JPWO2015170715A1 - Copper foil with carrier, method for producing copper foil with carrier, copper-clad laminate obtained using copper foil with carrier, and method for producing printed wiring board - Google Patents

Copper foil with carrier, method for producing copper foil with carrier, copper-clad laminate obtained using copper foil with carrier, and method for producing printed wiring board Download PDF

Info

Publication number
JPWO2015170715A1
JPWO2015170715A1 JP2015524547A JP2015524547A JPWO2015170715A1 JP WO2015170715 A1 JPWO2015170715 A1 JP WO2015170715A1 JP 2015524547 A JP2015524547 A JP 2015524547A JP 2015524547 A JP2015524547 A JP 2015524547A JP WO2015170715 A1 JPWO2015170715 A1 JP WO2015170715A1
Authority
JP
Japan
Prior art keywords
carrier
copper foil
layer
organic
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015524547A
Other languages
Japanese (ja)
Other versions
JP6100375B2 (en
Inventor
健一郎 岩切
健一郎 岩切
歩 立岡
歩 立岡
広幸 渡邉
広幸 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Application granted granted Critical
Publication of JP6100375B2 publication Critical patent/JP6100375B2/en
Publication of JPWO2015170715A1 publication Critical patent/JPWO2015170715A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/20Separation of the formed objects from the electrodes with no destruction of said electrodes
    • C25D1/22Separating compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing & Machinery (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

キャリアと銅箔層との界面の剥離強度のバラツキを低減させることで、安定した引き剥がし作業を行うことを可能とするキャリア付銅箔を提供することを目的とする。この目的を達成するため、キャリアの表面に接合界面層を介して銅箔層を備えるキャリア付銅箔において、当該キャリアと当該銅箔層の剥離強度の変動係数(CV)を0.2以下としたキャリア付銅箔等を採用し、キャリアの幅方向における剥離強度のバラツキが小さく、安定したキャリアの剥離を実現する。It is an object of the present invention to provide a carrier-attached copper foil that can perform a stable peeling operation by reducing variation in peel strength at the interface between the carrier and the copper foil layer. In order to achieve this object, in a copper foil with a carrier provided with a copper foil layer on the surface of the carrier via a bonding interface layer, the coefficient of variation (CV) in peel strength between the carrier and the copper foil layer is 0.2 or less. Adopting the carrier-provided copper foil or the like, the variation in the peeling strength in the width direction of the carrier is small, and stable carrier peeling is realized.

Description

本件出願に係る発明は、キャリア付銅箔、キャリア付銅箔の製造方法、キャリア付銅箔を用いて得られる銅張積層板及びプリント配線板に関する。特に、ピーラブルタイプのキャリア付銅箔に関する。   The invention which concerns on this application is related with the copper clad laminated board and printed wiring board which are obtained using the copper foil with a carrier, the manufacturing method of the copper foil with a carrier, the copper foil with a carrier. In particular, it relates to a peelable copper foil with a carrier.

従来より、キャリア付銅箔は、電気、電子産業の分野で用いられるプリント配線板製造の材料として用いられてきた。通常、このキャリア付銅箔は、熱間プレス成形により、プリプレグ等の絶縁層構成材と積層して銅張積層板とし、プリント配線板の製造に用いられる。   Conventionally, a copper foil with a carrier has been used as a material for manufacturing a printed wiring board used in the fields of the electric and electronic industries. Usually, this copper foil with a carrier is laminated with an insulating layer constituting material such as a prepreg by hot press forming to form a copper-clad laminate, and is used for manufacturing a printed wiring board.

特に、近年の電子機器は、軽薄短小化に伴うダウンサイジングや低消費電力化が要求されており、これら電子機器に組み込まれるプリント配線板も当該ダウンサイジング等の要求に応えるため、配線回路の導体厚さを薄くして、ファインピッチの配線回路を設けるプリント配線板設計が必要となる。そこで、このような市場からの要求を実現すべく、当該プリント配線板を製造する際に、キャリア付銅箔が広く用いられている。   In particular, recent electronic devices are required to be downsized and reduced in power consumption due to the reduction in size, thickness, and size, and printed wiring boards incorporated in these electronic devices also meet the requirements for downsizing and the like. It is necessary to design a printed wiring board in which the thickness is reduced and a fine pitch wiring circuit is provided. Therefore, in order to realize such a demand from the market, a copper foil with a carrier is widely used when manufacturing the printed wiring board.

当該キャリア付銅箔は、熱間プレス成形により絶縁層構成材と積層して銅張積層板とした後、銅張積層板からキャリアを引き剥がして除去するピーラブルタイプのキャリア付銅箔である。このピーラブルタイプのキャリア付銅箔は、種々の剥離層を備えたキャリア付銅箔が市場に供給されている。   The copper foil with a carrier is a peelable copper foil with a carrier that is laminated with an insulating layer constituent material by hot press forming to form a copper clad laminate, and then peeled off and removed from the copper clad laminate. . As for this peelable type copper foil with carrier, copper foil with carrier having various peeling layers is supplied to the market.

例えば、特許文献1に開示のキャリア付銅箔は、銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層上に形成された極薄銅層とを備えたキャリア付銅箔であって、中間層は、銅箔キャリア上に、ニッケルと、モリブデン又はコバルト又はモリブデン−コバルト合金とがこの順で積層されている。すなわち、特許文献1のキャリア付銅箔は、銅箔キャリアと極薄銅層との間に、ニッケルと、モリブデンやコバルトなどの無機材を用いた剥離層が形成されている。   For example, the copper foil with a carrier disclosed in Patent Document 1 is a copper foil with a carrier provided with a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer formed on the intermediate layer. In the intermediate layer, nickel and molybdenum or cobalt or a molybdenum-cobalt alloy are laminated in this order on a copper foil carrier. That is, in the copper foil with a carrier of Patent Document 1, a release layer using nickel and an inorganic material such as molybdenum or cobalt is formed between the copper foil carrier and the ultrathin copper layer.

また、特許文献2に開示のキャリア付電解銅箔は、キャリアの表面上に、接合界面層を備え、その接合界面層上に補助金属層及び電解銅箔層を備えたものであって、キャリアには粗さ(Rz)0.05μm〜4.0μmの平滑面を有するフィルム若しくは金属材を用い、当該キャリアの平滑面側に有機剤若しくは金属材を用いて形成した接合界面層を備え、当該接合界面層の表層に補助金属層として0.08μm〜2.0μm厚のニッケル層又は0.05μm〜3.0μm厚のコバルト層を備え、当該補助金属層の表層にバルク層と微細銅粒とからなる電解銅箔層とを備えている。すなわち、特許文献2のキャリア付電解銅箔は、キャリアと電解銅箔層との間に、有機剤若しくは金属材を用いた接合界面層と、ニッケルやコバルトなどの無機材を用いた補助金属層が形成されている。   Moreover, the electrolytic copper foil with a carrier disclosed in Patent Document 2 includes a bonding interface layer on the surface of the carrier, and an auxiliary metal layer and an electrolytic copper foil layer on the bonding interface layer. Is provided with a bonding interface layer formed using an organic agent or metal material on the smooth surface side of the carrier using a film or metal material having a smooth surface with a roughness (Rz) of 0.05 μm to 4.0 μm, A surface layer of the joining interface layer is provided with a nickel layer having a thickness of 0.08 μm to 2.0 μm or a cobalt layer having a thickness of 0.05 μm to 3.0 μm as an auxiliary metal layer, and a bulk layer and fine copper grains are formed on the surface layer of the auxiliary metal layer. And an electrolytic copper foil layer. That is, in the electrolytic copper foil with a carrier of Patent Document 2, a bonding interface layer using an organic agent or a metal material and an auxiliary metal layer using an inorganic material such as nickel or cobalt are provided between the carrier and the electrolytic copper foil layer. Is formed.

特許第5228130号Patent No. 5228130 特開2001−308477号公報JP 2001-308477 A

しかしながら、特許文献1において、電解処理によってキャリアの表面にニッケルやモリブデン又はコバルト等からなる中間層を形成した場合、中間層を構成するニッケルやモリブデン又はコバルトの付着量が当該キャリアと極薄銅層との剥離強度に影響を及ぼす。ニッケルの付着量が不足してモリブデン又はコバルトの付着量が多すぎると、銅箔キャリアと中間層との接着力が小さくなり、ハンドリング時に意図せぬキャリアの剥離が生じる場合がある。この他にも、キャリアの剥離時に中間層が極薄銅層に残留する場合がある。また、ニッケルの付着量が多くなると、極薄銅層側の表面にピンホールが多くなり、プリント配線板の性能不良を招く。   However, in Patent Document 1, when an intermediate layer made of nickel, molybdenum, cobalt, or the like is formed on the surface of the carrier by electrolytic treatment, the adhesion amount of nickel, molybdenum, or cobalt constituting the intermediate layer is such that the carrier and the ultrathin copper layer Affects the peel strength. If the adhesion amount of nickel is insufficient and the adhesion amount of molybdenum or cobalt is too large, the adhesive force between the copper foil carrier and the intermediate layer is reduced, and unintentional peeling of the carrier may occur during handling. In addition, the intermediate layer may remain in the ultrathin copper layer when the carrier is peeled off. Moreover, when the adhesion amount of nickel increases, pinholes increase on the surface on the ultrathin copper layer side, resulting in poor performance of the printed wiring board.

さらに、中間層を形成する電解処理時において、電極端部は電極中心部と比べて電流が集中しやすく、電流密度が高くなる傾向にあるため、銅箔キャリア全体で電流密度が不均一となる。特に、幅広の電解装置を用いて電解処理を行った場合は、電流密度の不均一性が顕著となる。よって、銅箔キャリアの表面に、ニッケル層やモリブデン又はコバルト等からなる層を均一に形成することが困難となり、特に、銅箔キャリアの幅方向において剥離強度にバラツキが生じる。   Furthermore, during the electrolytic treatment for forming the intermediate layer, current tends to be concentrated at the electrode end compared to the center of the electrode, and the current density tends to be high, so the current density is not uniform across the entire copper foil carrier. . In particular, when the electrolytic treatment is performed using a wide electrolytic apparatus, the current density non-uniformity becomes remarkable. Therefore, it becomes difficult to uniformly form a layer made of nickel layer, molybdenum, cobalt, or the like on the surface of the copper foil carrier, and in particular, the peel strength varies in the width direction of the copper foil carrier.

銅箔キャリアと極薄銅箔との間で銅箔キャリアの幅方向において剥離強度にバラツキがあると、ハンドリング時にキャリアが部分的に剥離したり、絶縁層構成材と積層した後、キャリアを引き剥がす際に部分的に当該キャリアが剥離し難くなる場合がある。特に、絶縁層構成材とのプレス工程後においてキャリアが部分的に剥離し難くなると、極薄銅層に破れが生じる場合もある。また、キャリアの剥離強度が部分的に大きいと、基板に必要以上に負担がかかり、基板の反りや捻れの原因となる。   If the peel strength varies in the width direction of the copper foil carrier between the copper foil carrier and the ultrathin copper foil, the carrier may be partially peeled during handling or laminated with the insulating layer constituent material, and then the carrier is pulled. When peeling off, the carrier may be difficult to peel off partially. In particular, if the carrier is difficult to partially peel after the pressing step with the insulating layer constituent material, the ultrathin copper layer may be broken. In addition, if the peel strength of the carrier is partially high, an excessive load is applied to the substrate, causing the substrate to warp or twist.

一方、特許文献2のキャリア付電解銅箔の場合、有機剤を用いた接合界面層の表層に、ニッケルやコバルトなどの無機材を用いた補助金属層を電解処理により形成する。よって、特許文献2のキャリア付電解銅箔も、特許文献1のキャリア付銅箔と同様、電解処理時において、電極端部は電極中心部と比べて電流が集中しやすく、電流密度が高くなる傾向にあるため、補助金属層を均一に形成することが困難となり、キャリア付電解銅箔の幅方向における剥離強度のバラツキを十分に低減させることが困難であった。   On the other hand, in the case of the electrolytic copper foil with a carrier of Patent Document 2, an auxiliary metal layer using an inorganic material such as nickel or cobalt is formed by electrolytic treatment on the surface of the bonding interface layer using an organic agent. Therefore, similarly to the copper foil with a carrier of Patent Document 1, the electrolytic copper foil with a carrier of Patent Document 2 is more likely to concentrate current at the electrode end portion than the center portion of the electrode during electrolytic treatment, and the current density is increased. Due to this tendency, it is difficult to form the auxiliary metal layer uniformly, and it is difficult to sufficiently reduce the variation in the peel strength in the width direction of the electrolytic copper foil with carrier.

以上のことから、本件発明は、キャリアと銅箔層との界面の剥離強度を安定させたキャリア付銅箔を提供することにある。   From the above, the present invention is to provide a copper foil with a carrier in which the peel strength at the interface between the carrier and the copper foil layer is stabilized.

本件発明者等は、以下に述べるキャリア付銅箔を採用することで上述の課題を解決するに至った。   The present inventors have solved the above-mentioned problems by adopting the carrier-attached copper foil described below.

キャリア付銅箔: 本件発明に係るキャリア付銅箔は、キャリアの表面に接合界面層を介して銅箔層を備えるものであって、当該キャリアと当該銅箔層との剥離強度の変動係数(CV)が、0.2以下であることを特徴とする。 Copper foil with carrier: The copper foil with carrier according to the present invention is provided with a copper foil layer on the surface of the carrier via a bonding interface layer, and the coefficient of variation in peel strength between the carrier and the copper foil layer ( CV) is 0.2 or less.

キャリア付銅箔の製造方法: 本件発明に係るキャリア付銅箔の製造方法は、上述したキャリア付銅箔の製造方法であって、以下に述べる工程A、工程B、工程Cの各工程を備えることを特徴とする。
工程A:キャリアの表面に接合界面層として剥離層を形成する工程。
工程B:金属成分源としての硫酸塩を含み、塩化物イオンの濃度が1g/L以下である有機成分含有溶液を用いて、当該剥離層の表面に、前記接合界面層の一部として金属成分を含む有機層を形成する工程。
工程C:当該金属成分を含む有機層の表面に銅箔層を形成する工程。
Manufacturing method of copper foil with carrier: The manufacturing method of copper foil with carrier according to the present invention is a manufacturing method of the above-described copper foil with carrier, and includes steps A, B, and C described below. It is characterized by that.
Step A: A step of forming a release layer as a bonding interface layer on the surface of the carrier.
Step B: Using an organic component-containing solution containing sulfate as a metal component source and having a chloride ion concentration of 1 g / L or less, a metal component as a part of the bonding interface layer is formed on the surface of the release layer. Forming an organic layer containing.
Process C: The process of forming a copper foil layer on the surface of the organic layer containing the said metal component.

銅張積層板: 本件発明に係る銅張積層板は、上述したキャリア付銅箔を用いて得られることを特徴とする。 Copper-clad laminate: The copper-clad laminate according to the present invention is obtained using the above-described copper foil with a carrier.

プリント配線板: 本件発明に係るプリント配線板は、上述したキャリア付銅箔を用いて得られることを特徴とする。 Printed wiring board: The printed wiring board according to the present invention is obtained using the above-described copper foil with a carrier.

本件発明に係るキャリア付銅箔によれば、キャリアと銅箔層との剥離強度の変動係数(CV)が0.2以下であるため、キャリアの幅方向における剥離強度のバラツキが小さく、安定してキャリアを剥離することができる。   According to the copper foil with a carrier according to the present invention, since the coefficient of variation (CV) in the peel strength between the carrier and the copper foil layer is 0.2 or less, the variation in the peel strength in the width direction of the carrier is small and stable. The carrier can be peeled off.

また、本件発明に係るキャリア付銅箔の製造方法によれば、金属成分を含む有機層への塩化物イオンの混入を抑制することにより、金属成分は塩化物イオンと反応せずに、有機成分と効率的に結合することができる。従って、金属成分を含む有機層を剥離層の表面に安定して形成することができる。   Further, according to the method for manufacturing a copper foil with a carrier according to the present invention, the metal component does not react with the chloride ion by suppressing the mixing of the chloride ion into the organic layer containing the metal component. Can be combined efficiently. Therefore, the organic layer containing a metal component can be stably formed on the surface of the release layer.

本件発明に係るキャリア付銅箔の層構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the layer structure of the copper foil with a carrier which concerns on this invention. 剥離強度のバラツキの評価に用いる試料作製の模式図である。It is a schematic diagram of sample preparation used for evaluation of variation in peel strength. 実施例2の各試料の剥離強度の測定結果を示す図である。It is a figure which shows the measurement result of the peeling strength of each sample of Example 2. FIG.

以下に、本件発明に係るキャリア付銅箔、キャリア付銅箔の製造方法、キャリア付銅箔を用いて得られる銅張積層板及びプリント配線板の実施の形態を説明する。   Below, the copper foil with a carrier which concerns on this invention, the manufacturing method of the copper foil with a carrier, the copper clad laminated board obtained using a copper foil with a carrier, and embodiment of a printed wiring board are demonstrated.

<キャリア付銅箔>
本件発明に係るキャリア付銅箔は、キャリアの表面に接合界面層を介して銅箔層を備えるキャリア付銅箔であって、当該キャリアと当該銅箔層との剥離強度の変動係数(CV)が、0.2以下であることを特徴とする。図1に本件発明に係るキャリア付銅箔の基本的層構成の断面模式図を示す。なお、図1は各層の積層状態を把握できるように記載したものであり、現実の各層の厚さを反映させたものではない。図1に示すように、本件発明に係るキャリア付銅箔1は、キャリア2/接合界面層6/銅箔層5の層構成を備える。以下において、「キャリアと銅箔層との剥離強度の変動係数(CV)」、「キャリア」、「接合界面層」、「銅箔層」について順に説明する。
<Copper foil with carrier>
The copper foil with a carrier according to the present invention is a copper foil with a carrier having a copper foil layer on the surface of the carrier via a bonding interface layer, and a coefficient of variation (CV) in peel strength between the carrier and the copper foil layer. Is 0.2 or less. FIG. 1 shows a schematic cross-sectional view of a basic layer configuration of a carrier-attached copper foil according to the present invention. In addition, FIG. 1 is described so that the lamination state of each layer can be grasped, and does not reflect the actual thickness of each layer. As shown in FIG. 1, the copper foil 1 with a carrier according to the present invention has a layer configuration of carrier 2 / bonding interface layer 6 / copper foil layer 5. Hereinafter, “coefficient of variation (CV) in peel strength between carrier and copper foil layer”, “carrier”, “bonding interface layer”, and “copper foil layer” will be described in this order.

キャリアと銅箔層との剥離強度の変動係数(CV): 本件発明に係る当該キャリア付銅箔は、キャリアと銅箔層との剥離強度の変動係数(CV)が0.2以下である。当該キャリアと銅箔層とのより好ましい剥離強度の変動係数(CV)は、0.15以下である。この剥離強度は、JIS C 6481−1996に準拠して測定した場合の値である。そして、この剥離強度の変動係数(CV)は、キャリア付銅箔の幅方向及び長さ方向の各箇所の剥離強度の標準偏差(stdev)と平均値(ave)に基づいて算出される値であり、キャリアの剥離強度のバラツキの指標となる。具体的には、変動係数(CV)は、以下に示す式で求められる。
変動係数(CV)=標準偏差(stdev)/平均値(ave)・・・(式)
Coefficient of variation (CV) in peel strength between carrier and copper foil layer: In the copper foil with carrier according to the present invention, the coefficient of variation (CV) in peel strength between the carrier and the copper foil layer is 0.2 or less. A more preferable coefficient of variation (CV) in peel strength between the carrier and the copper foil layer is 0.15 or less. This peel strength is a value measured according to JIS C 6481-1996. The coefficient of variation (CV) of the peel strength is a value calculated based on the standard deviation (stdev) and the average value (ave) of the peel strength at each location in the width direction and the length direction of the copper foil with carrier. Yes, it becomes an index of variation in the peel strength of the carrier. Specifically, the coefficient of variation (CV) is obtained by the following equation.
Coefficient of variation (CV) = standard deviation (stdev) / average value (ave) (formula)

本件発明は、当該変動係数(CV)が0.2以下であるため、キャリアと銅箔層との間において、幅方向における剥離強度のバラツキが小さい。よって、剥離強度のバラツキが大きくなることで生じる引き剥がし作業性の悪化を回避でき、安定してキャリアを剥離することができる。ゆえに、キャリアの引き剥がし時に、銅箔層の表面にキャリアの断片が残留しない。ここでは、剥離強度の変動係数(CV)の下限値を定めていないが、当該変動係数(CV)が小さいほど、キャリア付銅箔の全領域における剥離強度の均一性が高まり、製品品質を向上させることができる。   In the present invention, since the coefficient of variation (CV) is 0.2 or less, there is little variation in peel strength in the width direction between the carrier and the copper foil layer. Therefore, it is possible to avoid the deterioration of the peeling workability caused by an increase in the peel strength variation, and the carrier can be peeled stably. Therefore, no carrier fragments remain on the surface of the copper foil layer when the carrier is peeled off. Here, the lower limit value of the coefficient of variation (CV) of the peel strength is not defined, but as the coefficient of variation (CV) is smaller, the uniformity of the peel strength in the entire region of the carrier-attached copper foil is increased and the product quality is improved. Can be made.

また、本件発明に係るキャリア付銅箔は、キャリアと銅箔層との剥離強度が3g/cm〜50g/cmであることが好ましく、5g/cm〜30g/cmであることがより好ましく、7g/cm〜20g/cmであることがさらに好ましい。一般に、キャリアと銅箔層との界面における剥離強度が小さいほど剥離作業は容易になる。しかし、剥離強度が3g/cmを下回ると、キャリア付銅箔の製造時における巻き取りや銅張積層板の製造時等において、キャリアと銅箔層とが意図せずに部分的に剥離してふくれたり、ずれ等の不良が発生しやすくなる。一方、剥離強度が50g/cmを上回ると、銅箔層からキャリアを引き剥がにくくなる。   In the copper foil with a carrier according to the present invention, the peel strength between the carrier and the copper foil layer is preferably 3 g / cm to 50 g / cm, more preferably 5 g / cm to 30 g / cm, and 7 g. More preferably, it is / cm-20 g / cm. In general, the smaller the peel strength at the interface between the carrier and the copper foil layer, the easier the peel work. However, if the peel strength is less than 3 g / cm, the carrier and the copper foil layer may be partially peeled unintentionally during winding of the copper foil with a carrier or the production of a copper clad laminate. Defects such as blistering and slippage are likely to occur. On the other hand, if the peel strength exceeds 50 g / cm, it is difficult to peel off the carrier from the copper foil layer.

キャリア: 本件発明において、キャリアは、箔厚の薄い銅箔層のハンドリング性を向上させるために所定の厚さを備えた材料であり、特に材質の限定はない。しかし、銅箔層を電解により形成する場合は、例えば、アルミニウム箔、銅箔、表面をメタルコーティングした樹脂フィルムなどの通電可能な材料をキャリアとして用いることが好ましい。また、キャリアの厚さは、特に限定されないが、キャリアとして銅箔を用いる場合、ハンドリング性を考慮し、7μm〜210μmが好ましい。キャリアとしての銅箔に、しわ発生を防止する補強材としての役割を期待する場合は、少なくとも7μmの厚さが必要となる。 Carrier: In the present invention, the carrier is a material having a predetermined thickness in order to improve the handleability of the thin copper foil layer, and the material is not particularly limited. However, when the copper foil layer is formed by electrolysis, it is preferable to use, as a carrier, an energizable material such as an aluminum foil, a copper foil, or a resin film whose surface is metal-coated. Further, the thickness of the carrier is not particularly limited, but when copper foil is used as the carrier, it is preferably 7 μm to 210 μm in consideration of handling properties. In the case where a copper foil as a carrier is expected to serve as a reinforcing material for preventing wrinkles, a thickness of at least 7 μm is required.

接合界面層: 本件発明において、接合界面層は、キャリアと銅箔層との間に挟持された状態で存在し、キャリアを銅箔層から引き剥がし可能とする層である。本件発明に係るキャリア付銅箔では、接合界面層が、キャリアの表面に設けられる「剥離層」と、当該剥離層の表面に設けられる「金属成分を含む有機層」とからなることが好ましい。上述した図1では、接合界面層6は、剥離層3及び金属成分を含む有機層4からなる。本件発明において、剥離層3は、「有機剥離層」又は「無機剥離層」のいずれかを用いることが好ましい。 Bonding interface layer: In the present invention, the bonding interface layer is a layer that is sandwiched between the carrier and the copper foil layer and allows the carrier to be peeled off from the copper foil layer. In the copper foil with a carrier according to the present invention, the bonding interface layer is preferably composed of a “peeling layer” provided on the surface of the carrier and an “organic layer containing a metal component” provided on the surface of the peeling layer. In FIG. 1 mentioned above, the joining interface layer 6 consists of the peeling layer 3 and the organic layer 4 containing a metal component. In the present invention, the release layer 3 is preferably an “organic release layer” or an “inorganic release layer”.

「有機剥離層」は、有機成分として、窒素含有有機化合物、硫黄含有有機化合物及びカルボン酸の中から選択される1種又は2種以上を用いて構成することが好ましい。具体的には、窒素含有有機化合物としては、置換基を有するトリアゾール化合物である1,2,3−ベンゾトリアゾール、カルボキシベンゾトリアゾール(以下、「CBTA」と称する。)、N’,N’−ビス(ベンゾトリアゾリルメチル)ユリア、1H−1,2,4−トリアゾール及び3−アミノ−1H−1,2,4−トリアゾール等を用いることが好ましい。そして、硫黄含有有機化合物としては、メルカプトベンゾチアゾール、チオシアヌル酸及び2−ベンズイミダゾールチオール等を用いることが好ましい。また、カルボン酸としては、特にモノカルボン酸を用いることが好ましく、中でもオレイン酸、リノール酸及びリノレイン酸等を用いることが好ましい。そして、この有機剥離層の厚さは、1nm〜10nmであることが好ましい。   The “organic peeling layer” is preferably composed of one or more selected from a nitrogen-containing organic compound, a sulfur-containing organic compound, and a carboxylic acid as an organic component. Specifically, examples of the nitrogen-containing organic compound include 1,2,3-benzotriazole, carboxybenzotriazole (hereinafter referred to as “CBTA”), N ′, N′-bis, which are triazole compounds having a substituent. (Benzotriazolylmethyl) urea, 1H-1,2,4-triazole, 3-amino-1H-1,2,4-triazole and the like are preferably used. And as a sulfur containing organic compound, it is preferable to use mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazole thiol, etc. As the carboxylic acid, it is particularly preferable to use a monocarboxylic acid, and it is particularly preferable to use oleic acid, linoleic acid, linolenic acid, or the like. And it is preferable that the thickness of this organic peeling layer is 1 nm-10 nm.

一方、「無機剥離層」は、無機成分として、クロム、ニッケル、モリブデン、鉄、チタン、タングステン、リン、亜鉛、タンタル、バナジウム等の金属、又は、これら列挙した金属の合金、又は、これら列挙した金属の酸化物、もしくは、これら列挙した金属の合金の酸化物等を用いることができる。例えば、二元系合金としては、ニッケル−クロム、コバルト−クロム、クロム−タングステン、クロム−銅、クロム−鉄、クロム−チタン等を用いることができる。また、三元系合金としては、ニッケル−鉄−クロム、ニッケル−クロム−モリブデン、ニッケル−クロム−タングステン、ニッケル−クロム−銅、ニッケル−クロム−リン、コバルト−鉄−クロム、コバルト−クロム−モリブデン、コバルト−クロム−タングステン、コバルト−クロム−銅、コバルト−クロム−リン等を用いることができる。そして、この無機剥離層の厚さは、1nm〜300nmであることが好ましく、2nm〜50nmであることがより好ましい。   On the other hand, the “inorganic release layer” includes, as an inorganic component, metals such as chromium, nickel, molybdenum, iron, titanium, tungsten, phosphorus, zinc, tantalum, vanadium, alloys of these enumerated metals, or these enumerated Metal oxides or oxides of these listed metal alloys can be used. For example, as the binary alloy, nickel-chromium, cobalt-chromium, chromium-tungsten, chromium-copper, chromium-iron, chromium-titanium, or the like can be used. Ternary alloys include nickel-iron-chromium, nickel-chromium-molybdenum, nickel-chromium-tungsten, nickel-chromium-copper, nickel-chromium-phosphorus, cobalt-iron-chromium, cobalt-chromium-molybdenum. Cobalt-chromium-tungsten, cobalt-chromium-copper, cobalt-chromium-phosphorus, or the like can be used. And the thickness of this inorganic peeling layer is preferably 1 nm to 300 nm, and more preferably 2 nm to 50 nm.

次に、金属成分を含む有機層4は、上述した剥離層と共に接合界面層を構成することが好ましい。金属成分を含む有機層は、金属成分と有機成分とを含む層であり、キャリアの表面に剥離層を設けた後、当該剥離層の表面に設けることが好ましい。この金属成分を含む有機層を採用することで、剥離層の表面は、有機成分と無機成分とが共存した状態となる。この金属成分を含む有機層は、金属成分濃度が10g/L〜50g/Lに対して、有機成分を0.5mg/L〜10mg/Lで共存させた有機成分含有溶液を用いて電解法により形成することが好ましい。よって、幅広の電解装置を用いて電解処理を行ったとしても、電極の中心部と比べて電流が集中する電極端部には、金属成分のみならず有機成分が付着するため、金属成分の局所的な集中を回避することができる。ゆえに、剥離層の表面には、有機成分が金属成分中に均一に分散された状態で形成される。従って、幅方向における剥離強度のバラツキを効果的に低減することができ、プレス成形後に、部分的な剥離不良を起こすことなく、安定してキャリアを剥離することができる。   Next, it is preferable that the organic layer 4 containing a metal component constitutes a bonding interface layer together with the release layer described above. The organic layer containing a metal component is a layer containing a metal component and an organic component, and is preferably provided on the surface of the release layer after providing the release layer on the surface of the carrier. By adopting the organic layer containing this metal component, the surface of the release layer is in a state where the organic component and the inorganic component coexist. The organic layer containing the metal component is obtained by an electrolytic method using an organic component-containing solution in which the organic component coexists at 0.5 mg / L to 10 mg / L with respect to the metal component concentration of 10 g / L to 50 g / L. It is preferable to form. Therefore, even if the electrolytic treatment is performed using a wide electrolysis apparatus, not only the metal component but also the organic component adheres to the electrode end portion where the current is concentrated as compared with the center portion of the electrode. Concentration can be avoided. Therefore, the organic component is formed on the surface of the release layer in a state of being uniformly dispersed in the metal component. Therefore, variation in the peel strength in the width direction can be effectively reduced, and the carrier can be peeled stably after press molding without causing partial peeling failure.

また、金属成分を含む有機層に含まれる有機成分は、上述の「有機剥離層」の有機成分として列挙した有機成分を使用することが好ましい。上述した有機成分は、高温でのプレス成形時に、キャリア及び銅箔層との相互拡散が生じにくい。よって、金属成分を含む有機層は、剥離層の表面において、有機成分が金属成分中に均一に分散された状態で存在するため、幅方向における剥離強度のバラツキを効果的に低減することができる。上述した金属成分は、ニッケル、及び/又は、コバルトを主成分として含むものを用いることが好ましい。銅張積層板に加工する際の耐熱安定性に優れ、キャリアの剥離特性に変動を与えないためである。また、金属成分を含む有機層の厚さは、5nm〜100nmであることが好ましい。この範囲内であれば、金属成分を含む有機層をより均一に形成することができる。   Moreover, it is preferable to use the organic component enumerated as an organic component of the above-mentioned "organic peeling layer" for the organic component contained in the organic layer containing a metal component. The organic component described above is less likely to cause interdiffusion between the carrier and the copper foil layer during press molding at a high temperature. Therefore, since the organic layer containing the metal component exists in a state where the organic component is uniformly dispersed in the metal component on the surface of the release layer, it is possible to effectively reduce the variation in the peel strength in the width direction. . It is preferable to use a metal component containing nickel and / or cobalt as a main component. This is because it has excellent heat stability when processed into a copper-clad laminate and does not change the carrier peeling characteristics. Moreover, it is preferable that the thickness of the organic layer containing a metal component is 5 nm to 100 nm. If it is in this range, the organic layer containing a metal component can be formed more uniformly.

銅箔層: 銅箔層は、特に形成方法の限定はないが、電解法を採用することが好ましい。銅箔層は、絶縁層構成材と積層して銅張積層板となり、回路形成に用いられる。銅箔層の厚さは、特に限定はないが12μm以下が好ましい。12μmよりも厚い場合は、キャリア付銅箔とする意義が没却されるからである。また、銅箔層の表面には、用途に応じて防錆処理、シランカップリング剤処理等の表面処理を施すことが可能である。例えば、アンカー効果を得るために粗化処理を施すことにより、粗化処理を施さない場合に比べて、密着強度や、耐熱性等が向上する。 Copper foil layer: Although there is no limitation in the formation method in particular, a copper foil layer is preferably an electrolytic method. The copper foil layer is laminated with an insulating layer constituting material to form a copper clad laminate, and is used for circuit formation. The thickness of the copper foil layer is not particularly limited, but is preferably 12 μm or less. This is because when the thickness is larger than 12 μm, the significance of the copper foil with carrier is lost. Further, the surface of the copper foil layer can be subjected to a surface treatment such as a rust prevention treatment or a silane coupling agent treatment depending on the application. For example, when the roughening treatment is performed to obtain the anchor effect, the adhesion strength, heat resistance, and the like are improved as compared with the case where the roughening treatment is not performed.

<キャリア付銅箔の製造方法>
本件発明に係るキャリア付銅箔の製造方法は、上述したキャリア付銅箔の製造方法であり、以下に述べる工程A、工程B、工程Cの各工程を備えることを特徴とする。以下、各工程毎に説明する。
<Method for producing copper foil with carrier>
The manufacturing method of the copper foil with a carrier which concerns on this invention is a manufacturing method of the copper foil with a carrier mentioned above, Comprising: Each process of the process A, the process B, and the process C which are described below is provided. Hereinafter, each step will be described.

工程A: 工程Aは、キャリアの表面に接合界面層として剥離層を形成する工程である。工程Aでは、有機剥離層又は無機剥離層を形成する有機成分又は無機成分を溶解した溶液を用い、当該溶液中にキャリアを浸漬させる浸漬法、剥離層を形成する面に対するシャワーリング法、噴霧法、滴下法及び電着法等を用いて剥離層を形成することが好ましい。ただし、本件発明における剥離層の形成方法は、ここに挙げた方法に限定されない。 Step A: Step A is a step of forming a release layer as a bonding interface layer on the surface of the carrier. In step A, a solution in which an organic component or an inorganic component for forming an organic release layer or an inorganic release layer is dissolved is used, a dipping method in which a carrier is immersed in the solution, a showering method for a surface on which a release layer is formed, and a spray method The release layer is preferably formed using a dropping method, an electrodeposition method, or the like. However, the method for forming the release layer in the present invention is not limited to the methods listed here.

有機剥離層を形成する場合は、有機成分として、上述したように、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸の中から選択される1種又は2種以上を混合したものを好適に用いることができる。一方、無機剥離層を形成する場合は、無機成分として、上述したように、クロム、ニッケル、モリブデン、鉄、チタン、タングステン、リン、亜鉛、タンタル、バナジウム等の金属、又は、これら列挙した金属の合金、又は、これら列挙した金属の酸化物、もしくは、これら列挙した金属の合金の酸化物等を用いることができる。有機成分又は無機成分を溶解した後の溶液中における有機成分又は無機成分の濃度、液温、処理時間等に関しては、適宜設定すればよい。   When forming an organic peeling layer, as described above, a mixture of one or more selected from nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids is preferably used as the organic component. be able to. On the other hand, when forming an inorganic release layer, as described above, as an inorganic component, a metal such as chromium, nickel, molybdenum, iron, titanium, tungsten, phosphorus, zinc, tantalum, vanadium, or any of these listed metals. An alloy, an oxide of these enumerated metals, an oxide of an alloy of these enumerated metals, or the like can be used. What is necessary is just to set suitably regarding the density | concentration, liquid temperature, processing time, etc. of the organic component or inorganic component in the solution after melt | dissolving an organic component or an inorganic component.

工程B: 工程Bは、金属成分源としての硫酸塩を含み、塩化物イオンの濃度が1g/L以下である有機成分含有溶液を用いて、工程Aにおいて得られた剥離層の表面に、接合界面層の一部として金属成分を含む有機層を形成する工程である。工程Bでは、金属成分を共存させた有機成分含有溶液中に剥離層を形成したキャリアを浸漬し、剥離層の表面に対しアノード電極を配置し、当該溶液を電解することで、剥離層の表面に金属成分を含む有機層を形成することができる。 Step B: In Step B, an organic component-containing solution containing sulfate as a metal component source and having a chloride ion concentration of 1 g / L or less is bonded to the surface of the release layer obtained in Step A. This is a step of forming an organic layer containing a metal component as part of the interface layer. In step B, the surface of the release layer is obtained by immersing the carrier in which the release layer is formed in an organic component-containing solution in which a metal component is allowed to coexist, placing an anode electrode on the surface of the release layer, and electrolyzing the solution. An organic layer containing a metal component can be formed.

金属成分を含む有機層の形成に用いる有機成分としては、上述した有機剥離層の形成において列挙した有機成分を用いることができる。特に、剥離層として有機剥離層を形成する場合は、金属成分を含む有機層の有機成分として、有機剥離層の形成に用いた有機成分と同一ものを用いることが好ましい。一方、金属成分を含む有機層の形成に用いる金属成分としては、上述したように、ニッケル、及び/又は、コバルトを好適に用いることができる。   As an organic component used for formation of the organic layer containing a metal component, the organic components enumerated in the formation of the organic peeling layer described above can be used. In particular, when an organic release layer is formed as the release layer, it is preferable to use the same organic component used for forming the organic release layer as the organic component of the organic layer containing the metal component. On the other hand, as described above, nickel and / or cobalt can be suitably used as the metal component used for forming the organic layer containing the metal component.

また、有機成分含有溶液は、金属成分源として硫酸塩を含むものであって、塩化物イオンの濃度が1g/L以下の溶液である。有機成分含有溶液の塩化物イオンの濃度が1g/Lを超える場合は、塩化物イオンと金属成分とが化学的に反応して、金属成分の当該有機成分との化学的な結合が阻害されやすくなるが、塩化物イオンの混入を抑制することによって、金属成分と有機成分との化学的な結合を促進させ、金属成分を含む有機層を剥離層の表面に安定して形成することができる。   The organic component-containing solution is a solution containing sulfate as a metal component source and having a chloride ion concentration of 1 g / L or less. When the concentration of chloride ions in the organic component-containing solution exceeds 1 g / L, the chloride ions and the metal component react chemically, and the chemical bond between the metal component and the organic component is likely to be hindered. However, by suppressing the mixing of chloride ions, chemical bonding between the metal component and the organic component can be promoted, and the organic layer containing the metal component can be stably formed on the surface of the release layer.

また、有機成分含有溶液における有機成分と金属成分との含有割合は、金属成分濃度10g/L〜50g/Lに対して、有機成分を0.5mg/L〜10mg/L含むことが好ましい。この範囲内であれば、金属成分を電着させるときの均一性の改善を十分に図ることができる。   In addition, the content ratio of the organic component and the metal component in the organic component-containing solution preferably includes 0.5 mg / L to 10 mg / L of the organic component with respect to the metal component concentration of 10 g / L to 50 g / L. Within this range, the uniformity when electrodepositing the metal component can be sufficiently improved.

さらに、有機成分含有溶液の電解条件は、電流密度が0.01A/dm〜10A/dmであることが好ましい。Furthermore, the electrolysis conditions of the organic component containing solution preferably current density of 0.01A / dm 2 ~10A / dm 2 .

工程C: 工程Cは、工程Bにおいて得られた金属成分を含む有機層の表面に銅箔層を形成する工程である。工程Cでは、銅箔層の形成方法に特に限定はないが、電解法を採用することが好ましい。電解法を採用する場合は、硫酸銅系溶液、ピロリン酸銅系溶液、スルファミン酸銅系溶液、シアン化銅系溶液等の電解液を用いることができる。工程Cでは、当該電解液中に金属成分を含む有機層を形成したキャリアを浸漬し、金属成分を含む有機層の表面に対しアノード電極を配置し、当該電解液を電解することで、金属成分を含む有機層の表面に銅箔層を形成することができる。なお、銅箔層の表面には、長期保存性等を考慮して、防錆処理を施しても良い。 Step C: Step C is a step of forming a copper foil layer on the surface of the organic layer containing the metal component obtained in Step B. In step C, the method for forming the copper foil layer is not particularly limited, but an electrolytic method is preferably employed. When the electrolytic method is employed, an electrolytic solution such as a copper sulfate-based solution, a copper pyrophosphate-based solution, a copper sulfamate solution, or a copper cyanide-based solution can be used. In step C, the carrier in which the organic layer containing the metal component is formed is immersed in the electrolytic solution, the anode electrode is disposed on the surface of the organic layer containing the metal component, and the electrolytic solution is electrolyzed, thereby A copper foil layer can be formed on the surface of the organic layer containing. In addition, the surface of the copper foil layer may be subjected to rust prevention treatment in consideration of long-term storage.

<銅張積層板の形態>
本件発明に係る銅張積層板は、上述のキャリア付銅箔を用いて得られることを特徴とする。本件発明でいう銅張積層板の概念には、リジッド銅張積層板及びフレキシブル銅張積層板の双方が含まれる。リジッド銅張積層板であれば、ホットプレス方式や連続ラミネート方式を用いて製造することが可能である。そして、フレキシブル銅張積層板であれば、ロールラミネート方式やキャスティング方式を用いることが可能である。
<Copper-clad laminate configuration>
The copper clad laminated board which concerns on this invention is obtained using the above-mentioned copper foil with a carrier, It is characterized by the above-mentioned. The concept of the copper clad laminate referred to in the present invention includes both a rigid copper clad laminate and a flexible copper clad laminate. If it is a rigid copper clad laminated board, it can be manufactured using a hot press system or a continuous laminating system. And if it is a flexible copper clad laminated board, it is possible to use a roll laminating system and a casting system.

本件発明に係る銅張積層板は、積層されたキャリアと銅箔層との剥離強度の変動係数(CV)が、0.2以下である。よって、当該銅張積層板は、積層されたキャリアと銅箔層とのキャリアの幅方向における剥離強度のバラツキが小さいため、安定してキャリアを銅箔層から剥離することができる。   In the copper clad laminate according to the present invention, the coefficient of variation (CV) in peel strength between the laminated carrier and the copper foil layer is 0.2 or less. Therefore, the copper-clad laminate has a small variation in peel strength between the laminated carrier and the copper foil layer in the width direction of the carrier, so that the carrier can be stably peeled from the copper foil layer.

<プリント配線板の形態>
本件発明に係るプリント配線板は、上述のキャリア付銅箔を用いて得られることを特徴とする。本件発明に係るプリント配線板の製造方法に関して特段の限定はない。例えば、上述したリジッド銅張積層板をエッチング加工する等して回路形成すれば、リジッドプリント配線板が得られる。また、フレキシブル銅張積層板をエッチング加工する等して回路形成すれば、良好な屈曲性能を備えるフレキシブルプリント配線板が得られる。本件発明に係るキャリア付銅箔は、積層されたキャリアと銅箔層との剥離強度の変動係数(CV)が、0.2以下であるため、積層されたキャリアと銅箔層とのキャリアの幅方向における剥離強度のバラツキが小さく、安定してキャリアを銅箔層から剥離することができる。
<Form of printed wiring board>
The printed wiring board which concerns on this invention is obtained using the above-mentioned copper foil with a carrier, It is characterized by the above-mentioned. There is no special limitation regarding the manufacturing method of the printed wiring board which concerns on this invention. For example, if a circuit is formed by etching the above-described rigid copper-clad laminate, a rigid printed wiring board can be obtained. Moreover, if a circuit is formed by etching a flexible copper-clad laminate, a flexible printed wiring board having good bending performance can be obtained. In the copper foil with a carrier according to the present invention, the coefficient of variation (CV) of the peel strength between the laminated carrier and the copper foil layer is 0.2 or less, so the carrier of the laminated carrier and the copper foil layer The variation in peel strength in the width direction is small, and the carrier can be peeled stably from the copper foil layer.

次に、本件発明に係るキャリア付銅箔の実施例について説明する。実施例1〜実施例3は、有機層を形成する溶液の有機成分含有量のみが異なり、その他の作製条件は同様である。よって、実施例1について説明した後、実施例2及び実施例3については実施例1と異なる点について述べる。   Next, examples of the copper foil with a carrier according to the present invention will be described. Examples 1 to 3 differ only in the organic component content of the solution forming the organic layer, and the other production conditions are the same. Therefore, after describing the first embodiment, the differences between the second embodiment and the third embodiment from the first embodiment will be described.

実施例1では、キャリアとして、幅1350mm、厚さ18μmの電解銅箔を用い、硫酸濃度150g/L、液温30℃の希硫酸溶液に30秒浸漬して酸洗処理を行い、表面に付着した油脂成分や表面酸化被膜を除去した。   In Example 1, an electrolytic copper foil having a width of 1350 mm and a thickness of 18 μm was used as a carrier, and the pickling treatment was performed by immersing in a dilute sulfuric acid solution having a sulfuric acid concentration of 150 g / L and a liquid temperature of 30 ° C. for 30 seconds. The oil and fat component and the surface oxide film were removed.

次に、酸洗処理を行ったキャリアを水洗した後、CBTA濃度5g/L、液温40℃、pH5の溶液に30秒浸漬し、当該キャリアの表面に厚さ5nmの有機剥離層を形成した。   Next, the carrier subjected to the pickling treatment was washed with water and then immersed in a solution having a CBTA concentration of 5 g / L, a liquid temperature of 40 ° C., and a pH of 5 for 30 seconds to form an organic peeling layer having a thickness of 5 nm on the surface of the carrier. .

そして、有機剥離層を形成したキャリアを、硫酸ニッケル濃度240g/L、CBTA濃度0.5mg/L、液温40℃、pH3の溶液に浸漬し、電流密度8A/dmの条件で電解し、有機剥離層と金属成分を含む有機層とをあわせた接合界面層全体の厚さが15nmとなるように有機剥離層の表面に金属成分を含む有機層を形成した。本実施例において金属成分を含む有機層の形成に用いた溶液は、金属成分源として塩化ニッケルを用いていないため、塩化物イオンの濃度は、1g/L以下であった。Then, the carrier on which the organic release layer has been formed is immersed in a solution having a nickel sulfate concentration of 240 g / L, a CBTA concentration of 0.5 mg / L, a liquid temperature of 40 ° C., and a pH of 3, and electrolyzed under a current density of 8 A / dm 2 . The organic layer containing the metal component was formed on the surface of the organic release layer so that the total thickness of the bonding interface layer including the organic release layer and the organic layer containing the metal component was 15 nm. In this example, the solution used for forming the organic layer containing the metal component did not use nickel chloride as the metal component source, so the concentration of chloride ions was 1 g / L or less.

その後、金属成分を含む有機層を形成したキャリアを、銅濃度65g/L、硫酸濃度150g/L、液温45℃の銅電解液に浸漬し、電流密度15A/dmの条件で電解し、金属成分を含む有機層の表面に厚さ3μmの銅箔層を形成した。そして、銅箔層を形成したキャリアを水洗した後、防錆処理を行い、キャリア/接合界面層(有機剥離層/金属成分を含む有機層)/銅箔層の順に積層されたキャリア付銅箔を得た。Thereafter, the carrier on which the organic layer containing the metal component is formed is immersed in a copper electrolyte solution having a copper concentration of 65 g / L, a sulfuric acid concentration of 150 g / L, and a liquid temperature of 45 ° C., and electrolyzed under the condition of a current density of 15 A / dm 2 . A copper foil layer having a thickness of 3 μm was formed on the surface of the organic layer containing the metal component. And after washing the carrier which formed the copper foil layer with water, a rust prevention process is performed and the copper foil with a carrier laminated | stacked in order of the carrier / joining interface layer (organic peeling layer / organic layer containing a metal component) / copper foil layer. Got.

実施例2では、金属成分を含む有機層を形成する溶液のCBTA濃度を2mg/Lとした。   In Example 2, the CBTA concentration of the solution forming the organic layer containing the metal component was 2 mg / L.

実施例3では、金属成分を含む有機層を形成する溶液のCBTA濃度を5mg/Lとした。   In Example 3, the CBTA concentration of the solution forming the organic layer containing the metal component was 5 mg / L.

[比較例1]
比較例1では、金属成分を含む有機層を形成する溶液として、有機成分を含まない、硫酸ニッケル濃度240g/Lの溶液を用いた以外は、実施例1と同様の条件で比較例1のキャリア付銅箔を作製した。
[Comparative Example 1]
In Comparative Example 1, the carrier of Comparative Example 1 under the same conditions as in Example 1 except that a solution having a nickel sulfate concentration of 240 g / L that does not contain an organic component was used as a solution for forming an organic layer containing a metal component. An attached copper foil was produced.

[比較例2]
比較例2では、金属成分を含む有機層を形成する溶液として、硫酸ニッケル濃度240g/L、塩化ニッケル濃度50g/L、CBTA濃度2mg/Lの溶液を用いた。当該溶液の塩化物イオン濃度は、15g/Lであった。それ以外は、実施例1と同様の条件で比較例2のキャリア付銅箔を作製した。
[Comparative Example 2]
In Comparative Example 2, a solution having a nickel sulfate concentration of 240 g / L, a nickel chloride concentration of 50 g / L, and a CBTA concentration of 2 mg / L was used as a solution for forming an organic layer containing a metal component. The chloride ion concentration of the solution was 15 g / L. Other than that, the copper foil with a carrier of the comparative example 2 was produced on the conditions similar to Example 1. FIG.

[評価]
上述した実施例1〜実施例3及び比較例1、比較例2のキャリア付銅箔をプリプレグ(三菱瓦斯化学株式会社製:GHPL−830MBT)にそれぞれ当接させ、真空プレス機を使用して、プレス圧25kg/cm、温度220℃、プレス時間90分の条件で積層し銅張積層板を作製した。そして、各実施例1〜実施例3及び比較例1、比較例2のキャリア付銅箔を用いて作製した銅張積層板を、図2の模式図に示すように、キャリア付銅箔の幅方向に13箇所、長さ方向に5箇所に切り分け、計65個の100mm×70mmの試料とし、各試料について剥離強度を測定した。なお、各試料の剥離強度の測定は、JIS C6481−1996に準拠して行った。
[Evaluation]
Each of the copper foils with carriers of Examples 1 to 3 and Comparative Examples 1 and 2 described above was brought into contact with a prepreg (manufactured by Mitsubishi Gas Chemical Company, Inc .: GHPL-830MBT), and a vacuum press was used. A copper-clad laminate was produced by laminating under conditions of a pressing pressure of 25 kg / cm 2 , a temperature of 220 ° C., and a pressing time of 90 minutes. And as shown in the schematic diagram of FIG. 2, the width | variety of copper foil with a carrier is shown for the copper clad laminated board produced using the copper foil with a carrier of each Example 1- Example 3, Comparative Example 1, and Comparative Example 2. It was divided into 13 places in the direction and 5 places in the length direction, and a total of 65 100 mm × 70 mm samples were measured, and the peel strength was measured for each sample. The peel strength of each sample was measured according to JIS C6481-1996.

図3に、実施例2のキャリア付銅箔の各試料について剥離強度を測定したときの結果を示す。図3は、キャリア付銅箔の幅方向及び長さ方向が切り分けられる前の位置に対応させて、各試料の剥離強度を示している。   In FIG. 3, the result when peeling strength is measured about each sample of the copper foil with a carrier of Example 2 is shown. FIG. 3 shows the peel strength of each sample corresponding to the position before the width direction and the length direction of the copper foil with carrier are cut.

そして、各実施例及び比較例毎に、65個の試料の剥離強度の平均値と標準偏差、並びに、剥離強度の平均値と標準偏差から算出される変動係数(CV)を算出した。算出結果を表1に示す。   For each example and comparative example, the average value and standard deviation of the peel strength of 65 samples and the coefficient of variation (CV) calculated from the average value and standard deviation of the peel strength were calculated. The calculation results are shown in Table 1.

Figure 2015170715
Figure 2015170715

表1に示すように、金属成分と有機成分とが共存する有機層を備えた各実施例のキャリア付銅箔は、剥離強度の変動係数(CV)が、0.17以下であった。また、各実施例のキャリア付銅箔の剥離強度の平均は20g/cm以下であった。これに対し、金属成分を含む有機層に代えて有機成分を含まない金属成分のみで構成した金属層を備えた比較例1のキャリア付銅箔は、剥離強度の平均が24.6g/cmであったが、剥離強度の変動係数(CV)が0.276であり、0.2を上回っていた。また、金属成分を含む有機層を形成する溶液の塩化物イオン濃度が15g/Lである溶液を用いた比較例2のキャリア付銅箔は、剥離強度の平均が7.3g/cmであり、CBTA濃度の条件が同じ実施例2と同等であったが、剥離強度の変動係数(CV)が0.222であり、比較例1と同様に0.2を上回っていた。   As shown in Table 1, the copper foil with a carrier of each Example provided with an organic layer in which a metal component and an organic component coexist had a variation coefficient (CV) of peel strength of 0.17 or less. Moreover, the average of the peeling strength of the copper foil with a carrier of each Example was 20 g / cm or less. On the other hand, instead of the organic layer containing the metal component, the carrier-attached copper foil of Comparative Example 1 provided with the metal layer composed only of the metal component not containing the organic component has an average peel strength of 24.6 g / cm. However, the coefficient of variation (CV) in peel strength was 0.276, which was higher than 0.2. Moreover, the copper foil with a carrier of the comparative example 2 using the solution whose chloride ion concentration of the solution which forms the organic layer containing a metal component is 15 g / L has an average peel strength of 7.3 g / cm, Although the CBTA concentration conditions were the same as in Example 2, the peel strength variation coefficient (CV) was 0.222, which was higher than 0.2 as in Comparative Example 1.

以上の結果から、接合界面層を構成する金属成分を含む有機層を形成することにより、キャリア付銅箔の剥離強度の変動係数(CV)、すなわち、剥離強度のバラツキ度合いを低減させることが可能であることが分かった。また、塩化物イオン濃度が1g/L以下の溶液を用いて金属成分を含む有機層を形成することにより、キャリア付銅箔の剥離強度の変動係数(CV)をより低減させることができたことが確認された。   From the above results, it is possible to reduce the variation coefficient (CV) of the peel strength of the copper foil with carrier, that is, the degree of variation in the peel strength, by forming the organic layer containing the metal component constituting the bonding interface layer. It turns out that. In addition, the coefficient of variation (CV) of the peel strength of the carrier-attached copper foil could be further reduced by forming an organic layer containing a metal component using a solution having a chloride ion concentration of 1 g / L or less. Was confirmed.

本件発明に係るキャリア付銅箔によれば、キャリアと銅箔層との剥離強度の変動係数(CV)が0.2以下であるため、キャリアの幅方向における剥離強度のバラツキが小さく、安定してキャリアを銅箔層から剥離することができる。   According to the copper foil with a carrier according to the present invention, since the coefficient of variation (CV) in the peel strength between the carrier and the copper foil layer is 0.2 or less, the variation in the peel strength in the width direction of the carrier is small and stable. The carrier can be peeled from the copper foil layer.

1 キャリア付銅箔
2 キャリア
3 剥離層
4 金属成分を含む有機層
5 銅箔層
6 接合界面層
DESCRIPTION OF SYMBOLS 1 Copper foil with a carrier 2 Carrier 3 Peeling layer 4 Organic layer containing a metal component 5 Copper foil layer 6 Bonding interface layer

キャリア付銅箔: 本件発明に係るキャリア付銅箔は、キャリアの表面に接合界面層を介して銅箔層を備えるものであって、当該接合界面層は、当該キャリアの表面に設けられる剥離層と、当該剥離層の表面に設けられる金属成分を含む有機層とからなり、プレス圧25kg/cm 、温度220℃、プレス時間90分の条件で当該キャリア付銅箔をプリプレグに積層し、幅方向に13箇所、長さ方向に5箇所に切り分けた各試料についてJIS C6481−1996に準拠して測定した当該キャリアと当該銅箔層との剥離強度の変動係数(CV)が、0.2以下であることを特徴とする。 Copper foil with carrier: The copper foil with carrier according to the present invention comprises a copper foil layer on the surface of the carrier via a bonding interface layer, and the bonding interface layer is a release layer provided on the surface of the carrier. And an organic layer containing a metal component provided on the surface of the release layer , the copper foil with a carrier is laminated on a prepreg under the conditions of a press pressure of 25 kg / cm 2 , a temperature of 220 ° C., and a press time of 90 minutes, The coefficient of variation (CV) in peel strength between the carrier and the copper foil layer measured in accordance with JIS C6481-1996 for each sample cut into 13 places in the direction and 5 places in the length direction is 0.2 or less. It is characterized by being.

銅張積層板: 本件発明に係る銅張積層板は、上述したキャリア付銅箔を備えたことを特徴とする。 Copper-clad laminates: copper-clad laminate according to the present invention is characterized by comprising the above-described copper foil with carrier.

プリント配線板の製造方法: 本件発明に係るプリント配線板の製造方法は、上述したキャリア付銅箔を用いてプリント配線板を製造することを特徴とする。 Manufacturing method of a printed wiring board: The manufacturing method of the printed wiring board which concerns on this invention manufactures a printed wiring board using the copper foil with a carrier mentioned above.

本件発明に係るキャリア付銅箔によれば、プレス圧25kg/cm 、温度220℃、プレス時間90分の条件で当該キャリア付銅箔をプリプレグに積層し、幅方向に13箇所、長さ方向に5箇所に切り分けた各試料についてJIS C6481−1996に準拠して測定したキャリアと銅箔層との剥離強度の変動係数(CV)が0.2以下であるため、キャリアの幅方向における剥離強度のバラツキが小さく、安定してキャリアを剥離することができる。 According to the copper foil with a carrier according to the present invention, the copper foil with a carrier is laminated on a prepreg under the conditions of a pressing pressure of 25 kg / cm 2 , a temperature of 220 ° C., and a pressing time of 90 minutes, and 13 places in the width direction, the length direction. Since the coefficient of variation (CV) of the peel strength between the carrier and the copper foil layer measured in accordance with JIS C6481-1996 for each sample cut into 5 locations is 0.2 or less, the peel strength in the width direction of the carrier Variation is small and the carrier can be peeled stably.

<キャリア付銅箔>
本件発明に係るキャリア付銅箔は、キャリアの表面に接合界面層を介して銅箔層を備えるキャリア付銅箔であって、当該接合界面層が、当該キャリアの表面に設けられる剥離層と、当該剥離層の表面に設けられる金属成分を含む有機層とからなり、プレス圧25kg/cm 、温度220℃、プレス時間90分の条件で当該キャリア付銅箔をプリプレグに積層し、幅方向に13箇所、長さ方向に5箇所に切り分けた各試料についてJIS C6481−1996に準拠して測定した当該キャリアと当該銅箔層との剥離強度の変動係数(CV)が、0.2以下であることを特徴とする。図1に本件発明に係るキャリア付銅箔の基本的層構成の断面模式図を示す。なお、図1は各層の積層状態を把握できるように記載したものであり、現実の各層の厚さを反映させたものではない。図1に示すように、本件発明に係るキャリア付銅箔1は、キャリア2/接合界面層6/銅箔層5の層構成を備える。以下において、「キャリアと銅箔層との剥離強度の変動係数(CV)」、「キャリア」、「接合界面層」、「銅箔層」について順に説明する。
<Copper foil with carrier>
The copper foil with a carrier according to the present invention is a copper foil with a carrier provided with a copper foil layer on the surface of the carrier via a bonding interface layer, and the bonding interface layer is a release layer provided on the surface of the carrier, It consists of an organic layer containing a metal component provided on the surface of the release layer, and the copper foil with carrier is laminated on the prepreg under the conditions of a press pressure of 25 kg / cm 2 , a temperature of 220 ° C., and a press time of 90 minutes, The coefficient of variation (CV) in peel strength between the carrier and the copper foil layer measured in accordance with JIS C6481-1996 for each sample cut into 13 places and 5 places in the length direction is 0.2 or less. It is characterized by that. FIG. 1 shows a schematic cross-sectional view of a basic layer configuration of a carrier-attached copper foil according to the present invention. In addition, FIG. 1 is described so that the lamination state of each layer can be grasped, and does not reflect the actual thickness of each layer. As shown in FIG. 1, the copper foil 1 with a carrier according to the present invention has a layer configuration of carrier 2 / bonding interface layer 6 / copper foil layer 5. Hereinafter, “coefficient of variation (CV) in peel strength between carrier and copper foil layer”, “carrier”, “bonding interface layer”, and “copper foil layer” will be described in this order.

キャリアと銅箔層との剥離強度の変動係数(CV): 本件発明に係る当該キャリア付銅箔は、キャリアと銅箔層との剥離強度の変動係数(CV)が0.2以下である。当該キャリアと銅箔層とのより好ましい剥離強度の変動係数(CV)は、0.15以下である。この剥離強度は、プレス圧25kg/cm 、温度220℃、プレス時間90分の条件で当該キャリア付銅箔をプリプレグに積層し、JIS C 6481−1996に準拠して測定した場合の値である。そして、この剥離強度の変動係数(CV)は、キャリア付銅箔の幅方向に13箇所及び長さ方向に5箇所に切り分けた各試料の剥離強度の標準偏差(stdev)と平均値(ave)に基づいて算出される値であり、キャリアの剥離強度のバラツキの指標となる。具体的には、変動係数(CV)は、以下に示す式で求められる。
変動係数(CV)=標準偏差(stdev)/平均値(ave)・・・(式)
Coefficient of variation (CV) in peel strength between carrier and copper foil layer: In the copper foil with carrier according to the present invention, the coefficient of variation (CV) in peel strength between the carrier and the copper foil layer is 0.2 or less. A more preferable coefficient of variation (CV) in peel strength between the carrier and the copper foil layer is 0.15 or less. This peel strength is a value when the copper foil with a carrier is laminated on a prepreg under conditions of a press pressure of 25 kg / cm 2 , a temperature of 220 ° C., and a press time of 90 minutes, and measured in accordance with JIS C 6481-1996. . Then, the coefficient of variation (CV) of the peel strength is the standard deviation (stdev) and average value (ave) of the peel strength of each sample cut into 13 places in the width direction and 5 places in the length direction of the copper foil with carrier. Is a value calculated based on the above and serves as an index of variation in the peel strength of the carrier. Specifically, the coefficient of variation (CV) is obtained by the following equation.
Coefficient of variation (CV) = standard deviation (stdev) / average value (ave) (formula)

接合界面層: 本件発明において、接合界面層は、キャリアと銅箔層との間に挟持された状態で存在し、キャリアを銅箔層から引き剥がし可能とする層である。本件発明に係るキャリア付銅箔では、接合界面層が、キャリアの表面に設けられる「剥離層」と、当該剥離層の表面に設けられる「金属成分を含む有機層」とからなる。上述した図1では、接合界面層6は、剥離層3及び金属成分を含む有機層4からなる。本件発明において、剥離層3は、「有機剥離層」又は「無機剥離層」のいずれかを用いることが好ましい。 Bonding interface layer: In the present invention, the bonding interface layer is a layer that is sandwiched between the carrier and the copper foil layer and allows the carrier to be peeled off from the copper foil layer. In the copper foil with a carrier according to the present invention, the bonding interface layer is composed of a “peeling layer” provided on the surface of the carrier and an “organic layer containing a metal component” provided on the surface of the peeling layer . In FIG. 1 mentioned above, the joining interface layer 6 consists of the peeling layer 3 and the organic layer 4 containing a metal component. In the present invention, the release layer 3 is preferably an “organic release layer” or an “inorganic release layer”.

<銅張積層板の形態>
本件発明に係る銅張積層板は、上述のキャリア付銅箔を備えたことを特徴とする。本件発明でいう銅張積層板の概念には、リジッド銅張積層板及びフレキシブル銅張積層板の双方が含まれる。リジッド銅張積層板であれば、ホットプレス方式や連続ラミネート方式を用いて製造することが可能である。そして、フレキシブル銅張積層板であれば、ロールラミネート方式やキャスティング方式を用いることが可能である。
<Copper-clad laminate configuration>
Copper-clad laminate according to the present invention is characterized by having a copper foil with carrier described above. The concept of the copper clad laminate referred to in the present invention includes both a rigid copper clad laminate and a flexible copper clad laminate. If it is a rigid copper clad laminated board, it can be manufactured using a hot press system or a continuous laminating system. And if it is a flexible copper clad laminated board, it is possible to use a roll laminating system and a casting system.

<プリント配線板の製造方法の形態>
本件発明に係るプリント配線板の製造方法は、上述のキャリア付銅箔を用いてプリント配線板を製造することを特徴とする。本件発明に係るプリント配線板の製造方法に関して特段の限定はない。例えば、上述したリジッド銅張積層板をエッチング加工する等して回路形成すれば、リジッドプリント配線板が得られる。また、フレキシブル銅張積層板をエッチング加工する等して回路形成すれば、良好な屈曲性能を備えるフレキシブルプリント配線板が得られる。本件発明に係るキャリア付銅箔は、積層されたキャリアと銅箔層との剥離強度の変動係数(CV)が、0.2以下であるため、積層されたキャリアと銅箔層とのキャリアの幅方向における剥離強度のバラツキが小さく、安定してキャリアを銅箔層から剥離することができる。
<Mode of manufacturing printed wiring board>
The printed wiring board manufacturing method according to the present invention is characterized by manufacturing a printed wiring board using the above-described copper foil with a carrier. There is no special limitation regarding the manufacturing method of the printed wiring board which concerns on this invention. For example, if a circuit is formed by etching the above-described rigid copper-clad laminate, a rigid printed wiring board can be obtained. Moreover, if a circuit is formed by etching a flexible copper-clad laminate, a flexible printed wiring board having good bending performance can be obtained. In the copper foil with a carrier according to the present invention, the coefficient of variation (CV) of the peel strength between the laminated carrier and the copper foil layer is 0.2 or less, so the carrier of the laminated carrier and the copper foil layer The variation in peel strength in the width direction is small, and the carrier can be peeled stably from the copper foil layer.

Claims (9)

キャリアの表面に接合界面層を介して銅箔層を備えるキャリア付銅箔であって、
当該キャリアと当該銅箔層との剥離強度の変動係数(CV)が、0.2以下であることを特徴とするキャリア付銅箔。
A copper foil with a carrier comprising a copper foil layer on the surface of the carrier via a bonding interface layer,
The carrier-attached copper foil, wherein a coefficient of variation (CV) in peel strength between the carrier and the copper foil layer is 0.2 or less.
前記接合界面層は、前記キャリアの表面に設けられる剥離層と、当該剥離層の表面に設けられる金属成分を含む有機層とからなる請求項1に記載のキャリア付銅箔。   2. The copper foil with a carrier according to claim 1, wherein the bonding interface layer includes a release layer provided on a surface of the carrier and an organic layer containing a metal component provided on the surface of the release layer. 前記金属成分が、ニッケル、及び/又は、コバルトを含む請求項1に記載のキャリア付銅箔。   The copper foil with a carrier according to claim 1, wherein the metal component contains nickel and / or cobalt. 前記剥離層が、有機成分からなる請求項2又は請求項3に記載のキャリア付銅箔。   The copper foil with a carrier according to claim 2 or 3, wherein the release layer comprises an organic component. 前記有機層は、前記剥離層で用いた有機成分を含む請求項4に記載のキャリア付銅箔。   The said organic layer is copper foil with a carrier of Claim 4 containing the organic component used by the said peeling layer. 前記剥離層が、無機成分からなる請求項2又は請求項3に記載のキャリア付銅箔。   The copper foil with a carrier according to claim 2 or 3, wherein the release layer comprises an inorganic component. 請求項1〜請求項6に記載のキャリア付銅箔の製造方法であって、
以下に述べる工程A、工程B、工程Cの各工程を備えることを特徴とするキャリア付銅箔の製造方法。
工程A:キャリアの表面に接合界面層として剥離層を形成する工程。
工程B:金属成分源としての硫酸塩を含み、塩化物イオンの濃度が1g/L以下である有機成分含有溶液を用いて、当該剥離層の表面に、前記接合界面層の一部として金属成分を含む有機層を形成する工程。
工程C:当該金属成分を含む有機層の表面に銅箔層を形成する工程。
It is a manufacturing method of the copper foil with a carrier of Claims 1-6,
The manufacturing method of the copper foil with a carrier characterized by including each process of the process A, the process B, and the process C which are described below.
Step A: A step of forming a release layer as a bonding interface layer on the surface of the carrier.
Step B: Using an organic component-containing solution containing sulfate as a metal component source and having a chloride ion concentration of 1 g / L or less, a metal component as a part of the bonding interface layer is formed on the surface of the release layer. Forming an organic layer containing.
Process C: The process of forming a copper foil layer on the surface of the organic layer containing the said metal component.
請求項1〜請求項6のいずれかに記載のキャリア付銅箔を用いて得られることを特徴とする銅張積層板。   A copper clad laminate obtained by using the copper foil with a carrier according to any one of claims 1 to 6. 請求項1〜請求項6のいずれかに記載のキャリア付銅箔を用いて得られることを特徴とするプリント配線板。   A printed wiring board obtained by using the carrier-attached copper foil according to any one of claims 1 to 6.
JP2015524547A 2014-05-07 2015-05-07 Copper foil with carrier, method for producing copper foil with carrier, copper-clad laminate obtained using copper foil with carrier, and method for producing printed wiring board Active JP6100375B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014095897 2014-05-07
JP2014095897 2014-05-07
PCT/JP2015/063223 WO2015170715A1 (en) 2014-05-07 2015-05-07 Copper foil with carrier, manufacturing method for copper foil with carrier, copper clad laminate sheet and printed wiring board obtained using copper foil with carrier

Publications (2)

Publication Number Publication Date
JP6100375B2 JP6100375B2 (en) 2017-03-22
JPWO2015170715A1 true JPWO2015170715A1 (en) 2017-04-20

Family

ID=54392565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015524547A Active JP6100375B2 (en) 2014-05-07 2015-05-07 Copper foil with carrier, method for producing copper foil with carrier, copper-clad laminate obtained using copper foil with carrier, and method for producing printed wiring board

Country Status (5)

Country Link
JP (1) JP6100375B2 (en)
KR (1) KR101807453B1 (en)
CN (1) CN106460212B (en)
TW (1) TWI582275B (en)
WO (1) WO2015170715A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11002326B2 (en) 2016-08-31 2021-05-11 Mando Corporation Electronic parking brake
KR101942257B1 (en) 2016-12-13 2019-01-25 전남대학교산학협력단 Osteoporosis resistant mouse, and active substances screening method for preventing or treating osteoporosis using the mouse
JP2018171899A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Copper foil with release layer, laminate, method for producing printed wiring board and method for producing electronic apparatus
CN107475698B (en) * 2017-06-23 2020-04-10 安庆师范大学 Preparation method of Ni-Cr-B-P of stripping layer of ultrathin copper foil
JP7032578B2 (en) * 2019-01-11 2022-03-08 三井金属鉱業株式会社 Laminate
KR102137068B1 (en) * 2019-11-27 2020-07-23 와이엠티 주식회사 Carrier foil with metal foil, manufacturing method of the same, and laminate comprising the same
TWI796042B (en) * 2020-12-10 2023-03-11 韓商Ymt股份有限公司 Release layer for metal foil with carrier and metal foil comprising the same
KR102511335B1 (en) * 2022-05-09 2023-03-17 와이엠티 주식회사 Composite release layer for metal foil with carrier and metal foil comprising the same
WO2024122893A1 (en) * 2022-12-08 2024-06-13 롯데에너지머티리얼즈 주식회사 Copper foil attached to carrier foil and copper clad laminate using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172181A (en) * 2013-03-05 2014-09-22 Jx Nippon Mining & Metals Corp Carrier-provided copper foil, method of producing carrier-provided copper foil, printed wire board, printed circuit board, copper-clad laminate and method of producing printed wiring board
JP2014195871A (en) * 2013-03-05 2014-10-16 Jx日鉱日石金属株式会社 Copper foil with carrier, manufacturing method of copper foil with carrier, printed wiring board, printed circuit board, copper clad laminated sheet, and manufacturing method of printed wiring board

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228130A (en) 1992-02-19 1993-09-07 Otax Kk Portable blood monitoring device
JP3676152B2 (en) * 1999-11-11 2005-07-27 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil and method for producing the same
JP3690962B2 (en) 2000-04-26 2005-08-31 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil, method for producing electrolytic copper foil with carrier foil, and copper-clad laminate
JP3973197B2 (en) * 2001-12-20 2007-09-12 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil and method for producing the same
CN1984527B (en) 2005-12-15 2010-12-01 古河电气工业株式会社 Ultrathin copper foil with carrier and printed circuit board
JP5503789B2 (en) * 2013-08-30 2014-05-28 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil and copper-clad laminate obtained using the electrolytic copper foil with carrier foil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172181A (en) * 2013-03-05 2014-09-22 Jx Nippon Mining & Metals Corp Carrier-provided copper foil, method of producing carrier-provided copper foil, printed wire board, printed circuit board, copper-clad laminate and method of producing printed wiring board
JP2014195871A (en) * 2013-03-05 2014-10-16 Jx日鉱日石金属株式会社 Copper foil with carrier, manufacturing method of copper foil with carrier, printed wiring board, printed circuit board, copper clad laminated sheet, and manufacturing method of printed wiring board

Also Published As

Publication number Publication date
KR20160111985A (en) 2016-09-27
TW201544636A (en) 2015-12-01
WO2015170715A1 (en) 2015-11-12
JP6100375B2 (en) 2017-03-22
TWI582275B (en) 2017-05-11
CN106460212B (en) 2019-05-14
KR101807453B1 (en) 2017-12-08
CN106460212A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6100375B2 (en) Copper foil with carrier, method for producing copper foil with carrier, copper-clad laminate obtained using copper foil with carrier, and method for producing printed wiring board
JP6297124B2 (en) Copper foil, copper foil with carrier foil and copper clad laminate
JP3973197B2 (en) Electrolytic copper foil with carrier foil and method for producing the same
JP6905157B2 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
JP6342078B2 (en) Roughening copper foil, copper clad laminate and printed wiring board
JP6342356B2 (en) Copper foil with carrier, printed wiring board, laminate, laminated board, electronic device and method for producing printed wiring board
WO2010027052A1 (en) Ultrathin copper foil with carrier, and copper laminated board or printed wiring board
JP2005344174A (en) Surface-treated copper foil, flexible copper-clad laminate manufactured using the same, and film carrier tape
JP6784806B2 (en) Copper foil with carrier foil and copper-clad laminate
JP4612978B2 (en) Composite copper foil and method for producing the same
JP2009214308A (en) Copper foil with carrier
JP3392066B2 (en) Composite copper foil, method for producing the same, copper-clad laminate and printed wiring board using the composite copper foil
JP7259093B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP2005288856A (en) Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminated sheet using electrolytic copper foil with carrier foil
TWI592066B (en) Carrier copper foil, method for producing the carrier copper foil, copper-clad laminate obtained by using the carrier copper foil, and printed circuit board
JP3812834B2 (en) Electrolytic copper foil with carrier foil, method for producing the same, and copper-clad laminate using the electrolytic copper foil with carrier foil
JP3891562B2 (en) Electrolytic copper foil with carrier foil, production method thereof, and copper-clad laminate using the electrolytic copper foil with carrier foil
TW201531174A (en) Composite metal foil, composite metal foil containing carrier, and metal clad laminate and printed wiring board using the same
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
WO2012132574A1 (en) Composite copper foil and method for producing same
WO2023189566A1 (en) Metal foil with carrier, metal-clad laminate, and printed wiring board
WO2023189565A1 (en) Carrier-attached metal foil, metal-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170222

R150 Certificate of patent or registration of utility model

Ref document number: 6100375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250