foreign matter-mixed lubricating environment when the retained austenite increases is also obtained in this test result. However, that alone is not sufficient, and it is possible to extend the life as shown in the above embodiment by defining the amount of retained austenite of the counterpart material. In addition, the present invention provides a method for extending the life effectively by specifying a range for effectively extending the life even when the retained austenite cannot be increased due to cost reasons and problems in use conditions, and the life can not be extended. is there.

耐圧痕性試験の方法を説明するための図である。It is a figure for demonstrating the method of a pressure | voltage resistant test. 耐摩耗性試験の方法を説明するための図である。It is a figure for demonstrating the method of an abrasion resistance test. 耐圧痕性、耐摩耗性に及ぼす表面硬さの影響の結果を示すグラフであり、同図(a)には表面硬さと圧痕深さとの関係を示し、同図(b)には表面硬さと摩耗量との関係を示している。It is a graph which shows the result of the influence of the surface hardness which gives to an impression resistance and abrasion resistance, The figure (a) shows the relationship between surface hardness and indentation depth, The figure (b) shows surface hardness and The relationship with the amount of wear is shown. 耐圧痕性、耐摩耗性に及ぼす表面窒素濃度の影響の結果を示すグラフであり、同図(a)には表面窒素濃度と圧痕深さとの関係を示し、同図(b)には表面窒素濃度と摩耗量との関係を示している。It is a graph which shows the result of the influence of surface nitrogen concentration on pressure dent resistance and abrasion resistance, the figure (a) shows the relationship between surface nitrogen concentration and dent depth, and the figure (b) shows surface nitrogen. The relationship between the concentration and the amount of wear is shown. 表面窒素濃度と衝撃吸収エネルギーとの関係を示すグラフである。It is a graph which shows the relationship between surface nitrogen concentration and shock absorption energy. 耐圧痕性、耐摩耗性に及ぼすSi・Mn系窒化物の面積率の影響の結果を示すグラフであり、同図(a)にはSi・Mn系窒化物の面積率と圧痕深さとの関係を示し、同図(b)にはSi・Mn系窒化物の面積率と摩耗量との関係を示している。It is a graph which shows the result of the influence of the area ratio of the Si / Mn nitride on the indentation resistance and the wear resistance. FIG. (A) shows the relationship between the area ratio of the Si / Mn nitride and the indentation depth. FIG. 4B shows the relationship between the area ratio of Si / Mn nitride and the amount of wear. Si・Mn系窒化物の面積率と衝撃吸収エネルギーとの関係を示すグラフである。It is a graph which shows the relationship between the area ratio of Si * Mn type nitride, and impact absorption energy. Si・Mn系窒化物の面積率と寿命比との関係を示すグラフである。It is a graph which shows the relationship between the area ratio and lifetime ratio of Si * Mn type nitride. 実施形態で得られたデータに基づく、内外輪の軌道面表層部の残留オーステナイト量と、転動体の転動面表層部の残留オーステナイト量と、軸受の寿命との関係を示すグラフである。It is a graph which shows the relationship between the amount of retained austenite of the raceway surface layer part of an inner and outer ring based on the data obtained by embodiment, the amount of retained austenite of the rolling surface surface layer part of a rolling element, and the lifetime of a bearing. 0.05μm〜1μmのSi・Mn系窒化物の個数と寿命比率との関係を示すグラフである。It is a graph which shows the relationship between the number of the Si * Mn type nitride of 0.05 micrometer-1 micrometer, and a lifetime ratio. ベルト式無段変速機の構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of a belt-type continuously variable transmission. ベルト式無段変速機用転がり軸受の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the rolling bearing for belt type continuously variable transmissions.

符号の説明Explanation of symbols

1、2 回転軸
3 転がり軸受
4 外輪
5 内輪
6 外輪軌道(転動面)
7 内輪軌道(転動面)
8 転動体
9 保持器
10 駆動源
11 発進クラッチ
12 駆動側プーリ(プーリ)
15 従動側プーリ(プーリ)
1, 2 Rotating shaft 3 Rolling bearing 4 Outer ring 5 Inner ring 6 Outer ring raceway (rolling surface)
7 Inner ring raceway (rolling surface)
8 Rolling elements 9 Cage 10 Drive source 11 Starting clutch 12 Drive pulley (pulley)
15 Driven pulley (pulley)

Claims (2)

固定部と、無段変速のためのプーリを前記固定部に対して回転自在に支持する回転部と、を有するベルト式無段変速機に用いられ、内周面に転動面を有する外輪と、外周面に転動面を有する内輪と、前記外輪の転動面と内輪の転動面との間に転動自在に配設される複数の転動体とを備え、前記固定部に前記外輪が内嵌支持されるとともに、前記回転部に前記内輪が前記プーリと共に外嵌支持される転がり軸受であって、
前記内輪、外輪および転動体のうちの少なくとも1つが、炭素(C)の含有率が0.3〜1.2質量%、珪素(Si)の含有率が0.3〜2.2質量%、マンガン(Mn)の含有率が0.2〜2.0質量%、残部鉄および不可避的不純物からなる鋼製の素材を所定形状に加工した後、その軌道面の表層部に浸炭窒化処理もしくは窒化処理が施されて得られ、その表層部の窒素濃度が0.2〜2.0質量%であり、更に、珪素(Si)およびマンガン(Mn)を含有した窒化物の面積率が1%以上20%以下であることを特徴とするベルト式無段変速機用転がり軸受。
An outer ring that is used in a belt-type continuously variable transmission that includes a fixed portion and a rotating portion that rotatably supports a pulley for continuously variable transmission with respect to the fixed portion, and that has a rolling surface on an inner peripheral surface thereof. And an inner ring having a rolling surface on the outer peripheral surface, and a plurality of rolling elements arranged to roll between the rolling surface of the outer ring and the rolling surface of the inner ring, and the outer ring on the fixed portion Is a rolling bearing in which the inner ring is supported by the rotating portion together with the pulley.
At least one of the inner ring, the outer ring, and the rolling element has a carbon (C) content of 0.3 to 1.2 mass%, a silicon (Si) content of 0.3 to 2.2 mass%, After processing a steel material having a manganese (Mn) content of 0.2 to 2.0 mass%, the balance iron and inevitable impurities into a predetermined shape, carbonitriding or nitriding is performed on the surface layer of the raceway surface. The nitrogen concentration of the surface layer portion is 0.2 to 2.0% by mass, and the area ratio of the nitride containing silicon (Si) and manganese (Mn) is 1% or more. A rolling bearing for a belt-type continuously variable transmission, characterized by being 20% or less.
前記内輪および外輪の軌道面の残留オーステナイト量をγrAB(体積%)とし、前記転動体の転動面の残留オーステナイト量をγr(体積%)とした場合に、下記の(1)式を満たすことを特徴とする請求項1に記載のベルト式無段変速機用転がり軸受。
γrAB−15≦γr≦γrAB+15‥‥(1)
ただし、0(体積%)≦γrAB、γr≦50(体積%)である。
When the amount of retained austenite on the raceway surfaces of the inner ring and the outer ring is γr AB (volume%) and the amount of retained austenite on the rolling surface of the rolling element is γr C (volume%), the following equation (1) is obtained: The rolling bearing for a belt type continuously variable transmission according to claim 1, wherein:
γr AB −15 ≦ γr C ≦ γr AB +15 (1)
However, 0 (volume%) ≦ γr AB and γr C ≦ 50 (volume%).
JP2007210220A 2007-08-10 2007-08-10 Rolling bearing for belt type continuously variable transmission Pending JP2009041744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007210220A JP2009041744A (en) 2007-08-10 2007-08-10 Rolling bearing for belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007210220A JP2009041744A (en) 2007-08-10 2007-08-10 Rolling bearing for belt type continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2009041744A true JP2009041744A (en) 2009-02-26

Family

ID=40442675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210220A Pending JP2009041744A (en) 2007-08-10 2007-08-10 Rolling bearing for belt type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2009041744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241754A (en) * 2011-05-17 2012-12-10 Nsk Ltd Rolling bearing
JP2014020394A (en) * 2012-07-12 2014-02-03 Nsk Ltd Planetary gear device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241754A (en) * 2011-05-17 2012-12-10 Nsk Ltd Rolling bearing
JP2014020394A (en) * 2012-07-12 2014-02-03 Nsk Ltd Planetary gear device

Similar Documents

Publication Publication Date Title
KR100827578B1 (en) Rolling bearing
JP5194532B2 (en) Rolling bearing
EP1489318A1 (en) Rolling bearing for belt type non-stage transmission
JP4348964B2 (en) Rolling bearing for belt type continuously variable transmission and method for manufacturing the same
JP5529526B2 (en) Rolling bearing
WO2012066913A1 (en) Rolling element bearing, and method for producing rolling element bearing
JP2012107675A (en) Rolling bearing and method for manufacturing rolling bearing
JP4998054B2 (en) Rolling bearing
JP5538877B2 (en) Rolling bearing
JP4992535B2 (en) Rolling bearing
JP2004011712A (en) Rolling bearing, and belt type continuously variable transmission using it
US6923576B2 (en) Rolling bearing and belt continuously variable transmission
JP2003278768A (en) Rolling bearing for belt type continuously variable transmission
JP2009041744A (en) Rolling bearing for belt type continuously variable transmission
JP6368271B2 (en) Manufacturing method of rolling bearing
JP5211453B2 (en) Rolling bearing
WO2011040267A1 (en) Rolling bearing
JP2009191942A (en) Rolling bearing
JP5194538B2 (en) Rolling bearing
JP2006045591A (en) Tapered roller bearing
JP2012107676A (en) Rolling bearing and method for manufacturing rolling bearing
JP2014020394A (en) Planetary gear device
JP7177883B2 (en) Rolling parts and rolling bearings
JP6308971B2 (en) Rolling bearing and manufacturing method of rolling bearing
JP2006017163A (en) Rolling support device and manufacturing method of its component