JPWO2015125260A1 - 冷却システム制御装置及び冷却システム制御方法 - Google Patents

冷却システム制御装置及び冷却システム制御方法 Download PDF

Info

Publication number
JPWO2015125260A1
JPWO2015125260A1 JP2016503840A JP2016503840A JPWO2015125260A1 JP WO2015125260 A1 JPWO2015125260 A1 JP WO2015125260A1 JP 2016503840 A JP2016503840 A JP 2016503840A JP 2016503840 A JP2016503840 A JP 2016503840A JP WO2015125260 A1 JPWO2015125260 A1 JP WO2015125260A1
Authority
JP
Japan
Prior art keywords
cooling water
engine
heat recovery
exhaust heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016503840A
Other languages
English (en)
Other versions
JP6264443B2 (ja
Inventor
永井 宏幸
宏幸 永井
徹 深見
徹 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2015125260A1 publication Critical patent/JPWO2015125260A1/ja
Application granted granted Critical
Publication of JP6264443B2 publication Critical patent/JP6264443B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/0205Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

冷却システム制御装置は、内燃機関に冷却水を供給する冷却水ポンプ(3)と、冷却水を冷却する放熱器(9)と、排気ガスと冷却水との熱交換を行なう排熱回収器(6)とを少なくとも含んで構成される冷却システムを制御する。また、冷却水流量を調整する装置(12)と、機関内の冷却水通路の冷却水温または冷却水圧を取得する装置(13)と、排熱回収器の内部の冷却水温または冷却水圧を取得する装置とを備える。そして、内燃機関の冷機始動時に冷却水流量を制限し、機関内冷却水通路の冷却水温または冷却水圧と、排熱回収器内部の冷却水温または冷却水圧と、に基づいて冷却水流量の制限を解除する。

Description

本発明は、内燃機関の冷却システムの制御に関する。
JP2008−274885Aには、内燃機関を通過した冷却水が内部を流れ、排気ガスの熱を冷却水に回収する排熱回収器を排気通路に備える構成が開示されている。また、JP2008−274885Aには、冷却システムを循環する冷却水流量として、内燃機関内での沸騰の防止に必要な冷却水流量、又は排熱回収器内での沸騰の防止に必要な冷却水流量の大きい方を選択する制御が開示されている。
一方、JP2007−218115Aには、内燃機関の始動時に冷却水流量を制限する制御(ゼロフロー制御)を実行し、機関出口の冷却水温度がサーモスタット開弁温度に到達したら冷却水流量の制限を解除する制御が開示されている。JP2007−218115Aに記載の制御によれば、機関始動時には内燃機関内を流れる冷却水流量が制限されて内燃機関から冷却水へ逃げる熱量が制限されるので、内燃機関が暖機状態になるまでの時間(暖機時間)を短縮できる。さらに、サーモスタット開弁温度に到達したら冷却水流量の制限を解除するので、冷却水が沸騰することを防止できる。
ところで、JP2008−274885Aには、冷機始動時に暖機時間を短縮するための制御について記載されていない。一方、JP2007−218115Aに記載の制御は、排気通路中に排熱回収器を備える構成について考慮されていない。
すなわち、排熱回収器を備える構成について、冷却水の沸騰を防止しつつ暖機時間を短縮するための制御については、いずれの文献にも開示されていない。また、仮にJP2008−274885Aに記載の構成に対して、JP2007−218115Aに記載の制御を適用したとしても、冷却水流量の制限を解除する前に排熱回収器内で冷却水が沸騰してしまうおそれがある。
そこで本発明では、排気通路中に排熱回収器を備える構成について、冷機始動後の暖機時間を短縮しつつ、内燃機関内及び排熱回収器内での冷却水の沸騰を防止し得る冷却システム制御装置を提供することを目的とする。
本発明のある態様によれば、内燃機関の内部に設けた機関内冷却水通路に冷却水を供給する冷却水ポンプと、機関内冷却水通路を通過した冷却水から外気への放熱を行ない冷却水の温度を低下させる放熱器と、内燃機関の排気ガスから冷却水への熱交換を行なう排熱回収器と、を少なくとも含んで構成される冷却システムを制御する冷却システム制御装置が提供される。
図1は、本発明の実施形態に係る冷却システムの概略構成図である。 図2は、ウォータポンプの一例を示す図である。 図3は、ウォータポンプの他の例を示す図である。 図4は、通路コントロールバルブの一例を示す図である。 図5は、通路コントロールバルブの他の例を示す図である。 図6は、排熱回収器の構成を説明する為の図である。 図7は、ゼロフロー制御の維持・解除を判断するためのフローチャートである。 図8は、暖房要求の有無を判定するためのフローチャートである。 図9は、冷却水が止まっている状態で排熱回収器内の水温を推定するためのブロック図である。 図10は、冷却システムの他の例の概略構成図である。 図11は、冷却水が流れている状態で排熱回収器内の水温を推定するためのブロック図である。 図12は、冷却システムのさらに他の例の概略構成図である。 図13は、冷却水温と単位時間当たりの気泡発生量との関係を示す図である。
以下、添付図面を参照しながら本発明の実施形態について説明する。
図1は、本発明の実施形態に係る冷却システム100の概略構成図である。冷却システム100は、内燃機関1の内部に設けた冷却水通路の出口(以下、内燃機関1の出口ともいう。)とラジエータ9の入口、及びラジエータ9の出口と内燃機関1の内部に設けた冷却水通路の入口(以下、内燃機関1の入口ともいう。)が冷却水通路11で連結されている。ラジエータ9の出口と内燃機関1の入口との間にはウォータポンプ(冷却水ポンプ)3が介装されている。なお、ラジエータ(放熱器)9は、公知のラジエータと同様にリザーブタンク10を備える。
冷却水通路11の内燃機関1の出口側には、冷却水の温度(以下、冷却水温ともいう)を検出するための水温センサ(機関側条件取得手段)13が配置されている。水温センサ13で検出した冷却水温は排熱回収器内部条件取得手段としてのコントローラ(ECM:Engine Control Module)12に読み込まれる。なお、水温センサ13は、公知の車両において、内燃機関の制御に必要な冷却水温を検出するために取り付けられているものと同じものであって、本実施形態のために新たに取り付けたものではない。また、水温センサ13で検出した内燃機関1の出口側の水温を、内燃機関1の内部に設けた冷却水通路内の水温とみなす。
そして、ウォータポンプ3により内燃機関1に冷却水を供給し、内燃機関1内の冷却水通路を通過して内燃機関1から出た冷却水をラジエータ9で冷却し、再びウォータポンプ3により内燃機関1に供給する、というサイクルを繰り返すものである。
ここで、ウォータポンプ3について説明する。ウォータポンプ3は、冷却水通路11の冷却水流量を可変に調整し得るものであればよい。
図2は本実施形態に使用可能なウォータポンプ3の模式図である。図中の矢印は冷却水の流れを示している。ウォータポンプ3は、ハウジング3Aにインペラ43が回転可能に収められたものであり、インペラ43の回転軸43Aにはクラッチ付きのポンププーリ(冷却水流量調整手段)41が固定支持されている。ポンププーリ41と内燃機関1のクランクシャフト1Aに固定支持されたエンジンプーリ40とには、ベルト42が掛け回されている。上記構成によれば、内燃機関1が運転しており、ポンププーリ41のクラッチが締結されていれば、内燃機関1の駆動力によってインペラ43が回転する。これにより、ウォータポンプ3は冷却水を内燃機関1に供給することができる。また、クラッチを解放すると、インペラ43が停止して内燃機関1への冷却水の供給も停止し、クラッチを間欠的に断接することで、内燃機関1への冷却水の供給量を調整することもできる。
図3は、本実施形態に使用可能なウォータポンプ3の他の例を示す模式図である。図中の矢印は冷却水の流れを示している。図3のウォータポンプ3は、インペラ43が回転することで冷却水を内燃機関1に供給する点は図2の構成と同様であるが、インペラ43が電動モータ(冷却水流量調整手段)50により駆動される点が異なる。図3のウォータポンプ3は、電動モータ50の回転速度を制御することで、冷却水流量を調整することができる。
図1の説明に戻る。冷却水通路11は、内燃機関1の出口からラジエータ9の入口までの間で、ヒータ5及び排熱回収器(図中のEHRS)6が介装された冷却水通路11Aと、内燃機関用オイルクーラ7が介装された冷却水通路11Bと、変速機用オイルクーラ8が介装された冷却水通路11Cと、に分岐している。
なお、内燃機関用オイルクーラ7および変速機用オイルクーラ8は、通常運転時にはエンジンオイル及び変速機用オイルを冷却する機能を発揮するが、機関始動時に冷却水温の方がエンジンオイル等より高温の場合には、エンジンオイル等を加熱する機能を発揮する。
ヒータ5と排熱回収器6とは冷却水流れに対して直列に配置されている。また、冷却水通路11Bと冷却水通路11Cは、冷却水通路11からの分岐点では一つの通路であったものが分岐したものである。
冷却水通路11A−11Cは、それぞれ排熱回収器6、内燃機関用オイルクーラ7、変速機用オイルクーラ8の出口側で、ラジエータ9を通過した冷却水通路11に合流している。
上記の冷却水通路11の分岐点には、通路コントロールバルブ(MCV:Multifflow Control Valve)2が介装されている。また、内燃機関1の出口と通路コントロールバルブ2の入口との間で、冷却水通路11からスロットルチャンバ4への冷却水通路14が分岐している。
なお、冷却水通路14を流れる冷却水流量は、他の冷却水通路11を流れる冷却水流量に比べて大幅に少なく、ほとんど無視し得る。
ここで、通路コントロールバルブ2、排熱回収器6について説明する。
図4は、本実施形態に使用可能な通路コントロールバルブ2の模式図である。通路コントロールバルブ2のハウジング2Aは、内燃機関1の出口からの冷却水通路11が接続される開口部2B及びラジエータ9への冷却水通路11が接続される開口部2Eの他に、2つの開口部2C、2Dを有する。この2つの開口部2C、2Dには、それぞれ冷却水通路11A、及び、冷却水通路11Bと冷却水通路11Cとに分岐する通路が接続されている。
また、ハウジング2Aには、弁体60が回転可能に収められている。この弁体60は、閉弁状態では図4に示すように開口部2C−2Eを全て閉塞する。そこから図中時計回りに回転すると、まず開口部2Cが開口し、次に開口部2Dが開口し、最後に開口部2Eが開口する。つまり、弁体60の回転角度を制御することで、冷却水を流す通路を選択することができる。
図5は、本実施形態に使用可能な通路コントロールバルブ2の他の例の模式図である。図5の通路コントロールバルブ2は、図4の構成の弁体60に代えて、開口部2C−2Eのそれぞれに電磁弁70を備える。これにより、各電磁弁70を制御することで、冷却水を流す通路を選択することができる。
図6は、本実施形態で使用する排熱回収器6の模式図である。排熱回収器6は、内燃機関1の排気ガスと冷却水との間で熱交換を行なわせて排気ガスの熱を冷却水に回収するものである。回収した熱は、例えば空調装置や機関の暖機促進に用いる。
排熱回収器6は、内燃機関1の排気通路に介装されており、内部には熱交換用通路24が排気ガスに曝されるように設けられている。熱交換用通路24の入口23、出口25には、それぞれ冷却水通路11Aが接続されている。
排気通路20からは、排熱回収器6を迂回するバイパス通路21が分岐している。排気通路20とバイパス通路21との分岐点には、排気ガスの流路を排気通路20またはバイパス通路21のいずれかに選択的に切り換えるバイパスバルブ22が設けられている。
なお、排気通路20とバイパス通路21との合流部よりさらに下流側に、図示しない排気浄化用の触媒が配置されている。
上述したウォータポンプ3、通路コントロールバルブ2、及びバイパスバルブ22は、コントローラ12により制御される。ECM12は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。ECM12を複数のマイクロコンピュータで構成することも可能である。
次に、上記の冷却システムの機関始動時の制御について説明する。
冷機始動時に内燃機関1の内部を冷却水が流れると、冷却水が内燃機関1で発生した熱を持ち去るので、内燃機関1の温度上昇が遅くなる。そこで、ECM12は冷機始動時に冷却システム内の冷却水流量を制限する、いわゆるゼロフロー制御を実行する。
冷却水流量を制限すれば、冷却水に持ち去られる熱量が減少するので、内燃機関1が暖機状態になるまでの時間を、ゼロフロー制御を実行しない場合に比べて短縮することができる。
なお、ここでいうゼロフロー制御とは、冷却水の流量を完全にゼロにするものだけでなく、流量を10%程度まで減少させるものも含む。すなわち、図1の構成において、ウォータポンプ3を駆動させ、通路コントロールバルブ2で開口部2C−2Eを閉塞した状態もゼロフロー制御に含まれる。この状態では、内燃機関1からスロットルチャンバ4へと冷却水が流れるが、上述したように冷却水通路14の冷却水流量は無視し得る程度なので、暖機状態になるまでの時間を短縮する効果は十分に得られる。
また、ゼロフロー制御中に内燃機関1の温度が上昇しているので、ゼロフロー制御を解除した後、冷却水は速やかに温度上昇する。
図7は、機関始動後にゼロフロー制御を維持するか解除するかを判断するための制御ルーチンを示すフローチャートである。本制御ルーチンは、例えば10ミリ秒程度の短い間隔で繰り返し実行される。
ステップS100で、ECM12はゼロフロー制御中であるか否かを判定し、ゼロフロー制御中であればステップS110の処理を実行し、そうでなければ今回の制御ルーチンを終了する。
ステップS110で、ECM12は後述する暖房要求の有無を判定し、暖房要求有りの場合はステップS150のゼロフロー制御を解除して本ルーチンを終了し、暖房要求無しの場合はステップS120の処理を実行する。暖房要求が有る場合にゼロフロー制御を解除するのは、暖房運転を実施する為にヒータ5に冷却水を循環させる必要があるからである。
ここで、暖房要求の有無の判定方法について説明する。
図8は、暖房要求の有無を判定する為の制御ルーチンを示すフローチャートである。本制御ルーチンも、例えば10ミリ秒程度の短い間隔で繰り返し実行される。
ステップS200で、ECM12はエアコンがオートモードに設定されているか否かを判定する。なお、オートモードとは、車室温度を運転者が設定した設定温度に一致させるための送風量や送風する吹き出し口等を自動的に制御するモードのことをいう。これに対し、送風量や吹き出し口等を運転者が操作するモードをマニュアルモードという。
ECM12は、オートモードに設定されている場合はステップS210の処理を実行し、マニュアルモードに設定されている場合はステップS260の処理を実行する。
ステップS210で、ECM12は設定温度が閾値以上か否かを判定し、閾値以上であればステップS220の処理を実行し、そうでない場合はステップS250で「暖房要求無し」と判断して処理を実行する。ここで用いる閾値は、オートモードにて暖房運転が選択される可能性のある温度の下限であり、例えば25〜28℃程度とする。
ステップS220で、ECM12は外気温が目標値以下か否かを判定し、目標値以下であればステップS230の処理を実行し、そうでない場合は上述したステップS250の処理を実行する。なお、ここで用いる目標値は、運転者が設定した設定温度と同じ値を用いる。
ステップS230で、ECM12は機関始動時の冷却水温が目標値以下か否かを判定し、目標値以下の場合はステップS240で「暖房要求有り」と判断して処理を終了し、そうでない場合は上述したステップS250の処理を実行する。
ステップS260で、ECM12は、エアコンがマニュアルモードにてホット設定(暖房設定)かつブロファンのスイッチがONになっているか否かを判定する。ホット設定かつブロアファンスイッチONの場合はステップS240にて暖房要求有りと判定し、そうでない場合はステップS250にて暖房要求無し、と判定する。
図7の説明に戻る。ECM12は、ステップS110にて暖房要求有りと判定した場合は、ステップS120の処理を実行し、暖房要求無しと判定した場合は、ステップS150にてゼロフロー制御を解除して本ルーチンを終了する。
ステップS120では、ECM12は内燃機関1の出口の冷却水温が目標値(機関側目標値)に到達しているか否かを判定し、到達している場合はステップS130の処理を実行し、到達していない場合は上述したステップS150の処理を実行する。本ステップで用いる目標値は、内燃機関1の内部での冷却水の局所的な沸騰や気泡発生を防止し得る温度であって、予め設定したものである。
ステップS130で、ECM12は後述する方法により推定した排熱回収器6の内部の冷却水温(以下、排熱回収器水温ともいう)が、目標値(流量制限用閾値)に到達したか否かを判定する。本ステップで用いる目標値は、排熱回収器6の内部での冷却水の局所的な沸騰や気泡発生を防止し得る温度であって、予め設定したものである。
ここで、排熱回収器6の内部における冷却水温を推定する方法について説明する。
図9は、ゼロフロー制御で冷却水流量がゼロになる場合に、排熱回収器水温を推定する方法を示すブロック図である。
まず、ECM12は内燃機関1の回転速度(エンジン回転速度)と、トルク(エンジントルク)と、始動時の外気温を読み込む。エンジン回転速度は公知の内燃機関にも取り付けられているクランク角センサの検出値から算出する。エンジントルクとして、公知の内燃機関にも取り付けられているスロットル開度センサまたはアクセル開度センサの検出値を用いる。外気温は、公知の車両にも取り付けられている外気温センサの検出値を読み込む。なお、外気温に代えて、始動時の冷却水温を読み込んでもよい。
そして、エンジン回転速度及びエンジントルクに基づいて排ガス流量を算出する。例えば、内燃機関1の排気量、バルブタイミング等といった仕様を予め記憶しておき、読み込まれたエンジン回転速度及びエンジントルクの状態で内燃機関1から排出される排ガスの量を算出する。なお、エンジン回転速度及びエンジントルクと排ガス流量との関係を予めマップ化しておき、読み込んだエンジン回転速度及びエンジントルクでマップを検索してもよい。
また、エンジン回転速度、エンジントルク及び始動時の外気温に基づいて、排熱回収器6の入口における排ガス温度(排熱回収器入口排ガス温度)を算出する。これについても、予め作成したマップを検索する等の方法で行うことができる。
排ガス流量と排熱回収器入口排ガス温度とを算出したら、これらの値と前回の演算で算出された排熱回収器水温(排熱回収器水温前回値)とを用いて、排熱回収器6での排熱回収量Qを算出する。なお、初回演算時は、排熱回収器水温前回値として始動時水温を用いる。
排熱回収量Qは、排熱回収器6に流入する排ガスと冷却水との温度差と、排熱回収器6を通過する排ガス流量との積に比例する。そこで、上記温度差及び排ガス流量と排熱回収量Qとの関係を予めマップ化または数式化しておき、これらを用いて排熱回収量Qを算出する。
このように算出した排熱回収量Qと、排熱回収器6での冷却水の温度変化量ΔT(以下、単に温度変化量ΔTともいう)との間には、式(1)の関係がある。
Q=m・C・ΔT ・・・(1)
m:排熱回収器6内の水の質量(内部水質量)、C:水の比熱
水の比熱Cは定数であり、ゼロフロー制御中は内部水質量mも定数なので、排熱回収量Qがわかれば式(1)から温度変化量ΔTが求まる。
そこで、水の比熱Cと内部水質量mと数式(1)とを予め記憶しておき、算出された排熱回収量Qを用いて温度変化量ΔTを算出する。そして、算出された温度変化量ΔTを排熱回収器水温前回値に加算したものを、現在の排熱回収器水温とする。
ところで、ゼロフロー制御には、上述したように冷却水の流量を減少させるものも含まれる。例えば、図10に示すように、スロットルチャンバ4を備える冷却水通路14が排熱回収器6の上流で冷却水通路11Aに合流し、排熱回収器6の下流側に三方弁30を備える構成において、通路コントロールバルブ2を全閉にし、三方弁30でヒータ5を迂回する状態にした場合もゼロフロー制御に含まれる。
図11は、図10に示す構成のように、ゼロフロー制御中も冷却水が排熱回収器6を通過する場合に、排熱回収器水温を推定する方法を示すブロック図である。
図9と異なるのは、排熱回収器6流れる冷却水量(排熱回収器水流量)を算出すること、排熱回収量Qを算出する際に、図9で用いたパラメータの他に排熱回収器水流量も用いること、及び、式(1)の内部水質量mが排熱回収器水流量に基づく質量になること、である。
排熱回収器水流量は、ウォータポンプ3が図2に示すように内燃機関1に駆動されるタイプの場合には、エンジン回転速度と、エンジンプーリ40とポンププーリ41との回転速度比とから算出したインペラ43の回転速度、及び通路コントロールバルブ2の開弁率を用いて算出できる。一方、ウォータポンプ3が図3に示すように電動モータ50に駆動されるタイプの場合には、電動モータ50の回転速度から求まるインペラ43の回転速度と通路コントロールバルブ2の開弁率とから算出できる。
排熱回収量は、排熱回収器6に流入する排ガスと冷却水との温度差と、排熱回収器6を通過する排ガス流量との積に、さらに排熱回収器水流量を積算する。
上記のように算出する排熱回収量Qと、水の比熱Cと、内部水質量mと、排熱回収器水温前回値から、現在の排熱回収器水温を推定する。
上記のように、ゼロフロー制御中の冷却水の流れの有無に応じて、異なる方法で排熱回収器水温を推定する。
図7の説明に戻る。ステップS130で排熱回収器水温が目標値に到達していない場合は、ECM12はステップS140でゼロフロー制御を維持し、今回のルーチンを終了する。排熱回収器水温が目標値に到達している場合は、ECM12はステップS150でゼロフロー制御を解除して本ルーチンを終了する。
なお、上記説明では、内燃機関1の出口に設けた水温センサ13の検出値を内燃機関1の内部の冷却水温とみなし、排熱回収器水温を演算により推定している。しかし、機関内冷却水通路の冷却水温または冷却水圧を取得する手段、及び排熱回収器6の内部の冷却水温または冷却水圧を取得する手段は、これに限られるわけではない。内燃機関1の内部の冷却水温を検出するセンサや排熱回収器6の内部の冷却水温を検出するセンサを設けて、直接検出するようにしてもよい。この場合、図9及び図11の演算が不要となるため、演算負荷を軽減できる。ただし、センサ増設によって、コストは増加し、排熱回収器6は大型化し、センサ取り付け用の孔を設ける分だけ排熱回収器6内の伝熱面積が減少して熱交換効率が低下する。
また、図7のステップS120、S130では冷却水温を用いて沸騰や気泡発生する可能性について判定しているが、これらの両方またはいずれか一方を冷却水の圧力を用いて判定してもよい。これは、沸騰したり気泡が発生したりすると、冷却通路内の圧力変動が増大するので、圧力変動の大きさに基づいて沸騰や気泡発生を検知できるからである。
また、ステップS120、S130で用いる目標値、つまり気泡が発生し得るか否かを判定するための目標値は、冷却水通路11(冷却水通路11A−11Cも含む)に、仮に気泡が発生した場合に気泡が滞留し易い場所が多い程、低い値にする。
気泡が滞留し易い場所とは、例えば熱交換器のように多数の狭い流路に分岐する部分である。特に、図12に示すように、EGRクーラ44等が排熱回収器6を出てからラジエータ9に流入するまでの冷却水通路11に配置されている場合には、排熱回収器6で温度上昇した冷却水が温度低下しないまま流入することになるので、EGRクーラ44等に気泡が滞留し易い。そして、EGRクーラ44等のように狭い流路の入口に気泡が滞留して流路を塞ぐと、流れてきた冷却水が気泡に弾かれてポコポコといった音が発生してしまう。
そこで、例えば図12に示すような構成の場合は、気泡の発生をより確実に防止するために、気泡が発生し得るか否かを判定するための目標値を図1に示す構成に比べて低い値に設定する。冷却水は、沸点に近づくと気泡が発生し始めるが、沸点より十分に低い温度であっても、空気が溶け込んでいる場合等は気泡が発生する可能性がある。すなわち、図13に示すように冷却水温が低いほど単位時間当たりの気泡発生量は少なく、冷却水温が高くなるほど単位時間当たりの気泡発生量は多くなる。この特性に基づいて、例えば図1のような構成における目標値をT2とすると、図12に示すような気泡が滞留し易い構成の場合は、目標値をT2よりも低温のT1に設定する。これにより単位時間当たりの気泡発生量がP2からP1に低下するので、気泡の発生をより確実に防止できる。
次に、本実施形態による作用効果について説明する。
本実施形態では、内燃機関1の冷機始動時に冷却水流量を制限するゼロフロー制御を実行し、機関内冷却水通路の冷却水温または冷却水圧と、排熱回収器6内の冷却水温または冷却水圧と、に基づいてゼロフロー制御を解除する。
より具体的には、機関内冷却水通路の冷却水温または冷却水圧が機関側目標値に到達するか、排熱回収器6内の冷却水温または冷却水圧が流量制限用閾値に到達するか、の少なくともいずれか一方が成立したらゼロフロー制御を解除する。
ゼロフロー制御によって、内燃機関1が暖機状態になるまでの時間が短縮されると、早期に燃焼状態が安定し、その結果、燃費性能が向上する。また、ゼロフロー制御解除後には、排熱回収器6により冷却水の温度上昇が促進され、温度上昇した冷却水によりエンジンオイルや変速機用オイルの昇温が促進されるので、燃費性能が向上する。さらに、ゼロフロー制御中は内燃機関1及び回収器6で局所的な沸騰や気泡発生の可能性があるが、内燃機関1及び排熱回収器6のいずれかで、冷却水温が沸騰や気泡発生の可能性のある温度に到達したらゼロフロー制御を解除するので、沸騰や気泡発生を確実に防止できる。
すなわち、冷却水の沸騰や気泡発生による弊害を回避しつつ、ゼロフロー制御による燃費向上効果と、排熱回収器6により回収した排熱を利用することによる燃費向上効果と、を得ることができる。
本実施形態では、排熱回収器6による排熱回収量と、冷却水の比熱と、排熱回収器6内の冷却水の質量と、に基づいて算出した排熱回収器6内の冷却水の温度変化量を用いて、排熱回収器6内の冷却水の温度を推定する。これにより、既存の水温センサ13の他に新たにセンサを設けることなく排熱回収器6内の冷却水温を推定することができるので、センサ取り付けによるコストアップ、部品の大型化、及びセンサ取り付けに伴う排熱回収器6の伝熱面積の減少による熱交換効率の悪化を抑制できる。
本実施形態では、冷却水流量をゼロにするゼロフロー制御中は、ECM12は排熱回収量Qを、エンジン回転速度及びエンジントルクから算出した排ガス流量と、エンジン回転速度、エンジントルク、及び機関始動時の冷却水温又は外気温から算出した排熱回収器6の入口の排ガス温度と、排熱回収器6内の冷却水の温度の前回値と、から算出する。
また、冷却水の流れがあるゼロフロー制御中は、ECM12は、排熱回収量Qをエンジン回転速度及びエンジントルクから算出した排ガス流量と、エンジン回転速度、エンジントルク及び機関始動時の冷却水温または外気温から算出した排熱回収器6の入口の排ガス温度と、排熱回収器6内の冷却水の温度の前回値と、エンジン回転速度及び通路コントロールバルブ2の開弁率から算出した排熱回収器6内の冷却水流量とから算出する。
これにより、ゼロフロー制御中の冷却水の流量に応じて、精度良く排熱回収器6内の冷却水温を推定することができる。
本実施形態では、排熱回収器6の出口からラジエータ9の入口までの冷却水通路11にEGRクーラ44もしくはオイルクーラ又はその他の熱交換器が介装されている場合は、介装されていない場合に比べて流量制限用閾値が小さい。これにより、冷却水の沸騰や気泡発生をより確実に防止できる。
本実施形態では、冷却水温に代えて冷却水圧を用いる場合には、機関内冷却水通路の冷却水圧の変動値、または排熱回収器6内の冷却水圧の変動値のいずれかが圧力変動閾値に到達したら、ゼロフロー制御を解除する。これにより、冷却水温を用いる場合と同様に、冷却水の沸騰や気泡発生による弊害を回避しつつ、ゼロフロー制御による燃費向上効果と、排熱回収器6により回収した排熱を利用することによる燃費向上効果と、を得ることができる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (8)

  1. 内燃機関の内部に設けた機関内冷却水通路に冷却水を供給する冷却水ポンプと、
    前記機関内冷却水通路を通過した前記冷却水から外気への放熱を行ない前記冷却水の温度を低下させる放熱器と、
    前記内燃機関の排気ガスから前記冷却水への熱交換を行なう排熱回収器と、
    を少なくとも含んで構成される冷却システムを制御する冷却システム制御装置において、
    前記冷却システムを流れる冷却水流量を調整する冷却水流量調整手段と、
    前記機関内冷却水通路の冷却水温または冷却水圧を取得する機関側条件取得手段と、
    前記排熱回収器の内部の冷却水温または冷却水圧を取得する排熱回収器内部条件取得手段と、
    を備え、
    前記内燃機関の冷機始動時に前記冷却水流量を制限し、前記機関内冷却水通路の冷却水温または冷却水圧と、前記排熱回収器内部の冷却水温または冷却水圧と、に基づいて前記冷却水流量の制限を解除する冷却システム制御装置。
  2. 請求項1に記載の冷却システム制御装置において、
    前記機関内冷却水通路の冷却水温または冷却水圧が機関側目標値に到達するか、前記排熱回収器内部の冷却水温または冷却水圧が流量制限用閾値に到達するか、の少なくともいずれか一方が成立したら前記冷却水流量の制限を解除する冷却システム制御装置。
  3. 請求項1または2に記載の冷却システム制御装置において、
    前記排熱回収器内部条件取得手段は、前記排熱回収器による排熱回収量と、前記冷却水の比熱と、排熱回収器内の冷却水の質量と、に基づいて算出した前記排熱回収器内の冷却水の温度変化量を用いて、前記排熱回収器内の冷却水の温度を推定する冷却システム制御装置。
  4. 請求項3に記載の冷却システム制御装置において、
    前記冷却水流量が制限されている場合は、
    前記排熱回収器内部条件取得手段は、前記排熱回収量を、機関回転速度及び機関トルクから算出した排ガス流量と、機関回転速度、機関トルク、及び機関始動時に外気温センサにより検出した外気温または機関始動時の前記機関内冷却水通路の冷却水温から算出した前記排熱回収器の入口の排ガス温度と、前記排熱回収器内の冷却水の温度の前回値と、から算出する冷却システム制御装置。
  5. 請求項3または4のいずれかに記載の冷却システム制御装置において、
    前記冷却水流量が制限されていない場合は、
    前記排熱回収器条件取得手段は、前記排熱回収量を、機関回転速度及び機関トルクから算出した排ガス流量と、機関回転速度、機関トルク及び機関始動時に外気温センサにより検出した外気温または機関始動時に水温センサで検出した冷却水温から算出した前記排熱回収器の入口の排ガス温度と、前記排熱回収器内の冷却水の温度の前回値と、機関回転速度および通路コントロールバルブ開弁率から算出した前記排熱回収器内の冷却水流量と、から算出する冷却システム制御装置。
  6. 請求項2から5のいずれかに記載の冷却システム制御装置において、
    前記流量制限用閾値は、前記排熱回収器の出口から前記放熱器の入口までの冷却水通路にEGRクーラもしくはオイルクーラ又はその他の熱交換器が介装されている場合は、介装されていない場合に比べて小さい冷却システム制御装置。
  7. 請求項1に記載の冷却システム制御装置において、
    前記機関内冷却水通路の冷却水圧の変動値、または前記排熱回収器内部の冷却水圧の変動値のいずれかが圧力変動閾値に到達したら、前記冷却水流量の制限を解除する冷却システム制御装置。
  8. 内燃機関の内部に設けた機関内冷却水通路に冷却水を供給する冷却水ポンプと、
    前記機関内冷却水通路を通過した前記冷却水から外気への放熱を行ない前記冷却水の温度を低下させる放熱器と、
    前記内燃機関の排気ガスから前記冷却水への熱交換を行なう排熱回収器と、
    前記冷却システムを流れる冷却水流量を調整する冷却水流量調整手段と、
    を少なくとも含んで構成される冷却システムを制御する冷却システム制御方法において、
    前記機関内冷却水通路の冷却水温または冷却水圧を取得し、
    前記排熱回収器の内部の冷却水温または冷却水圧を取得し、
    前記内燃機関の冷機始動時に前記冷却水流量を制限し、前記機関内冷却水通路の冷却水温または冷却水圧と、前記排熱回収器内部の冷却水温または冷却水圧と、に基づいて前記冷却水流量の制限を解除する冷却システム制御方法。
JP2016503840A 2014-02-20 2014-02-20 冷却システム制御装置及び冷却システム制御方法 Active JP6264443B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054095 WO2015125260A1 (ja) 2014-02-20 2014-02-20 冷却システム制御装置及び冷却システム制御方法

Publications (2)

Publication Number Publication Date
JPWO2015125260A1 true JPWO2015125260A1 (ja) 2017-03-30
JP6264443B2 JP6264443B2 (ja) 2018-01-24

Family

ID=53877794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016503840A Active JP6264443B2 (ja) 2014-02-20 2014-02-20 冷却システム制御装置及び冷却システム制御方法

Country Status (3)

Country Link
US (1) US10400660B2 (ja)
JP (1) JP6264443B2 (ja)
WO (1) WO2015125260A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10207567B2 (en) * 2012-10-19 2019-02-19 Ford Global Technologies, Llc Heater core isolation valve position detection
JP6269825B2 (ja) * 2014-05-23 2018-01-31 日産自動車株式会社 内燃機関の冷却回路
KR101694012B1 (ko) * 2015-06-18 2017-01-06 현대자동차주식회사 차량의 워터펌프 제어방법 및 제어장치
US9957876B2 (en) * 2016-05-23 2018-05-01 Ford Global Technologies, Llc Methods and systems for controlling air flow paths in an engine
US9909541B1 (en) 2016-10-18 2018-03-06 Ford Global Technologies, Llc Method and system for exhaust heat exchanger diagnostics
JP6760161B2 (ja) * 2017-03-22 2020-09-23 日産自動車株式会社 内燃機関の制御方法
KR102324760B1 (ko) 2017-05-18 2021-11-10 현대자동차주식회사 하이브리드 차량의 열 관리방법
KR102371717B1 (ko) * 2017-08-17 2022-03-08 현대자동차주식회사 유량제어밸브
KR102406139B1 (ko) * 2017-12-07 2022-06-07 현대자동차 주식회사 배기가스 재순환 장치의 제어 장치 및 방법
US11085356B2 (en) * 2018-03-01 2021-08-10 Nio Usa, Inc. Thermal management coolant valves and pumps modular combination
US11092058B1 (en) * 2018-03-19 2021-08-17 Nissan Motor Co., Ltd. Internal combustion engine control method and internal combustion engine control device
US10843550B2 (en) 2018-08-21 2020-11-24 Nio Usa, Inc. Thermal management system with two pumps and three loops
JP7272077B2 (ja) * 2019-04-10 2023-05-12 マツダ株式会社 エンジンの排気ガス還流装置
WO2021007202A1 (en) * 2019-07-08 2021-01-14 Cummins Inc. Waste heat recovery system, coolant system, and control
KR20210049490A (ko) 2019-10-25 2021-05-06 현대자동차주식회사 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법
KR20210049492A (ko) 2019-10-25 2021-05-06 현대자동차주식회사 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법
KR20210049493A (ko) 2019-10-25 2021-05-06 현대자동차주식회사 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법
KR20210049491A (ko) 2019-10-25 2021-05-06 현대자동차주식회사 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법
CN112901379A (zh) * 2021-04-13 2021-06-04 河南柴油机重工有限责任公司 一种发动机排气加热进气装置及加热方法
US11649759B2 (en) * 2021-10-12 2023-05-16 Transportation Ip Holdings, Llc System and method for thermal management
CN114412672B (zh) * 2022-03-28 2022-07-19 潍柴动力股份有限公司 一种基于水压保护的egr冷却系统和控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171156U (ja) * 1981-04-21 1982-10-28
JPS6419157A (en) * 1987-07-10 1989-01-23 Kubota Ltd Waste heat recovering device for water cooled engine
JPS6434427U (ja) * 1987-08-26 1989-03-02
JP2012021421A (ja) * 2010-07-12 2012-02-02 Toyota Motor Corp 車載内燃機関の冷却装置
JP2013019297A (ja) * 2011-07-11 2013-01-31 Toyota Motor Corp エンジンの冷却系および制御装置
JP2013024110A (ja) * 2011-07-20 2013-02-04 Toyota Motor Corp エンジン冷却装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371848A (ja) 2001-06-13 2002-12-26 Aisan Ind Co Ltd エンジン冷却装置
US6539899B1 (en) * 2002-02-11 2003-04-01 Visteon Global Technologies, Inc. Rotary valve for single-point coolant diversion in engine cooling system
JP4682863B2 (ja) 2006-02-14 2011-05-11 マツダ株式会社 エンジンの冷却装置
JP2008157090A (ja) 2006-12-22 2008-07-10 Toyota Motor Corp 内燃機関の排気熱回収装置
JP4845803B2 (ja) 2007-05-01 2011-12-28 トヨタ自動車株式会社 内燃機関の冷却装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171156U (ja) * 1981-04-21 1982-10-28
JPS6419157A (en) * 1987-07-10 1989-01-23 Kubota Ltd Waste heat recovering device for water cooled engine
JPS6434427U (ja) * 1987-08-26 1989-03-02
JP2012021421A (ja) * 2010-07-12 2012-02-02 Toyota Motor Corp 車載内燃機関の冷却装置
JP2013019297A (ja) * 2011-07-11 2013-01-31 Toyota Motor Corp エンジンの冷却系および制御装置
JP2013024110A (ja) * 2011-07-20 2013-02-04 Toyota Motor Corp エンジン冷却装置

Also Published As

Publication number Publication date
US10400660B2 (en) 2019-09-03
JP6264443B2 (ja) 2018-01-24
US20160341100A1 (en) 2016-11-24
WO2015125260A1 (ja) 2015-08-27

Similar Documents

Publication Publication Date Title
JP6264443B2 (ja) 冷却システム制御装置及び冷却システム制御方法
CN108699945B (zh) 车辆用内燃机的冷却装置及控制方法
US8573163B2 (en) Cooling device for vehicle
JP6265171B2 (ja) 車両の熱交換装置
CN108026824B (zh) 车辆用内燃机的冷却装置以及冷却装置的控制方法
JP2004076689A (ja) 内燃機関の冷却系の異常診断装置
JP6306529B2 (ja) 車両用内燃機関の冷却装置及び制御方法
JP5839021B2 (ja) 内燃機関の冷却装置
JP2011099400A (ja) 車両の冷却装置
JP2017122401A (ja) 車両用内燃機関の冷却装置及び制御方法
EP3428419B1 (en) Control apparatus of heat exchanging system
JP6094231B2 (ja) 内燃機関の冷却システム
JP2006161806A (ja) 液冷式内燃機関の冷却装置
JP2007170352A (ja) エンジン冷却装置およびこれに使用される電子制御式流量制御弁
JPWO2012107990A1 (ja) 内燃機関の冷却システム
JP2015081566A (ja) 内燃機関の冷却装置
JP5267654B2 (ja) エンジンの冷却装置
JP6040908B2 (ja) 車両
JP2017025887A (ja) 電子制御装置
JP5609346B2 (ja) 車載内燃機関の冷却装置
JP6028708B2 (ja) 車両
JP6447721B2 (ja) 車両用空調システム
WO2011089705A1 (ja) 車両の冷却装置
JP5257087B2 (ja) 内燃機関の制御装置
JP2009197616A (ja) 冷却システム、冷却制御装置及び流量制御方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R151 Written notification of patent or utility model registration

Ref document number: 6264443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151