JP4992535B2 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP4992535B2
JP4992535B2 JP2007119517A JP2007119517A JP4992535B2 JP 4992535 B2 JP4992535 B2 JP 4992535B2 JP 2007119517 A JP2007119517 A JP 2007119517A JP 2007119517 A JP2007119517 A JP 2007119517A JP 4992535 B2 JP4992535 B2 JP 4992535B2
Authority
JP
Japan
Prior art keywords
mass
content
less
rolling
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007119517A
Other languages
Japanese (ja)
Other versions
JP2008274353A (en
Inventor
直也 瀬野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007119517A priority Critical patent/JP4992535B2/en
Publication of JP2008274353A publication Critical patent/JP2008274353A/en
Application granted granted Critical
Publication of JP4992535B2 publication Critical patent/JP4992535B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/63Gears with belts and pulleys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/65Gear shifting, change speed gear, gear box

Description

この発明は転がり軸受に関する。   The present invention relates to a rolling bearing.

電動射出成形機やプレス機械等で使用されるボールねじは、比較的大型で且つ高荷重が負荷されるものであり、瞬間的に高負荷が作用する短いストロークで使用され、最大負荷が作用した状態で一旦停止した後に逆回転する(往復運動)という厳しい条件下で使用される。
この用途のボールねじには制御の高速化と位置決め精度の向上が要求されるため、このボールねじを支持する転がり軸受には、トルクが低いこと、トルクスパイク等の急激なトルク変動がないことが求められている。また、この用途の転がり軸受は、機器の動作によって振動を受け易いことや、潤滑油の蒸発や飛散を抑えるために潤滑条件が厳しくなることから、軌道面にフレッチングや焼き付きが生じ易い環境にある。
Ball screws used in electric injection molding machines, press machines, etc. are relatively large and are loaded with high loads. They are used with short strokes where high loads act instantaneously, and the maximum load is applied. It is used under severe conditions such as once rotating in a state and then reversely rotating (reciprocating).
Since the ball screw for this application requires high speed control and improved positioning accuracy, the rolling bearing that supports this ball screw may not have a low torque or a sudden torque fluctuation such as a torque spike. It has been demanded. In addition, the rolling bearings for this application are susceptible to vibrations due to the operation of the equipment, and because the lubrication conditions are severe in order to suppress the evaporation and scattering of the lubricating oil, it is in an environment where fretting and seizure are likely to occur on the raceway surface. .

一方、図3は、車両のベルト式無段変速機を模式的に示したものであり、プライマリープーリ7およびセカンダリープーリ8の回転軸が、それぞれ1対の転がり軸受11a,11b、12a,12bで支持されている。符号9はベルトである。
車両のベルト式無段変速機で使用される転がり軸受は、ベルトによる動力伝達効率を良好にすること、ベルト駆動の騒音を抑制すること、プーリとベルトの摩耗を抑えることが求められており、これらの点からは、流動性の高い(粘度の低い)潤滑油を使用することが望ましい。
On the other hand, FIG. 3 schematically shows a belt type continuously variable transmission of a vehicle, and the rotation shafts of the primary pulley 7 and the secondary pulley 8 are respectively a pair of rolling bearings 11a, 11b, 12a, 12b. It is supported. Reference numeral 9 denotes a belt.
Rolling bearings used in vehicle belt type continuously variable transmissions are required to improve power transmission efficiency by belts, to suppress belt drive noise, and to suppress wear of pulleys and belts. From these points, it is desirable to use a lubricating oil having high fluidity (low viscosity).

しかし、流動性の高い潤滑油を使用することは、プーリの回転軸を支持する転がり軸受の潤滑性能の点で好ましくない。すなわち、プーリの回転軸を支持する転がり軸受はプーリの側面に位置するため、この転がり軸受には潤滑油が供給され難いとともに、前述の振動に起因して軌道輪と転動体との間の潤滑膜の状態が悪化し易く、滑りの影響によっても潤滑膜が破壊されやすい。よって、ベルト式無段変速機で使用される転がり軸受は、軌道面にフレッチングや焼き付きが生じ易い環境にある。   However, the use of highly fluid lubricating oil is not preferable in terms of the lubricating performance of the rolling bearing that supports the rotating shaft of the pulley. That is, since the rolling bearing that supports the rotating shaft of the pulley is located on the side surface of the pulley, it is difficult to supply lubricating oil to the rolling bearing, and the lubrication between the race and the rolling element is caused by the vibration described above. The state of the film is likely to deteriorate, and the lubricating film is likely to be destroyed due to the influence of slippage. Therefore, the rolling bearing used in the belt type continuously variable transmission is in an environment where fretting and seizure are likely to occur on the raceway surface.

転がり軸受の耐フレッチング性および耐焼き付き性を向上させる従来の方法としては、転がり軸受の構成部材(軌道輪および転動体)をSUJ2鋼製とし、少なくともいずれかに対して窒化処理後に焼入れ焼戻しを行う方法や、転動体をセラミックス製にする方法がある。しかしながら、電動射出成形機やプレス機械等で使用されるボールねじを支持する転がり軸受や、ベルト式無段変速機で使用される転がり軸受の場合には、これらの方法で十分な効果を得ることはできない。   As a conventional method for improving the fretting resistance and seizure resistance of a rolling bearing, the constituent members (the race ring and the rolling element) of the rolling bearing are made of SUJ2 steel, and at least one of them is subjected to quenching and tempering after nitriding treatment. There are a method and a method of making the rolling elements made of ceramics. However, in the case of a rolling bearing that supports a ball screw used in an electric injection molding machine or a press machine, or a rolling bearing that is used in a belt type continuously variable transmission, sufficient effects can be obtained by these methods. I can't.

これらの従来技術に対して、例えば、下記の特許文献1には、過給機や工作機械等のdm・n値が1.0×106 以上となるような高速回転環境下で使用しても、転がり軸受に摩耗や焼き付きが生じないようにするための技術が記載されている。この技術では、使用する鋼を特定するとともに、表層部に炭素および窒素を所定含有率で存在させるか、表面に0.1μm以下のTiCを析出させることで、耐摩耗性および耐焼き付き性を向上させている。
特開2000−45049号公報
In contrast to these prior arts, for example, in Patent Document 1 below, a turbocharger, a machine tool, or the like is used in a high-speed rotation environment in which the dm · n value is 1.0 × 10 6 or more. However, a technique for preventing the rolling bearing from being worn or seized is described. This technology improves the wear resistance and seizure resistance by specifying the steel to be used and allowing carbon and nitrogen to exist in the surface layer at a predetermined content or by depositing TiC of 0.1 μm or less on the surface. I am letting.
JP 2000-45049 A

上記特許文献1に記載の技術でも、電動射出成形機やプレス機械等で使用されるボールねじを支持する転がり軸受や、ベルト式無段変速機で使用される転がり軸受の場合には、転がり軸受の耐フレッチング性および耐焼き付き性を向上させるという点で、更なる改善の余地がある。
本発明の課題は、電動射出成形機やプレス機械等で使用されるボールねじを支持する転がり軸受や、ベルト式無段変速機用の転がり軸受として好適な、耐フレッチング性および耐焼き付き性に優れた転がり軸受を提供することにある。
Even in the technique described in Patent Document 1, in the case of a rolling bearing that supports a ball screw used in an electric injection molding machine or a press machine, or a rolling bearing used in a belt type continuously variable transmission, the rolling bearing is used. There is room for further improvement in terms of improving the fretting resistance and seizure resistance.
An object of the present invention is excellent in fretting resistance and seizure resistance, suitable as a rolling bearing for supporting a ball screw used in an electric injection molding machine, a press machine, etc., or a rolling bearing for a belt type continuously variable transmission. It is to provide a rolling bearing.

上記課題を解決するために、本発明は、転動体が、炭素(C)の含有率が0.3質量%以上1.2質量%以下、クロム(Cr)の含有率が0.5質量%以上2.0質量%以下、珪素(Si)の含有率が0.4質量%以上1.2質量%以下、マンガン(Mn)の含有率が0.4質量%以上1.2質量%以下、珪素(Si)とマンガン(Mn)の合計含有率が1.0質量%以上2.0質量%以下、残部鉄および不可避的不純物である鉄鋼製の素材を、所定形状に加工した後、窒化処理または浸炭窒化処理と焼き入れおよび焼戻しからなる熱処理が施されて得られ、転動面に、珪素(Si)の窒化物およびマンガン(Mn)の窒化物からなり、粒径1μm以下のSi・Mn系窒化物が、面積比で1%以上10%以下の範囲で存在し、表層部の残留オーステナイトが10体積%以下となっていることを特徴とする転がり軸受を提供する。   In order to solve the above-described problems, the present invention provides a rolling element having a carbon (C) content of 0.3 mass% to 1.2 mass% and a chromium (Cr) content of 0.5 mass%. 2.0 mass% or less, silicon (Si) content of 0.4 mass% or more and 1.2 mass% or less, manganese (Mn) content of 0.4 mass% or more and 1.2 mass% or less, After the total content of silicon (Si) and manganese (Mn) is 1.0% by mass or more and 2.0% by mass or less, the remaining iron and the steel material which is an unavoidable impurity are processed into a predetermined shape, and then subjected to nitriding treatment Alternatively, it is obtained by performing heat treatment comprising carbonitriding and quenching and tempering, and the rolling surface is made of silicon (Si) nitride and manganese (Mn) nitride, and Si · Mn having a particle size of 1 μm or less. System nitride exists in an area ratio of 1% or more and 10% or less. Austenite provides a rolling bearing, characterized in that it is 10% by volume or less.

本発明の転がり軸受において、軌道輪は、炭素(C)の含有率が0.2質量%以上1.2質量%以下、クロム(Cr)の含有率が0.5質量%以上2.0質量%以下、珪素(Si)の含有率が0.1質量%以上0.5質量%以下、マンガン(Mn)の含有率が0.1質量%以上0.5質量%以下、残部鉄および不可避的不純物である鉄鋼製の素材を所定形状に加工した後、熱処理が施されて得られたものであることが好ましい。   In the rolling bearing of the present invention, the bearing ring has a carbon (C) content of 0.2 mass% to 1.2 mass% and a chromium (Cr) content of 0.5 mass% to 2.0 mass%. % Or less, silicon (Si) content of 0.1% by mass or more and 0.5% by mass or less, manganese (Mn) content of 0.1% by mass or more and 0.5% by mass or less, balance iron and inevitable It is preferable that the steel material, which is an impurity, is processed into a predetermined shape and then heat-treated.

本発明の転がり軸受によれば、転動体の転動面に、粒径1μm以下の高硬度なSi・Mn系窒化物が面積比で1%以上存在することと、転動面の表層部の残留オーステナイトが10体積%以下(0体積%以上、好ましくは3体積%以上)であることにより、高速および高温下で使用された場合の耐摩耗性および耐焼き付き性が高くなる。
転動面における粒径1μm以下のSi・Mn系窒化物の存在率が、面積比で10%を超えると、研削性が低下したり、靱性が低下して割れが生じる恐れがある。また、転動面の表層部の残留オーステナイトが10体積%を超えると、表面硬さが低下して耐フレッチング性が不十分となる。
According to the rolling bearing of the present invention, a high hardness Si / Mn nitride having a particle diameter of 1 μm or less is present on the rolling surface of the rolling element in an area ratio of 1% or more, and the surface layer portion of the rolling surface is When the retained austenite is 10% by volume or less (0% by volume or more, preferably 3% by volume or more), the wear resistance and seizure resistance when used at high speed and high temperature are increased.
If the abundance of Si · Mn nitride having a particle size of 1 μm or less on the rolling surface exceeds 10% in terms of area ratio, the grindability may deteriorate or the toughness may decrease and cracks may occur. Moreover, when the retained austenite of the surface layer part of a rolling surface exceeds 10 volume%, surface hardness will fall and fretting resistance will become inadequate.

この転動体は、炭素(C)の含有率が0.3質量%以上1.2質量%以下、クロム(Cr)の含有率が0.5質量%以上2.0質量%以下、珪素(Si)の含有率が0.4質量%以上1.2質量%以下、マンガン(Mn)の含有率が0.4質量%以上1.2質量%以下、珪素(Si)とマンガン(Mn)の合計含有率が1.0質量%以上2.0質量%以下である鉄鋼製の素材を所定形状に加工した後、窒化処理または浸炭窒化処理と焼き入れおよび焼戻しからなる熱処理を施すことで得られたものである。   This rolling element has a carbon (C) content of 0.3 mass% to 1.2 mass%, a chromium (Cr) content of 0.5 mass% to 2.0 mass%, silicon (Si ) Content of 0.4 mass% or more and 1.2 mass% or less, manganese (Mn) content of 0.4 mass% or more and 1.2 mass% or less, the sum of silicon (Si) and manganese (Mn) It was obtained by processing a steel material having a content ratio of 1.0% by mass or more and 2.0% by mass or less into a predetermined shape, and then performing a heat treatment including nitriding or carbonitriding, quenching and tempering. Is.

使用する素材をなす鉄鋼の合金成分の含有率は、以下の理由で上述の範囲とした。
炭素(C)の含有率が0.3質量%未満であると、浸炭窒化処理で表層部に十分な量の炭素を存在させるために時間がかかる。そのため、炭素(C)の含有率は0.3質量%以上とし、好ましくは0.5質量%以上とし、より好ましくは0.7質量%以上とする。
また、炭素(C)の含有率が1.2質量%を超えると、製鋼時に巨大炭化物が形成されて、焼き入れ特性や転動疲労寿命に悪影響を及ぼす恐れがある。また、冷間加工性が低下して製造コストの上昇を招く恐れもある。
The content rate of the alloy component of the steel constituting the material to be used was set to the above range for the following reason.
When the carbon (C) content is less than 0.3% by mass, it takes time to allow a sufficient amount of carbon to be present in the surface layer portion by carbonitriding. Therefore, the carbon (C) content is set to 0.3% by mass or more, preferably 0.5% by mass or more, and more preferably 0.7% by mass or more.
On the other hand, if the carbon (C) content exceeds 1.2 mass%, giant carbides are formed during steelmaking, which may adversely affect the quenching characteristics and rolling fatigue life. In addition, cold workability may be reduced, leading to an increase in manufacturing cost.

クロム(Cr)の含有率が0.5質量%未満であると、焼き入れ性および焼戻し軟化抵抗性を高くする作用と、高硬度の微細な炭化物または炭窒化物を形成する作用が、実質的に得られない。これらの作用を十分に得るために、クロム(Cr)の含有率は1.3質量%以上であることが好ましい。
また、クロム(Cr)の含有率が2.0質量%を超えると、製鋼時に巨大炭化物が形成されて、焼き入れ特性や転動疲労寿命に悪影響を及ぼす恐れがある。また、冷間加工性や被削性が低下して製造コストの上昇を招く場合がある。そのため、クロム(Cr)の含有率は1.6質量%以下であることが好ましい。
When the content of chromium (Cr) is less than 0.5% by mass, the effect of increasing hardenability and temper softening resistance and the effect of forming high-hardness fine carbides or carbonitrides are substantially obtained. I can't get it. In order to obtain these effects sufficiently, the chromium (Cr) content is preferably 1.3% by mass or more.
On the other hand, if the chromium (Cr) content exceeds 2.0 mass%, giant carbides are formed during steelmaking, which may adversely affect the quenching characteristics and rolling fatigue life. In addition, cold workability and machinability may decrease, leading to an increase in manufacturing cost. Therefore, the content of chromium (Cr) is preferably 1.6% by mass or less.

珪素(Si)およびマンガン(Mn)の含有率がそれぞれ0.4質量%未満であり、珪素(Si)とマンガン(Mn)の合計含有率が1.0質量%未満であると、粒径1μm以下のSi・Mn系窒化物を、転動面に、面積比で1%以上10%以下の範囲で存在させることができない。
珪素(Si)の含有率が1.2質量%を超えると、鋼の靱性が不十分となる。マンガン(Mn)の含有率が1.2質量%を超えると、鍛造性および切削性が低下したり、鋼中不純物である硫黄(S)リン(P)とともに介在物として存在し易くなる。珪素(Si)とマンガン(Mn)の合計含有率が2.0質量%を超えると、Si・Mn系窒化物が多量に析出して、切削性および靱性が低下する。
When the content of silicon (Si) and manganese (Mn) is less than 0.4% by mass, and the total content of silicon (Si) and manganese (Mn) is less than 1.0% by mass, the particle size is 1 μm. The following Si · Mn nitrides cannot be present on the rolling surface in an area ratio of 1% or more and 10% or less.
If the content of silicon (Si) exceeds 1.2% by mass, the toughness of steel becomes insufficient. If the content of manganese (Mn) exceeds 1.2% by mass, the forgeability and machinability are lowered, and it tends to exist as inclusions together with sulfur (S) phosphorus (P) which is an impurity in steel. When the total content of silicon (Si) and manganese (Mn) exceeds 2.0 mass%, a large amount of Si · Mn nitride is precipitated, and machinability and toughness are deteriorated.

なお、本発明で使用する素材をなす鉄鋼は、上述の合金成分以外に、モリブデン(Mo)やバナジウム(V)等の炭化物形成促進元素を含有していてもよい。その場合には、材料費や加工性低下によるコスト上昇が生じない範囲で、それぞれ2質量%以下の比率で含有させる。そして、本発明で使用する素材をなす鉄鋼は、これらの選択的に含有させる成分と上述の合金成分を除く残部が鉄(Fe)と不可避不純物(S、P、Al、Ti、O等)で構成される。
なお、本発明の転がり軸受は、転動体の転動面に粒径1μm以下のSi・Mn系窒化物が面積比で1%以上10%以下の範囲で存在しているが、転動面の面積375μm2 中における0.05μm以上1μm以下のSi・Mn系窒化物の個数が100個以上となっていることが好ましい。
In addition, the steel which makes the raw material used by this invention may contain carbide | carbonized_material formation promotion elements, such as molybdenum (Mo) and vanadium (V) other than the above-mentioned alloy component. In that case, it is made to contain in the ratio of 2 mass% or less in the range which does not raise the cost by material cost or workability fall, respectively. And the steel which makes the raw material used by this invention is the remainder except iron (Fe) and an unavoidable impurity (S, P, Al, Ti, O, etc.) except the component to contain selectively and the above-mentioned alloy component. Composed.
In the rolling bearing according to the present invention, the Si / Mn nitride having a particle size of 1 μm or less is present on the rolling surface of the rolling element in an area ratio of 1% or more and 10% or less. The number of Si · Mn nitrides having an area of 375 μm 2 that is 0.05 μm or more and 1 μm or less is preferably 100 or more.

窒化物の面積率が同じ場合、粒径が小さいほど存在する粒子の数が多く、粒子間距離が短くなるため、析出強化能が高くなる。よって、Si及びMnの含有量の多い鉄鋼を用い、Si・Mn系窒化物の面積率1〜10%の範囲で、平均粒径が0.05μm以上1μm以下の微細な窒化物の個数を増やすことが、転動面をより強化することにつながる。さらに、0.05μm以上1μm以下のSi・Mn系窒化物における、0.05〜0.50μmのSi・Mn系窒化物の割合を20%以上とすることにより、転動面を更に強化することが可能になる。   When the area ratio of the nitride is the same, the smaller the particle size, the greater the number of particles present, and the shorter the interparticle distance, so that the precipitation strengthening ability increases. Therefore, the number of fine nitrides having an average particle size of 0.05 μm or more and 1 μm or less is increased within a range of 1 to 10% of the area ratio of Si / Mn nitride using steel with a large content of Si and Mn. This leads to further strengthening of the rolling surface. Furthermore, the rolling surface is further strengthened by setting the ratio of the Si · Mn nitride of 0.05 to 0.50 μm in the Si · Mn nitride of 0.05 μm to 1 μm to 20% or more. Is possible.

本発明によれば、電動射出成形機やプレス機械等で使用されるボールねじを支持する転がり軸受や、ベルト式無段変速機用の転がり軸受として好適な、耐フレッチング性および耐焼き付き性に優れた転がり軸受が得られる。   According to the present invention, it is excellent in fretting resistance and seizure resistance, which is suitable as a rolling bearing for supporting a ball screw used in an electric injection molding machine or a press machine, or a rolling bearing for a belt type continuously variable transmission. A rolling bearing is obtained.

以下、本発明の実施形態について説明する。
図1は、本発明の一実施形態に相当する深溝玉軸受を示す断面図である。
この軸受は、内輪1と外輪2と玉(転動体)3と保持器4とで構成されている。
図1の深溝玉軸受として、呼び番号6206に相当するものを以下のようにして作製した。
玉3は、下記の表1に示す各種鉄鋼からなる素材を冷間成形により所定形状に加工した後、下記の条件で熱処理し、次いで研削加工することで得た。表1では、本発明の構成から外れる数値に下線を施した。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a cross-sectional view showing a deep groove ball bearing corresponding to an embodiment of the present invention.
This bearing includes an inner ring 1, an outer ring 2, balls (rolling elements) 3, and a cage 4.
As the deep groove ball bearing shown in FIG. 1, one corresponding to the reference number 6206 was produced as follows.
The ball 3 was obtained by processing a material made of various steels shown in Table 1 below into a predetermined shape by cold forming, then heat-treating under the following conditions, and then grinding. In Table 1, numerical values that deviate from the configuration of the present invention are underlined.

Figure 0004992535
Figure 0004992535

得られた各玉3の表面(転動面)における粒径1μm以下のSi・Mn系窒化物の存在率を、下記の方法で測定した。また、得られた各玉3の表面(転動面)について、表層部の残留オーステナイトをX線回折法で測定した。これらの結果を下記の表2に示す。   The abundance of Si · Mn nitride having a particle size of 1 μm or less on the surface (rolling surface) of each ball 3 was measured by the following method. Moreover, about the surface (rolling surface) of each obtained ball 3, the retained austenite of the surface layer part was measured by the X-ray diffraction method. These results are shown in Table 2 below.

〔熱処理条件〕
ずぶ焼入れ:RX ガス雰囲気中で820〜870℃に0.5〜1.0時間保持後、油冷却。
浸炭後に焼入れ:エンリッチガス雰囲気中で820〜880℃に1.0〜5.0時間保持後、放冷、その後に、RX ガス雰囲気中で820〜870℃に0.5〜1.0時間保持後、油冷却。
[Heat treatment conditions]
Submerged quenching: Oil cooling after holding at 820-870 ° C. for 0.5-1.0 hours in R X gas atmosphere.
Quenching the carburized: Enrich 1.0 to 5.0 hours after held at from 820 to 880 ° C. in a gas atmosphere, allowed to cool, then, 0.5 to 1.0 hours 820 to 870 ° C. in R X gas atmosphere After holding, oil cooling.

窒化後に焼入れ:RX ガス+アンモニアガス雰囲気中で820〜920℃に1.0〜5.0時間保持後、放冷、その後に、RX ガス雰囲気中で820〜870℃に0.5〜1.0時間保持後、油冷却。
浸炭窒化後に焼入れ:RX ガス+エンリッチガス+アンモニアガス雰囲気中で820〜920℃に1.0〜5.0時間保持後、放冷、その後に、RX ガス雰囲気中で820〜870℃に0.5〜1.0時間保持後、油冷却。
サンプル毎に上記いずれかの処理を行った後、全サンプルについて、焼戻しを150〜300℃に3時間保持することで行う。
Quenching after nitriding: holding at 820 to 920 ° C. in an atmosphere of R X gas + ammonia gas for 1.0 to 5.0 hours, allowing to cool, and then 0.5 to 820 to 870 ° C. in an atmosphere of R X gas Oil cooling after holding for 1.0 hour.
Quenching after carbonitriding: Holding at 820 to 920 ° C. in an atmosphere of R X gas + enriched gas + ammonia gas for 1.0 to 5.0 hours, allowing to cool, and then to 820 to 870 ° C. in an R X gas atmosphere Oil holding after holding for 0.5-1.0 hours.
After any of the above treatments is performed for each sample, tempering is performed for all samples by holding at 150 to 300 ° C. for 3 hours.

〔Si・Mn系窒化物の存在率の測定方法〕
板状試験片を各玉3と同じ工程で、研削加工による取り代を同じにして作製し、その表面を、電界放射型走査型電子顕微鏡(FE−SEM)を用い、加速電圧10kV、倍率5000倍で観察し、観察画像に占める粒径1μm以下のSi窒化物およびMn窒化物の合計面積の割合を画像解析装置により測定した。観察は3視野以上で行い、全視野の平均値を算出してSi・Mn系窒化物の存在率とした。
また、内輪1と外輪2としては、SUJ2製でずぶ焼きを含む通常の熱処理を施したものを、保持器4としては鋼製のものを用いた。
[Method of measuring the abundance of Si / Mn nitride]
A plate-shaped test piece is produced in the same process as each ball 3 with the same machining allowance, and the surface is accelerating voltage 10 kV, magnification 5000 using a field emission scanning electron microscope (FE-SEM). The ratio of the total area of Si nitride and Mn nitride having a particle size of 1 μm or less in the observed image was measured by an image analyzer. Observation was performed in three or more fields of view, and the average value of all fields of view was calculated as the abundance ratio of Si / Mn nitride.
Further, as the inner ring 1 and the outer ring 2, those made of SUJ2 and subjected to normal heat treatment including soaking were used, and the cage 4 was made of steel.

〔耐久試験〕
このようにして得られた各玉3と、内輪1、外輪2、および保持器4を用いて、図1の深溝玉軸受を組み立てて、回転試験機にかけた。そして、潤滑油としてトラクション油「VG68」を用い、異物混入(Hv800で、粒径が100μm以下のものが50%、100〜200μmのものが50%である鉄粉を、0.15g/L)潤滑下、アキシャル荷重:6370N(650kgf)、回転速度:3500min-1の条件で内輪を回転させた。トルクが初期値の3倍となるまでの時間を「耐久寿命」として測定した。なお、サンプル毎に10体の軸受を組み立てて試験を行い、L10寿命を算出した。
そして、各サンプルのL10寿命をサンプルNo. 9のL10寿命で除算することにより、サンプルNo. 9の焼き付き寿命を「1」とした「耐久寿命比」を得た。この結果も下記の表2に示す。
〔An endurance test〕
The deep groove ball bearing of FIG. 1 was assembled using each of the balls 3 thus obtained, the inner ring 1, the outer ring 2, and the cage 4, and subjected to a rotation tester. And traction oil "VG68" is used as the lubricating oil, and foreign matter is mixed (iron powder with Hv800, particle size of 100 μm or less is 50%, 100-200 μm is 50%, 0.15 g / L) Under lubrication, the inner ring was rotated under the conditions of an axial load: 6370 N (650 kgf) and a rotational speed: 3500 min −1 . The time until the torque became three times the initial value was measured as “endurance life”. In addition, 10 bearings were assembled and tested for each sample, and the L10 life was calculated.
Then, by dividing the L10 life of each sample by the L10 life of sample No. 9, a “durable life ratio” was obtained in which the seizure life of sample No. 9 was “1”. The results are also shown in Table 2 below.

〔摩耗試験〕
また、サンプルNo. 1〜16の各玉3と同じ方法で「二円筒摩耗試験」用の各二枚の円筒試験体を作製し、下記の条件で以下のようにして摩耗試験を行った。
先ず、上下方向で対向させた一対の回転軸に、一対の円筒試験体を装着する。次に、上側の試験体に荷重をかけて両試験体を接触させ、接触位置にノズルから潤滑油を吹き付けながら、一方の試験体を回転駆動させることにより、両試験体を互いに逆方向に滑り回転させる。そして、所定の距離分だけ回転させた後に摩耗量を測定し、単位滑り距離(1m)当たりの摩耗量(両試験体の合計重量減少量)を算出する。この算出値も下記の表2に示した。
[Abrasion test]
In addition, two cylindrical test bodies for “two-cylinder wear test” were prepared in the same manner as the balls 3 of sample Nos. 1 to 16, and the wear test was performed as follows under the following conditions.
First, a pair of cylindrical specimens are mounted on a pair of rotating shafts opposed in the vertical direction. Next, a load is applied to the upper specimen, both specimens are brought into contact, and one specimen is driven to rotate while spraying lubricating oil from the nozzle at the contact position, thereby sliding both specimens in opposite directions. Rotate. Then, after rotating by a predetermined distance, the amount of wear is measured, and the amount of wear per unit slip distance (1 m) (total weight reduction amount of both specimens) is calculated. The calculated values are also shown in Table 2 below.

<摩耗試験の条件>
円筒試験体の寸法:外径30mm、内径16mm、軸方向寸法10mm
円筒試験体の表面粗さ(Ra):0.005〜0.010μm
駆動側の試験体の回転速度:10min-1
従動側の試験体の回転速度:7min-1
滑り率:30%
滑り距離:3000m
潤滑油:スピンドル油#10
面圧:1.2GPa
<Wear test conditions>
Dimensions of cylindrical specimen: outer diameter 30 mm, inner diameter 16 mm, axial dimension 10 mm
Surface roughness (Ra) of cylindrical specimen: 0.005 to 0.010 μm
Rotational speed of driving specimen: 10 min -1
Rotational speed of driven specimen: 7 min -1
Slip rate: 30%
Sliding distance: 3000m
Lubricating oil: Spindle oil # 10
Surface pressure: 1.2 GPa

〔焼き付き試験〕
また、サンプルNo. 1〜16の各玉3と同じ方法で、「ASTM D 2596」に準拠した四球試験機用の各四個の球(直径12.7mm)を作製し、下記の条件で焼き付き試験を行った。
この四球試験機では、先ず、3個の球を、全ての球が接触し、各球が正三角形の頂点となるように配置して固定し、これらの固定球で形成される窪みの上に、固定球と同じ球(回転球)をトラクション油「VG22」を塗布した状態で置いた。
[Burn-in test]
In addition, in the same manner as each ball 3 of sample Nos. 1 to 16, four spheres (diameter 12.7 mm) for a four-ball tester compliant with “ASTM D 2596” are produced and burned under the following conditions. A test was conducted.
In this four-ball tester, first, three spheres are arranged and fixed so that all the spheres are in contact with each other and the spheres are the vertices of an equilateral triangle, and on the depression formed by these fixed spheres. The same sphere (rotating sphere) as the fixed sphere was placed with the traction oil “VG22” applied.

次に、この回転球を、面圧:2.0GPa、回転速度:3000min-1の条件で回転させ、トルクが初期値の5倍となるまでの時間を「焼き付き寿命」として測定した。そして、各サンプルの測定値をサンプルNo. 9の測定値で除算することにより、サンプルNo. 9の焼き付き寿命を「1」とした「焼き付き寿命比」を得た。この結果も下記の表2に示す。 Next, this rotating sphere was rotated under the conditions of surface pressure: 2.0 GPa and rotation speed: 3000 min −1 , and the time until the torque became 5 times the initial value was measured as “burn-in life”. Then, by dividing the measured value of each sample by the measured value of sample No. 9, a “burn-in life ratio” in which the burn-in life of sample No. 9 was set to “1” was obtained. The results are also shown in Table 2 below.

〔耐フレッチング試験〕
また、サンプルNo. 1〜16の各玉3と同じ方法で、「35TAC玉軸受」用の玉(直径7mm)を作製し、内輪と外輪はSUJ2製で、ずぶ焼きを含む通常の熱処理を施すことで作製した。得られた各玉3と、内輪1、外輪2、および保持器4を用いて、図2に示す、ボールねじサポート用スラストアンギュラ玉軸受を組み立てた。
先ず、得られた各軸受をアンデロメータに取り付けて、初期の振動値(アンデロン値)を、「L.B.」、「M.B.」、「H.B.」の各周波数範囲で測定した。次に、各軸受を揺動試験装置に取り付けて、潤滑油:スピンドル油#10、予圧:14.7N、揺動角度:8°、揺動周波数:30Hz(1秒間に30回の揺動)の条件で10万回揺動させた。
[Fretting resistance test]
In addition, the ball (diameter 7 mm) for “35TAC ball bearing” is manufactured in the same manner as each ball 3 of sample Nos. 1 to 16, and the inner ring and outer ring are made of SUJ2 and subjected to normal heat treatment including soaking. It was produced by. A thrust angular ball bearing for ball screw support shown in FIG. 2 was assembled using the obtained balls 3, the inner ring 1, the outer ring 2, and the cage 4.
First, each obtained bearing was attached to an anderometer, and an initial vibration value (Anderon value) was measured in each frequency range of “LB”, “MB”, and “H.B.”. . Next, each bearing is attached to a swing test device, and lubricating oil: spindle oil # 10, preload: 14.7 N, swing angle: 8 °, swing frequency: 30 Hz (30 swings per second) It was swung 100,000 times under the conditions of

次に、揺動試験後の各軸受をアンデロメータに取り付けて、試験後の振動値(アンデロン値)を、「L.B.」、「M.B.」、「H.B.」の各周波数範囲で測定した。次に、初期の振動値に対する試験後の振動値の比を算出した。この結果も下記の表2に示す。アンデロメータによる振動値が小さいほど耐フレッチング性が高いことを意味する。
なお、No. 8では、玉3、円筒状試験片、球を熱処理後に研削加工した際に割れが生じたため、試験を行うことができなかった。
Next, each bearing after the swing test is attached to an anderometer, and the vibration value (Anderon value) after the test is set to each frequency of “LB”, “MB”, and “H.B.”. Measured in range. Next, the ratio of the vibration value after the test to the initial vibration value was calculated. The results are also shown in Table 2 below. The smaller the vibration value by the andrometer, the higher the fretting resistance.
No. 8 could not be tested because cracks occurred when the balls 3, cylindrical test pieces, and spheres were ground after heat treatment.

Figure 0004992535
Figure 0004992535

表2では本発明の構成から外れる数値に下線を施した。玉の構成の全ての項目に下線のないものが本発明の実施例に相当し、いずれかの構成に下線のあるものが比較例に相当する。なお、表2において「(Si,Mn)N」は「粒径1μm以下のSi・Mn系窒化物の転動面における存在率」を示し、「γR 」は「転動面の表層部の残留オーステナイト量」を示す。 In Table 2, numerical values deviating from the configuration of the present invention are underlined. A case where all items of the configuration of the ball are not underlined corresponds to an example of the present invention, and a case where any component is underlined corresponds to a comparative example. In Table 2, “(Si, Mn) N” indicates “abundance ratio of Si / Mn nitride having a particle diameter of 1 μm or less on the rolling surface”, and “γ R ” indicates “the surface layer portion of the rolling surface. The amount of retained austenite is shown.

表2から分かるように、玉3の転動面に、粒径1μm以下のSi・Mn系窒化物が面積比で1%以上10%以下で存在し、玉3の転動面の表層部の残留オーステナイトが1体積%以上10体積%以下であるサンプルNo. 1〜4,6,7の玉軸受は、これらのいずれかを満たさないサンプルNo. 5、8〜16の玉軸受と比較して、耐摩耗性、耐焼き付き性、耐フレッチング性、および耐久性が高くなっている。   As can be seen from Table 2, on the rolling surface of the ball 3, Si · Mn nitride having a particle size of 1 μm or less is present in an area ratio of 1% or more and 10% or less. The ball bearings of Sample Nos. 1-4, 6, and 7 in which the retained austenite is 1% by volume or more and 10% by volume or less are compared with the ball bearings of Samples No. 5 and 8-16 that do not satisfy any of these. High wear resistance, seizure resistance, fretting resistance, and durability.

これにより、図1および2に示す軸受の玉3を、本発明の実施例に相当するサンプルNo. 1〜4,6,7の構成とすることで、ボールねじを支持する転がり軸受やベルト式無段変速機用の転がり軸受として十分な、耐フレッチング性および耐焼き付き性を得ることができる。
また、表1および表2から分かるように、使用する鋼の珪素(Si)含有率が0.4質量%以上、マンガン(Mn)含有率が0.4質量%以上、珪素(Si)とマンガン(Mn)の合計含有率が1.0質量%以上であると、玉3の転動面に、粒径1μm以下のSi・Mn系窒化物を面積比で1%以上存在させることができる。
Thereby, the ball 3 of the bearing shown in FIGS. 1 and 2 is configured as Sample Nos. 1-4, 6, and 7 corresponding to the embodiment of the present invention, so that it is a rolling bearing or belt type that supports the ball screw. Fretting resistance and seizure resistance sufficient as a rolling bearing for a continuously variable transmission can be obtained.
As can be seen from Tables 1 and 2, the silicon (Si) content of the steel used is 0.4 mass% or more, the manganese (Mn) content is 0.4 mass% or more, silicon (Si) and manganese When the total content of (Mn) is 1.0% by mass or more, Si / Mn nitride having a particle size of 1 μm or less can be present on the rolling surface of the balls 3 in an area ratio of 1% or more.

本発明の一実施形態に相当する玉軸受を示す断面図である。It is sectional drawing which shows the ball bearing corresponded to one Embodiment of this invention. 本発明の一実施形態に相当する玉軸受を示す断面図である。It is sectional drawing which shows the ball bearing corresponded to one Embodiment of this invention. 車両のベルト式無段変速機を模式的に示した図である。It is the figure which showed typically the belt type continuously variable transmission of the vehicle.

符号の説明Explanation of symbols

1 内輪
2 外輪
3 玉(転動体)
4 保持器
11a 転がり軸受
11b 転がり軸受
12a 転がり軸受
12b 転がり軸受
7 入力軸プーリ
8 出力軸プーリ
9 ベルト
1 Inner ring 2 Outer ring 3 Ball (rolling element)
4 Cage 11a Rolling bearing 11b Rolling bearing 12a Rolling bearing 12b Rolling bearing 7 Input shaft pulley 8 Output shaft pulley 9 Belt

Claims (2)

転動体は、
炭素(C)の含有率が0.3質量%以上1.2質量%以下、クロム(Cr)の含有率が0.5質量%以上2.0質量%以下、珪素(Si)の含有率が0.4質量%以上1.2質量%以下、マンガン(Mn)の含有率が0.4質量%以上1.2質量%以下、珪素(Si)とマンガン(Mn)の合計含有率が1.0質量%以上2.0質量%以下、残部鉄および不可避的不純物である鉄鋼製の素材を、所定形状に加工した後、窒化処理または浸炭窒化処理と焼き入れおよび焼戻しからなる熱処理が施されて得られ、
転動面に、珪素(Si)の窒化物およびマンガン(Mn)の窒化物からなり、粒径1μm以下のSi・Mn系窒化物が、面積比で1%以上10%以下の範囲で存在し、表層部の残留オーステナイトが10体積%以下となっていることを特徴とする転がり軸受。
The rolling elements are
The carbon (C) content is 0.3% by mass to 1.2% by mass, the chromium (Cr) content is 0.5% by mass to 2.0% by mass, and the silicon (Si) content is 0.4 mass% or more and 1.2 mass% or less, manganese (Mn) content is 0.4 mass% or more and 1.2 mass% or less, and the total content of silicon (Si) and manganese (Mn) is 1. 0 mass% or more and 2.0 mass% or less, the remaining iron and the steel material which is an unavoidable impurity are processed into a predetermined shape, and then subjected to heat treatment including nitriding treatment or carbonitriding treatment and quenching and tempering. Obtained,
Si / Mn nitrides composed of silicon (Si) nitride and manganese (Mn) nitride and having a particle size of 1 μm or less exist on the rolling surface in an area ratio of 1% to 10%. A rolling bearing characterized in that the retained austenite in the surface layer portion is 10% by volume or less.
軌道輪は、炭素(C)の含有率が0.2質量%以上1.2質量%以下、クロム(Cr)の含有率が0.5質量%以上2.0質量%以下、珪素(Si)の含有率が0.1質量%以上0.5質量%以下、マンガン(Mn)の含有率が0.1質量%以上0.5質量%以下、残部鉄および不可避的不純物である鉄鋼製の素材を所定形状に加工した後、熱処理が施されて得られた請求項1記載の転がり軸受。   The bearing ring has a carbon (C) content of 0.2 mass% to 1.2 mass%, a chromium (Cr) content of 0.5 mass% to 2.0 mass%, silicon (Si) Steel content that is 0.1 mass% to 0.5 mass%, manganese (Mn) content is 0.1 mass% to 0.5 mass%, the remaining iron and inevitable impurities The rolling bearing according to claim 1, wherein the rolling bearing is obtained by heat-treating after processing into a predetermined shape.
JP2007119517A 2007-04-27 2007-04-27 Rolling bearing Expired - Fee Related JP4992535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007119517A JP4992535B2 (en) 2007-04-27 2007-04-27 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007119517A JP4992535B2 (en) 2007-04-27 2007-04-27 Rolling bearing

Publications (2)

Publication Number Publication Date
JP2008274353A JP2008274353A (en) 2008-11-13
JP4992535B2 true JP4992535B2 (en) 2012-08-08

Family

ID=40052688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007119517A Expired - Fee Related JP4992535B2 (en) 2007-04-27 2007-04-27 Rolling bearing

Country Status (1)

Country Link
JP (1) JP4992535B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196429A1 (en) 2013-06-06 2014-12-11 Ntn株式会社 Bearing component and rolling bearing
CN105264248B (en) 2013-06-06 2018-04-10 Ntn株式会社 Parts of bearings and rolling bearing
WO2014196431A1 (en) 2013-06-06 2014-12-11 Ntn株式会社 Bearing component and rolling bearing
WO2014196430A1 (en) 2013-06-06 2014-12-11 Ntn株式会社 Bearing part and rolling bearing
WO2015145794A1 (en) * 2014-03-28 2015-10-01 日本精工株式会社 Angular ball bearing
JP6534632B2 (en) * 2016-04-15 2019-06-26 Ntn株式会社 Deep groove ball bearings

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590645B2 (en) * 1991-09-19 1997-03-12 日本精工株式会社 Rolling bearing
JP2000212721A (en) * 1998-11-19 2000-08-02 Nsk Ltd Rolling member excellent in wear resistance
JP2004353742A (en) * 2003-05-28 2004-12-16 Nsk Ltd Rolling bearing
JP2005273698A (en) * 2004-03-23 2005-10-06 Nsk Ltd Self-aligning roller bearing
JP2006322017A (en) * 2005-05-17 2006-11-30 Nsk Ltd Rolling bearing

Also Published As

Publication number Publication date
JP2008274353A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5194532B2 (en) Rolling bearing
JP4576842B2 (en) Rolling bearing and belt type continuously variable transmission using the same
EP1489318A1 (en) Rolling bearing for belt type non-stage transmission
JP4992535B2 (en) Rolling bearing
EP2386669A1 (en) Constituent member of bearing, process for production of same, and ball-and-roller bearing provided with the constituent member
JP4998054B2 (en) Rolling bearing
JP2011220357A (en) Planetary gear device
JP2004011712A (en) Rolling bearing, and belt type continuously variable transmission using it
JP2008151236A (en) Rolling bearing
WO2001018273A1 (en) Rolling bearing
JP2004052997A (en) Rolling device and manufacturing method
JP6007562B2 (en) Rolling bearing
JP5076274B2 (en) Rolling bearing
JP2006009887A (en) Ball bearing and ball bearing for transmission
JP2007177897A (en) Roller bearing
WO2022092210A1 (en) Rolling member and rolling bearing
JP2008232212A (en) Rolling device
JP5194538B2 (en) Rolling bearing
JP2003183771A (en) Rolling bearing
JP5211453B2 (en) Rolling bearing
JPH1068419A (en) Rolling bearing
JP7177883B2 (en) Rolling parts and rolling bearings
JP5061478B2 (en) Rolling support device
JP2013234702A (en) Planetary gear device
JP6974642B1 (en) Rolling members and rolling bearings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees