WO2015145794A1 - Angular ball bearing - Google Patents

Angular ball bearing Download PDF

Info

Publication number
WO2015145794A1
WO2015145794A1 PCT/JP2014/069087 JP2014069087W WO2015145794A1 WO 2015145794 A1 WO2015145794 A1 WO 2015145794A1 JP 2014069087 W JP2014069087 W JP 2014069087W WO 2015145794 A1 WO2015145794 A1 WO 2015145794A1
Authority
WO
WIPO (PCT)
Prior art keywords
radial
cage
ball
ring
inner ring
Prior art date
Application number
PCT/JP2014/069087
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 松永
美昭 勝野
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to KR1020167026686A priority Critical patent/KR101960145B1/en
Priority to JP2016510290A priority patent/JP6508196B2/en
Priority to PCT/JP2015/058384 priority patent/WO2015146811A1/en
Priority to CN201580017138.5A priority patent/CN106460929B/en
Publication of WO2015145794A1 publication Critical patent/WO2015145794A1/en
Priority to JP2019016171A priority patent/JP2019074214A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • F16C33/418Details of individual pockets, e.g. shape or ball retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • F16C33/412Massive or moulded comb cages, e.g. snap ball cages
    • F16C33/414Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages
    • F16C33/416Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages made from plastic, e.g. injection moulded comb cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles

Definitions

  • the present invention relates to an angular contact ball bearing.
  • Ball screws that convert rotary motion into linear motion are used for machine tools such as NC lathes, milling machines, machining centers, multi-axis machines, and 5-axis machines, and linear feed mechanisms for beds and spindle heads.
  • An angular ball bearing is employed as a bearing that rotatably supports the shaft end of the ball screw (for example, see Patent Document 1).
  • These bearings have a bearing inner diameter of about 10 mm to about 100 mm depending on the size of the headstock of the machine tool used or the bed on which the workpiece is mounted.
  • the bearing size can be increased or the number of combinations can be increased.
  • the bearing size is increased, the space at the ball screw shaft end increases, and the number of combinations is increased. If the number is increased excessively, the ball screw unit portion becomes wide. As a result, the required floor area of the machine tool increases and the height dimension increases, so there is a limit to the increase in the size of the bearings and the number of rows.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an angular ball bearing capable of achieving both an increase in axial load capacity and high rigidity in a limited space.
  • An angular contact ball bearing comprising: On the outer peripheral surface of the inner ring, an inner ring counterbore is recessed on the back side, and an inner ring groove shoulder is protruded on the front side, On the inner peripheral surface of the outer ring, an outer ring counter bore is recessed on the front side, and an outer ring groove shoulder is protruded on the back side,
  • the contact angle ⁇ of the balls is 45 ° ⁇ ⁇ ⁇ 65 °, When Ai is obtained by dividing the radial height of the inner ring groove shoulder by the diameter of the ball, 0.35 ⁇ Ai ⁇ 0.50, When Ae is obtained by dividing the
  • a pocket-shaped cage having The spherical center position of the pocket portion is shifted to one radial side with respect to the radial center of the ring portion,
  • the radial cross-sectional shape of the pocket portion is a circle with an arbitrary radius composed of an arc connecting the one radial side surface and the other radial side surface of the ring portion,
  • the contact angle ⁇ of the ball satisfies 45 ° ⁇ ⁇ ⁇ 65 °. Therefore, by increasing the contact angle, the load capacity of the axial load of the bearing increases, and a larger preload. Can be used with load. As a result, the rigidity of the bearing and thus the ball screw system can be improved.
  • Ai is obtained by dividing the radial height of the inner ring groove shoulder by the ball diameter, 0.35 ⁇ Ai ⁇ 0.50, and the radial height of the outer ring groove shoulder is divided by the ball diameter.
  • FIG. 6 is a sectional view taken along the line VI-VI in FIG. 4. It is sectional drawing of a holder
  • the angular ball bearing 1 of the present embodiment includes an outer ring 10 having a raceway surface 11 on an inner peripheral surface, an inner ring 20 having a raceway surface 21 on an outer peripheral surface, and raceway surfaces of the outer ring 10 and the inner ring 20. 11 and 21, a plurality of balls 3, and a retainer 30 that holds the balls 3 in a freely rolling manner and is a ball guide system.
  • the outer peripheral surface of the outer ring 10 is protruded on the back side (load side; left side in FIG. 1) of the raceway surface 11 and the front side of the raceway surface 11 (on the anti-load side). 1 on the right side of the outer ring counter bore 13.
  • the outer peripheral surface of the inner ring 20 is an inner ring groove shoulder 22 projecting on the front side (load side; right side in FIG. 1) from the raceway surface 21, and the back side (anti-load side, FIG. 1). And an inner ring counter bore 23 recessed in the middle left side.).
  • a taper-shaped outer ring chamfer 14 is provided at the rear side end portion of the outer ring groove shoulder portion 12 so as to go radially outward toward the rear side.
  • a taper-shaped inner ring chamfer 24 that is directed radially inward toward the front side is provided.
  • the radial widths of the outer ring chamfer 14 and the inner ring chamfer 24 are set to a relatively large value that is larger than half of the radial heights He and Hi of the outer ring groove shoulder 12 and the inner ring groove shoulder 22.
  • Such an angular ball bearing 1 can be used in parallel as shown in FIG. Since the angular ball bearing 1 of the present embodiment is provided with the outer ring groove shoulder 12 and the inner ring groove shoulder 22 up to the vicinity of the pitch circle diameter dm of the ball 3, the outer ring chamfer 14 and the inner ring chamfer 24 are not provided. The inner ring 20 of one angular ball bearing 1 and the outer ring 10 of the other angular ball bearing 1 interfere with each other, causing a problem during rotation of the bearing. In addition, when used in oil lubrication, if the outer ring chamfer 14 and the inner ring chamfer 24 are not provided, the oil does not pass between the angular ball bearings 1, and the oil is poorly lubricated.
  • outer ring chamfer 14 and the inner ring chamfer 24 it is possible to prevent interference between the inner ring 20 and the outer ring 10 and to improve oil repellency.
  • Both the outer ring chamfer 14 and the inner ring chamfer 24 do not necessarily need to be provided, and at least one may be provided.
  • the cage 30 is a ball guide type plastic cage made of synthetic resin, and the base resin constituting the cage 30 is a polyamide resin.
  • the kind of polyamide resin is not restrict
  • glass fiber, carbon fiber, aramid fiber, or the like is added to the base resin as a reinforcing material.
  • the cage 30 is manufactured by injection molding or cutting.
  • the retainer 30 includes a substantially annular ring portion 31 (see FIG. 1) disposed coaxially with the inner ring 20 and the outer ring 10, and a plurality of protrusions protruding in the axial direction at a predetermined interval from the back side of the ring portion 31. It is a crown type retainer having a column portion 32 and a plurality of pocket portions 33 formed between adjacent column portions 32.
  • the radial heights He and Hi of the outer ring groove shoulder portion 12 and the inner ring groove shoulder portion 22 are increased in order to realize a high load capability of the axial load.
  • the bearing internal space is reduced. Therefore, when the cage 30 arranged in such a bearing internal space is a crown type cage (one-side ring structure), the ring portion 31 is arranged between the outer ring counter bore 13 and the inner ring groove shoulder portion 22, and the outer ring 10 and the raceway surfaces 11 and 21 of the inner ring 20, the column portion 32 is arranged, and the ring portion 31 is connected to the radially outer end of the column portion 32. That is, the spherical center position of the pocket portion 33 is shifted from the radial center of the ring portion 31 radially inward (one radial direction side).
  • the radial cross-sectional shape of the pocket portion 33 is from an arc 33a connecting the radial inner side surface (one radial side surface) 31a and the radial outer side surface (radial other side surface) 31b of the ring portion 31.
  • a circle with an arbitrary radius r. The center of the circle is indicated by P.
  • the arc 33a is a first straight-shaped portion 33b extending in the axial direction by cutting out the radially inner portion (one radial portion).
  • the first straight shape portion 33b is disposed on the back side of the center P of the circle.
  • the arc 33a has a second straight shape in which a portion connecting the front end of the first straight shape portion 33b and the back end of the radial inner side surface 31a of the ring portion 31 is notched. Part 33c. Therefore, the 2nd straight shape part 33c is made into the linear shape which goes to a radial direction outer side as it goes to the front side (ring part 31 side). Further, the first straight shape portion 33b is formed so that the center Oi of the ball 3 (spherical center of the pocket portion 33) overlaps the first straight shape portion 33b in the axial direction.
  • both side surfaces in the circumferential direction of the column portion 32 and side surfaces on the back side (column portion 32 side) of the ring portion 31 forming the pocket portion 33 are spherical shapes similar to the balls 3.
  • the tip of the column part 32 is provided with a notch 34 having a substantially V-shaped cross section in the middle in the circumferential direction, and is divided into two.
  • the ratio of the reinforcing material added to the synthetic resin of the cage 30 material is preferably 5 to 30 weight percent. If the proportion of the reinforcing material in the synthetic resin component exceeds 30% by weight, the flexibility of the cage 30 is reduced. Therefore, when the mold is forcibly removed from the pocket portion 33 when the cage 30 is molded, When the ball 3 is press-fitted into the pocket portion 33 during assembly, the corner portion 35 of the column portion 32 is damaged. Further, since the thermal expansion of the cage 30 depends on the linear expansion coefficient of the resin material that is the base material, if the proportion of the reinforcing material is less than 5 weight percent, the thermal expansion of the cage 30 during the rotation of the bearing causes the ball 3 to rotate.
  • the pitch circle diameter dm expands, the ball 3 and the pocket portion 33 of the cage 30 stick against each other, causing problems such as seizure. Therefore, the above-mentioned problem can be prevented by setting the ratio of the reinforcing material in the synthetic resin component in the range of 5 to 30% by weight.
  • a resin such as polyamide, polyetheretherketone, polyphenylene sulfide, or polyimide is applied, and as a reinforcing material, glass fiber, carbon fiber, aramid fiber, or the like is applied.
  • the cage 130 and the inner ring 120 or the outer ring 110 do not overlap in the radial direction. Therefore, even if the cage 130 exceeds the design value due to the inertia at the time of starting and stopping the rotation of the deep groove ball bearing 100, even if the cage 130 moves in the axial direction relative to the inner ring 120 or the outer ring 110, There is no interference with the inner ring 120 or the outer ring 110.
  • the cage 30 and the inner ring 20 or the outer ring 10 overlap in the radial direction as in the angular ball bearing 1 of the present embodiment, the cage 30 exceeds the design value, and the inner ring 20 or the outer ring 10 Thus, the cage 30 and the inner ring 20 or the outer ring 10 may interfere with each other when moving relatively in the axial direction. If the radial cross-sectional shape of the pocket portion 33 of the cage 30 is a shape that does not have the second straight shape portion 33c, the axial distance ⁇ S1 between the cage 30 and the inner ring 20 (see FIG. 1). ) Becomes narrow, and the possibility that the cage 30 and the inner ring 20 interfere with each other increases.
  • the axial distance ⁇ S1 between the cage 30 and the inner ring 20 can be increased by forming the second straight shape portion 33c in the pocket portion 33. It is possible to reduce the possibility that the cage 30 and the inner ring 20 interfere with each other.
  • the radial heights He and Hi of the outer ring groove shoulder 12 and the inner ring groove shoulder 22 are set to the pitch circle of the ball 3, respectively.
  • the radial space between the outer ring 10 and the inner ring 20 is narrowed, and the radial thickness of the ring portion 31 of the cage 30 located in the space between the outer ring 10 and the inner ring 20 is larger than that of the standard bearing. Cannot be thick.
  • the strength of the ring portion 31 may be reduced due to insufficient thickness.
  • the material of the cage 30 is a synthetic resin such as polyamide resin, polyacetal resin, polyetheretherketone, polyimide, and the reinforcing fiber content in the base resin is 30 weight percent or less.
  • the strength of the ring portion 31 of the cage 30 tends to be low, and when a radial impact load or vibration load is applied, the cage 30 bends in the radial direction.
  • FIGS. 9 and 10 an example of the shape when the radial load F is applied to the cage 30 and the cage 30 is bent in the radial direction is schematically represented by a broken line.
  • the radial position of the cage 30 approaches the inner ring 20 side or the outer ring 10 side.
  • the axial distance ⁇ S1 between the cage 30 and the inner ring 20 is reduced, and the possibility that the cage 30 and the inner ring 20 interfere with each other increases.
  • the radial cross-sectional shape of the pocket portion 33 of the cage 30 is a shape that does not have the second straight shape portion 33c, the axial distance ⁇ S1 between the cage 30 and the inner ring 20 is narrowed and retained. The possibility that the container 30 and the inner ring 20 interfere with each other increases. Therefore, as in the angular ball bearing 1 of the present embodiment, the axial distance ⁇ S1 between the cage 30 and the inner ring 20 can be increased by forming the second straight shape portion 33c in the pocket portion 33. It is possible to reduce the possibility that the cage 30 and the inner ring 20 interfere with each other.
  • the axial movement amount ⁇ A of the cage 30 is increased.
  • the axial distance ⁇ S1 between the cage 30 and the inner ring 20 becomes narrow, and there is a high possibility that the cage 30 and the inner ring 20 interfere with each other.
  • the radial cross-sectional shape of the pocket portion 33 of the cage 30 is a shape that does not have the second straight shape portion 33c, the axial distance ⁇ S1 between the cage 30 and the inner ring 20 is narrowed and retained. The possibility that the container 30 and the inner ring 20 interfere with each other increases.
  • the axial distance ⁇ S1 between the cage 30 and the inner ring 20 can be increased by forming the second straight shape portion 33c in the pocket portion 33. It is possible to reduce the possibility that the cage 30 and the inner ring 20 interfere with each other.
  • the angular ball bearing 1 of the present embodiment is set so that the number of balls 3 (the number of balls Z) is increased in order to increase the axial load capacity.
  • FIG. 11 shows two balls 3 arranged on a pitch circle having a diameter dm, the diameter of these balls 3 is Dw, the centers of these balls 3 are A and B, and a line segment AB.
  • the intersection of the ball 3 and the surface of the ball 3 is C, D, the midpoint of the line segment AB is E, and the center of the pitch circle is O.
  • the distance between the centers of the balls 3 that is the distance between the centers A and B of the adjacent balls 3 is T
  • the distance between the balls that is the distance of the adjacent balls 3 is the distance of the line segment CD.
  • Is L and the angle between line segment EO and line segment BO (angle between line segment EO and line segment AO) is ⁇ .
  • the distance between the line segment AO and the line segment BO is (dm / 2)
  • the ball center distance T is (dm ⁇ sin ⁇ )
  • the ball distance L is (T ⁇ Dw)
  • the angle ⁇ is (180 ° / Z).
  • the pitch 3 pitch circumference length ⁇ dm is 2.5 ⁇ 10 ⁇ 3 ⁇ L / ⁇ dm ⁇ 13 ⁇ 10
  • the design is such that the relationship of ⁇ 3 is established. If L / ⁇ dm is smaller than 2.5 ⁇ 10 ⁇ 3 , the circumferential thickness of the pillar portion 32 of the cage 30 becomes too thin, and a hole is opened during molding or cutting. In particular, when a large amount of reinforcing material is contained, the fluidity of the synthetic resin, which is the material of the cage 30, is deteriorated at the time of molding, and holes are easily opened. On the other hand, if L / ⁇ dm is larger than 13 ⁇ 10 ⁇ 3 , the number of balls Z is reduced, and the axial load carrying capacity and rigidity of the bearing are lowered.
  • the angular ball bearing 1 is designed so as to satisfy 2.5 ⁇ 10 ⁇ 3 ⁇ L / ⁇ dm ⁇ 13 ⁇ 10 ⁇ 3 , that is, the number of balls Z is relatively large.
  • the thickness in the circumferential direction of the column part 32 cannot be increased with respect to the standard bearing. Therefore, as the circumferential thickness of the pillar portion 32 becomes thinner, the thickness of the corner portion 35 becomes thinner. Therefore, as shown by an arrow A in FIG. 6, when the ball 3 and the corner portion 35 of the cage 30 hit each other, the corner portion 35 is likely to spread in the circumferential direction, and as a result, the axial movement amount ⁇ A of the cage. Becomes larger.
  • the axial distance ⁇ S1 between the cage 30 and the inner ring 20 is reduced, and the possibility that the cage 30 and the inner ring 20 interfere with each other increases.
  • the radial cross-sectional shape of the pocket portion 33 of the cage 30 is a shape that does not have the second straight shape portion 33c, the axial distance ⁇ S1 between the cage 30 and the inner ring 20 is narrowed and retained. The possibility that the container 30 and the inner ring 20 interfere with each other increases. Therefore, as in the angular ball bearing 1 of the present embodiment, the axial distance ⁇ S1 between the cage 30 and the inner ring 20 can be increased by forming the second straight shape portion 33c in the pocket portion 33. It is possible to reduce the possibility that the cage 30 and the inner ring 20 interfere with each other.
  • the radial cross-sectional shape of the pocket portion 33 of the cage 30 is a conventional circular shape having an arbitrary radius r1, the same as the cage 30 of the present embodiment described above.
  • the axial relative movement amount ⁇ A of the cage 30 increases during the rotation of the bearing.
  • retainer 30 is circular, as shown in FIG. 14, the radial direction inner edge part 33d which is a part which guides the ball
  • bowl 3 is a point contact.
  • the radial distance between the radially inner edge 33 d of the pocket 33 and the ball 3 is the radial movement amount ⁇ R of the cage 30.
  • This phenomenon occurs every time the cage 30 moves relative to the inner ring 20 or the outer ring 10 in the axial direction (that is, from the neutral state where the ball center Oi and the spherical center position of the pocket portion 33 coincide during rotation).
  • the cage 30 is relatively displaced to the left or right in the axial direction, the radial movement amount ⁇ R of the cage 30 is frequently changed in a direction in which the cage 30 becomes smaller.
  • the ball is circular, the ball 3 cannot be stably guided, and the vibration of the cage 30 increases or the cage 30 and the ball 3 are stuck against each other. Problems such as early breakage of the vessel 30 occur.
  • the first straight portion 33 b is provided in the radial cross-sectional shape of the pocket portion 33, as shown in FIG.
  • the straight shape portion 33b and the ball 3 are configured to be in line contact with each other in an arc shape.
  • Axial relative movement can be suppressed. Therefore, a change in the radial movement amount ⁇ R of the cage 30 can be prevented, and an increase in vibration during rotation of the bearing can be suppressed.
  • problems such as cage noise and early breakage of the cage 30 can be suppressed.
  • the radial movement amount ⁇ R of the cage 30 is designed by the relative shift of the position of the pitch circle of the pocket portion 33 of the cage 30 and the position of the pitch circle of the ball 3 in the axial direction. It varies from the above range, and it is difficult to accurately measure the ball circumscribed circle diameter and the ball inscribed circle diameter at the time of manufacturing the cage.
  • the ball 3 is fixed by applying a light measurement load radially inward with the ring portion 31 of the cage 30 down. There is a method to measure. At this time, the ball 3 in the pocket portion 33 approaches the ring portion 31 in the pocket portion 33 by gravity. As a result, the position of the pitch circle of the pocket portion 33 and the position of the pitch circle of the ball 3 are relatively shifted in the axial direction. As a result, the radial movement amount ⁇ R of the cage 30 becomes smaller after movement (see the broken line in FIG. 13) than before movement in the axial direction (see the solid line in FIG. 13). ⁇ R becomes smaller than the design range. In this case, it becomes difficult to accurately measure the ball circumscribed circle diameter and the ball inscribed circle diameter of the cage 30.
  • the ball 3 fits into the straight shape portion 33b due to the measurement load, It is easy to accurately measure the ball circumscribed circle diameter and the ball inscribed circle diameter without the ball 3 being displaced in the axial direction.
  • the mold has an axial draw type structure, but when the mold forming the pocket portion 33 is released, the corner portion 35 of the column portion 32 (see FIG. 6). .) The vicinity is forcibly removed, and when removing the mold from the pocket portion 33, the cage cannot be released unless it is positioned and removed in the axial direction.
  • the cage 130 has a substantially annular ring portion 131 and a shaft spaced from the ring portion 131 at a predetermined interval.
  • the crown-shaped cage has a plurality of column portions 132 protruding in the direction and a plurality of pocket portions 133 formed between adjacent column portions 132.
  • the pitch in the circumferential direction of the pocket portion 133 of the cage 130 is wide, and the gap between the pair of corner portions 135 of the column portion 132 is the same as that of this embodiment.
  • the column portions 32 are spaced apart from each other between the pair of corner portions 35. Therefore, the concave portion 136 can be provided between the pair of corner portions 135 for the purpose of easily deforming the tip portion of the column portion 132 when the mold is not removed.
  • the bottom surface 137 of the recess 136 can be a plane extending in the circumferential direction. Then, a pin for punching is provided on the bottom surface 137 of the recess 136, and the pin is pushed out in the axial direction with respect to the die of the pocket portion 133, so that it is possible to release the die without forcing.
  • the circumferential width of the bottom plane of the notch 34 is desirably 0.2 mm or more in consideration of the processing limit of the V-shaped sharp portion at the tip of the die where the notch 34 is injection-molded.
  • the mold parts that form the pocket portion 33 are forcibly removed.
  • the pocket The mold parts forming the part cannot be forcibly removed.
  • an inner convex portion 38 that protrudes radially inward is formed on the radially inner side surface 31 a (one radial side surface) of the ring portion 31.
  • the inner convex portion 38 is formed as a catch between the cage 30 and the mold that forms the cage main body, so that the mold parts that form the pocket portion 33 can be forcibly removed. can do.
  • the shape and position of the inner convex portion 38 are not particularly limited, and may be formed so as to protrude radially inward from the front side end portion of the radial inner side surface 31a of the ring portion 31 as shown in FIG. Absent.
  • the convex portion 38 is desirably provided in the vicinity of the center of the ring portion 31 excluding the axial end portion. . That is, from the viewpoint of avoiding the contact of the inner ring convex portion 38, the position of the inner convex portion 38 shown in FIG. 7 is more desirable than the position of the inner convex portion 38 shown in FIG.
  • the holding force at the time of releasing can be increased, but contact between the inner ring 20 and the inner convex portion 38 occurs.
  • the radial dimension of the inner convex portion 38 has a limit. Therefore, in such a case, as shown in FIG. 19, it is desirable to increase the holding force at the time of mold release by setting the number of the inner convex portions 38 to a plurality (two in FIG. 19).
  • the inner convex portion 38 is not provided, and the outer convex portion 39 that protrudes radially outward may be formed on the radially outer side surface 31 b (the other radial side surface) of the ring portion 31. . Also in this case, the shape, position, number, and the like of the outer convex portions 39 are appropriately set.
  • both the inner convex portion 38 and the outer convex portion 39 may be formed.
  • the spherical center position of the pocket portion 33 is not limited to the configuration shifted radially inward with respect to the radial center of the ring portion 31, and may be configured so as to be shifted radially outward as shown in FIGS. I do not care. That is, the ring portion 31 is disposed between the outer ring groove shoulder 12 and the inner ring counter bore 23, the column portion 32 is disposed between the raceway surfaces 11 and 21 of the outer ring 10 and the inner ring 20, and the inner side in the radial direction of the column portion 32. It is good also as a structure where the ring part 31 connects to an edge part.
  • the notch 34 is provided in the middle in the circumferential direction at the tip of the column 32 and is divided into two parts, the pocket 33 is formed when the retainer 30 is manufactured by injection molding. It is possible to prevent the corner portion 35 on the pocket portion 33 side of the column portion 32 from being damaged by forcibly removing the mold parts forming the.
  • the radial cross-sectional shape of the pocket portion 33 is an arbitrary radius r composed of an arc connecting the radial outer side surface (radial one side surface) 31b of the ring portion 31 and the radial inner side surface (radial other side surface) 31a. It is assumed to be a circle.
  • the arc 33a is a first straight-shaped portion 33b extending in the axial direction by cutting out a radially outer portion (one radial portion).
  • the first straight shape portion 33b is disposed on the front side of the center P of the circle.
  • the arc 33a has a second straight shape in which a portion connecting the end portion on the back surface side of the first straight shape portion 33b and the end portion on the front surface side of the radially outer side surface 31b of the ring portion 31 is notched. Part 33c. Therefore, the 2nd straight shape part 33c is made into the linear shape which goes to a radial inside as it goes to the back side (ring part 31 side). Further, the first straight shape portion 33b is formed so that the center Oi of the ball 3 (spherical center of the pocket portion 33) overlaps the first straight shape portion 33b in the axial direction.
  • An inner convex portion 38 that protrudes radially inward is formed on the radially inner side surface 31 a (the other radial side surface) of the ring portion 31.
  • the inner convex portion 38 is formed as a catch between the cage 30 and the mold that forms the cage main body, so that the mold parts that form the pocket portion 33 can be forcibly removed. can do.
  • an outer convex portion 39 protruding radially outward may be formed on the radially outer surface 31b (one radial side surface) of the ring portion 31.
  • Example 1 In the angular ball bearing 1 of this example, the inner diameter is ⁇ 15 mm, the contact angle ⁇ is 50 °, and the value of Ai (the radial height Hi of the inner ring groove shoulder 22 is divided by the diameter Dw of the ball 3) is 0. .38, Ae (the radial height He of the outer ring groove shoulder 12 divided by the diameter Dw of the ball 3) was set to 0.38.
  • the cage 30 has the shape shown in FIG. 18, and the material thereof is a polyamide resin.
  • the inner diameter is ⁇ 60 mm
  • the contact angle ⁇ is 60 °
  • Ai the radial height Hi of the inner ring groove shoulder 22 is divided by the diameter Dw of the ball 3
  • Ae the radial height He of the outer ring groove shoulder 12 divided by the diameter Dw of the ball 3 was set to 0.47.
  • the cage 30 has the shape shown in FIG. 1, and the material thereof is a material in which the base resin is polyacetal resin and carbon fiber is added as a reinforcing material by 10 weight percent.
  • Example 3 In the angular ball bearing 1 of the present embodiment, the inner diameter is ⁇ 40 mm, the contact angle ⁇ is 55 °, and the value of Ai (the radial height Hi of the inner ring groove shoulder 22 is divided by the diameter Dw of the ball 3) is 0. .43, Ae (the radial height He of the outer ring groove shoulder 12 divided by the diameter Dw of the ball 3) was set to 0.43.
  • the cage 30 has the shape shown in FIG. 20, and the material thereof is a base resin made of polyamide resin, and 20 weight percent of glass fiber is added as a reinforcing material.
  • Example 4 In the angular ball bearing 1 of the present embodiment, the inner diameter is ⁇ 40 mm, the contact angle ⁇ is 55 °, and the value of Ai (the radial height Hi of the inner ring groove shoulder 22 is divided by the diameter Dw of the ball 3) is 0. .43, Ae (the radial height He of the outer ring groove shoulder 12 divided by the diameter Dw of the ball 3) was set to 0.43.
  • the cage 30 has the shape shown in FIG. 19, and the material thereof is a base resin made of polyamide resin and glass fiber added as a reinforcing material by 20 weight percent.

Abstract

A cage (30) that is a crown-type cage that has an approximately annular ring (31), a plurality of columns (32) that project in the axial direction from a front side or a rear side of the ring (31) at prescribed intervals, and a plurality of pockets (33) that are formed between adjacent columns (32). The position of the centers of the spherical surfaces of the pockets (33) is shifted to the radial direction inside with regard to the radial direction center of the ring (31). The radial direction cross-sectional shape of the pockets (33) is a circle that has an arbitrary radius (r) and that comprises a circular arc (33a) that connects a radial direction inside surface (31a) and a radial direction outside surface (31b) of the ring (31). At least one inside projecting part (38) that protrudes in the radial direction or an outside projecting part (39) that protrudes in the radial direction is formed in at least one of the radial direction inside surface (31a) and the radial direction outside surface (31b) of the ring (31).

Description

アンギュラ玉軸受Angular contact ball bearings
 本発明はアンギュラ玉軸受に関する。 The present invention relates to an angular contact ball bearing.
 NC旋盤、フライス盤、マシニングセンタ、複合加工機、五軸加工機等の工作機械や、主軸台や加工物を装着するベッドの直動送り機構には、回転運動を直線運動に変換するボールねじが使用されている。このボールねじの軸端を回転支持する軸受としてアンギュラ玉軸受が採用されている(例えば、特許文献1参照。)。これらの軸受は、使用する工作機械の主軸台や加工物を装着するベッドの大きさに応じて、軸受内径がφ10mm~φ100mm前後のサイズのものが使用されている。 Ball screws that convert rotary motion into linear motion are used for machine tools such as NC lathes, milling machines, machining centers, multi-axis machines, and 5-axis machines, and linear feed mechanisms for beds and spindle heads. Has been. An angular ball bearing is employed as a bearing that rotatably supports the shaft end of the ball screw (for example, see Patent Document 1). These bearings have a bearing inner diameter of about 10 mm to about 100 mm depending on the size of the headstock of the machine tool used or the bed on which the workpiece is mounted.
 加工中に発生する切削荷重や、主軸台およびベッドを急加速で移動させる場合のイナーシャ荷重は、ボールねじを介してアンギュラ玉軸受にアキシアル荷重として負荷される。最近の工作機械では、高効率加工の目的で切削荷重や早送りによるイナーシャ荷重が大きく、アンギュラ玉軸受に大きなアキシアル荷重が負荷される傾向にある。 The cutting load generated during machining and the inertia load when the headstock and bed are moved at a rapid acceleration are applied as an axial load to the angular ball bearing via the ball screw. In recent machine tools, cutting loads and inertia loads due to rapid feed are large for the purpose of high-efficiency machining, and angular ball bearings tend to be loaded with large axial loads.
 したがって、このようなボールねじサポート用のアンギュラ玉軸受では、転がり疲れ寿命を増加させるために、軸方向の負荷容量の増加と、加工精度を維持するための高剛性を両立することが必要となる。 Therefore, in such an angular ball bearing for ball screw support, in order to increase the rolling fatigue life, it is necessary to achieve both an increase in axial load capacity and a high rigidity to maintain machining accuracy. .
日本国特開2000-104742号公報Japanese Unexamined Patent Publication No. 2000-104742
 これらを両立するためには、軸受サイズを大きくするか、組合せの列数を多くすれば対応できるが、軸受サイズを大きくしてしまうと、ボールねじ軸端においてスペース増となり、また、組合せの列数をむやみに多くしてしまうとボールねじユニット部分が幅広の構成となってしまう。その結果、工作機械の必要床面積の増加や高さ方向の寸法が増加してしまうため、軸受の大型化や列数増加には限度がある。 In order to achieve both of these, the bearing size can be increased or the number of combinations can be increased. However, if the bearing size is increased, the space at the ball screw shaft end increases, and the number of combinations is increased. If the number is increased excessively, the ball screw unit portion becomes wide. As a result, the required floor area of the machine tool increases and the height dimension increases, so there is a limit to the increase in the size of the bearings and the number of rows.
 本発明は上記事情に鑑みてなされたものであり、限られたスペースの中で軸方向の負荷容量増加と高剛性を両立可能なアンギュラ玉軸受を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an angular ball bearing capable of achieving both an increase in axial load capacity and high rigidity in a limited space.
 本発明の上記目的は、下記の構成により達成される。
(1) 内周面に軌道面を有する外輪と、
 外周面に軌道面を有する内輪と、
 前記外輪及び前記内輪の軌道面間に配置された複数の玉と、
 前記玉を転動自在に保持し、玉案内方式である保持器と、
を備えるアンギュラ玉軸受であって、
 前記内輪の外周面には、背面側に内輪カウンターボアが凹設され、正面側に内輪溝肩部が凸設され、
 前記外輪の内周面には、正面側に外輪カウンターボアが凹設され、背面側に外輪溝肩部が凸設され、
 前記玉の接触角αは、45°≦α≦65°であり、
 前記内輪溝肩部の径方向高さを前記玉の直径で除したものをAiとすると、0.35≦Ai≦0.50であり、
 前記外輪溝肩部の径方向高さを前記玉の直径で除したものをAeとすると、0.35≦Ae≦0.50であり、
 前記保持器は、略円環状のリング部と、前記リング部の正面側又は背面側から、所定間隔で軸方向に突出した複数の柱部と、隣り合う前記柱部の間に形成された複数のポケット部と、を有する冠型保持器であり、
 前記ポケット部の球面中心位置は、前記リング部の径方向中心に対して、径方向一方側にずれており、
 前記ポケット部の径方向断面形状は、前記リング部の径方向一方側面と径方向他方側面を結ぶ円弧からなる任意の半径の円であり、
 前記リング部の径方向一方側面及び径方向他方側面のうち、少なくとも一方には、径方向に突出する凸部が少なくとも一つ形成される
ことを特徴とするアンギュラ玉軸受。
(2) 前記円弧は、径方向一方側端部が切り欠かれて軸方向に延びる第1ストレート形状部とされている
ことを特徴とする(1)に記載のアンギュラ玉軸受。
(3) 前記円弧は、前記第1ストレート形状部と、前記リング部の前記径方向一方側面と、を結ぶ部分が、切り欠かれて第2ストレート形状部とされている
ことを特徴とする(2)に記載のアンギュラ玉軸受。
(4) 隣り合う前記玉同士の距離Lと、玉ピッチ円直径dmに円周率πを乗じた玉ピッチ円周長さπdmと、の関係は、2.5×10-3≦L/πdm≦13×10-3を満たす
ことを特徴とする(1)~(3)の何れか1つに記載のアンギュラ玉軸受。
The above object of the present invention can be achieved by the following constitution.
(1) an outer ring having a raceway surface on the inner peripheral surface;
An inner ring having a raceway surface on the outer peripheral surface;
A plurality of balls disposed between the raceways of the outer ring and the inner ring;
Holding the ball so as to roll freely, a cage that is a ball guide system,
An angular contact ball bearing comprising:
On the outer peripheral surface of the inner ring, an inner ring counterbore is recessed on the back side, and an inner ring groove shoulder is protruded on the front side,
On the inner peripheral surface of the outer ring, an outer ring counter bore is recessed on the front side, and an outer ring groove shoulder is protruded on the back side,
The contact angle α of the balls is 45 ° ≦ α ≦ 65 °,
When Ai is obtained by dividing the radial height of the inner ring groove shoulder by the diameter of the ball, 0.35 ≦ Ai ≦ 0.50,
When Ae is obtained by dividing the radial height of the outer ring groove shoulder by the diameter of the ball, 0.35 ≦ Ae ≦ 0.50,
The cage is formed between a substantially annular ring portion, a plurality of column portions protruding in the axial direction at a predetermined interval from the front side or the back side of the ring portion, and a plurality of adjacent column portions. And a pocket-shaped cage having
The spherical center position of the pocket portion is shifted to one radial side with respect to the radial center of the ring portion,
The radial cross-sectional shape of the pocket portion is a circle with an arbitrary radius composed of an arc connecting the one radial side surface and the other radial side surface of the ring portion,
The angular ball bearing according to claim 1, wherein at least one convex portion projecting in the radial direction is formed on at least one of the one radial side surface and the other radial side surface of the ring portion.
(2) The angular ball bearing according to (1), wherein the circular arc is a first straight shape portion that is notched at one end portion in the radial direction and extends in the axial direction.
(3) The circular arc is characterized in that a portion connecting the first straight shape portion and the one side surface in the radial direction of the ring portion is cut out to be a second straight shape portion ( Angular contact ball bearings as described in 2).
(4) The relationship between the distance L between the adjacent balls and the ball pitch circumference length πdm obtained by multiplying the ball pitch circle diameter dm by the circumference ratio π is 2.5 × 10 −3 ≦ L / πdm The angular contact ball bearing according to any one of (1) to (3), wherein ≦ 13 × 10 −3 is satisfied.
 本発明のアンギュラ玉軸受によれば、玉の接触角αが45°≦α≦65°を満たすので、接触角を大きくすることによって、軸受の軸方向荷重の負荷能力が増加し、より大きな予圧荷重で使用することができる。その結果、軸受、ひいてはボールねじ系の剛性を向上することができる。
 また、内輪溝肩部の径方向高さを玉の直径で除したものをAiとすると0.35≦Ai≦0.50であり、外輪溝肩部の径方向高さを玉の直径で除したものをAeとすると0.35≦Ae≦0.50であるので、軸受の軸方向荷重の負荷能力が不足することを防止しつつ、内外輪溝肩部の研削加工を容易とすることが可能である。
 また、リング部の径方向一方側及び径方向他方側面のうち、少なくとも一方には、径方向に突出する凸部が少なくとも一つ形成されるので、保持器を射出成形で製造する場合、ポケット部を形成する金型部品の無理抜きを可能とすることができる。
According to the angular ball bearing of the present invention, the contact angle α of the ball satisfies 45 ° ≦ α ≦ 65 °. Therefore, by increasing the contact angle, the load capacity of the axial load of the bearing increases, and a larger preload. Can be used with load. As a result, the rigidity of the bearing and thus the ball screw system can be improved.
In addition, when Ai is obtained by dividing the radial height of the inner ring groove shoulder by the ball diameter, 0.35 ≦ Ai ≦ 0.50, and the radial height of the outer ring groove shoulder is divided by the ball diameter. When Ae is 0.35 ≦ Ae ≦ 0.50, it is possible to easily grind the inner and outer ring groove shoulders while preventing the bearing load capacity from being insufficient. Is possible.
In addition, since at least one convex portion projecting in the radial direction is formed on at least one of the one radial side surface and the other radial side surface of the ring portion, the pocket portion is formed when the cage is manufactured by injection molding. It is possible to forcibly remove the mold parts that form the mold.
本発明の実施形態に係るアンギュラ玉軸受の断面図である。It is sectional drawing of the angular ball bearing which concerns on embodiment of this invention. 図1のアンギュラ玉軸受を並列組合せした断面図である。It is sectional drawing which combined the angular ball bearing of FIG. 1 in parallel. 保持器の側面図である。It is a side view of a holder | retainer. 保持器を軸方向一方側から見た図である。It is the figure which looked at the holder | retainer from the axial direction one side. 保持器を軸方向他方側から見た図である。It is the figure which looked at the holder | retainer from the other side in the axial direction. 図4のVI-VI断面矢視図である。FIG. 6 is a sectional view taken along the line VI-VI in FIG. 4. 保持器の断面図である。It is sectional drawing of a holder | retainer. 従来の深溝玉軸受の断面図である。It is sectional drawing of the conventional deep groove ball bearing. 径方向荷重が負荷された場合の保持器を軸方向一方側から見た図である。It is the figure which looked at the holder | retainer when a radial load is loaded from the axial direction one side. 保持器に径方向荷重が負荷された場合のアンギュラ玉軸受の断面図である。It is sectional drawing of an angular contact ball bearing when a radial load is applied to a cage. 複数の玉の配置状態を説明するための図である。It is a figure for demonstrating the arrangement | positioning state of a some ball. 従来のアンギュラ玉軸受の断面図である。It is sectional drawing of the conventional angular contact ball bearing. 図12の保持器及び玉におけるXIII-XIII断面図が実線で示されており、図12の保持器及び玉において、保持器のポケット部が破線で示されるように軸方向に移動した場合のXIII-XIII断面図が破線で示されている。XIII-XIII cross-sectional view of the cage and ball of FIG. 12 is indicated by solid lines, and in the cage and ball of FIG. 12, the pocket portion of the cage is moved in the axial direction as indicated by broken lines. The -XIII cross section is indicated by a broken line. 図12の保持器をXIV方向から見た図である。It is the figure which looked at the holder | retainer of FIG. 12 from the XIV direction. 本発明の保持器を示す図である。It is a figure which shows the holder | retainer of this invention. 従来の保持器を軸方向から見た図である。It is the figure which looked at the conventional cage | basket from the axial direction. 従来の保持器の側面図である。It is a side view of the conventional cage | basket. 変形例に係るアンギュラ玉軸受の断面図である。It is sectional drawing of the angular ball bearing which concerns on a modification. 変形例に係るアンギュラ玉軸受の断面図である。It is sectional drawing of the angular ball bearing which concerns on a modification. 変形例に係るアンギュラ玉軸受の断面図である。It is sectional drawing of the angular ball bearing which concerns on a modification. 変形例に係るアンギュラ玉軸受の断面図である。It is sectional drawing of the angular ball bearing which concerns on a modification. 図21の保持器を軸方向一方側から見た図である。It is the figure which looked at the holder | retainer of FIG. 21 from the axial direction one side. 図21の保持器の断面図である。It is sectional drawing of the holder | retainer of FIG.
 以下、本発明の実施形態に係るアンギュラ玉軸受について、図面を用いて説明する。 Hereinafter, an angular ball bearing according to an embodiment of the present invention will be described with reference to the drawings.
 図1に示すように、本実施形態のアンギュラ玉軸受1は、内周面に軌道面11を有する外輪10と、外周面に軌道面21を有する内輪20と、外輪10及び内輪20の軌道面11、21間に配置された複数の玉3と、玉3を転動自在に保持し、玉案内方式である保持器30と、を備える。 As shown in FIG. 1, the angular ball bearing 1 of the present embodiment includes an outer ring 10 having a raceway surface 11 on an inner peripheral surface, an inner ring 20 having a raceway surface 21 on an outer peripheral surface, and raceway surfaces of the outer ring 10 and the inner ring 20. 11 and 21, a plurality of balls 3, and a retainer 30 that holds the balls 3 in a freely rolling manner and is a ball guide system.
 外輪10の内周面は、軌道面11よりも背面側(負荷側。図1中左側。)において凸設された外輪溝肩部12と、軌道面11よりも正面側(反負荷側。図1中右側。)において凹設された外輪カウンターボア13と、を有する。 The outer peripheral surface of the outer ring 10 is protruded on the back side (load side; left side in FIG. 1) of the raceway surface 11 and the front side of the raceway surface 11 (on the anti-load side). 1 on the right side of the outer ring counter bore 13.
 内輪20の外周面は、軌道面21よりも正面側(負荷側。図1中右側。)において凸設された内輪溝肩部22と、軌道面21よりも背面側(反負荷側。図1中左側。)において凹設された内輪カウンターボア23と、を有する。 The outer peripheral surface of the inner ring 20 is an inner ring groove shoulder 22 projecting on the front side (load side; right side in FIG. 1) from the raceway surface 21, and the back side (anti-load side, FIG. 1). And an inner ring counter bore 23 recessed in the middle left side.).
 ここで、内輪カウンターボア23の外径をD1とし、内輪溝肩部22の外径をD2とすると、D1<D2とされ、且つ、外輪カウンターボア13の内径をD3とし、外輪溝肩部12の内径をD4とすると、D3>D4とされている。このように、内輪溝肩部22の外径D2を大きくし、外輪溝肩部12の内径D4を小さくしているので、玉3の接触角αを大きく設定することが可能である。より具体的には、外径D2及び内径D4を上記のように設定することで、接触角αを45°≦α≦65°程度とすることができ、軸受製作時の接触角αのバラツキを考慮しても、50°≦α≦60°程度とすることができ、接触角αを大きくすることができる。 Here, if the outer diameter of the inner ring counterbore 23 is D1 and the outer diameter of the inner ring groove shoulder 22 is D2, then D1 <D2 and the inner diameter of the outer ring counterbore 13 is D3, and the outer ring groove shoulder 12 If the inner diameter of D4 is D4, then D3> D4. Thus, since the outer diameter D2 of the inner ring groove shoulder 22 is increased and the inner diameter D4 of the outer ring groove shoulder 12 is decreased, the contact angle α of the ball 3 can be set large. More specifically, by setting the outer diameter D2 and the inner diameter D4 as described above, the contact angle α can be set to about 45 ° ≦ α ≦ 65 °, and the variation in the contact angle α during the manufacture of the bearing can be reduced. Even if it considers, it can be set as about 50 degrees <= alpha <= 60 degrees, and contact angle alpha can be enlarged.
 また、内輪溝肩部22の径方向高さHiを玉3の直径Dwで除したものをAiとすると(Ai=Hi/Dw)、0.35≦Ai≦0.50を満たすように設定され、外輪溝肩部12の径方向高さHeを玉3の直径Dwで除したものをAeとすると(Ae=He/Dw)、0.35≦Ae≦0.50を満たすように設定される。 Further, when Ai is obtained by dividing the radial height Hi of the inner ring groove shoulder portion 22 by the diameter Dw of the ball 3 (Ai = Hi / Dw), it is set to satisfy 0.35 ≦ Ai ≦ 0.50. If the value obtained by dividing the radial height He of the outer ring groove shoulder 12 by the diameter Dw of the ball 3 is Ae (Ae = He / Dw), it is set to satisfy 0.35 ≦ Ae ≦ 0.50. .
 仮に、0.35>Ai又は0.35>Aeである場合には、玉3の直径Dwに対して内輪溝肩部22又は外輪溝肩部12の径方向高さHi、Heが小さくなり過ぎるため、接触角αが45°未満となってしまい、軸受の軸方向荷重の負荷能力が不足してしまう。また、0.50<Ai又は0.50<Aeである場合には、外輪10及び内輪20の軌道面11、21が、玉3のピッチ円直径dmをはみ出して形成されることになるので、外輪溝肩部12及び内輪溝肩部22の研削加工が困難となり望ましくない。 If 0.35> Ai or 0.35> Ae, the radial heights Hi and He of the inner ring groove shoulder 22 or the outer ring groove shoulder 12 are too small with respect to the diameter Dw of the ball 3. Therefore, the contact angle α is less than 45 °, and the load capacity of the bearing in the axial direction is insufficient. Further, when 0.50 <Ai or 0.50 <Ae, the raceway surfaces 11 and 21 of the outer ring 10 and the inner ring 20 are formed so as to protrude from the pitch circle diameter dm of the ball 3, Grinding of the outer ring groove shoulder 12 and the inner ring groove shoulder 22 becomes difficult, which is not desirable.
 また、外輪溝肩部12の背面側端部には、背面側に向かうにしたがって径方向外側に向かうテーパ形状の外輪面取り14が設けられており、内輪溝肩部22の正面側端部には、正面側に向かうにしたがって径方向内側に向かうテーパ形状の内輪面取り24が設けられている。これら外輪面取り14及び内輪面取り24の径方向幅は、外輪溝肩部12及び内輪溝肩部22の径方向高さHe、Hiの半分よりも大きく、比較的大きな値に設定されている。 Further, a taper-shaped outer ring chamfer 14 is provided at the rear side end portion of the outer ring groove shoulder portion 12 so as to go radially outward toward the rear side. A taper-shaped inner ring chamfer 24 that is directed radially inward toward the front side is provided. The radial widths of the outer ring chamfer 14 and the inner ring chamfer 24 are set to a relatively large value that is larger than half of the radial heights He and Hi of the outer ring groove shoulder 12 and the inner ring groove shoulder 22.
 このようなアンギュラ玉軸受1は、図2に示すように、並列組合せで使用することができる。本実施形態のアンギュラ玉軸受1は、玉3のピッチ円直径dmの近傍まで外輪溝肩部12及び内輪溝肩部22を設けているので、仮に、外輪面取り14及び内輪面取り24を設けないと、一方のアンギュラ玉軸受1の内輪20と他方のアンギュラ玉軸受1の外輪10が干渉し、軸受回転中に不具合が生じてしまう。また、オイル潤滑で使用する場合、仮に、外輪面取り14及び内輪面取り24を設けないと、各アンギュラ玉軸受1間を油が通過せず、油はけが悪くなり、潤滑不良や、軸受内部に油が多量に残留することによる温度上昇につながる。このように、外輪面取り14及び内輪面取り24を設けることで、内輪20及び外輪10同士の干渉の防止、及び油はけ性の向上を実現することができる。なお、外輪面取り14及び内輪面取り24は、必ずしも両方設ける必要はなく、少なくとも一方を設ければよい。 Such an angular ball bearing 1 can be used in parallel as shown in FIG. Since the angular ball bearing 1 of the present embodiment is provided with the outer ring groove shoulder 12 and the inner ring groove shoulder 22 up to the vicinity of the pitch circle diameter dm of the ball 3, the outer ring chamfer 14 and the inner ring chamfer 24 are not provided. The inner ring 20 of one angular ball bearing 1 and the outer ring 10 of the other angular ball bearing 1 interfere with each other, causing a problem during rotation of the bearing. In addition, when used in oil lubrication, if the outer ring chamfer 14 and the inner ring chamfer 24 are not provided, the oil does not pass between the angular ball bearings 1, and the oil is poorly lubricated. Leads to a temperature rise due to a large amount of remaining. Thus, by providing the outer ring chamfer 14 and the inner ring chamfer 24, it is possible to prevent interference between the inner ring 20 and the outer ring 10 and to improve oil repellency. Both the outer ring chamfer 14 and the inner ring chamfer 24 do not necessarily need to be provided, and at least one may be provided.
 次に、図3~7を参照し、保持器30の構成について詳述する。保持器30は、合成樹脂からなる玉案内方式のプラスチック保持器であり、当該保持器30を構成するベース樹脂はポリアミド樹脂である。なお、ポリアミド樹脂の種類は制限されるものではなく、ポリアミド以外に、ポリアセタール樹脂、ポリエーテルエーテルケトン、ポリイミド等、他の合成樹脂でも構わない。さらに、ベース樹脂中には、強化材として、ガラス繊維、カーボン繊維、アラミド繊維等が添加される。また、保持器30は、射出成形又は切削加工によって製造される。 Next, the configuration of the cage 30 will be described in detail with reference to FIGS. The cage 30 is a ball guide type plastic cage made of synthetic resin, and the base resin constituting the cage 30 is a polyamide resin. In addition, the kind of polyamide resin is not restrict | limited, Other synthetic resins, such as a polyacetal resin, polyetheretherketone, a polyimide, may be used besides polyamide. Furthermore, glass fiber, carbon fiber, aramid fiber, or the like is added to the base resin as a reinforcing material. The cage 30 is manufactured by injection molding or cutting.
 保持器30は、内輪20及び外輪10と同軸に配置された略円環状のリング部31と(図1参照。)と、リング部31の背面側から、所定間隔で軸方向に突出した複数の柱部32と、隣り合う柱部32の間に形成された複数のポケット部33と、を有する冠型保持器である。 The retainer 30 includes a substantially annular ring portion 31 (see FIG. 1) disposed coaxially with the inner ring 20 and the outer ring 10, and a plurality of protrusions protruding in the axial direction at a predetermined interval from the back side of the ring portion 31. It is a crown type retainer having a column portion 32 and a plurality of pocket portions 33 formed between adjacent column portions 32.
 ここで、本実施形態のアンギュラ玉軸受1では、軸方向荷重の高負荷能力実現のため、外輪溝肩部12及び内輪溝肩部22の径方向高さHe、Hiを大きくしているので、軸受内部空間が少なくなる。したがって、このような軸受内部空間に配置する保持器30が冠型保持器(片側リング構造)である場合、外輪カウンターボア13と内輪溝肩部22との間にリング部31を配置し、外輪10及び内輪20の軌道面11、21間に柱部32を配置し、柱部32の径方向外側端部にリング部31が接続する構造とされる。すなわち、ポケット部33の球面中心位置が、リング部31の径方向中心に対して径方向内側(径方向一方側)にずれた構造とされる。 Here, in the angular ball bearing 1 of the present embodiment, the radial heights He and Hi of the outer ring groove shoulder portion 12 and the inner ring groove shoulder portion 22 are increased in order to realize a high load capability of the axial load. The bearing internal space is reduced. Therefore, when the cage 30 arranged in such a bearing internal space is a crown type cage (one-side ring structure), the ring portion 31 is arranged between the outer ring counter bore 13 and the inner ring groove shoulder portion 22, and the outer ring 10 and the raceway surfaces 11 and 21 of the inner ring 20, the column portion 32 is arranged, and the ring portion 31 is connected to the radially outer end of the column portion 32. That is, the spherical center position of the pocket portion 33 is shifted from the radial center of the ring portion 31 radially inward (one radial direction side).
 図7に示すように、ポケット部33の径方向断面形状は、リング部31の径方向内側面(径方向一方側面)31aと径方向外側面(径方向他方側面)31bとを結ぶ円弧33aからなる任意の半径rの円とされる。当該円の中心はPで示される。そして、円弧33aは、径方向内側部(径方向一方部)が切り欠かれて軸方向に延びる第1ストレート形状部33bとされている。第1ストレート形状部33bは、円の中心Pよりも背面側に配置されている。また、円弧33aは、第1ストレート形状部33bの正面側の端部と、リング部31の径方向内側面31aの背面側の端部と、を結ぶ部分が、切り欠かれて第2ストレート形状部33cとされている。したがって、第2ストレート形状部33cは、正面側(リング部31側)に向かうにしたがって、径方向外側に向かう直線形状とされる。また、玉3の中心Oi(ポケット部33の球面中心)が、軸方向において、第1ストレート形状部33bに重なるように、当該第1ストレート形状部33bが形成される。 As shown in FIG. 7, the radial cross-sectional shape of the pocket portion 33 is from an arc 33a connecting the radial inner side surface (one radial side surface) 31a and the radial outer side surface (radial other side surface) 31b of the ring portion 31. A circle with an arbitrary radius r. The center of the circle is indicated by P. The arc 33a is a first straight-shaped portion 33b extending in the axial direction by cutting out the radially inner portion (one radial portion). The first straight shape portion 33b is disposed on the back side of the center P of the circle. The arc 33a has a second straight shape in which a portion connecting the front end of the first straight shape portion 33b and the back end of the radial inner side surface 31a of the ring portion 31 is notched. Part 33c. Therefore, the 2nd straight shape part 33c is made into the linear shape which goes to a radial direction outer side as it goes to the front side (ring part 31 side). Further, the first straight shape portion 33b is formed so that the center Oi of the ball 3 (spherical center of the pocket portion 33) overlaps the first straight shape portion 33b in the axial direction.
 また、図6に示すように、ポケット部33を形成する、柱部32の周方向両側面、及びリング部31の背面側(柱部32側)の側面は、玉3と相似形状の球面状に形成される。ここで、柱部32の先端は、周方向中間に断面略V字形状の切欠部34が設けられており、二又に分かれている。これにより、保持器30を射出成型で製造する際に、ポケット部33を形成する金型部品の無理抜きによる、柱部32のポケット部33側の角部35の破損を防止することができる。 Further, as shown in FIG. 6, both side surfaces in the circumferential direction of the column portion 32 and side surfaces on the back side (column portion 32 side) of the ring portion 31 forming the pocket portion 33 are spherical shapes similar to the balls 3. Formed. Here, the tip of the column part 32 is provided with a notch 34 having a substantially V-shaped cross section in the middle in the circumferential direction, and is divided into two. Thereby, when manufacturing the holder | retainer 30 by injection molding, the breakage | damage of the corner | angular part 35 by the side of the pocket part 33 of the pillar part 32 by the forced removal of the metal mold part which forms the pocket part 33 can be prevented.
 また、保持器30材料の合成樹脂に添加する強化材の割合は、5~30重量パーセントとすることが好ましい。仮に、合成樹脂成分中の強化材の割合が30重量パーセントを超えると、保持器30の柔軟性が低下するため、保持器30成形時のポケット部33からの型の無理抜き時や、軸受を組み立てる際のポケット部33への玉3の圧入時に、柱部32の角部35が破損してしまう。また、保持器30の熱膨張はベース材料である樹脂材料の線膨張係数に依存するので、強化材の割合が5重量パーセントよりも少なくなると、軸受回転中の保持器30の熱膨張が玉3のピッチ円直径dmの膨張に対して大きくなり、玉3と保持器30のポケット部33が突っ張り合ってしまい、焼付きなどの不具合が起こってしまう。したがって、合成樹脂成分中の強化材の割合を5~30重量%の範囲とすることによって、上記不具合を防止することができる。 Further, the ratio of the reinforcing material added to the synthetic resin of the cage 30 material is preferably 5 to 30 weight percent. If the proportion of the reinforcing material in the synthetic resin component exceeds 30% by weight, the flexibility of the cage 30 is reduced. Therefore, when the mold is forcibly removed from the pocket portion 33 when the cage 30 is molded, When the ball 3 is press-fitted into the pocket portion 33 during assembly, the corner portion 35 of the column portion 32 is damaged. Further, since the thermal expansion of the cage 30 depends on the linear expansion coefficient of the resin material that is the base material, if the proportion of the reinforcing material is less than 5 weight percent, the thermal expansion of the cage 30 during the rotation of the bearing causes the ball 3 to rotate. As the pitch circle diameter dm expands, the ball 3 and the pocket portion 33 of the cage 30 stick against each other, causing problems such as seizure. Therefore, the above-mentioned problem can be prevented by setting the ratio of the reinforcing material in the synthetic resin component in the range of 5 to 30% by weight.
 なお、保持器30の合成樹脂材料としては、ポリアミド、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリイミド等の樹脂を適用され、強化材としては、ガラス繊維、炭素繊維、アラミド繊維などが適用される。 In addition, as a synthetic resin material for the cage 30, a resin such as polyamide, polyetheretherketone, polyphenylene sulfide, or polyimide is applied, and as a reinforcing material, glass fiber, carbon fiber, aramid fiber, or the like is applied.
 ここで、図8に示すような、従来の冠形保持器を有する深溝玉軸受100は、保持器130と内輪120又は外輪110とが径方向において重なっていない。そのため、深溝玉軸受100の回転始動時や停止時のイナーシャによって、保持器130が設計値を超えて、内輪120又は外輪110に対して相対的に軸方向に移動したとしても、保持器130と内輪120又は外輪110とが干渉することはない。 Here, in the deep groove ball bearing 100 having a conventional crown-shaped cage as shown in FIG. 8, the cage 130 and the inner ring 120 or the outer ring 110 do not overlap in the radial direction. Therefore, even if the cage 130 exceeds the design value due to the inertia at the time of starting and stopping the rotation of the deep groove ball bearing 100, even if the cage 130 moves in the axial direction relative to the inner ring 120 or the outer ring 110, There is no interference with the inner ring 120 or the outer ring 110.
 しかしながら、本実施形態のアンギュラ玉軸受1のように、保持器30と内輪20又は外輪10とが径方向において重なっている場合、保持器30が設計値を超えて、内輪20又は外輪10に対して軸方向に相対的に移動したときに、保持器30と内輪20又は外輪10とが干渉する可能性がある。仮に、保持器30のポケット部33の径方向断面形状が第2ストレート形状部33cを有さない形状であった場合、保持器30と内輪20との間の軸方向距離ΔS1(図1参照。)が狭くなり、保持器30と内輪20とが干渉する可能性が高くなる。保持器30と内輪20とが干渉してしまうと、保持器30と内輪20との干渉時にトルクが変動し、ボールねじ系として正確な位置決めができなくなると共に、干渉時の摩擦により保持器30が摩耗し、保持器30の破損につながる。また、保持器30が摩耗したときに発生した摩耗粉が異物となり、軸受の潤滑状態が悪くなる結果、軸受の寿命が短くなる。 However, when the cage 30 and the inner ring 20 or the outer ring 10 overlap in the radial direction as in the angular ball bearing 1 of the present embodiment, the cage 30 exceeds the design value, and the inner ring 20 or the outer ring 10 Thus, the cage 30 and the inner ring 20 or the outer ring 10 may interfere with each other when moving relatively in the axial direction. If the radial cross-sectional shape of the pocket portion 33 of the cage 30 is a shape that does not have the second straight shape portion 33c, the axial distance ΔS1 between the cage 30 and the inner ring 20 (see FIG. 1). ) Becomes narrow, and the possibility that the cage 30 and the inner ring 20 interfere with each other increases. If the retainer 30 and the inner ring 20 interfere with each other, the torque fluctuates when the retainer 30 and the inner ring 20 interfere with each other, and accurate positioning as a ball screw system cannot be performed. Wear and lead to breakage of the cage 30. Further, the wear powder generated when the cage 30 is worn becomes foreign matter, and the bearing lubrication state is deteriorated. As a result, the life of the bearing is shortened.
 そこで、本実施形態のアンギュラ玉軸受1のように、ポケット部33に第2ストレート形状部33cを形成することにより、保持器30と内輪20との間の軸方向距離ΔS1をより広くとることができ、保持器30と内輪20とが干渉する可能性を低くすることができる。 Therefore, as in the angular ball bearing 1 of the present embodiment, the axial distance ΔS1 between the cage 30 and the inner ring 20 can be increased by forming the second straight shape portion 33c in the pocket portion 33. It is possible to reduce the possibility that the cage 30 and the inner ring 20 interfere with each other.
 また、本実施形態のアンギュラ玉軸受1のように、大きな接触角αを維持するため、それぞれ外輪溝肩部12及び内輪溝肩部22の径方向高さHe、Hiを、玉3のピッチ円直径dm近傍まで高くした場合、外輪10及び内輪20間の径方向空間が狭くなり、外輪10及び内輪20間の空間に位置する保持器30のリング部31の径方向肉厚が標準軸受に対して厚くできない。特に、冠形保持器の場合、保持器30の軸方向一方側にしかリング部31が存在しないので、肉厚不足によるリング部31の強度低下の懸念がある。 Further, in order to maintain a large contact angle α as in the angular ball bearing 1 of the present embodiment, the radial heights He and Hi of the outer ring groove shoulder 12 and the inner ring groove shoulder 22 are set to the pitch circle of the ball 3, respectively. When the diameter is increased to near dm, the radial space between the outer ring 10 and the inner ring 20 is narrowed, and the radial thickness of the ring portion 31 of the cage 30 located in the space between the outer ring 10 and the inner ring 20 is larger than that of the standard bearing. Cannot be thick. In particular, in the case of a crown-shaped cage, since the ring portion 31 exists only on one side in the axial direction of the cage 30, there is a concern that the strength of the ring portion 31 may be reduced due to insufficient thickness.
 さらに、保持器30の材料が、ポリアミド樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン、ポリイミドなどの合成樹脂であり、ベース樹脂への強化繊維含有率も30重量パーセント以下とされる。そのため、保持器30のリング部31強度が低くなりがちであり、径方向の衝撃荷重や振動荷重が加わった際に、保持器30が径方向にたわんでしまう。なお、図9及び図10には、保持器30に径方向荷重Fが負荷され、径方向にたわんだ場合の形状の一例が、破線で模式的に表されている。保持器30が径方向にたわむことで、保持器30の径方向位置が内輪20側又は外輪10側に接近してしまう。これにより、保持器30と内輪20との間の軸方向距離ΔS1が狭くなり、保持器30と内輪20とが干渉する可能性が高くなる。仮に、保持器30のポケット部33の径方向断面形状が第2ストレート形状部33cを有さない形状であった場合、保持器30と内輪20との間の軸方向距離ΔS1が狭くなり、保持器30と内輪20とが干渉する可能性が高くなる。そこで、本実施形態のアンギュラ玉軸受1のように、ポケット部33に第2ストレート形状部33cを形成することにより、保持器30と内輪20との間の軸方向距離ΔS1をより広くとることができ、保持器30と内輪20とが干渉する可能性を低くすることができる。 Furthermore, the material of the cage 30 is a synthetic resin such as polyamide resin, polyacetal resin, polyetheretherketone, polyimide, and the reinforcing fiber content in the base resin is 30 weight percent or less. For this reason, the strength of the ring portion 31 of the cage 30 tends to be low, and when a radial impact load or vibration load is applied, the cage 30 bends in the radial direction. In FIGS. 9 and 10, an example of the shape when the radial load F is applied to the cage 30 and the cage 30 is bent in the radial direction is schematically represented by a broken line. When the cage 30 bends in the radial direction, the radial position of the cage 30 approaches the inner ring 20 side or the outer ring 10 side. As a result, the axial distance ΔS1 between the cage 30 and the inner ring 20 is reduced, and the possibility that the cage 30 and the inner ring 20 interfere with each other increases. If the radial cross-sectional shape of the pocket portion 33 of the cage 30 is a shape that does not have the second straight shape portion 33c, the axial distance ΔS1 between the cage 30 and the inner ring 20 is narrowed and retained. The possibility that the container 30 and the inner ring 20 interfere with each other increases. Therefore, as in the angular ball bearing 1 of the present embodiment, the axial distance ΔS1 between the cage 30 and the inner ring 20 can be increased by forming the second straight shape portion 33c in the pocket portion 33. It is possible to reduce the possibility that the cage 30 and the inner ring 20 interfere with each other.
 また、外輪10及び内輪20間の空間に位置する保持器30のリング部31の径方向肉厚が標準軸受に対して厚くできないので、リング部31の曲げ剛性が十分でない場合がある。この場合、図6に矢印Aで示すように、軸受使用時に保持器30の柱部32に働く遠心力によって、柱部32の先端が径方向外側に拡径し、角部35が周方向に広がりやすくなってしまう。したがって、保持器30の軸方向動き量ΔAが大きくなる。このように保持器30の軸方向動き量ΔAが大きくなった場合、保持器30と内輪20との間の軸方向距離ΔS1が狭くなり、保持器30と内輪20とが干渉する可能性が高くなる。仮に、保持器30のポケット部33の径方向断面形状が第2ストレート形状部33cを有さない形状であった場合、保持器30と内輪20との間の軸方向距離ΔS1が狭くなり、保持器30と内輪20とが干渉する可能性が高くなる。そこで、本実施形態のアンギュラ玉軸受1のように、ポケット部33に第2ストレート形状部33cを形成することにより、保持器30と内輪20との間の軸方向距離ΔS1をより広くとることができ、保持器30と内輪20とが干渉する可能性を低くすることができる。 In addition, since the radial thickness of the ring portion 31 of the cage 30 located in the space between the outer ring 10 and the inner ring 20 cannot be increased with respect to the standard bearing, the bending rigidity of the ring portion 31 may not be sufficient. In this case, as indicated by an arrow A in FIG. 6, the distal end of the column part 32 expands radially outward by the centrifugal force acting on the column part 32 of the cage 30 when the bearing is used, and the corner part 35 extends in the circumferential direction. It becomes easy to spread. Therefore, the axial movement amount ΔA of the cage 30 is increased. When the axial movement amount ΔA of the cage 30 increases in this way, the axial distance ΔS1 between the cage 30 and the inner ring 20 becomes narrow, and there is a high possibility that the cage 30 and the inner ring 20 interfere with each other. Become. If the radial cross-sectional shape of the pocket portion 33 of the cage 30 is a shape that does not have the second straight shape portion 33c, the axial distance ΔS1 between the cage 30 and the inner ring 20 is narrowed and retained. The possibility that the container 30 and the inner ring 20 interfere with each other increases. Therefore, as in the angular ball bearing 1 of the present embodiment, the axial distance ΔS1 between the cage 30 and the inner ring 20 can be increased by forming the second straight shape portion 33c in the pocket portion 33. It is possible to reduce the possibility that the cage 30 and the inner ring 20 interfere with each other.
 また、本実施形態のアンギュラ玉軸受1は、アキシアル荷重負荷能力を大きくするために、玉3の数(玉数Z)が多くなるように設定している。より具体的に、図11を用いて説明する。図11には、直径dmのピッチ円上に配置された二つの玉3が示されており、これらの玉3の直径をDwとし、これらの玉3の中心をA、Bとし、線分ABと玉3の表面との交点をC、Dとし、線分ABの中間点をEとし、ピッチ円の中心をOとしている。また、隣り合う玉3の中心A、B同士の距離(線分ABの距離)である玉中心間距離をTとし、隣り合う玉3同士の距離(線分CDの距離)である玉間距離をLとし、線分EOと線分BOとがなす角度(線分EOと線分AOとがなす角度)をθとしている。そうすると、線分AO及び線分BOの距離は(dm/2)であり、玉中心間距離Tは(dm×sinθ)であり、玉間距離Lは(T-Dw)であり、角度θは(180°/Z)である。 Further, the angular ball bearing 1 of the present embodiment is set so that the number of balls 3 (the number of balls Z) is increased in order to increase the axial load capacity. This will be described more specifically with reference to FIG. FIG. 11 shows two balls 3 arranged on a pitch circle having a diameter dm, the diameter of these balls 3 is Dw, the centers of these balls 3 are A and B, and a line segment AB. The intersection of the ball 3 and the surface of the ball 3 is C, D, the midpoint of the line segment AB is E, and the center of the pitch circle is O. In addition, the distance between the centers of the balls 3 that is the distance between the centers A and B of the adjacent balls 3 (distance of the line segment AB) is T, and the distance between the balls that is the distance of the adjacent balls 3 (the distance of the line segment CD). Is L, and the angle between line segment EO and line segment BO (angle between line segment EO and line segment AO) is θ. Then, the distance between the line segment AO and the line segment BO is (dm / 2), the ball center distance T is (dm × sin θ), the ball distance L is (T−Dw), and the angle θ is (180 ° / Z).
 そして、玉間距離Lと、玉ピッチ円直径dmに円周率πを乗じた玉3ピッチ円周長さπdmと、の間に、2.5×10-3≦L/πdm≦13×10-3の関係が成立するように設計している。仮に、L/πdmが2.5×10-3よりも小さいと、保持器30の柱部32の円周方向肉厚が薄くなりすぎ、成形時や切削時に穴が開いてしまう。特に強化材が多く含有されていると、成形時に保持器30の材料である合成樹脂の流動性が悪くなり、穴が開きやすい。また、L/πdmが13×10-3よりも大きいと、玉数Zが少なくなり、軸受のアキシアル荷重負荷能力及び剛性が低くなってしまう。 Between the ball distance L and the ball pitch pitch diameter dm multiplied by the ball pitch circle diameter dm, the pitch 3 pitch circumference length πdm is 2.5 × 10 −3 ≦ L / πdm ≦ 13 × 10 The design is such that the relationship of −3 is established. If L / πdm is smaller than 2.5 × 10 −3 , the circumferential thickness of the pillar portion 32 of the cage 30 becomes too thin, and a hole is opened during molding or cutting. In particular, when a large amount of reinforcing material is contained, the fluidity of the synthetic resin, which is the material of the cage 30, is deteriorated at the time of molding, and holes are easily opened. On the other hand, if L / πdm is larger than 13 × 10 −3 , the number of balls Z is reduced, and the axial load carrying capacity and rigidity of the bearing are lowered.
 このように、アンギュラ玉軸受1は2.5×10-3≦L/πdm≦13×10-3を満たすように、すなわち玉数Zが比較的多くなるように設計されており、保持器30の柱部32の円周方向肉厚が標準軸受に対して厚くすることができない。したがって、柱部32の円周方向肉厚が薄くなるのに伴い、角部35の肉厚が薄くなる。そのため、図6に矢印Aで示すように、玉3と保持器30の角部35とが当ったときに、角部35が周方向に広がりやすく、その結果、保持器の軸方向動き量ΔAが大きくなる。これにより、保持器30と内輪20との間の軸方向距離ΔS1が狭くなり、保持器30と内輪20とが干渉する可能性が高くなる。仮に、保持器30のポケット部33の径方向断面形状が第2ストレート形状部33cを有さない形状であった場合、保持器30と内輪20との間の軸方向距離ΔS1が狭くなり、保持器30と内輪20とが干渉する可能性が高くなる。そこで、本実施形態のアンギュラ玉軸受1のように、ポケット部33に第2ストレート形状部33cを形成することにより、保持器30と内輪20との間の軸方向距離ΔS1をより広くとることができ、保持器30と内輪20とが干渉する可能性を低くすることができる。 As described above, the angular ball bearing 1 is designed so as to satisfy 2.5 × 10 −3 ≦ L / πdm ≦ 13 × 10 −3 , that is, the number of balls Z is relatively large. The thickness in the circumferential direction of the column part 32 cannot be increased with respect to the standard bearing. Therefore, as the circumferential thickness of the pillar portion 32 becomes thinner, the thickness of the corner portion 35 becomes thinner. Therefore, as shown by an arrow A in FIG. 6, when the ball 3 and the corner portion 35 of the cage 30 hit each other, the corner portion 35 is likely to spread in the circumferential direction, and as a result, the axial movement amount ΔA of the cage. Becomes larger. As a result, the axial distance ΔS1 between the cage 30 and the inner ring 20 is reduced, and the possibility that the cage 30 and the inner ring 20 interfere with each other increases. If the radial cross-sectional shape of the pocket portion 33 of the cage 30 is a shape that does not have the second straight shape portion 33c, the axial distance ΔS1 between the cage 30 and the inner ring 20 is narrowed and retained. The possibility that the container 30 and the inner ring 20 interfere with each other increases. Therefore, as in the angular ball bearing 1 of the present embodiment, the axial distance ΔS1 between the cage 30 and the inner ring 20 can be increased by forming the second straight shape portion 33c in the pocket portion 33. It is possible to reduce the possibility that the cage 30 and the inner ring 20 interfere with each other.
 図12に示すように、保持器30のポケット部33の径方向断面形状を、従来型の任意の半径r1の円状とした場合であっても、上述した本実施形態の保持器30と同様、軸受の回転中に保持器30の軸方向相対移動量ΔAが大きくなる。そして、保持器30のポケット部33の径方向断面形状が円状であった場合、図14に示すように、ポケット部33の玉3を案内する部分である径方向内側縁部33dと、玉3と、が点接触となる。この場合、図13に示すように、ポケット部33の径方向内側縁部33dと玉3との間の径方向距離が、保持器30の径方向動き量ΔRとなる。 As shown in FIG. 12, even when the radial cross-sectional shape of the pocket portion 33 of the cage 30 is a conventional circular shape having an arbitrary radius r1, the same as the cage 30 of the present embodiment described above. The axial relative movement amount ΔA of the cage 30 increases during the rotation of the bearing. And when the radial direction cross-sectional shape of the pocket part 33 of the holder | retainer 30 is circular, as shown in FIG. 14, the radial direction inner edge part 33d which is a part which guides the ball | bowl 3 of the pocket part 33, and a ball | bowl 3 is a point contact. In this case, as shown in FIG. 13, the radial distance between the radially inner edge 33 d of the pocket 33 and the ball 3 is the radial movement amount ΔR of the cage 30.
 この場合、保持器30と玉3が点接触するため、軸受回転中に、保持器30が内輪20又は外輪10に対して軸方向に容易に相対移動し、その結果、ポケット部33の径方向内側縁部33dが、玉3と点接触する箇所も軸方向に移動する。図12には、軸方向に移動したポケット部33(柱部32)が破線で示されている。そうすると、ポケット部33の径方向内側縁部33dと玉3との間の径方向距離は、軸方向への移動前と比べて、移動後が小さくなるので、保持器30の径方向動き量ΔRも、軸方向への移動前(図13の実線参照。)と比べて、移動後(図13の破線参照。)が小さくなる。また、保持器30の軸方向位置が、図12の実線の位置から、上記と逆軸方向に移動する(図12の破線で示した方向と逆方向(左側)に移動する)と、ポケット部33の径方向内側縁部33dと玉3との間の径方向距離(径方向動き量ΔR)は小さくなる。 In this case, since the cage 30 and the ball 3 are in point contact, the cage 30 easily moves in the axial direction relative to the inner ring 20 or the outer ring 10 during the bearing rotation. As a result, the radial direction of the pocket portion 33 The location where the inner edge 33d is in point contact with the ball 3 also moves in the axial direction. In FIG. 12, the pocket part 33 (column part 32) which moved to the axial direction is shown with the broken line. Then, since the radial distance between the radially inner edge 33d of the pocket portion 33 and the ball 3 is smaller after the movement than before the movement in the axial direction, the radial movement amount ΔR of the cage 30 is reduced. Also, after movement (see the broken line in FIG. 13) is smaller than before movement in the axial direction (see the solid line in FIG. 13). Further, when the axial position of the cage 30 moves in the direction opposite to the above from the position indicated by the solid line in FIG. 12 (moves in the direction opposite to the direction indicated by the broken line in FIG. 12 (left side)), the pocket portion The radial distance (radial motion amount ΔR) between the radial inner edge 33d of 33 and the ball 3 is reduced.
 この現象が、保持器30が内輪20又は外輪10に対して軸方向に相対移動する度に発生するので(つまり、回転中に玉中心Oiとポケット部33の球面中心位置が一致した中立状態から、軸方向左右いずれか一方に保持器30が相対的にずれると、保持器30の径方向動き量ΔRが小さくなる方向に度々変化するので)、保持器30のポケット部33の径方向断面形状が円状であった場合、安定して玉3を案内することができず、保持器30の振動の増加や、保持器30と玉3とが突っ張り合う現象が発生し、保持器音や保持器30の早期破損などの問題が発生する。 This phenomenon occurs every time the cage 30 moves relative to the inner ring 20 or the outer ring 10 in the axial direction (that is, from the neutral state where the ball center Oi and the spherical center position of the pocket portion 33 coincide during rotation). When the cage 30 is relatively displaced to the left or right in the axial direction, the radial movement amount ΔR of the cage 30 is frequently changed in a direction in which the cage 30 becomes smaller. When the ball is circular, the ball 3 cannot be stably guided, and the vibration of the cage 30 increases or the cage 30 and the ball 3 are stuck against each other. Problems such as early breakage of the vessel 30 occur.
 そこで、本実施形態のように、ポケット部33の径方向断面形状に第1ストレート形状部33bを設けることによって、図15に示すように、ポケット部33の玉3を案内する部分である第1ストレート形状部33bと、玉3と、が円弧状に線接触する構成となる。このように、保持器30と玉3との接触部分を線当りにすることにより、保持器30が径方向に移動した際に、玉3がポケット部33に柔軟にはまり込み、保持器30の軸方向相対移動を抑制することができる。そのため、保持器30の径方向動き量ΔRの変化を防止することができ、軸受回転中の振動の増加を抑制できる。また、保持器30の軸方向移動が抑制される結果、保持器音や保持器30の早期破損などの問題を抑制できる。 Therefore, as shown in FIG. 15, the first straight portion 33 b is provided in the radial cross-sectional shape of the pocket portion 33, as shown in FIG. The straight shape portion 33b and the ball 3 are configured to be in line contact with each other in an arc shape. In this way, by bringing the contact portion between the cage 30 and the ball 3 into contact with the line, when the cage 30 moves in the radial direction, the ball 3 fits into the pocket portion 33 flexibly, Axial relative movement can be suppressed. Therefore, a change in the radial movement amount ΔR of the cage 30 can be prevented, and an increase in vibration during rotation of the bearing can be suppressed. In addition, as a result of the axial movement of the cage 30 being suppressed, problems such as cage noise and early breakage of the cage 30 can be suppressed.
 保持器30のポケット部33の径方向断面形状を円状とした場合(図12参照。)、前述した軸受回転中に生じる問題以外にも、生じ得る問題がある。その問題とは、保持器30のポケット部33のピッチ円の位置と、玉3のピッチ円の位置と、が軸方向に相対的にずれることによって、保持器30の径方向動き量ΔRが設計上の範囲から変化し、保持器製造時の玉外接円径及び玉内接円径の正確な測定が困難なことである。 When the radial cross-sectional shape of the pocket portion 33 of the cage 30 is circular (see FIG. 12), there are problems that may occur in addition to the problems that occur during the rotation of the bearing described above. The problem is that the radial movement amount ΔR of the cage 30 is designed by the relative shift of the position of the pitch circle of the pocket portion 33 of the cage 30 and the position of the pitch circle of the ball 3 in the axial direction. It varies from the above range, and it is difficult to accurately measure the ball circumscribed circle diameter and the ball inscribed circle diameter at the time of manufacturing the cage.
 保持器30の玉外接円径及び玉内接円径の測定方法の1つとして、保持器30のリング部31を下にした状態で、玉3を径方向内側に軽く測定荷重を与えて固定して測定する方法がある。このとき、ポケット部33内の玉3は重力によってポケット部33の中で、リング部31の方へ寄る。その結果、ポケット部33ピッチ円の位置と、玉3のピッチ円の位置と、が軸方向へ相対的にずれる。そして、保持器30の径方向動き量ΔRが、軸方向への移動前(図13の実線参照。)と比べて、移動後(図13の破線参照。)が小さくなる結果、径方向動き量ΔRが設計上の範囲よりも小さくなってしまう。この場合、保持器30の玉外接円径及び玉内接円径の正確な測定が困難になってしまう。 As one method of measuring the ball circumscribed circle diameter and the ball inscribed circle diameter of the cage 30, the ball 3 is fixed by applying a light measurement load radially inward with the ring portion 31 of the cage 30 down. There is a method to measure. At this time, the ball 3 in the pocket portion 33 approaches the ring portion 31 in the pocket portion 33 by gravity. As a result, the position of the pitch circle of the pocket portion 33 and the position of the pitch circle of the ball 3 are relatively shifted in the axial direction. As a result, the radial movement amount ΔR of the cage 30 becomes smaller after movement (see the broken line in FIG. 13) than before movement in the axial direction (see the solid line in FIG. 13). ΔR becomes smaller than the design range. In this case, it becomes difficult to accurately measure the ball circumscribed circle diameter and the ball inscribed circle diameter of the cage 30.
 そこで、本実施形態では、ポケット部33の径方向断面形状に第1ストレート形状部33bを設けることによって、図15に示すように、測定荷重によって玉3がストレート形状部33bの部分にはまり込み、玉3が軸方向にずれることなく、玉外接円径及び玉内接円径の正確な測定が容易になる。 Therefore, in the present embodiment, by providing the first straight shape portion 33b in the radial cross-sectional shape of the pocket portion 33, as shown in FIG. 15, the ball 3 fits into the straight shape portion 33b due to the measurement load, It is easy to accurately measure the ball circumscribed circle diameter and the ball inscribed circle diameter without the ball 3 being displaced in the axial direction.
 また、保持器30を射出成形で製造する場合、金型はアキシアルドロー形の型構造となるが、ポケット部33を形成する金型の離型時、柱部32の角部35(図6参照。)近傍が無理抜きとなり、ポケット部33から型を抜取る際に、保持器を軸方向に位置決めして抜かないと、離型することができない。 Further, when the cage 30 is manufactured by injection molding, the mold has an axial draw type structure, but when the mold forming the pocket portion 33 is released, the corner portion 35 of the column portion 32 (see FIG. 6). .) The vicinity is forcibly removed, and when removing the mold from the pocket portion 33, the cage cannot be released unless it is positioned and removed in the axial direction.
 ここで、図8に示した従来型の深溝玉軸受100の場合、図16及び図17に示すように、保持器130は、略円環状のリング部131と、リング部131から所定間隔で軸方向に突出した複数の柱部132と、隣り合う柱部132の間に形成された複数のポケット部133と、を有する冠型保持器とされている。 Here, in the case of the conventional deep groove ball bearing 100 shown in FIG. 8, as shown in FIGS. 16 and 17, the cage 130 has a substantially annular ring portion 131 and a shaft spaced from the ring portion 131 at a predetermined interval. The crown-shaped cage has a plurality of column portions 132 protruding in the direction and a plurality of pocket portions 133 formed between adjacent column portions 132.
 そして、従来型の深溝玉軸受100では、玉数が多くないので、保持器130のポケット部133の円周方向のピッチが広く、柱部132の一対の角部135間が、本実施形態の柱部32の一対の角部35間に比べて離間している。したがって、金型の無抜き時に、柱部132の先端部が容易に変形する目的のために、一対の角部135間に凹部136を設けることができる。また、凹部136の底面137は、円周方向に延びる平面とすることができる。そして、凹部136の底面137に、型抜きのためのピンを設け、ポケット部133の型に対して、ピンを軸方向に押し出すことで無理抜きでの離型が可能となる。 In the conventional deep groove ball bearing 100, since the number of balls is not large, the pitch in the circumferential direction of the pocket portion 133 of the cage 130 is wide, and the gap between the pair of corner portions 135 of the column portion 132 is the same as that of this embodiment. The column portions 32 are spaced apart from each other between the pair of corner portions 35. Therefore, the concave portion 136 can be provided between the pair of corner portions 135 for the purpose of easily deforming the tip portion of the column portion 132 when the mold is not removed. The bottom surface 137 of the recess 136 can be a plane extending in the circumferential direction. Then, a pin for punching is provided on the bottom surface 137 of the recess 136, and the pin is pushed out in the axial direction with respect to the die of the pocket portion 133, so that it is possible to release the die without forcing.
 しかしながら、本実施形態の保持器30のように玉数が多く、ポケット部33の円周方向のピッチ(玉間距離L)が狭い場合は、図6に示すように、一対の角部35の間には略V字形状の切欠部34が形成され、当該切欠部34の底部に平面を形成することが困難である。なお、切欠部34の底部の平面の円周方向幅は、切欠部34を射出成形させる型先端のV字形状鋭部の加工限界を考慮して、0.2mm以上とすることが望ましい。 However, when the number of balls is large as in the cage 30 of the present embodiment and the pitch in the circumferential direction of the pocket portion 33 (distance L between the balls) is narrow, as shown in FIG. A substantially V-shaped cutout 34 is formed between them, and it is difficult to form a flat surface at the bottom of the cutout 34. The circumferential width of the bottom plane of the notch 34 is desirably 0.2 mm or more in consideration of the processing limit of the V-shaped sharp portion at the tip of the die where the notch 34 is injection-molded.
 したがって、仮に、保持器30のリング部31の径方向内側面31a及び径方向外側面31bが、断面平面形状(円環形状)である場合、ポケット部33を形成する金型部品を無理抜きする際に、保持器30と、保持器本体部を形成する金型(保持器30のリング部31の内径、外径、及び端面を形成する金型)と、の間に引っかかりがないため、ポケット部を形成する金型部品を無理抜きすることができない。 Therefore, if the radially inner side surface 31a and the radially outer side surface 31b of the ring portion 31 of the cage 30 have a cross-sectional planar shape (annular shape), the mold parts that form the pocket portion 33 are forcibly removed. At this time, since there is no catch between the retainer 30 and the mold that forms the retainer main body (the mold that forms the inner diameter, outer diameter, and end surface of the ring portion 31 of the retainer 30), the pocket The mold parts forming the part cannot be forcibly removed.
 そこで、図1や図7に示すように、本実施形態の保持器30においては、リング部31の径方向内側面31a(径方向一方側面)に、径方向内側に突出する内側凸部38を形成する。このように、保持器30と、保持器本体部を形成する金型と、の間に引っかかりとしての内側凸部38を形成して、ポケット部33を形成する金型部品の無理抜きを可能にすることができる。 Therefore, as shown in FIG. 1 and FIG. 7, in the cage 30 of the present embodiment, an inner convex portion 38 that protrudes radially inward is formed on the radially inner side surface 31 a (one radial side surface) of the ring portion 31. Form. In this way, the inner convex portion 38 is formed as a catch between the cage 30 and the mold that forms the cage main body, so that the mold parts that form the pocket portion 33 can be forcibly removed. can do.
 内側凸部38の形状や位置は特に限定されず、図18に示すように、リング部31の径方向内側面31aの正面側端部から、径方向内側に突出するように形成しても構わない。しかしながら、軸受回転中に保持器30が傾いた際に内輪20と内側凸部38の接触を避けるために、凸部38は、リング部31の軸方向端部を除く中央近傍に設けるのが望ましい。すなわち、内輪凸部38の接触を回避する観点からは、図18に示す内側凸部38の位置よりも、図7に示す内側凸部38の位置の方が望ましい。 The shape and position of the inner convex portion 38 are not particularly limited, and may be formed so as to protrude radially inward from the front side end portion of the radial inner side surface 31a of the ring portion 31 as shown in FIG. Absent. However, in order to avoid contact between the inner ring 20 and the inner convex portion 38 when the cage 30 tilts during bearing rotation, the convex portion 38 is desirably provided in the vicinity of the center of the ring portion 31 excluding the axial end portion. . That is, from the viewpoint of avoiding the contact of the inner ring convex portion 38, the position of the inner convex portion 38 shown in FIG. 7 is more desirable than the position of the inner convex portion 38 shown in FIG.
 また、製造する保持器30のサイズが大きい場合、内側凸部38の径方向寸法を大きくすれば、離型時の保持力が大きくできるが、内輪20と内側凸部38との接触が生じるため、内側凸部38の径方向寸法には限界がある。したがって、このような場合には、図19に示すように、内側凸部38の数を複数個(図19では2個)とすることにより、離型時の保持力を増大させることが望ましい。 Further, when the size of the cage 30 to be manufactured is large, if the radial dimension of the inner convex portion 38 is increased, the holding force at the time of releasing can be increased, but contact between the inner ring 20 and the inner convex portion 38 occurs. The radial dimension of the inner convex portion 38 has a limit. Therefore, in such a case, as shown in FIG. 19, it is desirable to increase the holding force at the time of mold release by setting the number of the inner convex portions 38 to a plurality (two in FIG. 19).
 また、図20に示すように、内側凸部38を設けず、リング部31の径方向外側面31b(径方向他方側面)に、径方向外側に突出する外側凸部39を形成してもよい。この場合も、外側凸部39の形状、位置、及び数等は、適宜設定される。 Further, as shown in FIG. 20, the inner convex portion 38 is not provided, and the outer convex portion 39 that protrudes radially outward may be formed on the radially outer side surface 31 b (the other radial side surface) of the ring portion 31. . Also in this case, the shape, position, number, and the like of the outer convex portions 39 are appropriately set.
 なお、図示しないが、内側凸部38及び外側凸部39の両方を形成してもよい。 Although not shown, both the inner convex portion 38 and the outer convex portion 39 may be formed.
 なお、ポケット部33の球面中心位置は、リング部31の径方向中心に対して径方向内側にずれた構成に限られず、図21~図23に示すように、径方向外側にずれた構造でも構わない。すなわち、外輪溝肩部12と内輪カウンターボア23との間にリング部31を配置し、外輪10及び内輪20の軌道面11、21間に柱部32を配置し、柱部32の径方向内側端部にリング部31が接続する構造としてもよい。この場合であっても、柱部32の先端は、周方向中間に切欠部34が設けられており、二又に分かれているので、保持器30を射出成型で製造する際に、ポケット部33を形成する金型部品の無理抜きによる、柱部32のポケット部33側の角部35の破損を防止することができる。 It should be noted that the spherical center position of the pocket portion 33 is not limited to the configuration shifted radially inward with respect to the radial center of the ring portion 31, and may be configured so as to be shifted radially outward as shown in FIGS. I do not care. That is, the ring portion 31 is disposed between the outer ring groove shoulder 12 and the inner ring counter bore 23, the column portion 32 is disposed between the raceway surfaces 11 and 21 of the outer ring 10 and the inner ring 20, and the inner side in the radial direction of the column portion 32. It is good also as a structure where the ring part 31 connects to an edge part. Even in this case, since the notch 34 is provided in the middle in the circumferential direction at the tip of the column 32 and is divided into two parts, the pocket 33 is formed when the retainer 30 is manufactured by injection molding. It is possible to prevent the corner portion 35 on the pocket portion 33 side of the column portion 32 from being damaged by forcibly removing the mold parts forming the.
 ここで、ポケット部33の径方向断面形状は、リング部31の径方向外側面(径方向一方側面)31bと径方向内側面(径方向他方側面)31aとを結ぶ円弧からなる任意の半径rの円とされる。そして、円弧33aは、径方向外側部(径方向一方部)が切り欠かれて軸方向に延びる第1ストレート形状部33bとされている。第1ストレート形状部33bは、円の中心Pよりも正面側に配置されている。また、円弧33aは、第1ストレート形状部33bの背面側の端部と、リング部31の径方向外側面31bの正面側の端部と、を結ぶ部分が、切り欠かれて第2ストレート形状部33cとされている。したがって、第2ストレート形状部33cは、背面側(リング部31側)に向かうにしたがって、径方向内側に向かう直線形状とされる。また、玉3の中心Oi(ポケット部33の球面中心)が、軸方向において、第1ストレート形状部33bに重なるように、当該第1ストレート形状部33bが形成される。 Here, the radial cross-sectional shape of the pocket portion 33 is an arbitrary radius r composed of an arc connecting the radial outer side surface (radial one side surface) 31b of the ring portion 31 and the radial inner side surface (radial other side surface) 31a. It is assumed to be a circle. The arc 33a is a first straight-shaped portion 33b extending in the axial direction by cutting out a radially outer portion (one radial portion). The first straight shape portion 33b is disposed on the front side of the center P of the circle. Further, the arc 33a has a second straight shape in which a portion connecting the end portion on the back surface side of the first straight shape portion 33b and the end portion on the front surface side of the radially outer side surface 31b of the ring portion 31 is notched. Part 33c. Therefore, the 2nd straight shape part 33c is made into the linear shape which goes to a radial inside as it goes to the back side (ring part 31 side). Further, the first straight shape portion 33b is formed so that the center Oi of the ball 3 (spherical center of the pocket portion 33) overlaps the first straight shape portion 33b in the axial direction.
 リング部31の径方向内側面31a(径方向他方側面)に、径方向内側に突出する内側凸部38を形成する。このように、保持器30と、保持器本体部を形成する金型と、の間に引っかかりとしての内側凸部38を形成して、ポケット部33を形成する金型部品の無理抜きを可能にすることができる。なお、この保持器30においても、リング部31の径方向外側面31b(径方向一方側面)に、径方向外側に突出する外側凸部39(図20参照)を形成してもよい。 An inner convex portion 38 that protrudes radially inward is formed on the radially inner side surface 31 a (the other radial side surface) of the ring portion 31. In this way, the inner convex portion 38 is formed as a catch between the cage 30 and the mold that forms the cage main body, so that the mold parts that form the pocket portion 33 can be forcibly removed. can do. Also in this cage 30, an outer convex portion 39 (see FIG. 20) protruding radially outward may be formed on the radially outer surface 31b (one radial side surface) of the ring portion 31.
 このように構成した場合であっても、上述の実施形態と同様の効果を奏することが可能である。 Even in such a configuration, it is possible to achieve the same effects as the above-described embodiment.
 次に、アンギュラ玉軸受1の複数のパラメータを変更した各実施例について説明する。 Next, each embodiment in which a plurality of parameters of the angular ball bearing 1 are changed will be described.
(実施例1)
 本実施例のアンギュラ玉軸受1においては、内径をΦ15mm、接触角αを50°、Ai(内輪溝肩部22の径方向高さHiを玉3の直径Dwで除したもの)の値を0.38、Ae(外輪溝肩部12の径方向高さHeを玉3の直径Dwで除したもの)の値を0.38に設定した。保持器30は図18に示した形状を有しており、その材質はポリアミド樹脂である。玉間距離Lと、玉ピッチ円直径dmに円周率πを乗じた玉3ピッチ円周長さπdmと、の関係は、L/πdm=12×10-3を満たす。
Example 1
In the angular ball bearing 1 of this example, the inner diameter is Φ15 mm, the contact angle α is 50 °, and the value of Ai (the radial height Hi of the inner ring groove shoulder 22 is divided by the diameter Dw of the ball 3) is 0. .38, Ae (the radial height He of the outer ring groove shoulder 12 divided by the diameter Dw of the ball 3) was set to 0.38. The cage 30 has the shape shown in FIG. 18, and the material thereof is a polyamide resin. The relationship between the inter-ball distance L and the ball pitch 3 pitch circumference length πdm obtained by multiplying the ball pitch circle diameter dm by the circumference ratio π satisfies L / πdm = 12 × 10 −3 .
 このように各パラメータを設定することにより、上述の実施形態と同様の効果を奏することが確認された。 It was confirmed that by setting each parameter in this way, the same effects as those of the above-described embodiment can be obtained.
(実施例2)
 本実施例のアンギュラ玉軸受1においては、内径をΦ60mm、接触角αを60°、Ai(内輪溝肩部22の径方向高さHiを玉3の直径Dwで除したもの)の値を0.47、Ae(外輪溝肩部12の径方向高さHeを玉3の直径Dwで除したもの)の値を0.47に設定した。保持器30は図1に示した形状を有しており、その材質は、ベース樹脂がポリアセタール樹脂であり、強化材としてカーボン繊維を10重量パーセント添加したものである。玉間距離Lと、玉ピッチ円直径dmに円周率πを乗じた玉3ピッチ円周長さπdmと、の関係は、L/πdm=2.3×10-3を満たす。
(Example 2)
In the angular ball bearing 1 of this embodiment, the inner diameter is Φ60 mm, the contact angle α is 60 °, and Ai (the radial height Hi of the inner ring groove shoulder 22 is divided by the diameter Dw of the ball 3) is 0. .47, Ae (the radial height He of the outer ring groove shoulder 12 divided by the diameter Dw of the ball 3) was set to 0.47. The cage 30 has the shape shown in FIG. 1, and the material thereof is a material in which the base resin is polyacetal resin and carbon fiber is added as a reinforcing material by 10 weight percent. The relationship between the inter-ball distance L and the ball pitch pitch diameter πdm obtained by multiplying the ball pitch circle diameter dm by the circumference ratio π satisfies L / πdm = 2.3 × 10 −3 .
 このように各パラメータを設定することにより、上述の実施形態と同様の効果を奏することが確認された。 It was confirmed that by setting each parameter in this way, the same effects as those of the above-described embodiment can be obtained.
(実施例3)
 本実施例のアンギュラ玉軸受1においては、内径をΦ40mm、接触角αを55°、Ai(内輪溝肩部22の径方向高さHiを玉3の直径Dwで除したもの)の値を0.43、Ae(外輪溝肩部12の径方向高さHeを玉3の直径Dwで除したもの)の値を0.43に設定した。保持器30は図20に示した形状を有しており、その材質は、ベース樹脂がポリアミド樹脂であり、強化材としてガラス繊維を20重量パーセント添加したものである。玉間距離Lと、玉ピッチ円直径dmに円周率πを乗じた玉3ピッチ円周長さπdmと、の関係は、L/πdm=7.0×10-3を満たす。
Example 3
In the angular ball bearing 1 of the present embodiment, the inner diameter is Φ40 mm, the contact angle α is 55 °, and the value of Ai (the radial height Hi of the inner ring groove shoulder 22 is divided by the diameter Dw of the ball 3) is 0. .43, Ae (the radial height He of the outer ring groove shoulder 12 divided by the diameter Dw of the ball 3) was set to 0.43. The cage 30 has the shape shown in FIG. 20, and the material thereof is a base resin made of polyamide resin, and 20 weight percent of glass fiber is added as a reinforcing material. The relationship between the inter-ball distance L and the ball 3 pitch circumferential length πdm obtained by multiplying the ball pitch circle diameter dm by the circumferential ratio π satisfies L / πdm = 7.0 × 10 −3 .
 このように各パラメータを設定することにより、上述の実施形態と同様の効果を奏することが確認された。 It was confirmed that by setting each parameter in this way, the same effects as those of the above-described embodiment can be obtained.
(実施例4)
 本実施例のアンギュラ玉軸受1においては、内径をΦ40mm、接触角αを55°、Ai(内輪溝肩部22の径方向高さHiを玉3の直径Dwで除したもの)の値を0.43、Ae(外輪溝肩部12の径方向高さHeを玉3の直径Dwで除したもの)の値を0.43に設定した。保持器30は図19に示した形状を有しており、その材質は、ベース樹脂がポリアミド樹脂であり、強化材としてガラス繊維を20重量パーセント添加したものである。玉間距離Lと、玉ピッチ円直径dmに円周率πを乗じた玉3ピッチ円周長さπdmと、の関係は、L/πdm=7.0×10-3を満たす。
Example 4
In the angular ball bearing 1 of the present embodiment, the inner diameter is Φ40 mm, the contact angle α is 55 °, and the value of Ai (the radial height Hi of the inner ring groove shoulder 22 is divided by the diameter Dw of the ball 3) is 0. .43, Ae (the radial height He of the outer ring groove shoulder 12 divided by the diameter Dw of the ball 3) was set to 0.43. The cage 30 has the shape shown in FIG. 19, and the material thereof is a base resin made of polyamide resin and glass fiber added as a reinforcing material by 20 weight percent. The relationship between the inter-ball distance L and the ball 3 pitch circumferential length πdm obtained by multiplying the ball pitch circle diameter dm by the circumferential ratio π satisfies L / πdm = 7.0 × 10 −3 .
 このように各パラメータを設定することにより、上述の実施形態と同様の効果を奏することが確認された。 It was confirmed that by setting each parameter in this way, the same effects as those of the above-described embodiment can be obtained.
 尚、本発明は、前述した実施形態に限定されるものではなく、適宜変更、改良等が可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and can be changed or improved as appropriate.
 また、本出願は、2014年3月28日出願の日本特許出願2014-068945に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2014-068945 filed on Mar. 28, 2014, the contents of which are incorporated herein by reference.
1 アンギュラ玉軸受
3 玉
10 外輪
11 軌道面
12 外輪溝肩部
13 外輪カウンターボア
14 外輪面取り
20 内輪
21 軌道面
22 内輪溝肩部
23 内輪カウンターボア
24 内輪面取り
30 保持器
31 リング部
31a 径方向内側面(径方向一方側面、径方向他方側面)
31b 径方向外側面(径方向他方側面、径方向一方側面)
32 柱部
33 ポケット部
33a 円弧
33b 第1ストレート形状部
33c 第2ストレート形状部
33d 径方向内側縁部
34 切欠部
35 角部
38 内側凸部(凸部)
39 外側凸部(凸部)
Oi 玉中心(ポケット部球面中心)
1 angular contact ball bearing 3 ball 10 outer ring 11 raceway surface 12 outer ring groove shoulder 13 outer ring counterbore 14 outer ring chamfer 20 inner ring 21 raceway surface 22 inner ring groove shoulder 23 inner ring counterbore 24 inner ring chamfer 30 cage 31 ring part 31a radially inward Side (radial one side, radial other side)
31b Radial outer surface (radial other side surface, radial one side surface)
32 Pillar part 33 Pocket part 33a Arc 33b 1st straight shape part 33c 2nd straight shape part 33d Radial direction inner side edge part 34 Notch part 35 Corner | angular part 38 Inner convex part (convex part)
39 Outer convex part (convex part)
Oi ball center (spherical center of pocket)

Claims (4)

  1.  内周面に軌道面を有する外輪と、
     外周面に軌道面を有する内輪と、
     前記外輪及び前記内輪の軌道面間に配置された複数の玉と、
     前記玉を転動自在に保持し、玉案内方式である保持器と、
    を備えるアンギュラ玉軸受であって、
     前記内輪の外周面には、背面側に内輪カウンターボアが凹設され、正面側に内輪溝肩部が凸設され、
     前記外輪の内周面には、正面側に外輪カウンターボアが凹設され、背面側に外輪溝肩部が凸設され、
     前記玉の接触角αは、45°≦α≦65°であり、
     前記内輪溝肩部の径方向高さを前記玉の直径で除したものをAiとすると、0.35≦Ai≦0.50であり、
     前記外輪溝肩部の径方向高さを前記玉の直径で除したものをAeとすると、0.35≦Ae≦0.50であり、
     前記保持器は、略円環状のリング部と、前記リング部の正面側又は背面側から、所定間隔で軸方向に突出した複数の柱部と、隣り合う前記柱部の間に形成された複数のポケット部と、を有する冠型保持器であり、
     前記ポケット部の球面中心位置は、前記リング部の径方向中心に対して、径方向一方側にずれており、
     前記ポケット部の径方向断面形状は、前記リング部の径方向一方側面と径方向他方側面を結ぶ円弧からなる任意の半径の円であり、
     前記リング部の径方向一方側面及び径方向他方側面のうち、少なくとも一方には、径方向に突出する凸部が少なくとも一つ形成される
    ことを特徴とするアンギュラ玉軸受。
    An outer ring having a raceway surface on the inner peripheral surface;
    An inner ring having a raceway surface on the outer peripheral surface;
    A plurality of balls disposed between the raceways of the outer ring and the inner ring;
    Holding the ball so as to roll freely, a cage that is a ball guide system,
    An angular contact ball bearing comprising:
    On the outer peripheral surface of the inner ring, an inner ring counterbore is recessed on the back side, and an inner ring groove shoulder is protruded on the front side,
    On the inner peripheral surface of the outer ring, an outer ring counter bore is recessed on the front side, and an outer ring groove shoulder is protruded on the back side,
    The contact angle α of the balls is 45 ° ≦ α ≦ 65 °,
    When Ai is obtained by dividing the radial height of the inner ring groove shoulder by the diameter of the ball, 0.35 ≦ Ai ≦ 0.50,
    When Ae is obtained by dividing the radial height of the outer ring groove shoulder by the diameter of the ball, 0.35 ≦ Ae ≦ 0.50,
    The cage is formed between a substantially annular ring portion, a plurality of column portions protruding in the axial direction at a predetermined interval from the front side or the back side of the ring portion, and a plurality of adjacent column portions. And a pocket-shaped cage having
    The spherical center position of the pocket portion is shifted to one radial side with respect to the radial center of the ring portion,
    The radial cross-sectional shape of the pocket portion is a circle with an arbitrary radius composed of an arc connecting the one radial side surface and the other radial side surface of the ring portion,
    The angular ball bearing according to claim 1, wherein at least one convex portion projecting in the radial direction is formed on at least one of the one radial side surface and the other radial side surface of the ring portion.
  2.  前記円弧は、径方向一方側端部が切り欠かれて軸方向に延びる第1ストレート形状部とされていることを特徴とする請求項1に記載のアンギュラ玉軸受。 2. The angular ball bearing according to claim 1, wherein the circular arc is a first straight shape portion that is notched at one end portion in the radial direction and extends in the axial direction.
  3.  前記円弧は、前記第1ストレート形状部と、前記リング部の前記径方向一方側面と、を結ぶ部分が、切り欠かれて第2ストレート形状部とされている
    ことを特徴とする請求項2に記載のアンギュラ玉軸受。
    3. The arc according to claim 2, wherein a portion connecting the first straight shape portion and the one side surface in the radial direction of the ring portion is cut out to form a second straight shape portion. Angular contact ball bearing described.
  4.  隣り合う前記玉同士の距離Lと、玉ピッチ円直径dmに円周率πを乗じた玉ピッチ円周長さπdmと、の関係は、2.5×10-3≦L/πdm≦13×10-3を満たす
    ことを特徴とする請求項1~3の何れか1項に記載のアンギュラ玉軸受。
    The relationship between the distance L between the adjacent balls and the ball pitch circumferential length πdm obtained by multiplying the ball pitch circle diameter dm by the circumferential ratio π is 2.5 × 10 −3 ≦ L / πdm ≦ 13 × The angular ball bearing according to any one of claims 1 to 3, wherein 10-3 is satisfied.
PCT/JP2014/069087 2014-03-28 2014-07-17 Angular ball bearing WO2015145794A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167026686A KR101960145B1 (en) 2014-03-28 2015-03-19 Angular ball bearing
JP2016510290A JP6508196B2 (en) 2014-03-28 2015-03-19 Angular contact ball bearings
PCT/JP2015/058384 WO2015146811A1 (en) 2014-03-28 2015-03-19 Angular ball bearing
CN201580017138.5A CN106460929B (en) 2014-03-28 2015-03-19 Angular contact ball bearing
JP2019016171A JP2019074214A (en) 2014-03-28 2019-01-31 Angular ball bearing and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014068945 2014-03-28
JP2014-068945 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015145794A1 true WO2015145794A1 (en) 2015-10-01

Family

ID=54194374

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/069087 WO2015145794A1 (en) 2014-03-28 2014-07-17 Angular ball bearing
PCT/JP2015/058384 WO2015146811A1 (en) 2014-03-28 2015-03-19 Angular ball bearing

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058384 WO2015146811A1 (en) 2014-03-28 2015-03-19 Angular ball bearing

Country Status (5)

Country Link
JP (2) JP6508196B2 (en)
KR (1) KR101960145B1 (en)
CN (1) CN106460929B (en)
TW (2) TWI576521B (en)
WO (2) WO2015145794A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017119251A1 (en) * 2017-08-23 2019-02-28 Schaeffler Technologies AG & Co. KG Comb cage for a ball bearing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6950430B2 (en) * 2017-10-04 2021-10-13 株式会社ジェイテクト Ball bearing
JP6935856B2 (en) * 2018-10-15 2021-09-15 日本精工株式会社 Angular contact ball bearing
TWI708021B (en) * 2018-10-31 2020-10-21 日商日本精工股份有限公司 Cylindrical roller bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438319U (en) * 1987-09-01 1989-03-07
JPH10103359A (en) * 1996-09-30 1998-04-21 Ntn Corp Resin holder for angular ball bearing
JP2003329044A (en) * 2002-05-15 2003-11-19 Nsk Ltd Roller bearing
JP2011112195A (en) * 2009-11-30 2011-06-09 Nsk Ltd Ball bearing
JP2013087865A (en) * 2011-10-18 2013-05-13 Nsk Ltd Multi-row combination ball bearing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53165956U (en) * 1977-06-02 1978-12-26
NL1008649C2 (en) * 1998-03-20 1999-09-21 Skf Eng & Res Centre Bv Ball bearing cage.
JP2000104742A (en) 1998-09-29 2000-04-11 Ntn Corp Rolling bearing for supporting ball screw
FR2798708B1 (en) * 1999-09-17 2001-11-16 Snfa HYBRID BALL BEARING WITH AN OBLIQUE CONTACT, AND AN AXIAL STOP THEREWITH
JP4188666B2 (en) * 2002-11-15 2008-11-26 Ntn株式会社 Resin cage for rolling bearings
JP2005133818A (en) * 2003-10-30 2005-05-26 Koyo Seiko Co Ltd Rolling bearing
JP2006200594A (en) * 2005-01-18 2006-08-03 Nsk Ltd Rolling bearing cage
JP4930142B2 (en) * 2007-03-28 2012-05-16 株式会社ジェイテクト Roller bearing cage
JP4992535B2 (en) * 2007-04-27 2012-08-08 日本精工株式会社 Rolling bearing
JP5348590B2 (en) * 2009-06-26 2013-11-20 Ntn株式会社 Deep groove ball bearing and gear support device
JP2011047474A (en) * 2009-08-27 2011-03-10 Ntn Corp Retainer for bearing and bearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438319U (en) * 1987-09-01 1989-03-07
JPH10103359A (en) * 1996-09-30 1998-04-21 Ntn Corp Resin holder for angular ball bearing
JP2003329044A (en) * 2002-05-15 2003-11-19 Nsk Ltd Roller bearing
JP2011112195A (en) * 2009-11-30 2011-06-09 Nsk Ltd Ball bearing
JP2013087865A (en) * 2011-10-18 2013-05-13 Nsk Ltd Multi-row combination ball bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017119251A1 (en) * 2017-08-23 2019-02-28 Schaeffler Technologies AG & Co. KG Comb cage for a ball bearing

Also Published As

Publication number Publication date
CN106460929A (en) 2017-02-22
JP6508196B2 (en) 2019-05-08
CN106460929B (en) 2019-12-10
KR101960145B1 (en) 2019-03-19
TWI576521B (en) 2017-04-01
KR20160128359A (en) 2016-11-07
TWI666390B (en) 2019-07-21
WO2015146811A1 (en) 2015-10-01
TW201600747A (en) 2016-01-01
JPWO2015146811A1 (en) 2017-04-13
JP2019074214A (en) 2019-05-16
TW201713866A (en) 2017-04-16

Similar Documents

Publication Publication Date Title
JP6569663B2 (en) Angular contact ball bearings
US20040234181A1 (en) Synthetic resin retainer and angular ball bearing
JP6728585B2 (en) Angular contact ball bearing
JP6922928B2 (en) Cage for rolling bearings and rolling bearings
JP2019074214A (en) Angular ball bearing and its manufacturing method
KR102013084B1 (en) Method of manufacturing conical roller bearings and conical roller bearings
US20090131235A1 (en) Ball Bearing for Spindle Turning Device of Machine Tool and Spindle Turning Device of Machine Tool Using the Same
JP6376212B2 (en) Angular contact ball bearings
WO2016002681A1 (en) Crown cage and angular contact ball bearing
JP6529209B2 (en) Angular contact ball bearings
KR102445802B1 (en) Ball bearing cage
JP3814825B2 (en) Bearing device
JP6493580B2 (en) Angular contact ball bearings
JP2009275722A (en) Rolling bearing
WO2016052232A1 (en) Ball bearing cage
WO2018225720A1 (en) Holder for rolling bearing, and rolling bearing
JP6186880B2 (en) Comb cage and rolling bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP