JP2006118680A - Bearing for alternator - Google Patents

Bearing for alternator Download PDF

Info

Publication number
JP2006118680A
JP2006118680A JP2004309869A JP2004309869A JP2006118680A JP 2006118680 A JP2006118680 A JP 2006118680A JP 2004309869 A JP2004309869 A JP 2004309869A JP 2004309869 A JP2004309869 A JP 2004309869A JP 2006118680 A JP2006118680 A JP 2006118680A
Authority
JP
Japan
Prior art keywords
mass
steel
hydrogen
alternator
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004309869A
Other languages
Japanese (ja)
Inventor
Yukio Matsubara
幸生 松原
Hiroshi Hamada
洋志 濱田
Kikuo Maeda
喜久男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004309869A priority Critical patent/JP2006118680A/en
Publication of JP2006118680A publication Critical patent/JP2006118680A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing for an alternator comprising steel with a superior hydrogen fatigue resistance characteristic. <P>SOLUTION: At least one member of an inner ring 4, an outer ring 3, and a rolling element 2 of the bearing 10 for an alternator turnably supporting a shaft 1 attached with a rotor comprises steel of a composition containing at least V as an alloy element, wherein contents of C, Si, Mn, Cr, and V in a surface and a surface layer receiving rolling contact are respectively within ranges of C:≥0.5 mass% and ≤1.2 mass%, Si:≥0.1 mass% and ≤1 mass%, Mn:≥0.1 mass% and ≤1.5 mass%, Cr:≥0.1 mass% and ≤2 mass%, and V:≥0.1 mass%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、オルタネータ用軸受に関し、その特異な使用条件から潤滑油の分解などにより転動表面で発生する水素が侵入することによって発生する早期剥離を抑制するものである。   The present invention relates to an alternator bearing and suppresses premature delamination that occurs due to the penetration of hydrogen generated on the rolling surface due to the decomposition of lubricating oil or the like due to its unique use conditions.

オルタネータに用いられる軸受は、希薄潤滑下で急加減速運転するため、転動表面において大きな滑りが生じやすい。その影響により、潤滑剤が分解するなどして水素が発生し、転動要素中に侵入することで早期剥離が生じることがある。水素は鋼の疲労強度を著しく低下させるため、実用条件でも容易に転動表面あるいは表層内部から亀裂が発生・伝播して早期剥離に至るが、この早期剥離の多くは大きな滑りが作用したときに転動表面に作用する周方向の引張応力が原因で生じると考えられる。今後、コンパクト化や省エネルギ化に対応するため、オルタネータ用軸受の使用条件は益々厳しくなる傾向になることは間違いなく、したがって、益々耐水素疲労特性に優れる鋼材が必要になると予想される。   A bearing used for an alternator is accelerating and decelerating under lean lubrication, so that a large slip is likely to occur on the rolling surface. Due to the influence, hydrogen is generated due to decomposition of the lubricant or the like, and early peeling may occur due to intrusion into the rolling element. Since hydrogen significantly reduces the fatigue strength of steel, cracks are easily generated and propagated from the rolling surface or inside the surface layer even under practical conditions, leading to early peeling, but many of these early peelings occur when a large slip is applied. This is considered to be caused by circumferential tensile stress acting on the rolling surface. In the future, in order to cope with downsizing and energy saving, there is no doubt that the use conditions of the alternator bearing will become increasingly severe, and therefore, it is expected that steel materials having better hydrogen fatigue resistance will be required.

鋼材の耐水素疲労特性を向上させる従来技術に、たとえば特開2000−282178号公報がある。鋼材にCr(クロム)を多く添加することで鋼表面に不動態膜を形成し、鋼中への水素の侵入を抑制するものである。しかしながら、Crを多く添加することで炭化物が粗大化し、それが応力集中源となって早期剥離が生じることがある。また、不動態膜は水素の拡散を遅くする効果はあるが、発生した水素が鋼表面に吸着するのを促進する効果も併せ持つ。起動停止が頻繁に行なわれれば、停止時に水素が散逸するため、鋼中への水素の侵入を遅らせることは早期剥離の抑制に有効であろう。しかしながら、連続して使われるのであれば、不動態膜が多くの水素を吸着する分、鋼中に侵入する水素量が増すため、早期剥離を抑制することが難しい。したがって、そのような用途に対しては従来技術では不十分と思われる。
特開2000−282178号公報
For example, Japanese Patent Application Laid-Open No. 2000-282178 is a conventional technique for improving the hydrogen fatigue resistance of steel materials. By adding a large amount of Cr (chromium) to the steel material, a passive film is formed on the surface of the steel, and the penetration of hydrogen into the steel is suppressed. However, the carbide is coarsened by adding a large amount of Cr, which may become a stress concentration source and cause early peeling. Moreover, the passive film has the effect of slowing the diffusion of hydrogen, but also has the effect of promoting the adsorption of the generated hydrogen on the steel surface. If starting and stopping are frequently performed, hydrogen is dissipated at the time of stopping. Therefore, delaying the penetration of hydrogen into the steel may be effective for suppressing early peeling. However, if used continuously, the amount of hydrogen that penetrates into the steel increases as the passive film adsorbs much hydrogen, so it is difficult to suppress early peeling. Therefore, the prior art seems insufficient for such applications.
JP 2000-282178 A

本発明は、上記のような問題を解決するものであって、耐水素疲労特性に優れた鋼材からなるオルタネータ用軸受を提供することを目的とする。   This invention solves the above problems, and it aims at providing the bearing for alternators which consists of steel materials excellent in hydrogen fatigue resistance.

上記の課題を解決するため、種々の組成のずぶ焼入れ鋼、浸炭鋼、および高周波焼入れ鋼(中炭素鋼)に対して、後述する疲労強度に及ぼす水素の影響を評価した結果、少なくともV(バナジウム)を含有し、かつC(炭素)、Si(シリコン)、Mn(マンガン)、Cr、Vの含有量が、それぞれC:0.5質量%以上1.2質量%以下、Si:0.1質量%以上1質量%以下、Mn:0.1質量%以上1.5質量%以下、Cr:0.1質量%以上2質量%以下、V:0.1質量%以上の範囲内にある組成の鋼材であれば、耐水素疲労特性が大幅に向上することを見出した。   In order to solve the above problems, as a result of evaluating the influence of hydrogen on fatigue strength, which will be described later, for case hardening steel, carburized steel, and induction hardening steel (medium carbon steel) having various compositions, at least V (vanadium) ), And the contents of C (carbon), Si (silicon), Mn (manganese), Cr, and V are respectively C: 0.5% by mass or more and 1.2% by mass or less, Si: 0.1 Compositions in the range of mass% to 1 mass%, Mn: 0.1 mass% to 1.5 mass%, Cr: 0.1 mass% to 2 mass%, V: 0.1 mass% or more It has been found that the hydrogen fatigue resistance is greatly improved with the steel material.

このため本発明のオルタネータ用軸受は、ロータに励磁される磁極をステータに対して回転させることで回転力を電気エネルギに変換するオルタネータに用いられる軸受であって、内輪、外輪および転動体の少なくとも1つの部材が、合金元素として少なくともVを含有し、かつ転動接触を受ける表面および表層におけるC、Si、Mn、Cr、Vの含有量が、それぞれC:0.5質量%以上1.2質量%以下、Si:0.1質量%以上1質量%以下、Mn:0.1質量%以上1.5質量%以下、Cr:0.1質量%以上2質量%以下、V:0.1質量%以上の範囲内にある組成の鋼材よりなることを特徴とするものである。   For this reason, the alternator bearing of the present invention is a bearing used for an alternator that converts rotational force into electrical energy by rotating a magnetic pole excited by a rotor with respect to a stator, and includes at least an inner ring, an outer ring, and a rolling element. One member contains at least V as an alloy element, and the content of C, Si, Mn, Cr, V in the surface and the surface layer that undergoes rolling contact is C: 0.5% by mass or more and 1.2, respectively. % By mass or less, Si: 0.1% by mass or more and 1% by mass or less, Mn: 0.1% by mass or more and 1.5% by mass or less, Cr: 0.1% by mass or more and 2% by mass or less, V: 0.1% It consists of a steel material having a composition in the range of mass% or more.

V炭化物は疲労強度の低下を招く拡散性水素を強力にトラップし、剥離の起点になる非金属介在物などの応力集中源への拡散性水素の集積を抑制する効果がある。通常、転動部品の転動接触部には高硬度が要求されるため、焼入れした後に低温焼戻しして用いられる。Vは小量の添加であっても焼入れ加熱時もしくは浸炭時にV炭化物として安定に存在するため、焼入れした後に低温焼戻ししてもV炭化物が残存する。Mo(モリブデン)炭化物やTi(チタン)炭化物もV炭化物ほどではないものの同様の効果がある。しかしながら、Moは大量に添加しないと焼入れ加熱時もしくは浸炭時ではMo炭化物としては存在せず母地に溶けてしまうため、焼入れした後に低温焼戻しした状態ではMo炭化物は残存しない。Tiは窒素との親和性が強く、非金属介在物の1つであるTi窒化物を形成するため、剥離の起点となる応力集中源が増えることになる。なお、Vは素材硬さを高める欠点があるので、中炭素鋼のように焼鈍せずに用いる鋼材の場合は、Vを多く添加しすぎると加工性が損なわれる。そのため、必要とされる他の合金元素の添加量との兼ね合いで、それぞれの添加量を適当に調整する必要がある。   V carbide strongly traps diffusible hydrogen that causes a decrease in fatigue strength, and has the effect of suppressing the accumulation of diffusible hydrogen in stress concentration sources such as non-metallic inclusions that are the starting point of delamination. Usually, since the rolling contact portion of the rolling part is required to have high hardness, it is used after being quenched and tempered at a low temperature. Even if V is added in a small amount, it is stably present as V carbide during quenching heating or carburizing, so that V carbide remains even after low temperature tempering after quenching. Mo (molybdenum) carbide and Ti (titanium) carbide have similar effects although not as much as V carbide. However, if Mo is not added in a large amount, it does not exist as Mo carbide during quenching heating or carburizing and dissolves in the matrix, so that Mo carbide does not remain in a state of low temperature tempering after quenching. Ti has a strong affinity with nitrogen and forms Ti nitride, which is one of non-metallic inclusions. Therefore, the stress concentration source that becomes the starting point of peeling increases. In addition, since V has the fault which raises material hardness, in the case of the steel materials used without annealing like medium carbon steel, if too much V is added, workability will be impaired. Therefore, it is necessary to adjust each addition amount appropriately in consideration of the addition amount of other alloy elements required.

C量の下限を0.5質量%としたのは、高周波焼入れ鋼は通常中炭素鋼であるが、C量が0.5質量%未満では高周波焼入れ後に転動接触部に必要とされる硬度が得られなくなるためである。一方、C量の上限を1.2質量%としたのは、ずぶ焼入れ鋼の場合、焼入れ焼戻し後に残存する未溶解炭化物が粗大化し、靭性が低下するためである。なお、ここで言うC量とは、転動接触を受ける表面および表層におけるC量のことであり、浸炭鋼の場合には浸炭後の表層のC量を指す。   The reason why the lower limit of the amount of C is 0.5% by mass is that the induction hardened steel is usually medium carbon steel, but if the amount of C is less than 0.5% by mass, the hardness required for the rolling contact portion after induction hardening. This is because no longer can be obtained. On the other hand, the upper limit of the amount of C is set to 1.2% by mass in the case of all-quenched steel because undissolved carbide remaining after quenching and tempering becomes coarse and toughness decreases. In addition, C amount said here is C amount in the surface and surface layer which receive rolling contact, and in the case of carburized steel, it points out C amount of the surface layer after carburizing.

Si量の下限を0.1質量%としたのは、もともとSiは鋼中に含まれるもので、それ以下に減らすこと自体が困難であり、そうすることの意味もないからである。Siは焼戻しによる軟化を抑える効果があり、高温用途で用いる安価な鋼材には欠かせない。しかし、1質量%を超えると冷間加工性、熱間加工性が低下するので、それを上限とした。   The reason why the lower limit of the amount of Si is set to 0.1% by mass is that Si is originally contained in steel and it is difficult to reduce it to less than that, and there is no point in doing so. Si has the effect of suppressing softening due to tempering, and is indispensable for inexpensive steel materials used in high temperature applications. However, if it exceeds 1% by mass, the cold workability and the hot workability deteriorate, so this was made the upper limit.

Mn量の下限を0.1質量%としたのは、Mnは鋼中に不可避に含まれるSと化合してMnSを析出するため、Sの粒界偏析を抑制するためである。また、Siと同様にMnももともと鋼中に含まれるものなので、それ以下に減らすこと自体が困難であり、そうすることの意味もないからである。Mnは鋼材の焼入れ性を向上させる有効な元素である。しかし、Mnはセメンタイト中にFe(鉄)原子と置換して複合炭化物を形成し、素材硬度を上昇させるので、添加しすぎると加工性や被削性が低下する。そのため、Mn量の上限は1.5質量%とした。   The reason why the lower limit of the amount of Mn is set to 0.1% by mass is that Mn combines with S inevitably contained in the steel to precipitate MnS, so that S grain boundary segregation is suppressed. Further, since Mn is originally contained in steel as well as Si, it is difficult to reduce it to less than that, and there is no meaning to do so. Mn is an effective element that improves the hardenability of the steel material. However, Mn substitutes Fe (iron) atoms in cementite to form a composite carbide and raises the material hardness. Therefore, if added too much, the workability and machinability are lowered. Therefore, the upper limit of the amount of Mn is 1.5% by mass.

Cr量の下限を0.1質量%としたのは、その程度の量は不純物として含まれ、それを取除くことで各種機械的特性が向上することはないためである。一方、多量に添加することで炭化物が粗大化するため、それが応力集中源となって早期剥離が生じることがある。また、不動態膜(Cr酸化物膜)は水素の拡散を遅くする効果はあるが、発生した水素が鋼表面に吸着するのを促進する効果も併せ持つためである。したがって、Cr量の上限は2質量%以下とした。   The reason why the lower limit of the amount of Cr is set to 0.1% by mass is that such an amount is included as an impurity, and removing it does not improve various mechanical properties. On the other hand, when added in a large amount, the carbides become coarse, and this may become a stress concentration source and cause early peeling. Further, the passive film (Cr oxide film) has an effect of slowing the diffusion of hydrogen, but also has an effect of promoting the adsorption of the generated hydrogen to the steel surface. Therefore, the upper limit of the Cr amount is set to 2% by mass or less.

C、Si、Mn、Crの個々の上下限を設定した根拠は上記のとおりだが、それらの組合せについて注意すべきことが2つある。1つは、Siは高温でもフェライトを安定にするため、C量が亜共析の範囲で、かつSi量が多い場合にはA3点が上昇するため、MnとCrの量によっては焼入れ加熱温度が低すぎると焼入れ不足になることである。もう1つは、MnやCrは低温でもオーステナイトを安定にするため、C量が下限もしくは上限で、かつMnやCrの量が多い場合には、焼入れ加熱温度もしくは浸炭温度が高すぎるとV炭化物が安定に存在しなくなることである。なお、これらの確認には多元系合金の平衡状態図を用いればよい。現在では、多元系合金の平衡状態図を計算により精度よく容易に求めることができる。 The grounds for setting the upper and lower limits of C, Si, Mn, and Cr are as described above, but there are two things to be careful about their combination. First, since Si stabilizes ferrite even at high temperatures, the amount of C is in the range of hypoeutectoid, and when the amount of Si is large, the A 3 point increases. Depending on the amount of Mn and Cr, quenching heating If the temperature is too low, quenching will be insufficient. The other is that Mn and Cr stabilize austenite even at low temperatures, so if the amount of C is the lower limit or the upper limit and the amount of Mn or Cr is large, if the quenching heating temperature or the carburizing temperature is too high, V carbide Is no longer stable. In addition, what is necessary is just to use the equilibrium diagram of a multicomponent system alloy for these confirmation. At present, the equilibrium diagram of a multi-component alloy can be obtained easily and accurately by calculation.

本発明のオルタネータ用軸受においては、上記特性を有する内輪、外輪および転動体の少なくとも1つの部材が、Si、Mn、V、Moの含有量(質量%)から(1)式で求まるHが(2)式を満たす鋼材であることが好ましい。   In the alternator bearing of the present invention, at least one member of the inner ring, the outer ring and the rolling element having the above characteristics is obtained by the formula (1) based on the content (mass%) of Si, Mn, V, and Mo. 2) It is preferable that the steel material satisfies the formula.

H=5.8[Si]+11.5[Mn]+56.2[V]+15.2[Mo]…(1)
H≦70…(2)
H = 5.8 [Si] +11.5 [Mn] +56.2 [V] +15.2 [Mo] (1)
H ≦ 70 (2)

オルタネータ用軸受の内輪、外輪および転動体の少なくとも1つにV炭化物を含む鋼材を用いることにより、その軸受が希薄潤滑下で急加減速運動されたときに、転動表面で潤滑材が分解するなどして発生する水素が、鋼中に侵入することで生じる早期剥離を防止することができる。   By using a steel material containing V carbide for at least one of the inner ring, outer ring and rolling element of the alternator bearing, the lubricant is decomposed on the rolling surface when the bearing is suddenly accelerated and decelerated under lean lubrication. It is possible to prevent premature delamination caused by hydrogen generated by the intrusion into steel.

以下、本発明の実施の形態について図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施の形態におけるオルタネータ用軸受を示す部分断面図である。図1を参照して、オルタネータ10において、オルタネータ用軸受1にシャフト11が挿入され、突き出た端部にプーリ5が取り付けられている。プーリ5には、伝動ベルトが掛けられる係合溝6が設けられている。またシャフト11にはロータが取り付けられており、ロータにはロータコアとロータコイルとが含まれている。このロータは、ロータの外周に配置されたステータと対向している。このステータはステータコアとステータコイルとで構成されている。   FIG. 1 is a partial cross-sectional view showing an alternator bearing according to an embodiment of the present invention. Referring to FIG. 1, in an alternator 10, a shaft 11 is inserted into an alternator bearing 1, and a pulley 5 is attached to the protruding end. The pulley 5 is provided with an engaging groove 6 on which the transmission belt is hung. Further, a rotor is attached to the shaft 11, and the rotor includes a rotor core and a rotor coil. This rotor is opposed to a stator disposed on the outer periphery of the rotor. This stator is composed of a stator core and a stator coil.

シャフト11を回転可能に支持するオルタネータ用軸受1は、転動体である複数の鋼球2と、転走面において複数の鋼球2と接触する内輪4および外輪3とを備え、鋼球2は内輪4と外輪3との間で保持器7によって保持されている。   An alternator bearing 1 that rotatably supports a shaft 11 includes a plurality of steel balls 2 that are rolling elements, and an inner ring 4 and an outer ring 3 that are in contact with the plurality of steel balls 2 on a rolling surface. A retainer 7 holds the inner ring 4 and the outer ring 3.

このオルタネータ10は、バッテリにより励磁電流がロータコイルに供給されることでロータコアに磁極を励磁させ、その励磁された磁極をエンジンの回転によって回転させることでステータコイルに三相交流電流を生じさせ、発生した交流をダイオードで整流し直流として取り出すものである。   This alternator 10 generates a three-phase alternating current in the stator coil by exciting the magnetic pole in the rotor core by supplying an excitation current to the rotor coil by the battery, and rotating the excited magnetic pole by the rotation of the engine. The generated alternating current is rectified by a diode and taken out as direct current.

近年の高速化、小型化の傾向を反映して、シャフト11は伝動ベルトにより高速回転され、転動体2と軌道輪3、4とは高面圧で、高速の接触をする。オルタネータ用軸受1にはグリースが封入されているが、このグリースは上記高圧、高速の接触部において分解され、水素を発生する。水素は、小さい元素であり、水素分圧と表層部との条件が適合すれば鋼材中に容易に侵入する。このため、荷重が負荷されている鋼材中の所定の箇所に損傷を生じ、その破面上に白層として表れる特異な割れを形成するにいたる。   Reflecting the recent trend toward higher speed and smaller size, the shaft 11 is rotated at a high speed by a transmission belt, and the rolling elements 2 and the races 3 and 4 are brought into high-speed contact with each other at high speed. The alternator bearing 1 is filled with grease, which is decomposed at the high-pressure, high-speed contact portion to generate hydrogen. Hydrogen is a small element and easily penetrates into the steel material if the conditions of the hydrogen partial pressure and the surface layer part are met. For this reason, damage is caused to a predetermined portion in the steel material to which a load is applied, and a peculiar crack appearing as a white layer is formed on the fracture surface.

本発明の実施の形態におけるオルタネータ用軸受では、転動体2、外輪3および内輪4のうちの少なくとも1つの部材が、合金元素として少なくともVを含有し、かつ転動接触を受ける表面および表層におけるC、Si、Mn、Cr、Vの含有量が、それぞれC:05質量%以上1.2質量%以下、Si:0.1質量%以上1質量%以下、Mn:0.1質量%以上1.5質量%以下、Cr:0.1質量%以上2質量%以下、V:0.1質量%以上の範囲内にある組成の鋼材よりなっている。   In the alternator bearing according to the embodiment of the present invention, at least one member of the rolling element 2, the outer ring 3 and the inner ring 4 contains at least V as an alloy element and is subjected to rolling contact and C on the surface layer. , Si, Mn, Cr, and V, respectively, C: 05 mass% to 1.2 mass%, Si: 0.1 mass% to 1 mass%, Mn: 0.1 mass% to 1. 5% by mass or less, Cr: 0.1% by mass or more and 2% by mass or less, and V: a steel material having a composition in the range of 0.1% by mass or more.

本実施の形態によれば、転動体2、外輪3および内輪4のうちの少なくとも1つの部材が上記の要件を備えた鋼材よりなることにより、耐水素疲労特性に優れたオルタネータ用軸受を得ることができる。   According to the present embodiment, at least one member of the rolling element 2, the outer ring 3 and the inner ring 4 is made of a steel material having the above requirements, thereby obtaining an alternator bearing having excellent hydrogen fatigue resistance. Can do.

また転動体2、外輪3および内輪4のうちの少なくとも1つの部材が上記の要件を備えた鋼材よりなるとともに、Si、Mn、V、Moの含有量から(1)式で求まるHが(2)式を満たす鋼材であることが好ましい。   Further, at least one member of the rolling element 2, the outer ring 3 and the inner ring 4 is made of a steel material having the above-mentioned requirements, and H obtained by the expression (1) from the contents of Si, Mn, V, and Mo is (2 It is preferable that the steel material satisfies the formula.

H=5.8[Si]+11.5[Mn]+56.2[V]+15.2[Mo]…(1)
H≦70…(2)
なお上記の実施の形態においては、オルタネータ用軸受としてシャフト11を回転可能に支持する軸受について説明したが、本発明のオルタネータ用軸受はこれに限られず、オルタネータに用いられる軸受であればよい。
H = 5.8 [Si] +11.5 [Mn] +56.2 [V] +15.2 [Mo] (1)
H ≦ 70 (2)
In the above-described embodiment, the bearing for rotatably supporting the shaft 11 has been described as the alternator bearing. However, the alternator bearing of the present invention is not limited to this, and any bearing may be used for the alternator.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

1.軸荷重疲労試験
表1に示すA−1〜A−10の発明鋼とA−11〜A−20の比較鋼とから、試験部直径が4mmの疲労試験片を製作し、表1中に示した焼入れ加熱温度からずぶ焼入れした後、180℃で焼戻しを施した。表1に熱処理後の硬さを示したように、いずれもHV700以上の硬度を有していた。表1中のHの値はSi、Mn、V、Moを上記(1)式に代入して求まる値である。表1中のV炭化物の欄には、焼入れ加熱温度においてV炭化物が安定に存在するならば「〇」、Vの添加量が少ないため母地に溶けてしまう、もしくはVを含まなければ「×」を示した。なお、比較鋼A−11はJIS−SUJ2であり、比較鋼A−12はJIS−SUJ3である。
1. Axial load fatigue test A fatigue test piece having a test section diameter of 4 mm was produced from the inventive steels of A-1 to A-10 and the comparative steels of A-11 to A-20 shown in Table 1, and shown in Table 1. After quenching from the quenching heating temperature, tempering was performed at 180 ° C. As Table 1 shows the hardness after heat treatment, all had a hardness of HV700 or higher. The value of H in Table 1 is a value obtained by substituting Si, Mn, V, and Mo into the above equation (1). In the column of V carbide in Table 1, “〇” if the V carbide is stably present at the quenching heating temperature, dissolves in the matrix because the amount of V added is small, or “V” if V is not included. "showed that. The comparative steel A-11 is JIS-SUJ2, and the comparative steel A-12 is JIS-SUJ3.

Figure 2006118680
Figure 2006118680

表2に示すB−1〜B−4の発明鋼とB−5〜B−10の比較鋼とから、試験部直径が4mmの疲労試験片を製作し、試験部のC濃度が内部まで均一に0.8質量%となるように、表2中に示した浸炭温度で浸炭し、適切な焼入れ加熱温度に下げてから焼入れし、180℃で焼戻しを施した。表2に熱処理後の硬さを示したように、いずれもHV700以上であった。表2中のHの値はSi、Mn、V、Moを上記(1)式に代入して求まる値である。表2中のV炭化物の欄には、浸炭温度においてV炭化物が安定に存在するならば「〇」、Vの添加量が少ないため母地に溶けてしまう、もしくはVを含まなければ「×」を示した。なお、比較鋼B−5はJIS−SCM420である。   A fatigue test piece having a test part diameter of 4 mm was manufactured from the inventive steels B-1 to B-4 shown in Table 2 and the comparative steels B-5 to B-10, and the C concentration in the test part was uniform to the inside. The steel was carburized at the carburizing temperature shown in Table 2 so as to be 0.8% by mass, lowered to an appropriate quenching heating temperature, quenched, and tempered at 180 ° C. As shown in Table 2, the hardness after heat treatment was HV700 or more. The value of H in Table 2 is a value obtained by substituting Si, Mn, V, and Mo into the above equation (1). In the column of V carbide in Table 2, “◯” if the V carbide is stably present at the carburizing temperature, “V” is dissolved in the matrix due to the small amount of V added, or “X” if V is not included. showed that. The comparative steel B-5 is JIS-SCM420.

Figure 2006118680
Figure 2006118680

表3に示すC−1〜C−5の発明鋼とC−6〜C−12の比較鋼とから、試験部直径が4mmの疲労試験片を製作し、試験部が内部まで均一に硬化するように、表3中に示した焼入れ加熱温度を狙って高周波加熱してから焼入れし、150℃で焼戻しを施した。表3に熱処理後の硬さを示したように、いずれもHV700以上であった。表3中のHの値は、Si、Mn、V、Moを上記(1)式に代入して求まる値である。表3中のV炭化物の欄には、浸炭温度においてV炭化物が安定に存在するならば「〇」、Vの添加量が少ないため母地に溶けてしまう、もしくはVを含まなければ「×」を示した。なお、比較鋼C−6はJIS−S53Cである。   A fatigue test piece having a test part diameter of 4 mm is manufactured from the inventive steels of C-1 to C-5 and the comparative steels of C-6 to C-12 shown in Table 3, and the test part is uniformly cured to the inside. As described above, high-frequency heating was performed aiming at the quenching heating temperature shown in Table 3, followed by quenching and tempering at 150 ° C. As shown in Table 3, the hardness after heat treatment was HV700 or more. The value of H in Table 3 is a value obtained by substituting Si, Mn, V, and Mo into the above equation (1). In the column of V carbide in Table 3, if the V carbide is stably present at the carburizing temperature, “◯”, it will dissolve in the matrix due to the small amount of V added, or “X” if V is not included. showed that. The comparative steel C-6 is JIS-S53C.

Figure 2006118680
Figure 2006118680

疲労試験に先立ち、試験片に陰極電解法により水素チャージを施した。水素チャージには、1.4g/リットルのチオ尿素を添加した0.05mol/リットルの希硫酸水溶液を用いた。鋼種によって水素の拡散速度が異なり、また鋼種が異なると同じ電流密度でも表面の水素濃度が異なる。それらを予め求めておいた上で、電流密度とチャージ時間とを調整し、試験部の内部まで拡散性水素量が均一に3質量−ppmとなるようにした。なお、ここで言う拡散性水素量とは、180℃/hで昇温したときに常温から350℃までに放出される水素質量のサンプル質量に対する分率のことである。   Prior to the fatigue test, the test piece was charged with hydrogen by a cathodic electrolysis method. For hydrogen charging, a 0.05 mol / liter dilute sulfuric acid aqueous solution to which 1.4 g / liter thiourea was added was used. The diffusion rate of hydrogen varies depending on the steel type, and the surface hydrogen concentration varies with the same current density if the steel type is different. After obtaining them in advance, the current density and the charging time were adjusted so that the amount of diffusible hydrogen was uniformly 3 mass-ppm up to the inside of the test section. The amount of diffusible hydrogen referred to here is the fraction of the mass of hydrogen released from room temperature to 350 ° C. with respect to the sample mass when the temperature is raised at 180 ° C./h.

試験片に水素チャージした後、直ちに常温大気中で疲労試験を行なった。試験における応力比はR=−1であり、負荷周波数20kHzである。負荷回数が108回に達しても未破断であった場合は試験を打切った。なお、試験片に導入された拡散性水素は、常温でも鋼中を拡散し、時間がたてば散逸してしまう。しかし、今回行なった試験は高速負荷であり、極短時間で負荷回数が108回に達するので、拡散性水素が散逸する余地がない。したがって、疲労強度に及ぼす拡散性水素の影響を合理的に評価することができる。 After the test piece was charged with hydrogen, a fatigue test was immediately conducted at room temperature in the atmosphere. The stress ratio in the test is R = −1 and the load frequency is 20 kHz. Even if the number of loadings reached 10 8 times, the test was terminated if it was not broken. In addition, the diffusible hydrogen introduced into the test piece diffuses in the steel even at room temperature and dissipates over time. However, the tests conducted this time are high-speed loads, and the number of loads reaches 10 8 in an extremely short time, so there is no room for diffusible hydrogen to dissipate. Therefore, the influence of diffusible hydrogen on fatigue strength can be rationally evaluated.

表4に、ずぶ焼入れ鋼のSN線図の回帰曲線から求めた107回強度を示す。V炭化物が焼入れ加熱温度において安定に存在する発明鋼は、そうでない比較鋼に対して107回強度が高かった。表5および表6に、それぞれ浸炭焼入れ鋼、高周波焼入れ鋼のSN線図の回帰曲線から求めた107回強度を示す。これらの場合もずぶ焼入れ鋼の場合と同様に、V炭化物が焼入れ加熱温度において安定に存在する発明鋼は、そうでない比較鋼に対して107回強度が高かった。 Table 4 shows the 10 7 times strength obtained from the regression curve of the SN diagram of all hardened steel. The invention steel in which V carbide exists stably at the quenching heating temperature was 10 7 times stronger than the comparative steel. Tables 5 and 6 show the 10 7 times strength obtained from the regression curves of the SN diagrams of carburized and induction hardened steel, respectively. In these cases, as in the case of the case-hardened steel, the inventive steel in which V carbide is stably present at the quenching heating temperature is 10 7 times stronger than the comparative steel.

Figure 2006118680
Figure 2006118680

Figure 2006118680
Figure 2006118680

Figure 2006118680
Figure 2006118680

転動部品の実用最大接触面圧は高くとも4GPa程度であり、4GPaの最大面圧が作用したときに転動表面に繰返し作用する周方向の引張り応力は、転がり摩擦を考慮しても計算上700MPa程度である。また、今回の疲労試験では、3質量−ppmの拡散性水素を強制的に導入した影響を見たが、実際にはそれほど多量の水素が侵入するのはごく稀なケースと考えられる。すなわち、107回強度が700MPa以上であれば実用に十分に耐え得るものと考えられる。この観点から表1〜表3の発明鋼の107回強度を見ると、いずれの発明鋼も107回強度は700MPa以上である。一方、比較鋼の107回強度はすべて700MPa未満である。したがって、合金元素として少なくともVを含有し、かつ焼入れ加熱温度もしくは浸炭温度においてV炭化物が安定に存在することが、耐水素疲労強度を良好に保つために必要条件と言える。 The practical maximum contact surface pressure of rolling parts is about 4 GPa at the maximum, and the circumferential tensile stress that repeatedly acts on the rolling surface when the maximum surface pressure of 4 GPa is applied is calculated even when rolling friction is taken into account. It is about 700 MPa. Moreover, in this fatigue test, the effect of forcibly introducing 3 mass-ppm diffusible hydrogen was observed, but in reality, it is considered rare that a large amount of hydrogen penetrates. That is, it is considered that if the strength at 10 7 times is 700 MPa or more, it can sufficiently withstand practical use. Looking at 10 7 times the strength of the invention steel in Table 1 to Table 3 In this respect, any of the invention steels 10 7 times the strength is at least 700 MPa. On the other hand, the 10 7 times strengths of the comparative steels are all less than 700 MPa. Therefore, it can be said that it is a necessary condition for maintaining good hydrogen fatigue strength that the alloy element contains at least V and the V carbide is stably present at the quenching heating temperature or the carburizing temperature.

2.加工性確認試験
上記のように、Vの添加は耐水素疲労強度の向上に不可欠である。しかし、Vを多量に添加しすぎると加工性が損なわれる。そこで、加工性を確認するため、表1の発明鋼および比較鋼を同一条件で球状化焼鈍した後、厚さ10mmの試験片を製作した。それに直径2mmのドリルで一定条件で穴をあけ、ドリルが折れるまでに空けられる穴の数を調べた。図2に表1のHの値と空いた穴の数との関係を示す。
2. Workability confirmation test As described above, the addition of V is indispensable for improving the hydrogen fatigue resistance. However, if too much V is added, workability is impaired. Therefore, in order to confirm the workability, the inventive steel of Table 1 and the comparative steel were subjected to spheroidizing annealing under the same conditions, and then a test piece having a thickness of 10 mm was manufactured. Then, a hole with a diameter of 2 mm was drilled under certain conditions, and the number of holes that were drilled before the drill was broken was examined. FIG. 2 shows the relationship between the value of H in Table 1 and the number of vacant holes.

図2を参照して、Hの値が70程度以下ではドリルの寿命は緩やかに低下し、それを超えると急激に寿命は低下した。上記(1)式からわかるように、Vの添加量はHの値の上昇に対する寄与が最も大きい。したがって、耐水素疲労特性と加工性とのバランスを良好に保つためには、むやみにVを添加しすぎず、かつSi、Mn、Moの添加量を適正に調整することで、Hの値が70以下となるようにすることが望ましい。   Referring to FIG. 2, when the value of H is about 70 or less, the life of the drill gradually decreases, and when it exceeds that, the life rapidly decreases. As can be seen from the above equation (1), the amount of V added has the largest contribution to the increase in the value of H. Therefore, in order to keep a good balance between the hydrogen fatigue resistance and workability, the value of H can be increased by adjusting V and adding amounts of Si, Mn, and Mo appropriately. It is desirable to be 70 or less.

上記より転動接触を受ける表面および表層におけるC、Si、Mn、Cr、Vの含有量が、それぞれC:0.5質量%以上1.2質量%以下、Si:0.1質量%以上1質量%以下、Mn:0.1質量%以上1.5質量%以下、Cr:0.1質量%以上2質量%以下、V:0.1質量%以上の範囲内にある組成の鋼材であれば、目的とする耐水素はく離特性を得ることができる。またVの含有量は2.0質量%以下であることが好ましい。   The contents of C, Si, Mn, Cr, and V in the surface and surface layer that receive rolling contact from the above are C: 0.5% by mass to 1.2% by mass, Si: 0.1% by mass to 1%, respectively. It may be a steel material having a composition in the range of mass% or less, Mn: 0.1 mass% or more and 1.5 mass% or less, Cr: 0.1 mass% or more and 2 mass% or less, V: 0.1 mass% or more. For example, the desired hydrogen peeling resistance can be obtained. Moreover, it is preferable that content of V is 2.0 mass% or less.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は、その特異な使用条件から潤滑油の分解などにより転動表面で発生する水素が侵入することによって生じる早期剥離を抑制できるオルタネータ用軸受に適用され得る。   The present invention can be applied to a bearing for an alternator that can suppress premature peeling that occurs due to intrusion of hydrogen generated on a rolling surface due to decomposition of lubricating oil or the like due to its unique use conditions.

本発明の一実施の形態におけるオルタネータ用軸受を示す部分断面図である。It is a fragmentary sectional view which shows the bearing for alternators in one embodiment of this invention. 表1のHの値と空いた穴の数との関係を示す図である。It is a figure which shows the relationship between the value of H of Table 1, and the number of vacant holes.

符号の説明Explanation of symbols

1 オルタネータ用軸受、2 転動体(鋼球)、3 外輪、4 内輪、5 プーリ、6 係合溝、7 保持器、10 オルタネータ、11 シャフト。   1 bearing for alternator, 2 rolling element (steel ball), 3 outer ring, 4 inner ring, 5 pulley, 6 engagement groove, 7 cage, 10 alternator, 11 shaft.

Claims (2)

ロータに励磁される磁極をステータに対して回転させることで回転力を電気エネルギに変換するオルタネータに用いられる軸受であって、
内輪、外輪および転動体の少なくとも1つの部材が、合金元素として少なくともVを含有し、かつ転動接触を受ける表面および表層におけるC、Si、Mn、Cr、Vの含有量が、それぞれC:0.5質量%以上1.2質量%以下、Si:0.1質量%以上1質量%以下、Mn:0.1質量%以上1.5質量%以下、Cr:0.1質量%以上2質量%以下、V:0.1質量%以上の範囲内にある組成の鋼材であることを特徴とする、オルタネータ用軸受。
A bearing used in an alternator that converts a rotational force into electric energy by rotating a magnetic pole excited by a rotor with respect to a stator,
At least one member of the inner ring, the outer ring, and the rolling element contains at least V as an alloy element, and the contents of C, Si, Mn, Cr, and V in the surface and the surface layer that undergo rolling contact are C: 0 0.5 mass% to 1.2 mass%, Si: 0.1 mass% to 1 mass%, Mn: 0.1 mass% to 1.5 mass%, Cr: 0.1 mass% to 2 mass %, V: A steel material having a composition in the range of 0.1% by mass or more. An alternator bearing.
前記内輪、前記外輪および前記転動体の少なくとも1つの前記部材が、Si、Mn、V、Moの含有量から(1)式で求まるHが(2)式を満たす鋼材であることを特徴とする、請求項1に記載のオルタネータ用軸受。
H=5.8[Si]+11.5[Mn]+56.2[V]+15.2[Mo]…(1)
H≦70…(2)
The at least one member of the inner ring, the outer ring, and the rolling element is a steel material satisfying the formula (2) where H obtained by the formula (1) from the contents of Si, Mn, V, and Mo is characterized in that The alternator bearing according to claim 1.
H = 5.8 [Si] +11.5 [Mn] +56.2 [V] +15.2 [Mo] (1)
H ≦ 70 (2)
JP2004309869A 2004-10-25 2004-10-25 Bearing for alternator Withdrawn JP2006118680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309869A JP2006118680A (en) 2004-10-25 2004-10-25 Bearing for alternator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309869A JP2006118680A (en) 2004-10-25 2004-10-25 Bearing for alternator

Publications (1)

Publication Number Publication Date
JP2006118680A true JP2006118680A (en) 2006-05-11

Family

ID=36536747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309869A Withdrawn JP2006118680A (en) 2004-10-25 2004-10-25 Bearing for alternator

Country Status (1)

Country Link
JP (1) JP2006118680A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285722A (en) * 2007-05-17 2008-11-27 Ntn Corp Rolling member, rolling bearing, and method for manufacturing rolling member
KR101530330B1 (en) * 2013-12-31 2015-06-22 주식회사 베어링아트 Ball bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285722A (en) * 2007-05-17 2008-11-27 Ntn Corp Rolling member, rolling bearing, and method for manufacturing rolling member
KR101530330B1 (en) * 2013-12-31 2015-06-22 주식회사 베어링아트 Ball bearing

Similar Documents

Publication Publication Date Title
JP4800444B2 (en) Steel for machine structure for surface hardening and parts for machine structure
JP5194532B2 (en) Rolling bearing
WO2012056785A1 (en) Steel for surface hardening for machine structural use, and steel component for machine structural use and process for producing same
JPWO2010070958A1 (en) Surface hardening machine structural steel and machine structural steel parts
JP2002004003A (en) Rolling shaft
JP2008280583A (en) Case-hardening steel excellent in surface fatigue strength due to hydrogen embrittlement
JP5477111B2 (en) Nitriding induction hardening steel and nitriding induction hardening parts
JP2011225936A (en) Carbonitrided steel of hydrogen embrittlement type having excellent surface fatigue strength
JP2005068453A (en) High facial pressure resistant part and manufacturing method therefor
WO2013084800A1 (en) Rolling bearing and method for producing same
JPH11101247A (en) Rolling bearing part
JP5260032B2 (en) Induction hardened steel excellent in cold workability, rolling member made of the steel, and linear motion device using the rolling member
JP4102266B2 (en) Method for manufacturing surface hardened component and surface hardened component
JP2012031457A (en) Rolling bearing
JP5736937B2 (en) Rolling bearing
JP5076274B2 (en) Rolling bearing
WO2005098057A1 (en) Rolling part and ball bearing
JP6027925B2 (en) Carbon nitride bearing parts with excellent surface fatigue strength of hydrogen embrittlement type
JP5999485B2 (en) Carbon nitrided parts with excellent surface fatigue strength of hydrogen embrittlement type
JP2016069695A (en) Rolling bearing
JP2006118680A (en) Bearing for alternator
JP6448405B2 (en) Carbon nitride bearing parts with excellent surface fatigue strength of hydrogen embrittlement type
JP2006138376A (en) Radial needle roller bearing
JP5119717B2 (en) Method for manufacturing rolling bearing component and rolling bearing
JP2006132652A (en) Angular ball bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108