JP2005121080A - Rolling bearing for supporting belt type continuously-variable transmission pulley shaft - Google Patents

Rolling bearing for supporting belt type continuously-variable transmission pulley shaft Download PDF

Info

Publication number
JP2005121080A
JP2005121080A JP2003354903A JP2003354903A JP2005121080A JP 2005121080 A JP2005121080 A JP 2005121080A JP 2003354903 A JP2003354903 A JP 2003354903A JP 2003354903 A JP2003354903 A JP 2003354903A JP 2005121080 A JP2005121080 A JP 2005121080A
Authority
JP
Japan
Prior art keywords
rolling
variable transmission
type continuously
mass
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003354903A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uchida
啓之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003354903A priority Critical patent/JP2005121080A/en
Publication of JP2005121080A publication Critical patent/JP2005121080A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/63Gears with belts and pulleys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/65Gear shifting, change speed gear, gear box

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Rolling Contact Bearings (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing for a belt type continuously-variable transmission pulley shaft of long service life, capable of being properly used in the belt type continuously variable transmission by securing the hardness under high temperature environment, the stability in its dimension, the resistance to peeling fatigue and the resistance to white tissue separation, and selecting and strengthening a rolling element. <P>SOLUTION: In this rolling bearing for supporting the belt type continuously-variable transmission pulley shaft, at least one of an outer ring, an inner ring and the rolling element is composed of alloy steel including C of 0.6-1.2 mass%, Cr of 0.8-1.8 mass%, Si of 0.6-1.3 mass% and S of 0.018 mass% or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ベルト式無段変速機プーリ軸支持用転がり軸受に関し、特に、プライマリプーリ及びセカンダリプーリ軸を支持する転がり軸受の長寿命化に関する。   The present invention relates to a belt-type continuously variable transmission pulley shaft supporting rolling bearing, and more particularly to extending the life of a rolling bearing that supports a primary pulley and a secondary pulley shaft.

ベルト式無段変速機は、自動変速機の変速機構として、ベルト駆動のプーリの半径を連続的に変える機構を有するものである。例えば、図1に示すように、平行に配置された入力軸(駆動軸)1と出力軸(従動軸)2にそれぞれプーリ3、4が設けられており、これらのプーリ3、4間に金属製のベルト5が巻きつけてある。このベルト5は、厚さ0.2mm程度の薄板を10枚程度重ねた構造の2条のリング51に、多数の薄い(厚さ2mm程度の)摩擦片52を取り付けた構造となっており、この摩擦片52が押し合う時の押力で動力を伝えるものである。   The belt-type continuously variable transmission has a mechanism for continuously changing the radius of a belt-driven pulley as a transmission mechanism of an automatic transmission. For example, as shown in FIG. 1, pulleys 3 and 4 are respectively provided on an input shaft (drive shaft) 1 and an output shaft (driven shaft) 2 arranged in parallel, and a metal is provided between these pulleys 3 and 4. A belt 5 made of metal is wound around the belt. This belt 5 has a structure in which a large number of thin (about 2 mm thick) friction pieces 52 are attached to two rings 51 having a structure in which about 10 thin plates having a thickness of about 0.2 mm are stacked. Power is transmitted by the pressing force when the friction pieces 52 are pressed against each other.

このベルト5を介して、入力軸プーリ(プライマリプーリ)3から出力軸プーリ(セカンダリプーリ)4に駆動力の伝導がなされる。両プーリ3、4は、各軸1、2に固定された固定円錐板31、41と、油圧機構によって軸方向に移動可能な可動円錐板32、42とで構成され、両円錐板32、42によってV字状のプーリ溝が形成されている。   The driving force is transmitted from the input shaft pulley (primary pulley) 3 to the output shaft pulley (secondary pulley) 4 via the belt 5. Both pulleys 3 and 4 are composed of fixed conical plates 31 and 41 fixed to the respective shafts 1 and 2 and movable conical plates 32 and 42 movable in the axial direction by a hydraulic mechanism. Thus, a V-shaped pulley groove is formed.

これらのプーリ3、4の各可動円錐板32、42を軸方向に移動して溝幅を変え、ベルト5がプーリ3、4に接触する位置(プーリの有効回転半径)を変更することで、変速比を無段階に変えることができる。例えば、入力軸プーリ3の溝幅を縮小すると、入力軸プーリ3の有効回転半径が大きくなるため、大きな変速比が得られる。   By moving the movable conical plates 32 and 42 of these pulleys 3 and 4 in the axial direction to change the groove width, and changing the position where the belt 5 contacts the pulleys 3 and 4 (effective rotation radius of the pulley), The gear ratio can be changed steplessly. For example, when the groove width of the input shaft pulley 3 is reduced, the effective rotation radius of the input shaft pulley 3 is increased, and thus a large gear ratio is obtained.

各プーリ3、4の固定円錐板31、41が一体化された軸部(プーリ軸)31a、41aは、ラジアル玉軸受6、7により支持されている。これらのプーリ軸31a、41aは、軸出力を後段に伝達する際に、反力としてスラスト荷重を受ける。そのため、このスラスト荷重によって各ラジアル玉軸受6、7が軸方向に変位して、入力軸プーリ3と出力軸プーリ4とで溝幅方向の中心がずれる(所謂「芯ずれ」が生じる)ことを防止する必要がある。前記芯ずれが大きくなると、ベルト5が蛇行してリング51と摩擦片52とが不適切に接触することで損傷に至る場合もあるし、ラジアル玉軸受6、7にすべりが生じて発熱量が大きくなる場合もある。   Shaft portions (pulley shafts) 31 a and 41 a in which the fixed conical plates 31 and 41 of the pulleys 3 and 4 are integrated are supported by radial ball bearings 6 and 7. These pulley shafts 31a and 41a receive a thrust load as a reaction force when the shaft output is transmitted to the subsequent stage. Therefore, the radial ball bearings 6 and 7 are displaced in the axial direction by the thrust load, and the center in the groove width direction is shifted between the input shaft pulley 3 and the output shaft pulley 4 (so-called “center misalignment” occurs). There is a need to prevent. When the misalignment increases, the belt 5 may meander and damage may be caused by improper contact between the ring 51 and the friction piece 52, or the radial ball bearings 6 and 7 may slip and generate heat. Sometimes it grows.

この対策として、プーリ軸を支持する玉軸受において、内輪及び外輪の軌道溝の曲率半径(R)のボール直径(D)に対する比(R/D)を、通常の標準設計値(0.53)よりも小さくすること(内輪で50.1〜50.9%、外輪で50.1〜51.9%)が知られている(例えば、特許文献1参照。)。この比(R/D)が小さいほどスラスト荷重によって玉軸受が軸方向にずれ難いため、前述のプーリ間の芯ずれは生じ難くなる。   As a countermeasure, in the ball bearing that supports the pulley shaft, the ratio (R / D) of the curvature radius (R) of the raceway groove (R) of the inner ring and the outer ring to the ball diameter (D) is a normal standard design value (0.53). (50.1-50.9% for the inner ring and 50.1-51.9% for the outer ring) is known (see, for example, Patent Document 1). As the ratio (R / D) is smaller, the ball bearing is less likely to be displaced in the axial direction due to the thrust load.

一方、ベルト式無段変速機の潤滑油としては、トルクコンバーター、歯車機構、油圧機構、湿式クラッチ等を円滑に作動させて動力を伝達するために、トラクション係数の高い自動変速機用潤滑油(ATF:Automatic Transmission Fluid)や無段変速機用潤滑油(CVTF:Continuously Variable Transmission Fluid)等の専用油が使用されている。これらの潤滑油中で使用される転がり軸受の場合には、軌道輪と転動体との間に生じる接線力が増大し、通常の接触面圧が最も大きい接触楕円中心部から離れた部位、つまり、PV値(接触面圧と速度の積)が最も大きくなるので潤滑膜が破壊され、金属接触の頻度が高くなることにより、発熱が起こることが多い。   On the other hand, as a lubricating oil for a belt type continuously variable transmission, a lubricating oil for an automatic transmission having a high traction coefficient (in order to transmit power by smoothly operating a torque converter, a gear mechanism, a hydraulic mechanism, a wet clutch, etc.) Special oils such as ATF (Automatic Transmission Fluid) and continuously variable transmission fluid (CVTF) are used. In the case of rolling bearings used in these lubricating oils, the tangential force generated between the bearing ring and the rolling element increases, and the part away from the center of the contact ellipse where the normal contact surface pressure is the largest, that is, The PV value (product of contact surface pressure and speed) is the largest, so the lubricating film is destroyed and the frequency of metal contact increases, so that heat often occurs.

特に、近年、2.5Lを超える大型のエンジンに適用可能なベルト式無段変速機が切望されているが、このようなベルト式無段変速機に使用される軸受の場合には非常に高いトルクがかかり、発熱が起こりやすくなると推測される。   Particularly, in recent years, a belt type continuously variable transmission applicable to a large engine exceeding 2.5L is eagerly desired. However, in the case of a bearing used in such a belt type continuously variable transmission, it is very high. It is estimated that torque is applied and heat generation is likely to occur.

また、ベルトが樹脂製からなる乾式ベルト式無段変速機では、ベルトによるトルクの伝達が無給油環境下で行われる。このため、このような無段変速機に使用される転がり軸受の場合には、油潤滑が困難であるため、グリース潤滑されるが、油潤滑の場合と比べより発熱が起こりやすい。   Further, in a dry belt type continuously variable transmission whose belt is made of resin, torque is transmitted by the belt in an oil-free environment. For this reason, in the case of a rolling bearing used in such a continuously variable transmission, since oil lubrication is difficult, grease lubrication is performed, but heat is more likely to occur than in oil lubrication.

このような発熱は、軸受の硬さの低下や残留オーステナイトの分解の要因となる。従って、ベルト式無段変速機に適用される転がり軸受では、高温環境下での硬さの維持及び寸法安定性が必要となる。また、ベルト式無段変速機に適用される転がり軸受では、上述した高温環境下での問題に加え、厳しい潤滑条件で使用されることに起因するピーリング疲労も問題となっている。   Such heat generation causes a decrease in bearing hardness and a decomposition of retained austenite. Therefore, a rolling bearing applied to a belt-type continuously variable transmission requires maintenance of hardness and dimensional stability under a high temperature environment. Further, in rolling bearings applied to belt type continuously variable transmissions, in addition to the above-described problems under high temperature environments, peeling fatigue due to use under severe lubrication conditions is also a problem.

この対策として、内輪及び玉の全体のオーステナイト量を5%以下とし、且つ、内輪又は外輪の軌道面の残留オーステナイト量を10%以上とした4点接触玉軸受を用いることが知られている(例えば、特許文献2参照。)。ここでは、全体のオーステナイト量を5%以下とすることにより、発熱時の残留オーステナイトの分解による寸法変化を小さくするとともに、軌道面の残留オーステナイト量を10%以上とすることにより、表面疲労を抑制している。   As a countermeasure, it is known to use a four-point contact ball bearing in which the total austenite amount of the inner ring and ball is 5% or less and the retained austenite amount of the raceway surface of the inner ring or outer ring is 10% or more ( For example, see Patent Document 2.) Here, by reducing the total austenite amount to 5% or less, the dimensional change due to decomposition of residual austenite during heat generation is reduced, and the surface austenite amount on the raceway surface is suppressed to 10% or more to suppress surface fatigue. doing.

また一方、ベルト式無段変速機における軸受使用環境は、従来の自動変速機に比べると大きく異なっており(潤滑油量少、高振動、高荷重、高温、ATFやCVTFに含まれる特殊添加剤の影響等)、従来では問題とならなかった、白色組織剥離や、通常最弱部とされる内外輪よりも転動体で優先的に剥離が起こるという減少が問題となってきている。
特公平8−30526号公報(第1図) 特開平10−292859号公報(第3頁、第1図)
On the other hand, the bearing usage environment in belt-type continuously variable transmissions is significantly different from that of conventional automatic transmissions (small amount of lubricating oil, high vibration, high load, high temperature, special additives contained in ATF and CVTF The influence of the above, etc.), which has not been a problem in the past, has become a problem, such as white tissue peeling and a decrease that peeling occurs preferentially in the rolling element rather than the inner and outer rings, which are usually the weakest parts.
Japanese Patent Publication No. 8-30526 (Fig. 1) JP-A-10-292859 (page 3, FIG. 1)

しかしながら、特許文献1に記載の技術は、ベルト式無段変速機のベルトの耐久性を高めるためになされたものであるため、プーリの回転軸を支持する転がり軸受の寿命については言及されていない。   However, since the technique described in Patent Document 1 has been made to increase the durability of the belt of the belt-type continuously variable transmission, there is no mention of the life of the rolling bearing that supports the rotating shaft of the pulley. .

また、特許文献2に記載の技術は、高温環境下での残留オーステナイト分解に対する抵抗性を有するものではないため、高温での硬さ低下及び寸法安定性劣化を起因とする磨耗やピーリング疲労等、ベルト式無段変速機特有の疲労を抑制する点では未だ改善の余地があった。   Moreover, since the technique described in Patent Document 2 does not have resistance to decomposition of retained austenite in a high temperature environment, wear or peeling fatigue caused by hardness reduction and dimensional stability deterioration at high temperatures, There is still room for improvement in terms of suppressing the fatigue characteristic of belt-type continuously variable transmissions.

さらには、特許文献1,2に記載の技術は、白色組織剥離や転動体の優先剥離といった、ベルト式無段変速機で使用される軸受に特有の問題を改善するものではなかった。   Furthermore, the techniques described in Patent Documents 1 and 2 have not improved problems peculiar to bearings used in belt-type continuously variable transmissions such as white tissue peeling and preferential peeling of rolling elements.

本発明は、上述した問題点に着目してなされたものであり、高温環境下での硬さ、寸法安定性、耐ピーリング疲労特性、および耐白色組織剥離特性を確保し、且つ転動体を選定して強化することで、ベルト式無段変速機に好適に用いることができる長寿命なベルト式無段変速機プーリ軸支持用転がり軸受を提供することを目的とする。   The present invention has been made paying attention to the above-mentioned problems, ensuring hardness, dimensional stability, anti-peeling fatigue properties, and anti-white tissue peeling properties under high temperature environments, and selecting rolling elements. The purpose of the present invention is to provide a long-life belt-type continuously variable transmission pulley shaft-supporting rolling bearing that can be suitably used for a belt-type continuously variable transmission.

かかる目的を達成するため、本発明は以下の構成からなる。
(1) 内周面に転動面を有する外輪と、外周面に転動面を有する内輪と、当該外輪の転動面と内輪の転動面との間に転動自在に配設された複数の転動体とを備えたベルト式無段変速機プーリ軸支持用転がり軸受において、
前記外輪、内輪及び転動体の少なくとも一つは、Cが0.6〜1.2質量%、Crが0.8〜1.8質量%、Siが0.6〜1.3質量%、Sが0.018質量%以下である合金鋼であることを特徴とするベルト式無段変速機プーリ軸支持用転がり軸受。
(2) 前記合金鋼は、転がり表面の残留オーステナイト量を15体積%以下とし、表面炭素濃度と表面窒素濃度の和が0.8〜1.4質量%であることを特徴とする(1)に記載のベルト式無段変速機プーリ軸支持用転がり軸受。
(3) 前記合金鋼は、浸炭、或いは浸炭窒化処理が施されたことを特徴とする(1)または(2)に記載のベルト式無段変速機プーリ軸支持用転がり軸受。
(4) 少なくとも前記転動体が前記合金鋼であることを特徴とする(1)〜(3)のいずれかに記載のベルト式無段変速機プーリ軸支持用転がり軸受。
(5) さらに、軸受空間をシールするシール手段を備えたことを特徴とする(1)〜(4)のいずれかに記載のベルト式無段変速機プーリ軸支持用転がり軸受。
In order to achieve this object, the present invention has the following configuration.
(1) An outer ring having a rolling surface on the inner circumferential surface, an inner ring having a rolling surface on the outer circumferential surface, and a rolling surface disposed between the rolling surface of the outer ring and the rolling surface of the inner ring. In a belt-type continuously variable transmission pulley shaft support rolling bearing provided with a plurality of rolling elements,
At least one of the outer ring, the inner ring, and the rolling element has C of 0.6 to 1.2% by mass, Cr of 0.8 to 1.8% by mass, Si of 0.6 to 1.3% by mass, S A belt-type continuously variable transmission pulley shaft-supporting rolling bearing, characterized in that the alloy steel is 0.018% by mass or less.
(2) The alloy steel is characterized in that the amount of retained austenite on the rolling surface is 15% by volume or less, and the sum of the surface carbon concentration and the surface nitrogen concentration is 0.8 to 1.4% by mass (1) A rolling bearing for supporting a belt-type continuously variable transmission pulley shaft as described in 1.
(3) The belt-type continuously variable transmission pulley shaft supporting rolling bearing according to (1) or (2), wherein the alloy steel is subjected to carburizing or carbonitriding.
(4) The rolling bearing for supporting a belt-type continuously variable transmission pulley shaft according to any one of (1) to (3), wherein at least the rolling element is the alloy steel.
(5) The rolling bearing for supporting a belt-type continuously variable transmission pulley shaft according to any one of (1) to (4), further comprising sealing means for sealing the bearing space.

(1)の構成の転がり軸受によれば、Siを適量含有していることにより高温でも組織を安定維持することができるので、寸法安定性や硬さが劣化することがない。また、Sを低減していることにより白色組織形成の原因となる水素の侵入を抑制することができるので、転がり軸受は長寿命となる。   According to the rolling bearing having the configuration of (1), since an appropriate amount of Si is contained, the structure can be stably maintained even at a high temperature, so that dimensional stability and hardness are not deteriorated. Moreover, since the penetration | invasion of hydrogen which causes white structure formation can be suppressed by reducing S, a rolling bearing becomes long life.

また、(2)の構成の転がり軸受によれば、残留オーステナイト量及び表面炭素濃度、表面窒素濃度を適量に調整することで、表面疲労に対しても強くすることができるので、より長寿命となる。ここで、転がり表面とは、外輪及び内輪の転動面と転動体の転動面の少なくとも一方を含む。
さらに、(3)の構成の転がり軸受によれば、転がり表面に圧縮残留応力を付与でき、表面疲労に対して強くすることができるため、長寿命となる。
Further, according to the rolling bearing having the configuration (2), by adjusting the residual austenite amount, the surface carbon concentration, and the surface nitrogen concentration to appropriate amounts, it is possible to strengthen against surface fatigue, so that it has a longer life. Become. Here, the rolling surface includes at least one of rolling surfaces of the outer ring and the inner ring and a rolling surface of the rolling element.
Furthermore, according to the rolling bearing having the configuration of (3), a compressive residual stress can be applied to the rolling surface, and it can be made strong against surface fatigue, so that it has a long life.

また、(4)の構成の転がり軸受によれば、転動体を選定して強化することにより、ベルト式無段変速機プーリ軸支持用転がり軸受特有の問題である転動体剥離を防止でき、より長寿命となる。
さらに、(5)の構成の転がり軸受によれば、シールによりごみの混入を著しく低減できるので、より長寿命となる。
Further, according to the rolling bearing having the configuration of (4), by selecting and strengthening the rolling element, it is possible to prevent the rolling element peeling, which is a problem peculiar to the rolling bearing for supporting the belt type continuously variable transmission pulley shaft. Long service life.
Furthermore, according to the rolling bearing having the configuration of (5), since contamination can be remarkably reduced by the seal, the life is further prolonged.

以下、本発明に用いられる合金成分の作用及び成分範囲の限定理由、その他臨界的意義について説明する。   Hereinafter, the action of the alloy component used in the present invention, the reason for limiting the component range, and other critical significance will be described.

[C:0.6〜1.2質量%]
Cは焼入れ、焼戻し後の硬さを向上するために必要な元素である。尚、浸炭窒化する場合は表面の炭素濃度は上昇する。このため、この値は素材の段階におけるCの含有量である。
Cの含有量が1.2質量%を越えると素材の段階で巨大な炭化物が発生するため、機械加工性及び靭性が低下する。したがって、Cの含有量の上限を1.2質量%とした。
一方、含有量が0.6質量%未満であると、そのままでは十分な硬さが得られない。また、浸炭窒化する場合では、軸受として使用する際、負荷によりせん断応力が働く深さまで必要な硬さを得ることができる炭素濃度とするために浸炭及び浸炭窒化処理時間を長くする必要があり、熱処理生産性が低下するとともにコスト的に不利となる。従って、Cの含有量の下限を0.6質量%とした。
[C: 0.6 to 1.2% by mass]
C is an element necessary for improving the hardness after quenching and tempering. When carbonitriding, the surface carbon concentration increases. For this reason, this value is the C content in the raw material stage.
If the C content exceeds 1.2% by mass, enormous carbides are generated at the raw material stage, so that machinability and toughness are deteriorated. Therefore, the upper limit of the C content is set to 1.2% by mass.
On the other hand, if the content is less than 0.6% by mass, sufficient hardness cannot be obtained as it is. In the case of carbonitriding, when using it as a bearing, it is necessary to lengthen the carburizing and carbonitriding treatment time in order to obtain a carbon concentration that can obtain the required hardness up to the depth at which shear stress acts by the load, The heat treatment productivity is lowered and the cost is disadvantageous. Therefore, the lower limit of the C content is set to 0.6% by mass.

[Cr:0.8〜1.8質量%]
Crは焼入れ性及び焼戻し軟化抵抗性の向上に有効な元素である。また、微細な炭化物を均一に形成する析出硬化により、たとえ高温焼戻しを行っても十分な表面硬さが得られ、また基地の強靭性を向上することができる。そして、硬くて微細なCr炭化物により耐磨耗性を向上する働きもある。さらに、Crは炭化物形成元素であるため、浸炭窒化層のC濃度を高める結果、浸炭阻害性のあるSiを多く含有しても材料の浸炭窒化性を高めることができる。
これらの作用、効果を発揮させ、必要な表面硬さHRC60以上を確保するためにCr含有量の下限を0.8質量%とした。
一方、含有量が1.8質量%を越えると、素材の段階で巨大な炭化物が生じてしまい、この炭化物の回りで応力集中が生じることを原因として軸受寿命が低下するという問題がある。また、必要以上のCr含有量の増加はコスト的にも不利であるし、巨大炭化物を微細化しようとすると高温での焼入れが必要となり、熱処理生産性が低下する。よって、本発明では、その上限値を1.8質量%とした。
[Cr: 0.8 to 1.8% by mass]
Cr is an element effective for improving hardenability and temper softening resistance. Further, by precipitation hardening that uniformly forms fine carbides, sufficient surface hardness can be obtained even if high temperature tempering is performed, and the toughness of the base can be improved. And it has a function which improves abrasion resistance with hard and fine Cr carbide. Furthermore, since Cr is a carbide forming element, as a result of increasing the C concentration of the carbonitriding layer, the carbonitriding property of the material can be enhanced even if a large amount of Si having carburization inhibition is contained.
In order to exhibit these actions and effects and ensure the required surface hardness of HRC 60 or more, the lower limit of the Cr content was set to 0.8 mass%.
On the other hand, if the content exceeds 1.8% by mass, a huge carbide is generated at the raw material stage, and there is a problem that the bearing life is reduced due to stress concentration around the carbide. Further, an increase in Cr content more than necessary is disadvantageous in terms of cost, and when trying to refine giant carbides, quenching at high temperatures is required, and heat treatment productivity is reduced. Therefore, in the present invention, the upper limit value is set to 1.8% by mass.

[Si:0.6〜1.3質量%]
Siは高温での残留オーステナイトの分解を遅延し組織を安定化するとともに、焼戻し軟化抵抗性を向上させるのに有効な元素である。その効果を十分得るためにSiの含有量の下限を0.6質量%とした。しかし、その含有量が多くなると機械的強度の低下、被削性の低下、浸炭窒化性の低下につながるため、Siの含有量の上限を1.3質量%とした。
[Si: 0.6 to 1.3% by mass]
Si is an element effective in delaying the decomposition of retained austenite at a high temperature to stabilize the structure and improving the temper softening resistance. In order to sufficiently obtain the effect, the lower limit of the Si content was set to 0.6% by mass. However, since the increase in the content leads to a decrease in mechanical strength, a machinability, and a carbonitridability, the upper limit of the Si content is set to 1.3% by mass.

[S:0.018質量%以下、好ましくは0.008質量%以下]
Sは鋼中不純物であり、通常、MnS等のA系介在物として鋼中に存在する。
A系介在物はチップブレーカーとして作用し、鋼の被削性を向上する作用があり有効利用されることも少なくなく、また、寿命の観点からは、B系介在物やD系介在物のように軸受寿命にはあまり影響しないと考えられてきたため、Sを極力低減することを十分重要視していなかった。
しかしながら、ベルト式無段変速機プーリ支持軸用転がり軸受のように、特殊な潤滑油中で、軸受が高温、高振動、高速、高荷重等の特定の条件が整った使用環境で使用される場合には、接触面内において潤滑油中の水分や基油が分解して発生した水素が、鋼中のMnSと相互作用を起こすことにより、鋼中に浸入して、寿命が著しく低下する場合がある。これは、侵入した水素が高ひずみ場へ集積することにより、鋼の耐力が低下し、局部的な塑性流動を伴い白色組織と呼ばれる組織変化を引き起こすことに起因している。
本願発明者らは、上記特異な組織変化に起因する早期剥離に対して、Sを0.018%以下にすることで寿命が改善できることを明らかにした。従って、Sの上限を0.018%とする。また、好ましくは上限は0.008%とするとよい。
[S: 0.018 mass% or less, preferably 0.008 mass% or less]
S is an impurity in steel and is usually present in steel as an A-based inclusion such as MnS.
A-based inclusions act as a chip breaker, have the effect of improving the machinability of steel, and are often used effectively. From the viewpoint of life, B-type inclusions and D-type inclusions are used. However, since it has been considered that the bearing life is not greatly affected, it has not been considered sufficiently important to reduce S as much as possible.
However, like a rolling bearing for a belt type continuously variable transmission pulley support shaft, the bearing is used in a special lubricating oil in a usage environment in which specific conditions such as high temperature, high vibration, high speed, and high load are satisfied. In some cases, hydrogen generated by decomposition of moisture and base oil in the lubricating oil in the contact surface penetrates into the steel due to interaction with MnS in the steel, resulting in a significant decrease in service life. There is. This is due to the intrusion of hydrogen that accumulates in a high strain field, thereby reducing the yield strength of the steel and causing a structural change called a white structure with local plastic flow.
The inventors of the present application have clarified that the life can be improved by setting S to 0.018% or less with respect to the early peeling due to the above specific tissue change. Therefore, the upper limit of S is set to 0.018%. The upper limit is preferably 0.008%.

[転がり表面をなす表層部の炭素濃度と窒素濃度との和が0.8〜1.4質量%]
軸受として十分な転がり疲労強度を得るためには、表面炭素濃度と表面窒素濃度との和が0.8質量%以上である必要がある。また、表面炭素濃度と表面窒素濃度との和が1.4質量%を越えると、巨大炭・窒化物が形成され易くなり、このような巨大炭・窒化物が欠陥となって、転がり疲労寿命が低下することがあるため上限を1.4質量%とした。
[The sum of the carbon concentration and the nitrogen concentration in the surface layer portion forming the rolling surface is 0.8 to 1.4% by mass]
In order to obtain sufficient rolling fatigue strength as a bearing, the sum of the surface carbon concentration and the surface nitrogen concentration needs to be 0.8% by mass or more. In addition, when the sum of the surface carbon concentration and the surface nitrogen concentration exceeds 1.4% by mass, it becomes easy to form giant charcoal / nitride, and such giant charcoal / nitride becomes a defect, rolling fatigue life. May fall, the upper limit was made 1.4 mass%.

[転がり表面をなす表層部の残留オーステナイト量が3〜15体積%]
残留オーステナイトは軸受内に磨耗粉等が混入するような環境下で、圧痕起点型の剥離やピーリング疲労等の表面疲労を抑制するのに有効である。この効果を十分発揮させるため、本発明では、その下限を3体積%とした。
一方、残留オーステナイトは高温環境下でマルテンサイトに変態し、この時寸法変化が生じて、軸受の内外輪の隙間が減少することによって逆にピーリング疲労を加速させる要因となる。このため、焼戻しにより残留オーステナイトが最も高い部分である転がり表面において残留オーステナイト量を15体積%以下にすることが好ましい。この時の焼戻し温度は、残留オーステナイトを15体積%以下にするため、200〜400℃程度とすることが好ましい。
[The amount of retained austenite in the surface layer portion forming the rolling surface is 3 to 15% by volume]
Residual austenite is effective in suppressing surface fatigue such as indentation origin peeling and peeling fatigue in an environment where wear powder or the like is mixed in the bearing. In order to sufficiently exhibit this effect, the lower limit is set to 3% by volume in the present invention.
On the other hand, the retained austenite transforms into martensite in a high temperature environment, and at this time, a dimensional change occurs, and the clearance between the inner and outer rings of the bearing is reduced, which is a factor that accelerates peeling fatigue. For this reason, it is preferable to make the amount of residual austenite 15 volume% or less in the rolling surface which is a part with the highest residual austenite by tempering. The tempering temperature at this time is preferably about 200 to 400 ° C. in order to make the retained austenite 15 volume% or less.

[浸炭あるいは浸炭窒化を施す意義]
従来より表面近傍に圧縮残留応力を生じさせることによって耐ピーリング性が向上することが知られている(例えば、特開平5−288257)。本発明において、中、高炭素鋼に浸炭あるいは浸炭窒化処理を施し表面近傍に炭素濃度の勾配をつけることで、表面に圧縮残留応力を付与し、ピーリング性の向上を図った。
[Significance of carburizing or carbonitriding]
Conventionally, it has been known that peeling resistance is improved by generating compressive residual stress in the vicinity of the surface (for example, JP-A-5-288257). In the present invention, medium or high carbon steel is subjected to carburizing or carbonitriding treatment to give a carbon concentration gradient in the vicinity of the surface, thereby imparting compressive residual stress to the surface and improving peelability.

また、本発明では、必要に応じて以下の元素を併記した量の範囲で選択的に添加することができる。   Moreover, in this invention, it can selectively add in the range of the quantity which described the following element together as needed.

[Mn:0.2〜2.0質量%]
Mnは製鋼時に脱酸、脱硫剤として作用すると共に、焼入れ性の向上に大きな役割を担うことから少なくとも0.2質量%必要である。このため、Mn含有量の下限を0.2質量%とした。
しかし、その含有量が2.0質量%より多くなると非金属介在物を多く生じさせるため寿命が低下し、その他、鍛造性、被削性等の機械加工性が低下する。よって、Mn含有量の上限を2.0質量%とした。
[Mn: 0.2 to 2.0% by mass]
Mn acts as a deoxidizing and desulfurizing agent at the time of steelmaking, and plays a major role in improving hardenability, so at least 0.2% by mass is necessary. For this reason, the minimum of Mn content was made into 0.2 mass%.
However, if the content is more than 2.0% by mass, a lot of nonmetallic inclusions are produced, so that the life is reduced, and in addition, machinability such as forgeability and machinability is lowered. Therefore, the upper limit of the Mn content is set to 2.0% by mass.

[O:10ppm以下]
Oは酸化物系非金属介在物(特に、AlO)生成元素であることから寿命を低下させる作用を有するため、その含有量を極力低下する必要がある。したがって、Oの含有量の上限を10ppmとすると良好である。
尚、Alは、Al2O3等の酸化物系非金属介在物を生成するため、その点においてOと同様に寿命に対して有害である。しかし、Al自体は結晶粒の粗大化を防止する作用を有するため、100〜400ppm以下含有するのが有効である。
[O: 10 ppm or less]
Since O is an oxide-based nonmetallic inclusion (in particular, Al 2 O 3 ) generating element, it has an effect of reducing the life, so that its content needs to be reduced as much as possible. Therefore, the upper limit of the O content is preferably 10 ppm.
In addition, since Al produces oxide-based nonmetallic inclusions such as Al 2 O 3, it is detrimental to the service life in the same way as O. However, since Al itself has an effect of preventing coarsening of crystal grains, it is effective to contain 100 to 400 ppm or less.

[P:0.02質量%以下]
Pは転がり寿命及び靭性を低下させる元素である。このため、Pの含有量は極力少ないことが好ましい。この面から、Pの含有量を0.02質量%以下に抑えることが好ましい。
[P: 0.02 mass% or less]
P is an element that reduces rolling life and toughness. For this reason, the P content is preferably as small as possible. In this respect, the P content is preferably suppressed to 0.02% by mass or less.

[Ni:2.0質量%以下]
Niは強力なオーステナイト安定化元素であり、δフェライトの生成を抑え、さらに基地に固溶して靭性を向上させ高温特性を高める作用がある。しかし、必要以上に添加すると多量の残留オーステナイトが生成して十分な焼入れ硬さが得られなくなる。これらの点を考慮して上限を2.0質量%以下とする。
[Ni: 2.0% by mass or less]
Ni is a strong austenite-stabilizing element, has the effect of suppressing the formation of δ ferrite, further improving the toughness by solid solution in the matrix and enhancing the high temperature characteristics. However, if it is added more than necessary, a large amount of retained austenite is generated and sufficient quenching hardness cannot be obtained. Considering these points, the upper limit is made 2.0 mass% or less.

[Cu:0.05〜2.0質量%]
CuはNiと同様に若干のオーステナイト安定化作用を持つ元素であり、δフェライトの生成を抑え、耐食性・耐酸性を向上させる作用があるため、本発明の鋼の中に選択的に添加することができる。その時の下限値は0.05質量%以上、好ましくは、0.5質量%以上とする。また、多量に添加すると軸受製造工程の熱間鍛造工程において、熱間割れを生じる場合があるため、その上限を2.0質量%とする。
[Cu: 0.05 to 2.0% by mass]
Cu is an element having a slight austenite stabilizing effect similar to Ni, and has the effect of suppressing the formation of δ ferrite and improving the corrosion resistance and acid resistance, so it should be added selectively to the steel of the present invention. Can do. The lower limit at that time is 0.05% by mass or more, preferably 0.5% by mass or more. Moreover, since a hot crack may be produced in the hot forging process of the bearing manufacturing process if added in a large amount, the upper limit is set to 2.0% by mass.

[その他の不可避不純物]
上記合金元素及びFe以外の元素として、Ti、Nb等の不可避不純物をそれぞれ100ppm以下含む。
[Other inevitable impurities]
As elements other than the above alloy elements and Fe, inevitable impurities such as Ti and Nb are each included in an amount of 100 ppm or less.

[軸受空間をシールするシール部材]
ベルト式無段変速機は、歯車機構やクラッチ機構を内蔵する装置であるため、それらの装置からの磨耗金属粉が軸受内に混入する心配がある。従って、軸受寿命の信頼性をより高めるためにシール構造を設けることが好ましい。
[Seal member that seals bearing space]
Since the belt-type continuously variable transmission is a device incorporating a gear mechanism and a clutch mechanism, there is a concern that the wear metal powder from these devices may be mixed into the bearing. Therefore, it is preferable to provide a seal structure in order to further improve the reliability of the bearing life.

本発明によれば、高温環境下での硬さ、寸法安定性、耐ピーリング疲労特性、および耐白色組織剥離特性を確保し、且つ転動体を選定して強化することで、ベルト式無段変速機に好適に用いることができる長寿命なベルト式無段変速機プーリ軸支持用転がり軸受を提供することができる。   According to the present invention, the belt type continuously variable transmission is ensured by ensuring hardness, dimensional stability, anti-peeling fatigue characteristics, and white tissue peeling resistance in high temperature environments, and by selecting and strengthening rolling elements. A long-life belt-type continuously variable transmission pulley shaft-supporting rolling bearing that can be suitably used in a machine can be provided.

本発明は、ベルト式無段変速機プーリ軸支持用転がり軸受を構成する材料特性を工夫することにより、その耐久性向上を図るものである。本発明を実施する際に図示される構造は、前述の図1に示した構造を含めて、従来から知られているベルト式無段変速機プーリ軸支持用転がり軸受と同様である。よって、ベルト式無段変速機プーリ軸支持用転がり軸受の具体的構造の説明については省略する。   The present invention aims to improve the durability by devising the material characteristics of the rolling bearing for supporting a belt type continuously variable transmission pulley shaft. The structure illustrated in carrying out the present invention is the same as that of a conventionally known belt-type continuously variable transmission pulley shaft supporting rolling bearing including the structure shown in FIG. Therefore, description of the specific structure of the belt-type continuously variable transmission pulley shaft support rolling bearing is omitted.

以下、本発明の転がり軸受の具体的な材料特性について実験結果を用いて説明する。
実験では、JIS呼び番6207の深溝玉軸受を用いて油浴潤滑下での寿命評価を行った。ここで、外輪と内輪に関しては表1に示す組成の材料で所定の形状に成形した後、840〜1050℃に加熱して、1〜20時間の浸炭あるいは浸炭窒化処理、次いで油焼入れを行なった。その後、200〜400℃で1.5〜2.0時間加熱する焼戻しを行ない、研磨仕上げ加工及び超仕上げ加工を行なった。仕上げ加工まで行なった時点でそれぞれの鋼が有する表面炭素濃度と表面窒素濃度との和(質量%)及び表面残留オーステナイト量(体積%)を表2に示す。
Hereinafter, specific material characteristics of the rolling bearing of the present invention will be described using experimental results.
In the experiment, life evaluation under oil bath lubrication was performed using a deep groove ball bearing of JIS model number 6207. Here, the outer ring and the inner ring were molded into a predetermined shape with the material having the composition shown in Table 1, then heated to 840 to 1050 ° C., carburized or carbonitrided for 1 to 20 hours, and then oil-quenched. . Then, the tempering which heats at 200-400 degreeC for 1.5 to 2.0 hours was performed, and the polishing finishing process and the superfinishing process were performed. Table 2 shows the sum of the surface carbon concentration and the surface nitrogen concentration (mass%) and the amount of surface retained austenite (volume%) of each steel at the time when the finishing is performed.

Figure 2005121080
Figure 2005121080

Figure 2005121080
Figure 2005121080

一方、転動体の材質は、表2中の試験軸受No.1及びNo.4においては、比較のため内外輪と同様の材質とし、それ以外はJIS鋼種SUJ2に浸炭窒化した材料を用いた。ただし、表2中の試験軸受No.17は、表記の材料を転動体のみに適用し、内外輪はSUJ2を適用した。   On the other hand, the material of the rolling element is the test bearing No. in Table 2. 1 and no. In No. 4, the same material as the inner and outer rings was used for comparison, and the other materials were carbonitrided to JIS steel type SUJ2. However, test bearing No. in Table 2 For No. 17, the indicated material was applied only to the rolling elements, and SUJ2 was applied to the inner and outer rings.

ここで、「表層部」とは、表面から20μmの深さまでの部分を示す。表面炭素・窒素濃度及び表面の残留オーステナイト量はそれぞれ発光分析装置、X分析装置にて測定した。   Here, the “surface layer portion” indicates a portion from the surface to a depth of 20 μm. The surface carbon / nitrogen concentration and the amount of retained austenite on the surface were measured with an emission analyzer and an X analyzer, respectively.

上記のように完成された内輪、外輪及び転動体と、金属製の保持器とを用いて試験軸受を組み立てた後、内輪及び外輪の間に形成され、玉が内設された空隙部をシール部材で密封した。ただし、表2中の試験軸受No.19は、比較のため、シール部材を装着しないものとした。   After assembling the test bearing using the inner ring, outer ring, and rolling element completed as described above, and a metal cage, the gap formed between the inner ring and the outer ring and containing the ball is sealed. Sealed with members. However, test bearing No. in Table 2 No. 19 does not have a seal member for comparison.

なお、組み立てられた軸受の外輪及び内輪の溝曲率は、転動体径の51%、ラジアル内部すきまは、C3すきま以下、内輪及び外輪の転動体表面粗さは0.01〜0.04μm程度である。   The groove curvature of the outer ring and inner ring of the assembled bearing is 51% of the rolling element diameter, the radial internal clearance is C3 clearance or less, and the rolling element surface roughness of the inner ring and outer ring is about 0.01 to 0.04 μm. is there.

上記軸受について、図2に示すベルト式無段変速機ユニットを用いて寿命評価を行なった。このベルト式無段変速機ユニットは、プライマリプーリ3の入力軸1及びセカンダリプーリ4の出力軸2が、それぞれ一対の転がり軸受6a、6b、7a、7bで支持されている。この四個の転がり軸受のうち、プライマリフロント軸受(即ち、プライマリプーリ3よりもエンジン側で入力軸1を支持する転がり軸受)6aとして、各試験軸受を取り付けた。これ以外の転がり軸受6b、7a、7bは、各試験で同じものを用いた。また、このベルト式無段変速機ユニットのベルト5は、図1と同様に、厚さ0.2mmの鋼製薄板を10枚重ねた構造の二条のリング51に、280枚の厚さ2mmの摩擦片52を取り付けた構造であり、ベルト長は600mmである。寿命試験は、以下の条件にて実施した。なお、評価は回転試験中に軸受に生じる振動を測定し、回転中の振動値が初期振動値の2倍となった時点で軸受寿命とした。結果は表2に併せて示す。なお、表2中の寿命は、試験軸受No.26の寿命を1とした場合の相対値で示す。   The bearings were evaluated for life using the belt type continuously variable transmission unit shown in FIG. In this belt type continuously variable transmission unit, the input shaft 1 of the primary pulley 3 and the output shaft 2 of the secondary pulley 4 are supported by a pair of rolling bearings 6a, 6b, 7a, 7b, respectively. Of these four rolling bearings, each test bearing was attached as a primary front bearing (that is, a rolling bearing that supports the input shaft 1 on the engine side relative to the primary pulley 3) 6a. The other rolling bearings 6b, 7a, and 7b were the same in each test. In addition, the belt 5 of this belt type continuously variable transmission unit has 280 sheets of 2 mm thick, in a two-row ring 51 having a structure in which ten steel sheets having a thickness of 0.2 mm are stacked, as in FIG. The friction piece 52 is attached, and the belt length is 600 mm. The life test was conducted under the following conditions. In the evaluation, the vibration generated in the bearing during the rotation test was measured, and the bearing life was determined when the vibration value during rotation became twice the initial vibration value. The results are also shown in Table 2. The life in Table 2 is the test bearing no. The relative value when the lifetime of 26 is set to 1 is shown.

〔寿命試験条件〕
試験軸受:6207深溝玉軸受
回転速度:1000〜6500min−1
P(負荷荷重)/C(動定格荷重):max0.2
潤滑油:市販CVT専用油(昭和シェル、NS−1)
油温:100〜160℃
[Life test conditions]
Test bearing: 6207 deep groove ball bearing rotational speed: 1000-6500 min −1
P (load load) / C (dynamic load rating): max0.2
Lubricating oil: Commercially available CVT exclusive oil (Showa Shell, NS-1)
Oil temperature: 100-160 ° C

表2の結果から分かるように、No.1〜19の試験軸受は、Cが0.6〜1.2質量%、Crが0.8〜1.8質量%、Siが0.6〜1.3%、Sが0.018%以下である合金鋼で形成しているため、これらの要件を満足していないNo.20〜26の試験軸受よりも、高温での寸法安定性の劣化や硬さ低下及び白色組織形成を抑制し、その結果軸受寿命を長くすることができる。   As can be seen from the results in Table 2, no. Test bearings 1 to 19 have C of 0.6 to 1.2% by mass, Cr of 0.8 to 1.8% by mass, Si of 0.6 to 1.3%, and S of 0.018% or less. No. 2 which does not satisfy these requirements. Compared with 20 to 26 test bearings, it is possible to suppress deterioration in dimensional stability at high temperatures, decrease in hardness, and formation of a white structure, thereby extending the bearing life.

試験軸受No.1〜19のうち、No.1〜12はいずれも寿命が5以上とより長寿命となっているが、No.13〜19はいずれも寿命が5未満となっていた。この結果より、Sを0.008質量%以下とし、耐白色組織起因剥離に対して十分強化して、且つ、転がり表面の残留オーステナイト量を3〜15体積%とする、もしくは、表面炭素濃度と表面窒素濃度との和が0.8〜1.4質量%とすると、表面疲労に対しても強くできるため、より長寿命な軸受が得られることが分かる。   Test bearing No. 1-19. Nos. 1 to 12 all have a longer life of 5 or more. 13 to 19 all had a lifetime of less than 5. From this result, S is 0.008% by mass or less, sufficiently strengthened against white structure-resistant peeling, and the amount of retained austenite on the rolling surface is 3 to 15% by volume, or the surface carbon concentration and When the sum of the surface nitrogen concentration is 0.8 to 1.4% by mass, it can be strengthened against surface fatigue, and it can be seen that a longer life bearing can be obtained.

ここで、試験軸受No.5及びNo.18は、合金成分、熱処理、及び、熱処理後の表面炭素・窒素濃度や残留オーステナイト量等の品質が、それぞれ試験軸受No.2及びNo.14のものと同等であるが、いずれも浸炭窒化処理を施していないため、その長寿命効果が十分に発揮できなかった例である。この結果より、本発明の転がり軸受は、浸炭窒化処理を施すことでより長寿命効果を有することが分かる。   Here, the test bearing No. 5 and no. 18 shows that the alloy components, the heat treatment, and the quality such as the surface carbon / nitrogen concentration and the amount of retained austenite after the heat treatment are different from each other in test bearing No. 18. 2 and no. This is an example in which the long-life effect could not be sufficiently exhibited because no carbonitriding treatment was performed. From this result, it can be seen that the rolling bearing of the present invention has a longer life effect by performing carbonitriding.

また、試験軸受No.1及びNo.4は、合金成分、熱処理、及び熱処理後の表面炭素・窒素濃度や残留オーステナイト量等の品質が、それぞれ試験軸受No.2及びNo.12のものと同等であるが、内外輪だけでなく、転動体にも本発明の材料特性を適用するとさらに長寿命となることを確認した例である。試験軸受No.17は、表記の材料を転動体のみに適用し、内外輪はSUJ2を適用した際にも長寿命であることを確認した例である。この結果より、本発明の転がり軸受は少なくとも転動体に適用することで長寿命とできることが分かる。   In addition, test bearing No. 1 and no. No. 4 shows that the alloy components, the heat treatment, and the quality such as the surface carbon / nitrogen concentration and the amount of retained austenite after the heat treatment are different in test bearing No. 4, respectively. 2 and no. This is an example in which it is confirmed that the life is further extended when the material characteristics of the present invention are applied not only to inner and outer rings but also to rolling elements. Test bearing No. No. 17 is an example in which the indicated material is applied only to rolling elements, and the inner and outer rings are confirmed to have a long life even when SUJ2 is applied. From this result, it can be seen that the rolling bearing of the present invention can have a long life when applied to at least a rolling element.

また、同様に、試験軸受No.19は、合金成分、熱処理、及び熱処理後の表面炭素・窒素濃度や残留オーステナイト量等の品質がいずれも、試験軸受No.16のものと同等であるが、シール部材を装着していないため、その長寿命効果が十分に発揮できなかった例である。この結果より、本発明の転がり軸受はシール部材を採用することで、より長寿命となることが分かる。   Similarly, the test bearing no. No. 19 shows the test bearing No. 19 in terms of alloy components, heat treatment, and quality such as surface carbon / nitrogen concentration and retained austenite amount after heat treatment. This is an example in which the long-life effect could not be sufficiently exhibited because the seal member is not mounted, although it is the same as that of 16. From this result, it is understood that the rolling bearing of the present invention has a longer life by adopting the seal member.

以上、説明したように、本発明のベルト式無段変速機プーリ軸支持用転がり軸受によれば、少なくとも転動体を、特定の合金鋼で形成すると共に、転がり表面をなす表層部の炭素濃度と窒素濃度の和及び残留オーステナイト量を特定の範囲に限定することにより、高温環境下での硬さ、寸法安定性、耐ピーリング特性及び耐白色組織起因剥離特性を向上させることができるため、長寿命とすることができる。
また、本発明の転がり軸受が適用されるベルト式無段変速機は、長寿命な転がり軸受でプーリの回転軸を支持することにより、長期間安定してプーリを回転させることができ、耐久性を長期間保持することができる。
As described above, according to the rolling bearing for supporting a belt-type continuously variable transmission pulley shaft of the present invention, at least the rolling element is formed of a specific alloy steel, and the carbon concentration of the surface layer portion forming the rolling surface is By limiting the sum of nitrogen concentration and the amount of retained austenite to a specific range, it is possible to improve the hardness, dimensional stability, peeling resistance and white structure-resistant peeling characteristics under high temperature environment, resulting in long life It can be.
In addition, the belt type continuously variable transmission to which the rolling bearing of the present invention is applied can stably rotate the pulley for a long period of time by supporting the rotating shaft of the pulley with a long-life rolling bearing. Can be held for a long time.

本発明の対象となるベルト式無段変速機の略断面図である。1 is a schematic cross-sectional view of a belt type continuously variable transmission that is an object of the present invention. 本実施形態の実験に使用される、ベルト式無段変速機ユニットの概略図である。It is the schematic of the belt-type continuously variable transmission unit used for the experiment of this embodiment.

符号の説明Explanation of symbols

1 入力軸
2 出力軸
3 プライマリプーリ
4 セカンダリプーリ
5 ベルト
6、7、6a、6b、7a、7b ラジアル玉軸受(転がり軸受)
1 Input shaft 2 Output shaft 3 Primary pulley 4 Secondary pulley 5 Belts 6, 7, 6a, 6b, 7a, 7b Radial ball bearings (rolling bearings)

Claims (5)

内周面に転動面を有する外輪と、外周面に転動面を有する内輪と、当該外輪の転動面と内輪の転動面との間に転動自在に配設された複数の転動体とを備えたベルト式無段変速機プーリ軸支持用転がり軸受において、
前記外輪、内輪及び転動体の少なくとも一つは、Cが0.6〜1.2質量%、Crが0.8〜1.8質量%、Siが0.6〜1.3質量%、Sが0.018質量%以下である合金鋼であることを特徴とするベルト式無段変速機プーリ軸支持用転がり軸受。
An outer ring having a rolling surface on the inner circumferential surface, an inner ring having a rolling surface on the outer circumferential surface, and a plurality of rolling wheels disposed between the rolling surface of the outer ring and the rolling surface of the inner ring. In a belt-type continuously variable transmission pulley shaft support rolling bearing provided with a moving body,
At least one of the outer ring, the inner ring, and the rolling element has C of 0.6 to 1.2% by mass, Cr of 0.8 to 1.8% by mass, Si of 0.6 to 1.3% by mass, S A belt-type continuously variable transmission pulley shaft-supporting rolling bearing, characterized in that the alloy steel is 0.018% by mass or less.
前記合金鋼は、転がり表面の残留オーステナイト量を15体積%以下とし、表面炭素濃度と表面窒素濃度の和が0.8〜1.4質量%であることを特徴とする請求項1に記載のベルト式無段変速機プーリ軸支持用転がり軸受。   2. The alloy steel according to claim 1, wherein the amount of retained austenite on the rolling surface is 15% by volume or less, and the sum of the surface carbon concentration and the surface nitrogen concentration is 0.8 to 1.4% by mass. Rolling bearing for belt type continuously variable transmission pulley shaft support. 前記合金鋼は、浸炭、或いは浸炭窒化処理が施されたことを特徴とする請求項1または2に記載のベルト式無段変速機プーリ軸支持用転がり軸受。   The rolling bearing for supporting a belt-type continuously variable transmission pulley shaft according to claim 1 or 2, wherein the alloy steel is subjected to carburizing or carbonitriding. 少なくとも前記転動体が前記合金鋼であることを特徴とする請求項1〜3のいずれかに記載のベルト式無段変速機プーリ軸支持用転がり軸受。   The rolling bearing for supporting a belt-type continuously variable transmission pulley shaft according to any one of claims 1 to 3, wherein at least the rolling element is the alloy steel. さらに、軸受空間をシールするシール手段を備えたことを特徴とする請求項1〜4のいずれかに記載のベルト式無段変速機プーリ軸支持用転がり軸受。   The rolling bearing for supporting a belt type continuously variable transmission pulley shaft according to any one of claims 1 to 4, further comprising sealing means for sealing the bearing space.
JP2003354903A 2003-10-15 2003-10-15 Rolling bearing for supporting belt type continuously-variable transmission pulley shaft Pending JP2005121080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003354903A JP2005121080A (en) 2003-10-15 2003-10-15 Rolling bearing for supporting belt type continuously-variable transmission pulley shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003354903A JP2005121080A (en) 2003-10-15 2003-10-15 Rolling bearing for supporting belt type continuously-variable transmission pulley shaft

Publications (1)

Publication Number Publication Date
JP2005121080A true JP2005121080A (en) 2005-05-12

Family

ID=34612680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003354903A Pending JP2005121080A (en) 2003-10-15 2003-10-15 Rolling bearing for supporting belt type continuously-variable transmission pulley shaft

Country Status (1)

Country Link
JP (1) JP2005121080A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002031A (en) * 2008-06-23 2010-01-07 Ntn Corp Rolling bearing for transmission
JP2010002032A (en) * 2008-06-23 2010-01-07 Ntn Corp Rolling bearing for transmission
WO2010074285A1 (en) * 2008-12-26 2010-07-01 日本精工株式会社 Pulley support structure for belt-drive continuously variable transmission and belt-drive continuously variable transmission
JP2014047403A (en) * 2012-08-31 2014-03-17 Nsk Ltd Rolling bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002031A (en) * 2008-06-23 2010-01-07 Ntn Corp Rolling bearing for transmission
JP2010002032A (en) * 2008-06-23 2010-01-07 Ntn Corp Rolling bearing for transmission
WO2010074285A1 (en) * 2008-12-26 2010-07-01 日本精工株式会社 Pulley support structure for belt-drive continuously variable transmission and belt-drive continuously variable transmission
JP5423687B2 (en) * 2008-12-26 2014-02-19 日本精工株式会社 Pulley support structure for belt type continuously variable transmission and belt type continuously variable transmission
JP2014047403A (en) * 2012-08-31 2014-03-17 Nsk Ltd Rolling bearing

Similar Documents

Publication Publication Date Title
JP4348964B2 (en) Rolling bearing for belt type continuously variable transmission and method for manufacturing the same
JP4576842B2 (en) Rolling bearing and belt type continuously variable transmission using the same
JP5194532B2 (en) Rolling bearing
WO2003081062A1 (en) Rolling bearing for belt type non-stage transmission
KR101271788B1 (en) Pulley support structure for belt-drive continuously variable transmission and belt-drive continuously variable transmission
CN103237913A (en) Rolling bearing and method for producing same
JP2009192071A (en) Roller bearing
JP2004011712A (en) Rolling bearing, and belt type continuously variable transmission using it
JP5598016B2 (en) Manufacturing method of thrust trace of needle thrust bearing
EP1357308A2 (en) Rolling element bearing with ring or rolling elements made of chromium steel
JP2008174822A (en) Thrust bearing
JP5076274B2 (en) Rolling bearing
JP2005121080A (en) Rolling bearing for supporting belt type continuously-variable transmission pulley shaft
JP5805085B2 (en) Transverse element for drive belt and drive belt
JP2015206066A (en) rolling bearing
JP2003278768A (en) Rolling bearing for belt type continuously variable transmission
JP6448405B2 (en) Carbon nitride bearing parts with excellent surface fatigue strength of hydrogen embrittlement type
JP2005076651A (en) Rolling bearing and belt-type continuously variable transmission using it
JP2005140275A (en) Planetary gear device
JP2003343577A (en) Roller bearing and belt type non-stage transmission using the same
JP2009191280A (en) Roller bearing and manufacturing method therefor
JP5211453B2 (en) Rolling bearing
JP2007107593A (en) Disk for v-belt type continuously variable transmission pulley and manufacturing method thereof
JP2006138376A (en) Radial needle roller bearing
JP4345417B2 (en) Rolling bearing

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327