WO2016052232A1 - Ball bearing cage - Google Patents

Ball bearing cage Download PDF

Info

Publication number
WO2016052232A1
WO2016052232A1 PCT/JP2015/076505 JP2015076505W WO2016052232A1 WO 2016052232 A1 WO2016052232 A1 WO 2016052232A1 JP 2015076505 W JP2015076505 W JP 2015076505W WO 2016052232 A1 WO2016052232 A1 WO 2016052232A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
ball bearing
bearing retainer
annular
cage
Prior art date
Application number
PCT/JP2015/076505
Other languages
French (fr)
Japanese (ja)
Inventor
和香奈 井上
峰夫 古山
Original Assignee
Ntn株式会社
和香奈 井上
峰夫 古山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015012108A external-priority patent/JP6556454B2/en
Application filed by Ntn株式会社, 和香奈 井上, 峰夫 古山 filed Critical Ntn株式会社
Priority to EP15847007.0A priority Critical patent/EP3203099B1/en
Priority to KR1020177007617A priority patent/KR102445802B1/en
Priority to CN201580052373.6A priority patent/CN107076206B/en
Publication of WO2016052232A1 publication Critical patent/WO2016052232A1/en
Priority to US15/463,541 priority patent/US10663001B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3837Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
    • F16C33/3843Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/3856Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3887Details of individual pockets, e.g. shape or ball retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact

Definitions

  • This invention relates to a ball bearing retainer used for a machine tool spindle, for example.
  • Angular contact ball bearings used for machine tool spindles have a high rotational speed, so there are few metal cages with heavy specific gravity. Resins such as nylon polyamide, PPS, PEEK or phenol reinforced with glass fiber or carbon fiber. A cage is used.
  • Patent Documents 1 to 3 disclose a ball guide angular contact ball bearing of an inner diameter restraint type.
  • Patent Document 3 discloses an inner diameter restraint type ball guide holder.
  • an outer diameter constraint type roller guide cage has also been proposed (Patent Document 4).
  • the rolling element guide cage is a guide (contact) with a ball that is controlled with high precision and fine surface roughness. Unlike the inner ring guide cage and outer ring guide cage, the rolling element guide cage has an inner ring outer diameter surface and an inner ring outer diameter surface. There is no need for a ground finish. Therefore, the rolling element guide retainer is superior in cost compared to the inner ring guide retainer and the outer ring guide retainer.
  • FIG. 8 is a cross-sectional view of an angular ball bearing using a conventional ball bearing cage
  • FIG. 9 is a perspective view of the ball bearing cage
  • FIG. 10 is the ball bearing cage. It is the top view seen from the outer diameter side.
  • the conventional inner diameter constrained rolling element guide retainer 30 is formed with a circular pocket Pt as viewed from the radially outer side. That is, the pocket Pt has a substantially cylindrical shape.
  • 11 is a cross-sectional view taken along line XI-XI in FIG.
  • An object of the present invention is to provide a ball bearing cage capable of high-speed operation while being in a ball guide type.
  • a ball bearing retainer holds balls interposed between inner and outer rings in pockets provided at a plurality of locations in the circumferential direction of the annular portion, and the annular portions are disposed on both axial sides.
  • a ball having an annular portion and pillar portions arranged at a plurality of locations in the circumferential direction connecting the annular portions, and the pocket being formed by the annular portions on both sides in the axial direction and the pillar portions adjacent in the circumferential direction.
  • the contact portion in the circumferential direction with the ball in each pillar portion is a plane extending along the axial direction, compared to the circular hole contact portion of the conventional inner diameter restraint type rolling element guide retainer
  • the contact area with the ball can be reduced.
  • fever in the said contact part can be suppressed. Therefore, the ball bearing cage of the present application can be operated at high speed because heat generation of the ball and the contact portion can be suppressed even when centrifugal force is applied during high speed operation.
  • it is a ball guide it is not necessary to grind the inner ring outer diameter surface or the inner ring outer diameter surface, so that the number of processing steps can be reduced.
  • each annular portion with the ball may be a plane extending along the circumferential direction, and the ball may be guided on this plane.
  • the load when the ball contacts the pocket is divided into the load acting in the bearing rotation direction and the load acting in the axial direction. Can be made. Therefore, it is possible to reduce the contact area with the ball as compared with the conventional inner diameter restraint type cage and to suppress local heat generation at the contact portion.
  • the connecting portion between the column portion and the annular portion may be formed in an R shape or an arc shape.
  • a space for lubrication is formed between the R-shaped or arc-shaped connecting portion and the ball.
  • the “space” is formed, so that smooth oil supply / discharge is possible, and an appropriate amount of oil is always supplied to the contact portion between the ball and the cage pocket.
  • the “space” contributes to holding the grease in the vicinity of the contact portion, and the grease held in the “space” is supplied to the balls and the cage pocket. As a result, lubrication reliability during high-speed operation is improved, and friction and wear due to contact are suppressed.
  • the connecting portion between the column portion and the annular portion is formed in an arc shape, and the arc-shaped portion of the connecting portion is an arc surface offset from the center of the pocket, and the arc surface and the ball are between A gap may be formed.
  • a gap for lubrication is formed between the arc-shaped connecting portion and the ball.
  • the “gap” is formed, so that smooth oil supply / discharge is possible, and an appropriate amount of oil is always supplied to the contact portion between the ball and the cage pocket.
  • the “gap” contributes to holding the grease in the vicinity of the contact portion, and the grease held in the “gap” is supplied to the balls and the cage pocket. As a result, lubrication reliability during high-speed operation is improved, and friction and wear due to contact are suppressed.
  • the radial dimension of the connecting portion may be 15% or more with respect to the total axial width of the pocket.
  • the radial dimension of the connecting portion is determined based on, for example, results of tests and simulations.
  • the ball bearing cage of the present invention may be an angular ball bearing cage or a resin.
  • the resin ball bearing cage may be manufactured by injection molding. In this case, it is excellent in mass productivity and cost reduction as compared with manufacturing the cage by machining.
  • the annular portion may include two annular bodies facing each other in the axial direction of the annular portion, and the annular bodies may be combined to face the axial direction to form a plurality of pockets. .
  • the cage can be easily assembled by combining two annular bodies from both sides in the axial direction.
  • this cage is made of resin and the two annular bodies have the same shape, the two annular bodies can be molded with one type of molding die, so that the cost of the cage can be reduced while suppressing the cost of the mold, There is no need to separate the two annular bodies to be combined, and the management of the annular bodies is easy.
  • the ball bearing of the present invention may be an angular ball bearing for a machine tool spindle using the ball bearing retainer of the present invention.
  • FIG. 9 is a sectional view taken along line XI-XI in FIG. 8.
  • FIG. 1 is a cross-sectional view of an angular ball bearing using a ball bearing cage.
  • a ball 4 held by a cage 3 is interposed between an inner ring 1 and an outer ring 2.
  • the cage 3 is a ball guide and is an inner diameter restraint type.
  • the ball 4 is made of, for example, a steel ball or ceramics.
  • the cage 3 holds the balls 4 interposed between the inner and outer rings 1 and 2 in pockets Pt provided at a plurality of locations in the circumferential direction of the annular portion 5.
  • the cage 3 is made of resin, for example, and is manufactured by injection molding.
  • Resin materials used for the cage 3 include 20-40% carbon fiber or glass fiber in super engineer plastic represented by high-rigidity PEEK resin, which is advantageous for high-speed rotation, and cost considerations Engineered plastics typified by polyamide resin containing 20 to 40% carbon fiber or glass fiber are applied.
  • FIG. 2A is a perspective view of the cage 3, and FIG. 2B is an enlarged view of the main part of FIG. 2A.
  • FIG. 3A is a plan view of the cage 3 as viewed from the outer diameter side, and FIG. 3B is an enlarged view of the main part of FIG. 3A.
  • the annular portion 5 of the cage 3 is arranged at a plurality of locations in the circumferential direction by connecting the annular portions 6 and 6 disposed on both sides in the axial direction and connecting these annular portions 6 and 6.
  • the column part 7 is provided.
  • the pockets Pt are formed by the annular portions 6 and 6 on both sides in the axial direction and the column portions 7 and 7 adjacent in the circumferential direction.
  • the pocket Pt is formed in a substantially rectangular shape in a plan view when the cage 3 is viewed from the outer diameter side.
  • a pair of pillar parts 7 and 7 are arrange
  • a contact portion of each column portion 7 with the ball 4 (FIG. 1) is a plane 8 extending along the axial direction.
  • the ball 4 (FIG. 1) is guided by the plane 8.
  • the plane 8 in the column portion 7 is referred to as “rotation direction straight surface 8”.
  • each rotation direction straight surface 8 and 8 in each pocket Pt extend a predetermined distance inward in the radial direction from the middle portion in the thickness direction of each column portion 7 and gradually approach each other in the circumferential direction toward the tip. It is provided as follows. Moreover, each rotation direction straight surface 8 is formed so that it becomes narrow as it goes to a front-end
  • the cage 3 is a ball guide inner diameter restraint type by the rotation direction straight surface 8 in the column portion 7.
  • each annular portion 6 The contact portion in the axial direction of each annular portion 6 is a plane 9 extending along the circumferential direction, and the ball 4 (FIG. 1) is guided also on this plane 9.
  • the plane 9 in the annular portion 6 is referred to as “axial straight surface 9”.
  • Two axial straight surfaces 9, 9 in each pocket Pt are formed in parallel to each other. Since the ball 4 (FIG. 1) is guided by the aforementioned rotational straight surface 8 and the axial straight surface 9, the load when the ball 4 (FIG. 1) contacts the pocket Pt acts in the bearing rotational direction. The load and the load acting in the axial direction can be shared.
  • the connecting portion 10 between the column portion 7 and the annular portion 6 is formed in an R shape or a circular arc shape formed by round chamfering.
  • the R-shaped or arc-shaped arc center is located in the pocket Pt.
  • Connecting portions 10 are formed at the four corners of each pocket Pt formed in a substantially rectangular shape.
  • the radius of the connecting portion 10 is 15% or more of the total axial width L1 of the pocket Pt.
  • the radial dimension of the connecting portion 10 is determined by the results of tests and simulations, for example.
  • FIG. 4 is a diagram illustrating a comparison between the cage 3 (right side of the figure) and the conventional cage 50 (left side of the figure) of the present embodiment.
  • the ball 4 contacts the circular hole surface 51 of the pocket Pt, whereas in the cage 3 of the present embodiment, the ball 4 contacts the rotational direction straight surface 8 of the pocket Pt.
  • a space 11 for lubrication is formed between the R-shaped or arc-shaped connecting portion 10 and the ball 4.
  • the formation of the space 11 enables smooth supply and discharge of oil, and an appropriate amount of oil is always supplied to the contact portion between the ball 4 and the cage pocket Pt.
  • the space 11 contributes to holding the grease near the contact portion, and the grease held in the space 11 is supplied to the balls 4 and the cage pocket Pt. As a result, lubrication reliability during high-speed operation is improved, and friction and wear due to contact are suppressed.
  • the contact portion in the circumferential direction of each pillar portion 7 with the ball 4 is a plane 8 extending along the axial direction.
  • bowl 4 can be decreased compared with the circular hole contact part which the conventional inner diameter restraint type rolling element guide retainer has.
  • the ball bearing retainer 3 of this embodiment can suppress the heat generation of the ball 4 and the contact portion even when centrifugal force is applied during high speed operation, and high speed operation is possible.
  • it is a ball guide, it is not necessary to finish the inner ring outer diameter surface or the inner ring outer diameter surface, so that the number of processing steps can be reduced.
  • each annular portion 6 with the ball 4 is a plane 9 extending along the circumferential direction, and the ball 4 is guided by this plane 9. Since the ball 4 is guided by the plane 8 of the column portion 7 and the plane 9 of the annular portion 6, the load when the ball 4 comes into contact with the pocket Pt is applied to the load acting in the bearing rotation direction and the axial direction. It can be shared with the load to be performed. Therefore, it is possible to reduce the contact area with the ball as compared with the conventional inner diameter restraint type cage and to suppress local heat generation at the contact portion.
  • the connecting portion 10 between the column portion 7 and the annular portion 6 is formed in an arc shape.
  • the arcuate portion of the connecting portion 10 is an arc surface offset in the axial direction and the circumferential direction from the center O1 of the pocket Pt, and a gap is formed between the arc surface and the ball.
  • the arcuate portion of the connecting portion 10 is an arc surface offset in the axial direction from the center O1 of the pocket Pt, and a gap is formed between the arc surface and the ball. ing.
  • a gap for lubrication is formed between the arc-shaped connecting portion 10 and the ball.
  • air-oil lubrication the formation of this “gap” enables smooth oil supply / discharge, and an appropriate amount of oil is always supplied to the contact portion between the ball and the cage pocket Pt.
  • this gap contributes to holding the grease in the vicinity of the contact portion, and the grease held in the gap is supplied to the ball and the cage pocket Pt. As a result, lubrication reliability during high-speed operation is improved, and friction and wear due to contact are suppressed.
  • the annular portion 5 of the cage 3 ⁇ / b> A has two annular bodies 12, 12 that can be divided in the axial direction, and by combining these two annular bodies 12, 12, A cage 3A having a plurality of pockets Pt is formed.
  • the two annular bodies 12, 12 of the fourth embodiment have the same shape and are combined in the opposite directions.
  • the column portion 7 is formed with a mating surface 13 that comes into surface contact when the two annular bodies 12 and 12 are combined.
  • the mating surface 13 is a plane perpendicular to the axial direction except for the central portion in the circumferential direction of each column portion 7.
  • the mating surface 13 is formed at a position shifted in the axial direction from the center in the axial direction of the annular portion 5.
  • the annular portion 5 having a plurality of pockets Pt is configured by combining the two annular bodies 12 and 12 that can be divided in the axial direction so as to face each other in the axial direction. For this reason, after inserting a plurality of balls 4 (FIG. 1) between the raceway surfaces of the inner and outer rings 1 and 2 (FIG. 1), the two annular bodies 12 and 12 are combined from both sides in the axial direction. 3A can be assembled easily.
  • the cage 3A is made of resin and the two annular bodies 12 and 12 have the same shape, the two annular bodies 12 and 12 can be molded with one type of molding die. For this reason, it is possible to reduce the cost of the retainer 3A by suppressing the mold cost, and it is not necessary to separate the two annular bodies 12 and 12 to be combined, and the management of the annular body 12 is easy.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A ball bearing cage (3) that holds balls in between inner and outer rings in pockets (Pt) provided at multiple locations in the circumferential direction of a circular ring part (5). The circular ring part (5) is provided with annular sections (6, 6), and column sections (7) disposed at multiple locations in the circumferential direction for connecting the annular sections (6, 6). The pockets (Pt), which guide the balls, are formed by the annular sections (6, 6) on both sides in the axial direction, and column sections (7, 7) that are adjacent in the circumferential direction. On each of the column sections (7, 7), circumferential portions of contact with the balls have flat surfaces (8) extending along the axial direction, and the balls are guided by these flat surfaces (8).

Description

玉軸受用保持器Ball bearing cage 関連出願Related applications
 この出願は、2014年9月30日出願の特願2014-199923および2015年1月26日出願の特願2015-012108の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2014-199923 filed on September 30, 2014 and Japanese Patent Application No. 2015-012108 filed on January 26, 2015, which is incorporated herein by reference in its entirety. Cited as what constitutes
 この発明は、例えば、工作機械主軸に用いられる玉軸受用保持器に関する。 This invention relates to a ball bearing retainer used for a machine tool spindle, for example.
 工作機械主軸に使用されるアンギュラ玉軸受は回転速度が速いので、比重の重い金属製保持器の使用は少なく、ガラス繊維やカーボン繊維等で補強されたナイロンポリアミドやPPS、PEEKまたはフェノールなどの樹脂保持器が使用される。 Angular contact ball bearings used for machine tool spindles have a high rotational speed, so there are few metal cages with heavy specific gravity. Resins such as nylon polyamide, PPS, PEEK or phenol reinforced with glass fiber or carbon fiber. A cage is used.
 一般的に中低速域では、内径拘束形の転動体案内保持器が使用されることが多い(例えば、特許文献1~3)。特許文献1,2には、内径拘束形のボール案内アンギュラ玉軸受が開示されている。特許文献3には、内径拘束形のボール案内保持器が開示されている。また、外径拘束形のころ案内保持器も提案されている(特許文献4)。転動体案内保持器は高精度、微細な面粗さに管理されたボールとの案内(接触)であり、内輪案内保持器や外輪案内保持器と違って、外輪内径面や内輪外径面を研削仕上げとする必要はない。したがって、転動体案内保持器は、内輪案内保持器や外輪案内保持器に比べ、コスト面で優れている。 In general, in the medium to low speed range, a rolling element guide retainer of an inner diameter constraint type is often used (for example, Patent Documents 1 to 3). Patent Documents 1 and 2 disclose a ball guide angular contact ball bearing of an inner diameter restraint type. Patent Document 3 discloses an inner diameter restraint type ball guide holder. Further, an outer diameter constraint type roller guide cage has also been proposed (Patent Document 4). The rolling element guide cage is a guide (contact) with a ball that is controlled with high precision and fine surface roughness. Unlike the inner ring guide cage and outer ring guide cage, the rolling element guide cage has an inner ring outer diameter surface and an inner ring outer diameter surface. There is no need for a ground finish. Therefore, the rolling element guide retainer is superior in cost compared to the inner ring guide retainer and the outer ring guide retainer.
特許第3611918号公報Japanese Patent No. 3611918 特開平9-236127号公報JP-A-9-236127 特許第4192515号公報Japanese Patent No. 4192515 特開2006-161882号公報Japanese Patent Laid-Open No. 2006-161882
 しかしながら、転動体中心径d(mm)と回転速度n(min-1)との積であるdn値で100万を超えるような高速領域になると、転動体案内保持器は、遠心力の作用で膨張し、径方向に案内する際の保持器のボール受け部(内径拘束形は保持器の内径側)とボールとのアタリが強くなる。このため、ボール受け部にかかる抵抗や発熱が次第に大きくなり、潤滑不良や、酷い場合は接触面の異常摩耗、溶解に進展する。 However, at the rolling element center diameter d m (mm) and the rotational speed n (min -1) and high-speed region exceeding 1 million d m n value is the product of the rolling element guide cage, centrifugal force The ball receiving portion of the cage (inner diameter restrained type is the inner diameter side of the cage) and the ball and the ball are strongly strengthened when being guided in the radial direction. For this reason, the resistance and heat generation applied to the ball receiving portion gradually increase, leading to poor lubrication and, in severe cases, abnormal wear and melting of the contact surface.
 図8は、従来例の玉軸受用保持器を使用したアンギュラ玉軸受の断面図であり、図9は、この玉軸受用保持器の斜視図であり、図10は、この玉軸受用保持器外径側から見た平面図である。図8~図10に示すように、従来の内径拘束形の転動体案内保持器30は、径方向外側から見て円形のポケットPtが開けられている。つまり、ポケットPtは、ほぼ円筒形状である。図11は、図8のXI-XI線断面図である。内径拘束形のボール受け部31は、保持器位置が中立位置状態のときにボール32とのすきま「B」が設定され、保持器30を径方向に動かしても内輪33、外輪34とは接触しないボール案内が保たれている。 FIG. 8 is a cross-sectional view of an angular ball bearing using a conventional ball bearing cage, FIG. 9 is a perspective view of the ball bearing cage, and FIG. 10 is the ball bearing cage. It is the top view seen from the outer diameter side. As shown in FIGS. 8 to 10, the conventional inner diameter constrained rolling element guide retainer 30 is formed with a circular pocket Pt as viewed from the radially outer side. That is, the pocket Pt has a substantially cylindrical shape. 11 is a cross-sectional view taken along line XI-XI in FIG. When the cage position is in the neutral position, a clearance “B” is set between the ball 32 and the inner ring 33 and the outer ring 34 even when the cage 30 is moved in the radial direction. The ball guide is not kept.
 この内径拘束形の転動体案内保持器30を備えた軸受が高速回転すると、保持器30の遠心膨張や振れ回りなどによりボール公転周方向Q点でボール32とポケットPtが接触し、保持器30のポケットPtにボール32がくい込むこともある。その結果、ボール32とポケットPtの接触による抵抗や発熱が大きくなる。 When the bearing provided with the inner diameter constrained rolling element guide retainer 30 rotates at a high speed, the ball 32 and the pocket Pt come into contact with each other at the point Q of the ball revolution due to centrifugal expansion or swinging of the retainer 30. The ball 32 may be inserted into the pocket Pt. As a result, resistance and heat generation due to contact between the ball 32 and the pocket Pt increase.
 この発明の目的は、ボール案内形式でありながら、高速運転可能な玉軸受用保持器を提供することである。 An object of the present invention is to provide a ball bearing cage capable of high-speed operation while being in a ball guide type.
 この発明の玉軸受用保持器は、内外輪間に介在するボールを、円環部の円周方向複数箇所に設けられたポケットに保持し、前記円環部は、軸方向両側に配置される環状部と、これら環状部を繋ぎ円周方向複数箇所に配置される柱部とを備え、前記軸方向両側の環状部と、円周方向に隣接する柱部とで前記ポケットが形成されるボール案内の玉軸受用保持器であって、前記各柱部における、前記ボールとの周方向の接触部を、軸方向に沿って延びる平面とし、この平面で前記ボールを案内させている。 A ball bearing retainer according to the present invention holds balls interposed between inner and outer rings in pockets provided at a plurality of locations in the circumferential direction of the annular portion, and the annular portions are disposed on both axial sides. A ball having an annular portion and pillar portions arranged at a plurality of locations in the circumferential direction connecting the annular portions, and the pocket being formed by the annular portions on both sides in the axial direction and the pillar portions adjacent in the circumferential direction. A ball bearing cage for guidance, wherein a contact portion in the circumferential direction of each of the pillar portions with the ball is a plane extending along the axial direction, and the ball is guided in this plane.
 この構成によると、各柱部における、ボールとの周方向の接触部を、軸方向に沿って延びる平面としたので、従来の内径拘束形の転動体案内保持器の持つ円孔接触部に比べ、ボールとの接触面積を少なくすることができる。これにより前記接触部での局部的な発熱を抑えることができる。したがって、本願の玉軸受用保持器は、高速運転時の遠心力が作用しても、ボールと前記接触部の発熱が抑えられるので、高速運転が可能となる。またボール案内であるので、外輪内径面や内輪外径面を研削仕上げする必要がなくなるから、加工工数の低減を図ることができる。 According to this configuration, since the contact portion in the circumferential direction with the ball in each pillar portion is a plane extending along the axial direction, compared to the circular hole contact portion of the conventional inner diameter restraint type rolling element guide retainer The contact area with the ball can be reduced. Thereby, the local heat_generation | fever in the said contact part can be suppressed. Therefore, the ball bearing cage of the present application can be operated at high speed because heat generation of the ball and the contact portion can be suppressed even when centrifugal force is applied during high speed operation. Further, since it is a ball guide, it is not necessary to grind the inner ring outer diameter surface or the inner ring outer diameter surface, so that the number of processing steps can be reduced.
 前記各環状部における、前記ボールとの軸方向の接触部を、周方向に沿って延びる平面とし、この平面で前記ボールを案内させても良い。この場合、ボールを、柱部の平面と環状部の平面とで案内するため、ボールがポケットに接触するときの荷重を、軸受回転方向に作用する荷重と、軸方向に作用する荷重とに分担させることができる。したがって、従来の内径拘束形の保持器よりもボールとの接触面積を少なくすると共に、接触部での局部的な発熱を抑えることができる。 The contact portion in the axial direction of each annular portion with the ball may be a plane extending along the circumferential direction, and the ball may be guided on this plane. In this case, since the ball is guided by the plane of the pillar portion and the plane of the annular portion, the load when the ball contacts the pocket is divided into the load acting in the bearing rotation direction and the load acting in the axial direction. Can be made. Therefore, it is possible to reduce the contact area with the ball as compared with the conventional inner diameter restraint type cage and to suppress local heat generation at the contact portion.
 前記柱部と前記環状部との繋ぎ部が、R形状または円弧状に形成されるものとしても良い。この場合、R形状または円弧状の繋ぎ部と、ボールとの間に、潤滑のための空間が形成される。エアオイル潤滑の場合、前記「空間」が形成されることで、円滑な給排油が可能となり、ボールと保持器ポケットの接触部に常に適量の油が供給される。グリース潤滑の場合、前記「空間」が接触部近傍のグリース保持に寄与し、前記「空間」に保持されたグリースが、ボールと保持器ポケットに供給される。その結果、高速運転時の潤滑信頼性が向上し、接触による摩擦および摩耗が抑制される。 The connecting portion between the column portion and the annular portion may be formed in an R shape or an arc shape. In this case, a space for lubrication is formed between the R-shaped or arc-shaped connecting portion and the ball. In the case of air-oil lubrication, the “space” is formed, so that smooth oil supply / discharge is possible, and an appropriate amount of oil is always supplied to the contact portion between the ball and the cage pocket. In the case of grease lubrication, the “space” contributes to holding the grease in the vicinity of the contact portion, and the grease held in the “space” is supplied to the balls and the cage pocket. As a result, lubrication reliability during high-speed operation is improved, and friction and wear due to contact are suppressed.
 前記柱部と前記環状部との繋ぎ部が、円弧状に形成され、この繋ぎ部の円弧状となる部分を、前記ポケットの中心よりオフセットした円弧面とし、この円弧面と前記ボールとの間にすきまが形成されるようにしても良い。この場合、円弧状の繋ぎ部とボールとの間に、潤滑のための隙間が形成される。エアオイル潤滑の場合、前記「隙間」が形成されることで、円滑な給排油が可能となり、ボールと保持器ポケットの接触部に常に適量の油が供給される。グリース潤滑の場合、前記「隙間」が接触部近傍のグリース保持に寄与し、前記「隙間」に保持されたグリースが、ボールと保持器ポケットに供給される。その結果、高速運転時の潤滑信頼性が向上し、接触による摩擦および摩耗が抑制される。 The connecting portion between the column portion and the annular portion is formed in an arc shape, and the arc-shaped portion of the connecting portion is an arc surface offset from the center of the pocket, and the arc surface and the ball are between A gap may be formed. In this case, a gap for lubrication is formed between the arc-shaped connecting portion and the ball. In the case of air-oil lubrication, the “gap” is formed, so that smooth oil supply / discharge is possible, and an appropriate amount of oil is always supplied to the contact portion between the ball and the cage pocket. In the case of grease lubrication, the “gap” contributes to holding the grease in the vicinity of the contact portion, and the grease held in the “gap” is supplied to the balls and the cage pocket. As a result, lubrication reliability during high-speed operation is improved, and friction and wear due to contact are suppressed.
 前記繋ぎ部の半径寸法を、前記ポケットの軸方向の総幅に対し15%以上としても良い。この繋ぎ部の半径寸法は、例えば、試験やシミュレーション等の結果により定められる。この繋ぎ部の半径寸法を前記のように数値限定した場合、高速運転時の潤滑信頼性をより一層高めることができる。 The radial dimension of the connecting portion may be 15% or more with respect to the total axial width of the pocket. The radial dimension of the connecting portion is determined based on, for example, results of tests and simulations. When the radius dimension of the joint portion is limited as described above, the lubrication reliability during high-speed operation can be further improved.
 この発明の玉軸受用保持器は、アンギュラ玉軸受用の保持器であっても良いし、樹脂製であっても良い。前記樹脂製の玉軸受用保持器は、射出成型にて製作されるものとしても良い。この場合、保持器を機械加工で製作するよりも、量産性に優れ、コスト低減を図れる。 The ball bearing cage of the present invention may be an angular ball bearing cage or a resin. The resin ball bearing cage may be manufactured by injection molding. In this case, it is excellent in mass productivity and cost reduction as compared with manufacturing the cage by machining.
 前記円環部は、この円環部の軸方向に互いに対向する二つの環状体を有し、これら環状体を前記軸方向に対向して組み合わせて複数の前記ポケットが形成されるものとしても良い。この場合、内外輪の軌道面間に複数のボールを挿入した後、二つの環状体を前記軸方向の両側から組み合わせてこの保持器を容易に組み立てることができる。この保持器を樹脂製として二つの環状体を同一形状とすると、一種類の成形用金型で前記二つの環状体を成形できるので、金型費用を抑えて保持器のコスト低減を図れると共に、組み合わせる二つの環状体を分別する必要がなく環状体の管理も容易である。 The annular portion may include two annular bodies facing each other in the axial direction of the annular portion, and the annular bodies may be combined to face the axial direction to form a plurality of pockets. . In this case, after inserting a plurality of balls between the raceway surfaces of the inner and outer rings, the cage can be easily assembled by combining two annular bodies from both sides in the axial direction. When this cage is made of resin and the two annular bodies have the same shape, the two annular bodies can be molded with one type of molding die, so that the cost of the cage can be reduced while suppressing the cost of the mold, There is no need to separate the two annular bodies to be combined, and the management of the annular bodies is easy.
 この発明の玉軸受は、この発明の玉軸受用保持器を用いた工作機械主軸用のアンギュラ玉軸受であっても良い。 The ball bearing of the present invention may be an angular ball bearing for a machine tool spindle using the ball bearing retainer of the present invention.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
この発明の第1の実施形態に係る玉軸受用保持器を使用したアンギュラ玉軸受の断面図である。 同玉軸受用保持器の斜視図である。 図2Aの要部の拡大図である。 同玉軸受用保持器を外径側から見た平面図である。 は図3Aの要部の拡大図である。 同玉軸受用保持器と従来保持器を比較して説明する図である。 この発明の第2実施形態に係る玉軸受用保持器を外径側から見た要部の拡大平面図である。 この発明の第3実施形態に係る玉軸受用保持器を外径側から見た要部の拡大平面図である。 この発明の第4実施形態に係る玉軸受保持器を外径側から見た要部の平面図である。 従来の玉軸受用保持器を使用したアンギュラ玉軸受の断面図である。 同玉軸受用保持器の斜視図である。 同玉軸受用保持器外径側から見た平面図である。 図8のXI-XI線断面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same part numbers in a plurality of drawings indicate the same or corresponding parts.
It is sectional drawing of the angular ball bearing which uses the cage for ball bearings concerning 1st Embodiment of this invention. It is a perspective view of the cage for ball bearings. It is an enlarged view of the principal part of FIG. 2A. It is the top view which looked at the same cage for ball bearings from the outer diameter side. FIG. 3B is an enlarged view of a main part of FIG. 3A. It is a figure which compares and demonstrates the cage for ball bearings and a conventional cage. It is the enlarged plan view of the principal part which looked at the cage for ball bearings concerning 2nd Embodiment of this invention from the outer diameter side. It is the enlarged plan view of the principal part which looked at the cage for ball bearings concerning 3rd Embodiment of this invention from the outer diameter side. It is the top view of the principal part which looked at the ball bearing retainer which concerns on 4th Embodiment of this invention from the outer diameter side. It is sectional drawing of the angular ball bearing using the conventional cage for ball bearings. It is a perspective view of the cage for ball bearings. It is the top view seen from the retainer outer diameter side of the ball bearing. FIG. 9 is a sectional view taken along line XI-XI in FIG. 8.
 この発明の第1の実施形態を図1ないし図4と共に説明する。この実施形態に係る玉軸受用保持器は、特に、工作機械主軸用のアンギュラ玉軸受の保持器に適用される。図1は、玉軸受用保持器を使用したアンギュラ玉軸受の断面図である。このアンギュラ玉軸受は、内輪1と外輪2との間に、保持器3に保持されたボール4が介在している。この保持器3は、ボール案内で内径拘束形である。ボール4は、例えば、鋼球やセラミックス等からなる。 A first embodiment of the present invention will be described with reference to FIGS. The ball bearing retainer according to this embodiment is particularly applied to an angular ball bearing retainer for a machine tool spindle. FIG. 1 is a cross-sectional view of an angular ball bearing using a ball bearing cage. In this angular ball bearing, a ball 4 held by a cage 3 is interposed between an inner ring 1 and an outer ring 2. The cage 3 is a ball guide and is an inner diameter restraint type. The ball 4 is made of, for example, a steel ball or ceramics.
 保持器3は、内外輪1,2間に介在するボール4を、円環部5の円周方向複数箇所に設けられたポケットPtに保持する。保持器3は、例えば、樹脂製であり、射出成型にて製作される。この保持器3に使用される樹脂材料としては、高速回転に有利な高剛性のPEEK樹脂で代表されるスーパーエンジニアプラスチックにカーボンファイバーあるいはグラスファイバーを20~40%含有したものや、コスト面に配慮したポリアミド樹脂で代表されるエンジニアプラスチックにカーボンファイバーあるいはグラスファイバーを20~40%含有したものが適用される。 The cage 3 holds the balls 4 interposed between the inner and outer rings 1 and 2 in pockets Pt provided at a plurality of locations in the circumferential direction of the annular portion 5. The cage 3 is made of resin, for example, and is manufactured by injection molding. Resin materials used for the cage 3 include 20-40% carbon fiber or glass fiber in super engineer plastic represented by high-rigidity PEEK resin, which is advantageous for high-speed rotation, and cost considerations Engineered plastics typified by polyamide resin containing 20 to 40% carbon fiber or glass fiber are applied.
 図2Aはこの保持器3の斜視図であり、図2Bは図2Aの要部の拡大図である。図3Aはこの保持器3を外径側から見た平面図であり、図3Bは図3Aの要部の拡大図である。図2A~図3Bに示すように、保持器3の円環部5は、軸方向両側に配置される環状部6,6と、これら環状部6,6を繋ぎ円周方向複数箇所に配置される柱部7とを備える。軸方向両側の環状部6,6と、円周方向に隣接する柱部7,7とで前記ポケットPtが形成される。 FIG. 2A is a perspective view of the cage 3, and FIG. 2B is an enlarged view of the main part of FIG. 2A. FIG. 3A is a plan view of the cage 3 as viewed from the outer diameter side, and FIG. 3B is an enlarged view of the main part of FIG. 3A. As shown in FIGS. 2A to 3B, the annular portion 5 of the cage 3 is arranged at a plurality of locations in the circumferential direction by connecting the annular portions 6 and 6 disposed on both sides in the axial direction and connecting these annular portions 6 and 6. The column part 7 is provided. The pockets Pt are formed by the annular portions 6 and 6 on both sides in the axial direction and the column portions 7 and 7 adjacent in the circumferential direction.
 図2Bおよび図3Bに示すように、ポケットPtは、この保持器3を外径側から見た平面視で略矩形状に形成される。各ポケットPtにおいて、一対の柱部7,7が互いに周方向に対向するように配置される。各柱部7における、ボール4(図1)との接触部を、軸方向に沿って延びる平面8としている。この平面8でボール4(図1)が案内される。この柱部7における平面8を、「回転方向ストレート面8」と称す。 As shown in FIGS. 2B and 3B, the pocket Pt is formed in a substantially rectangular shape in a plan view when the cage 3 is viewed from the outer diameter side. In each pocket Pt, a pair of pillar parts 7 and 7 are arrange | positioned so that it may mutually oppose in the circumferential direction. A contact portion of each column portion 7 with the ball 4 (FIG. 1) is a plane 8 extending along the axial direction. The ball 4 (FIG. 1) is guided by the plane 8. The plane 8 in the column portion 7 is referred to as “rotation direction straight surface 8”.
 各ポケットPtにおける二つの回転方向ストレート面8,8は、各柱部7の厚み方向中間付近部から半径方向内方に所定距離延び、且つ、先端に向かうに従って互いの円周方向距離が次第に近づくように設けられる。また、各回転方向ストレート面8は、基端から先端に向かうに従って幅狭に形成される。この保持器3は、柱部7における回転方向ストレート面8により、ボール案内内径拘束形とされる。 The two rotation direction straight surfaces 8 and 8 in each pocket Pt extend a predetermined distance inward in the radial direction from the middle portion in the thickness direction of each column portion 7 and gradually approach each other in the circumferential direction toward the tip. It is provided as follows. Moreover, each rotation direction straight surface 8 is formed so that it becomes narrow as it goes to a front-end | tip from a base end. The cage 3 is a ball guide inner diameter restraint type by the rotation direction straight surface 8 in the column portion 7.
 各環状部6における、軸方向の接触部を、周方向に沿って延びる平面9とし、この平面9でもボール4(図1)を案内させる。この環状部6における平面9を、「軸方向ストレート面9」と称す。各ポケットPtにおける二つの軸方向ストレート面9,9は、互いに平行な面に形成されている。ボール4(図1)を、前述の回転方向ストレート面8と軸方向ストレート面9とで案内するので、ボール4(図1)がポケットPtに接触するときの荷重を、軸受回転方向に作用する荷重と、軸方向に作用する荷重とに分担させることができる。 The contact portion in the axial direction of each annular portion 6 is a plane 9 extending along the circumferential direction, and the ball 4 (FIG. 1) is guided also on this plane 9. The plane 9 in the annular portion 6 is referred to as “axial straight surface 9”. Two axial straight surfaces 9, 9 in each pocket Pt are formed in parallel to each other. Since the ball 4 (FIG. 1) is guided by the aforementioned rotational straight surface 8 and the axial straight surface 9, the load when the ball 4 (FIG. 1) contacts the pocket Pt acts in the bearing rotational direction. The load and the load acting in the axial direction can be shared.
 柱部7と環状部6との繋ぎ部10は、丸面取りから成るR形状または円弧状に形成されている。このR形状または円弧状の円弧中心は、ポケットPt内に位置する。略矩形状に形成される各ポケットPtにおける四隅に、それぞれ繋ぎ部10が形成されている。この繋ぎ部10の半径を、ポケットPtの軸方向の総幅L1の15%以上としている。この繋ぎ部10の半径寸法は、例えば、試験やシミュレーション等の結果により定められる。 The connecting portion 10 between the column portion 7 and the annular portion 6 is formed in an R shape or a circular arc shape formed by round chamfering. The R-shaped or arc-shaped arc center is located in the pocket Pt. Connecting portions 10 are formed at the four corners of each pocket Pt formed in a substantially rectangular shape. The radius of the connecting portion 10 is 15% or more of the total axial width L1 of the pocket Pt. The radial dimension of the connecting portion 10 is determined by the results of tests and simulations, for example.
 図4は、本実施形態の保持器3(同図右側)と従来保持器50(同図左側)を比較して説明する図である。従来保持器50では、ポケットPtの円孔面51にボール4が接触するのに対し、本実施形態の保持器3では、ポケットPtの回転方向ストレート面8にボール4が接触する。 FIG. 4 is a diagram illustrating a comparison between the cage 3 (right side of the figure) and the conventional cage 50 (left side of the figure) of the present embodiment. In the conventional cage 50, the ball 4 contacts the circular hole surface 51 of the pocket Pt, whereas in the cage 3 of the present embodiment, the ball 4 contacts the rotational direction straight surface 8 of the pocket Pt.
 また、本実施形態の保持器3では、R形状または円弧状の繋ぎ部10と、ボール4との間に、潤滑のための空間11が形成される。エアオイル潤滑の場合、空間11が形成されることで、円滑な給排油が可能となり、ボール4と保持器ポケットPtの接触部に常に適量の油が供給される。グリース潤滑の場合、空間11が接触部近傍のグリース保持に寄与し、空間11に保持されたグリースが、ボール4と保持器ポケットPtに供給される。その結果、高速運転時の潤滑信頼性が向上し、接触による摩擦および摩耗が抑制される。 In the cage 3 of the present embodiment, a space 11 for lubrication is formed between the R-shaped or arc-shaped connecting portion 10 and the ball 4. In the case of air oil lubrication, the formation of the space 11 enables smooth supply and discharge of oil, and an appropriate amount of oil is always supplied to the contact portion between the ball 4 and the cage pocket Pt. In the case of grease lubrication, the space 11 contributes to holding the grease near the contact portion, and the grease held in the space 11 is supplied to the balls 4 and the cage pocket Pt. As a result, lubrication reliability during high-speed operation is improved, and friction and wear due to contact are suppressed.
 以上説明した保持器3によると、各柱部7における、ボール4との周方向の接触部を、軸方向に沿って延びる平面8としている。これにより、従来の内径拘束形の転動体案内保持器の持つ円孔接触部に比べ、ボール4との接触面積を少なくすることができる。その結果、前記接触部での局部的な発熱を抑えることができる。したがって、本実施形態の玉軸受用保持器3は、高速運転時の遠心力が作用しても、ボール4と前記接触部の発熱を抑えることができ、高速運転が可能となる。また、ボール案内であるため、外輪内径面や内輪外径面を研削仕上げする必要がなくなるため、加工工数の低減を図ることができる。 According to the cage 3 described above, the contact portion in the circumferential direction of each pillar portion 7 with the ball 4 is a plane 8 extending along the axial direction. Thereby, the contact area with the ball | bowl 4 can be decreased compared with the circular hole contact part which the conventional inner diameter restraint type rolling element guide retainer has. As a result, local heat generation at the contact portion can be suppressed. Therefore, the ball bearing retainer 3 of this embodiment can suppress the heat generation of the ball 4 and the contact portion even when centrifugal force is applied during high speed operation, and high speed operation is possible. Further, since it is a ball guide, it is not necessary to finish the inner ring outer diameter surface or the inner ring outer diameter surface, so that the number of processing steps can be reduced.
 各環状部6における、ボール4との軸方向の接触部を、周方向に沿って延びる平面9とし、この平面9でボール4が案内されている。ボール4が、柱部7の平面8と環状部6の平面9とで案内されるので、ボール4がポケットPtに接触するときの荷重を、軸受回転方向に作用する荷重と、軸方向に作用する荷重とに分担させることができる。したがって、従来の内径拘束形の保持器よりもボールとの接触面積を少なくすると共に、接触部での局部的な発熱を抑えることができる。 The contact portion in the axial direction of each annular portion 6 with the ball 4 is a plane 9 extending along the circumferential direction, and the ball 4 is guided by this plane 9. Since the ball 4 is guided by the plane 8 of the column portion 7 and the plane 9 of the annular portion 6, the load when the ball 4 comes into contact with the pocket Pt is applied to the load acting in the bearing rotation direction and the axial direction. It can be shared with the load to be performed. Therefore, it is possible to reduce the contact area with the ball as compared with the conventional inner diameter restraint type cage and to suppress local heat generation at the contact portion.
 他の実施形態について説明する。
 以下の説明においては、各実施形態に先行する実施形態で説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している実施形態と同様とし、同一の構成から同一の作用効果を奏する。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組合せることも可能である。
Another embodiment will be described.
In the following description, portions corresponding to the matters described in the embodiments preceding each embodiment are denoted by the same reference numerals, and redundant descriptions are omitted. When only a part of the configuration is described, other parts of the configuration are the same as those of the embodiment described above unless otherwise specified, and the same operational effects are obtained from the same configuration. In addition to the combination of parts specifically described in each embodiment, the embodiments may be partially combined as long as the combination does not hinder the combination.
 図5に示す第2実施形態では、柱部7と環状部6との繋ぎ部10が、円弧状に形成されている。この繋ぎ部10の円弧状となる部分は、前記ポケットPtの中心O1より軸方向および周方向にそれぞれオフセットした円弧面であり、この円弧面とボールとの間にすきまが形成されている。 In the second embodiment shown in FIG. 5, the connecting portion 10 between the column portion 7 and the annular portion 6 is formed in an arc shape. The arcuate portion of the connecting portion 10 is an arc surface offset in the axial direction and the circumferential direction from the center O1 of the pocket Pt, and a gap is formed between the arc surface and the ball.
 図6に示す第3実施形態では、繋ぎ部10の円弧状となる部分が、ポケットPtの中心O1より軸方向にオフセットした円弧面であり、この円弧面とボールとの間にすきまが形成されている。 In the third embodiment shown in FIG. 6, the arcuate portion of the connecting portion 10 is an arc surface offset in the axial direction from the center O1 of the pocket Pt, and a gap is formed between the arc surface and the ball. ing.
 第2および第3実施形態の場合、円弧状の繋ぎ部10とボールとの間に、潤滑のための隙間が形成される。エアオイル潤滑の場合、この「隙間」が形成されることで、円滑な給排油が可能となり、ボールと保持器ポケットPtの接触部に常に適量の油が供給される。グリース潤滑の場合、この隙間が接触部近傍のグリース保持に寄与し、隙間に保持されたグリースが、ボールと保持器ポケットPtに供給される。その結果、高速運転時の潤滑信頼性が向上し、接触による摩擦および摩耗が抑制される。 In the case of the second and third embodiments, a gap for lubrication is formed between the arc-shaped connecting portion 10 and the ball. In the case of air-oil lubrication, the formation of this “gap” enables smooth oil supply / discharge, and an appropriate amount of oil is always supplied to the contact portion between the ball and the cage pocket Pt. In the case of grease lubrication, this gap contributes to holding the grease in the vicinity of the contact portion, and the grease held in the gap is supplied to the ball and the cage pocket Pt. As a result, lubrication reliability during high-speed operation is improved, and friction and wear due to contact are suppressed.
 図7に示す第4実施形態では、保持器3Aの円環部5は、軸方向に分割可能な二つ割りの環状体12,12を有し、これら2つの環状体12,12を組み合わせることで、複数のポケットPtを有する保持器3Aが形成されている。この第4実施形態の二つの環状体12,12は互いに同一形状とし、表裏反対向きに組み合わせている。この場合、柱部7には、二つの環状体12,12を組み合わせたときに面接触する合わせ面13が形成される。合わせ面13は、各柱部7における円周方向の中央付近部を除き、前記軸方向に垂直な平面である。この合わせ面13は、円環部5の軸方向中央から軸方向にずれた位置に形成されている。 In the fourth embodiment shown in FIG. 7, the annular portion 5 of the cage 3 </ b> A has two annular bodies 12, 12 that can be divided in the axial direction, and by combining these two annular bodies 12, 12, A cage 3A having a plurality of pockets Pt is formed. The two annular bodies 12, 12 of the fourth embodiment have the same shape and are combined in the opposite directions. In this case, the column portion 7 is formed with a mating surface 13 that comes into surface contact when the two annular bodies 12 and 12 are combined. The mating surface 13 is a plane perpendicular to the axial direction except for the central portion in the circumferential direction of each column portion 7. The mating surface 13 is formed at a position shifted in the axial direction from the center in the axial direction of the annular portion 5.
 第4実施形態の保持器3Aによると、軸方向に分割可能な二つ割りの環状体12,12を軸方向に対向して組み合わせることで、複数のポケットPtを有する円環部5が構成される。このため、内外輪1,2(図1)の軌道面間に複数のボール4(図1)を挿入した後、二つの環状体12,12を前記軸方向の両側から組み合わせて、この保持器3Aを容易に組み立てることができる。 According to the cage 3A of the fourth embodiment, the annular portion 5 having a plurality of pockets Pt is configured by combining the two annular bodies 12 and 12 that can be divided in the axial direction so as to face each other in the axial direction. For this reason, after inserting a plurality of balls 4 (FIG. 1) between the raceway surfaces of the inner and outer rings 1 and 2 (FIG. 1), the two annular bodies 12 and 12 are combined from both sides in the axial direction. 3A can be assembled easily.
 保持器3Aは樹脂製で、二つの環状体12,12が同一形状であるので、一種類の成形用金型で二つの環状体12,12を成形できる。このため、金型費用を抑えて保持器3Aのコスト低減を図れると共に、組み合わせる二つの環状体12,12を分別する必要がなく環状体12の管理も容易である。 Since the cage 3A is made of resin and the two annular bodies 12 and 12 have the same shape, the two annular bodies 12 and 12 can be molded with one type of molding die. For this reason, it is possible to reduce the cost of the retainer 3A by suppressing the mold cost, and it is not necessary to separate the two annular bodies 12 and 12 to be combined, and the management of the annular body 12 is easy.
 以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although the form for implementing this invention based on embodiment was demonstrated, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 内輪
2 外輪
3,3A 保持器
4 ボール
5 円環部
6 環状部
7 柱部
8 回転方向ストレート面(平面)
9 軸方向ストレート面(平面)
10 繋ぎ部
12 環状体
Pt ポケット
DESCRIPTION OF SYMBOLS 1 Inner ring 2 Outer ring 3, 3A Cage 4 Ball 5 Ring part 6 Ring part 7 Column part 8 Rotation direction straight surface (plane)
9 Axial straight surface (plane)
10 connecting portion 12 annular body Pt pocket

Claims (10)

  1.  内外輪間に介在するボールを、円環部の円周方向複数箇所に設けられたポケットに保持し、
     前記円環部は、軸方向両側に配置される環状部と、これら環状部を繋ぎ円周方向複数箇所に配置される柱部とを備え、
     前記軸方向両側の環状部と、円周方向に隣接する柱部とで前記ポケットが形成されるボール案内の玉軸受用保持器であって、
     前記各柱部における、前記ボールとの周方向の接触部を、軸方向に沿って延びる平面とし、この平面で前記ボールを案内させる玉軸受用保持器。
    Hold the ball that intervenes between the inner and outer rings in pockets provided at multiple locations in the circumferential direction of the ring,
    The annular portion includes an annular portion disposed on both sides in the axial direction, and pillar portions that connect these annular portions and are disposed at a plurality of locations in the circumferential direction,
    A ball bearing retainer for a ball guide in which the pocket is formed by the annular portions on both sides in the axial direction and the column portions adjacent in the circumferential direction,
    A ball bearing retainer that guides the ball in a plane extending in the axial direction at a contact portion in the circumferential direction of each pillar portion with the ball.
  2.  請求項1に記載の玉軸受用保持器において、前記各環状部における、前記ボールとの軸方向の接触部を、周方向に沿って延びる平面とし、この平面で前記ボールを案内させる玉軸受用保持器。 2. The ball bearing retainer according to claim 1, wherein a contact portion in an axial direction of each annular portion with the ball is a plane extending along a circumferential direction, and the ball is guided by the plane. Cage.
  3.  請求項2に記載の玉軸受用保持器において、前記柱部と前記環状部との繋ぎ部が、R形状または円弧状に形成される玉軸受用保持器。 3. The ball bearing retainer according to claim 2, wherein a connecting portion between the column portion and the annular portion is formed in an R shape or an arc shape.
  4.  請求項2に記載の玉軸受用保持器において、前記柱部と前記環状部との繋ぎ部が、円弧状に形成され、
     この繋ぎ部の円弧状となる部分を、前記ポケットの中心よりオフセットした円弧面とし、
     この円弧面と前記ボールとの間にすきまが形成されるようにした玉軸受用保持器。
    The ball bearing retainer according to claim 2, wherein a connecting portion between the column portion and the annular portion is formed in an arc shape.
    The arc-shaped portion of the connecting portion is an arc surface offset from the center of the pocket,
    A ball bearing retainer in which a gap is formed between the arc surface and the ball.
  5.  請求項3または請求項4に記載の玉軸受用保持器において、前記繋ぎ部の半径寸法を、前記ポケットの軸方向の総幅に対し15%以上とした玉軸受用保持器。 The ball bearing retainer according to claim 3 or 4, wherein a radial dimension of the joint portion is 15% or more with respect to a total axial width of the pocket.
  6.  請求項1ないし請求項5のいずれか1項に記載の玉軸受用保持器において、アンギュラ玉軸受用の保持器である玉軸受用保持器。 The ball bearing retainer according to any one of claims 1 to 5, wherein the ball bearing retainer is a retainer for an angular ball bearing.
  7.  請求項1ないし請求項6のいずれか1項に記載の玉軸受用保持器において、樹脂製である玉軸受用保持器。 The ball bearing retainer according to any one of claims 1 to 6, wherein the ball bearing retainer is made of resin.
  8.  請求項7に記載の玉軸受用保持器において、射出成型にて製作される玉軸受用保持器。 The ball bearing retainer according to claim 7, wherein the ball bearing retainer is manufactured by injection molding.
  9.  請求項1ないし請求項8のいずれか1項に記載の玉軸受用保持器において、前記円環部は、この円環部の軸方向に互いに対向する二つの環状体を有し、
     これら環状体を前記軸方向に対向して組み合わせて複数の前記ポケットが形成される玉軸受用保持器。
    The ball bearing retainer according to any one of claims 1 to 8, wherein the annular portion includes two annular bodies facing each other in the axial direction of the annular portion,
    A ball bearing retainer in which a plurality of the pockets are formed by combining these annular bodies facing each other in the axial direction.
  10.  請求項1ないし請求項9のいずれか1項に記載の玉軸受用保持器を用いた工作機械主軸用のアンギュラ玉軸受。 An angular contact ball bearing for a machine tool spindle using the ball bearing retainer according to any one of claims 1 to 9.
PCT/JP2015/076505 2014-09-30 2015-09-17 Ball bearing cage WO2016052232A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15847007.0A EP3203099B1 (en) 2014-09-30 2015-09-17 Ball bearing cage
KR1020177007617A KR102445802B1 (en) 2014-09-30 2015-09-17 retainer for ball bearings
CN201580052373.6A CN107076206B (en) 2014-09-30 2015-09-17 Retainer for ball bearing
US15/463,541 US10663001B2 (en) 2014-09-30 2017-03-20 Ball bearing cage

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-199923 2014-09-30
JP2014199923 2014-09-30
JP2015-012108 2015-01-26
JP2015012108A JP6556454B2 (en) 2014-09-30 2015-01-26 Ball bearing cage

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/463,541 Continuation US10663001B2 (en) 2014-09-30 2017-03-20 Ball bearing cage

Publications (1)

Publication Number Publication Date
WO2016052232A1 true WO2016052232A1 (en) 2016-04-07

Family

ID=55630272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076505 WO2016052232A1 (en) 2014-09-30 2015-09-17 Ball bearing cage

Country Status (1)

Country Link
WO (1) WO2016052232A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU173278U1 (en) * 2017-02-13 2017-08-21 Публичное акционерное общество "Научно-производственное объединение "Сатурн" RADIALLY STABLE ROLLING BEARING
US10451112B2 (en) * 2015-11-25 2019-10-22 Schaeffler Technologies AG & Co. KG Ball bearing cage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161882A (en) * 2004-12-03 2006-06-22 Ntn Corp Rolling bearing cage
JP2007147010A (en) * 2005-11-29 2007-06-14 Ntn Corp Ball bearing cage, ball bearing and machine tool
JP2009058039A (en) * 2007-08-31 2009-03-19 Jtekt Corp Roller bearing cage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161882A (en) * 2004-12-03 2006-06-22 Ntn Corp Rolling bearing cage
JP2007147010A (en) * 2005-11-29 2007-06-14 Ntn Corp Ball bearing cage, ball bearing and machine tool
JP2009058039A (en) * 2007-08-31 2009-03-19 Jtekt Corp Roller bearing cage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10451112B2 (en) * 2015-11-25 2019-10-22 Schaeffler Technologies AG & Co. KG Ball bearing cage
RU173278U1 (en) * 2017-02-13 2017-08-21 Публичное акционерное общество "Научно-производственное объединение "Сатурн" RADIALLY STABLE ROLLING BEARING

Similar Documents

Publication Publication Date Title
EP3543553B1 (en) Rolling bearing cage and rolling bearing
WO2015029851A1 (en) Ball bearing retainer
JP2016128720A (en) Rolling bearing and machine tool spindle device
KR20170102526A (en) Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer
KR101988706B1 (en) Angular ball bearing
WO2015141812A1 (en) Angular ball bearing
JP2019074214A (en) Angular ball bearing and its manufacturing method
JP5929543B2 (en) Rolling bearings and spindles for machine tools
WO2018074199A1 (en) Retainer for angular ball bearings
JP6556454B2 (en) Ball bearing cage
WO2016052232A1 (en) Ball bearing cage
JP6529209B2 (en) Angular contact ball bearings
CN105782246B (en) Angular contact ball bearing
JP2018105504A (en) Angular ball bearing
WO2018225720A1 (en) Holder for rolling bearing, and rolling bearing
JP2007078118A (en) Resin retainer, resin retainer mold and resin retainer manufacturing method
JP2006002818A (en) Synthetic resin cage for roller bearing and cylindrical roller bearing
JP2008008370A (en) Cylindrical roller bearing cage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177007617

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015847007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015847007

Country of ref document: EP