JPWO2015104922A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- JPWO2015104922A1 JPWO2015104922A1 JP2015556733A JP2015556733A JPWO2015104922A1 JP WO2015104922 A1 JPWO2015104922 A1 JP WO2015104922A1 JP 2015556733 A JP2015556733 A JP 2015556733A JP 2015556733 A JP2015556733 A JP 2015556733A JP WO2015104922 A1 JPWO2015104922 A1 JP WO2015104922A1
- Authority
- JP
- Japan
- Prior art keywords
- arm
- voltage
- command
- negative
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- 239000003990 capacitor Substances 0.000 claims description 21
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000013459 approach Methods 0.000 claims 3
- 238000010586 diagram Methods 0.000 description 12
- 230000007935 neutral effect Effects 0.000 description 10
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/66—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
- H02M7/68—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/66—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
- H02M7/68—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
- H02M7/72—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/75—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/77—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means arranged for operation in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0025—Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
Abstract
Description
変換器を多重化する方法の1つとして、複数の変換器の出力をカスケード接続したマルチレベル変換器があり、その中の一つにモジュラーマルチレベル変換器がある。モジュラーマルチレベル変換器の各アームは、複数の変換器セルがカスケード接続されて構成されている。
また、従来のモジュラーマルチレベル変換器の各相の制御は、コンデンサ電圧指令値に全ての直流コンデンサの電圧値の平均値を追従させる平均値制御と、コンデンサ電圧指令値に各直流コンデンサの電圧値をそれぞれ追従させる個別バランス制御と、さらに第1アーム内の全ての直流コンデンサの電圧値の平均値と第2アーム内の全ての直流コンデンサの電圧値の平均値とを一致させるアームバランス制御とを備える。そして、モジュラーマルチレベル変換器外には流出しないでモジュラーマルチレベル変換器内で循環する循環電流を制御し、また各相の交流電流を制御するように電圧指令値が演算される(例えば、特許文献1、非特許文献1参照)。
以下、この発明の実施の形態1による電力変換装置を図に基づいて以下に説明する。図1は、この発明の実施の形態1による電力変換装置の概略構成図である。
図1に示すように、電力変換装置は主回路である電力変換器1と、電力変換器1を制御する制御装置20とを備える。電力変換器1は、複数相交流この場合三相交流と直流との間で電力変換を行うもので、交流側は連系変圧器13を介して交流回路としての系統である交流電源14に接続され、直流側はインピーダンス15を介して直流電源16に接続される。
なお、連系変圧器13の代わりに連系リアクトルを介して交流電源14に接続しても良い。また、電力変換器1の直流側は、直流負荷に接続されてもよいし、直流出力を行う他の電力変換装置に接続されても良い。
各レグ回路4の正側アーム5、負側アーム6のそれぞれは、1以上の変換器セル10を直列接続したセル群5a、6aで構成され、正側リアクトル9p、負側リアクトル9nがそれぞれ直列に挿入される。この場合、正側リアクトル9p、負側リアクトル9nは交流端7側に接続され、正側リアクトル9pおよび負側リアクトル9nで、3端子のリアクトル8を構成している。
なお、正側リアクトル9p、負側リアクトル9nが挿入される位置は、各アーム5、6内のいずれの位置でも良く、それぞれ複数個であっても良い。
各相の正側アーム5、負側アーム6にそれぞれ流れる正側アーム電流ip+、負側アーム電流ip-、各相交流線に流れる交流電流ipは、それぞれ図示しない電流検出器により検出されて制御装置20に入力される。さらに、図示しない電圧検出器により検出される交流電源14の各相電圧(以下、交流電圧Vspと称す)、電力変換器1の中性点電圧Vsn、直流母線間電圧である直流電源16の電圧の指令値(以下、直流電圧指令値Vdc)が制御装置20に入力される。なお、各相の交流電流ipは、各相の正側アーム5、負側アーム6にそれぞれ流れる正側アーム電流ip+、負側アーム電流ip-とから演算して用いても良い。
なお、制御装置20の構成および動作の詳細は後述する。
図2の変換器セル10は、それぞれダイオード31が逆並列に接続された複数(この場合2個)の半導体スイッチング素子30(以下、単にスイッチング素子と称す)の直列体32と、この直列体32に並列接続され直流電圧を平滑化する直流コンデンサ34とから構成される。スイッチング素子30は、IGBT(Insulated Gate Bipolar Transistor)やGCT(Gate Commutated Turn−off thyristor)等の自己消弧型のスイッチング素子から成り、それぞれダイオード31が逆並列に接続されたスイッチ33P、33Nが用いられる。
そして、図2に示すように、変換器セル10は、スイッチ33Nのスイッチング素子30の両端子を出力端とし、スイッチング素子30をオン・オフさせることにより、この出力端から、直流コンデンサ34の両端電圧およびゼロ電圧を出力する。
図3の変換器セル10は、2つの直列体42を並列接続し、さらに直列体42に並列接続され直流電圧を平滑化する直流コンデンサ44を備えて構成される。各直列体42は、それぞれダイオード41が逆並列に接続された複数(この場合2個)のスイッチング素子40を直列接続して構成される。スイッチング素子40は、IGBTやGCT等の自己消弧型のスイッチング素子から成り、それぞれダイオード41が逆並列に接続されて構成されるスイッチ43P、43Nが用いられる。
そして、図3に示すように、変換器セル10は、それぞれの直列体42の中間接続点となるスイッチング素子40の端子を出力端とし、スイッチング素子40をオン・オフさせることにより、この出力端から、直流コンデンサ44両端の正電圧、負電圧およびゼロ電圧を出力する。
電力変換器1は直流および交流を出力するため、直流側と交流側の両側の制御が必要となる。さらに、交流側出力にも直流側出力にも寄与しないで正側、負側のアーム間を還流する循環電流izpが電力変換器1内を流れるため、直流側制御、交流側制御に加え循環電流izpの制御が必要となる。また、この場合、交流端7が系統の交流電源14に連系されているため、交流側制御に必要な交流電圧を電力変換器1から出力する必要があり、交流連系点の交流電圧Vspをフィードフォワードすることにより補償する制御を構成する。
図4は、制御装置20の構成例を示すブロック図である。
制御装置20は、上述したように電圧指令生成部21とPWM回路22とを備える。電圧指令生成部21は、交流電流ipを制御するための交流電流制御部23と、電力変換器1内で循環する各相の循環電流izpを制御するための循環電流制御部24とを電流制御部として備え、さらに各相の正側アーム電圧指令Vp+と負側アーム電圧指令Vp-とを決定する指令分配部25を備える。
循環電流制御部24は、各相の循環電流izpと設定された循環電流指令、例えば0との偏差が0になるように電圧指令である第2制御指令Vzpを演算する。即ち、各相の循環電流izpを循環電流指令に追従制御するための第2制御指令Vzpを演算する。各相の循環電流izpは、各相の正側アーム5、負側アーム6にそれぞれ流れる正側アーム電流ip+、負側アーム電流ip-とから演算できる。
なお、電力変換器1と交流電源14とが絶縁されていない場合は、交流電圧Vspと直流電源16の電圧とにより中性点電圧Vsnが演算される。
そして指令分配部25は、これら入力情報に基づいて、正側アーム5、負側アーム6がそれぞれ出力分担する電圧から、各アーム5、6内のインダクタンス成分による電圧降下分をそれぞれ差し引いて、電圧成分を分配することにより、各相の正側アーム5に対する正側アーム電圧指令Vp+と、各相の負側アーム6に対する負側アーム電圧指令Vp-とを決定する。
PWM回路22は、正側アーム電圧指令Vp+、負側アーム電圧指令Vp-に基づいて、各相の正側アーム5、負側アーム6内の各変換器セル10をPWM制御するゲート信号22aを生成する。
生成されたゲート信号22aにより各変換器セル10内のスイッチング素子30(40)が駆動制御され、電力変換器1の出力電圧は所望の値に制御される。
図5は、電力変換器1の1相分における各部の電圧、電流を回路上で示す図である。
ここで、Lacは連系変圧器13のインダクタンス、Lc+は正側リアクトル9pのインダクタンス、Lc−は負側リアクトル9nのインダクタンスを示す。
正側アーム電圧指令Vp+は、正側アーム5内の変換器セル10を直列接続したセル群5aが出力する電圧の指令値であり、負側アーム電圧指令Vp−は、負側アーム6内の変換器セル10を直列接続したセル群6aが出力する電圧の指令値である。この場合、セル群5a、6aの出力電圧が、Vp+、Vp−に制御されているものとする。
また、直流電源16の電圧も直流電圧指令値Vdcに制御されているとする。
ip=ip+−ip-
また、循環電流izpは以下のように定義される。
izp=(ip++ip-)/2
すると、正側アーム電流ip+、負側アーム電流ip-は、以下の式(1)、式(2)で表される。
交流電流ipと循環電流izpとの非干渉化のために、式(5)を対角化すると、以下の式(6)が得られる。
電圧を制御するためのVp+(v)、Vp−(v)は、式(5)より、
また、電流を制御するためのVp+(i)、Vp−(i)は、式(6)より、
交流電流ipを交流電流指令に追従制御するための第1制御指令Vcpと、循環電流izpを循環電流指令に追従制御するための第2制御指令Vzpとが非干渉化され、交流電流制御と循環電流制御とをそれぞれ独立に行うためには、第1制御指令Vcp、第2制御指令Vzpは、式(8)から、以下の式(9)の形となれば良い。
交流電流制御の制御対象は、Lac+Lc+・Lc−/(Lc++Lc−)
循環電流制御の制御対象は、Lc++Lc−
である。
交流電流制御については、交流端7よりも交流電源14側のインダクタンスLacのみでなく、正側アーム5、負側アーム6の並列インダクタンス成分(Lc+・Lc−/(Lc++Lc−))も制御対象である。即ち第1制御指令Vcpでは、並列インダクタンス成分による電圧降下分は考慮されていない。
この正側アーム電圧指令Vp+、負側アーム電圧指令Vp−は式(3)を満たし、即ち、正側アーム5、負側アーム6がそれぞれ出力分担する電圧から、各アーム5、6内のインダクタンス成分による電圧降下分をそれぞれ差し引いた電圧である。なお、電圧降下分を考慮するインダクタンス成分とは、各アーム5、6の並列インダクタンス成分を除いたものである。
交流電流ipは正側アーム5、負側アーム6をそれぞれ逆方向に流れるため、第1制御指令Vcpに係る電圧成分は、正側アーム5と負側アーム6とで逆極性となる。
循環電流izpは正側アーム5、負側アーム6をそれぞれ同方向に流れるため、第2制御指令Vzpに係る電圧成分は、正側アーム5と負側アーム6とで同極性となる。
直流電圧指令値Vdcに係る電圧成分は、正側アーム5に対する電圧のみで係数は1である。
次に、この発明の実施の形態2による電力変換装置を図6に基づいて以下に説明する。図6は、この発明の実施の形態2による電力変換装置の概略構成図である。
この実施の形態2では、各レグ回路4の正側アーム5、負側アーム6のそれぞれは、1以上の変換器セル10を直列接続したセル群5a、6aで構成され、負側アーム6のみに、セル群6aの負極側に負側リアクトル9nが直列に挿入される。この他の構成は、図1で示した上記実施の形態1と同様である。
なお、図6では便宜上、制御装置20の図示を省略した。
インダクタンスLc+を0として、上記実施の形態1での式(12)を変形すると、以下の式(13)が得られる。
式(13)で示されるVp+、Vp−において、交流電流ipを制御する第1制御指令Vcpに係る電圧成分は、第1制御指令Vcpに係数を乗算した電圧である。交流電流ipは正側アーム5、負側アーム6をそれぞれ逆方向に流れ、正側アーム電圧指令Vp+に対して、第1制御指令Vcpに負極性の係数が用いられ、負側アーム電圧指令Vp−に対して、第1制御指令Vcpに正極性の係数が用いられる。この場合、正側リアクトルが存在しないので正側アーム5に対する係数の大きさは1となる。負側アーム6に対する係数は、連系変圧器13および負側リアクトル9nの各インダクタンスLac、Lc−から求められる。
交流電圧Vsp、中性点電圧Vsnおよび直流電圧指令値Vdcに係る電圧成分については、上記実施の形態1と同様である。これらが分担する電圧については、インダクタンス成分による差異はない。
また、電力変換器1の各相のレグ回路4において、負側アーム6のセル群6aの負極側のみにリアクトル(負側リアクトル9n)が挿入される。このため負側リアクトル9nは、耐電圧特性が低い小型の素子で良く、電力変換器1は小型化に適した構成となる。
このように、小型化に適した電力変換器1の正側アーム電圧指令Vp+と負側アーム電圧指令Vp-とが信頼性良く生成され、交流電流ipの電流制御と循環電流izpの電流制御との間で干渉が生じることなく、電力変換器1は安定して信頼性良く制御される。
次に、この発明の実施の形態2による電力変換装置を図7に基づいて以下に説明する。この実施の形態3では、図1で示した上記実施の形態1と同様の電力変換器1を用い、制御装置20内の電圧指令生成部の構成が上記実施の形態1と異なる。図7は、この実施の形態3による制御装置20の構成例を示すブロック図である。
制御装置20は、正側アーム電圧指令Vp+と負側アーム電圧指令Vp-とを生成する電圧指令生成部21aと、PWM回路22とを備えてゲート信号22aを生成し、各相の正側アーム5、負側アーム6内の各変換器セル10を制御する。
各相の正側アーム5、負側アーム6にそれぞれ流れる正側アーム電流ip+、負側アーム電流ip-、さらに、交流電源14の各相電圧である交流電圧Vsp、電力変換器1の中性点電圧Vsn、直流電圧指令値Vdcが制御装置20の電圧指令生成部21aに入力される。
アーム電流制御部26は、検出された正側アーム電流ip+、負側アーム電流ip-と設定された各アーム電流指令との偏差がそれぞれ0になるように電圧指令である第3制御指令Vpp、第4制御指令Vnpを演算する。即ち、正側アーム電流ip+、負側アーム電流ip-を各アーム電流指令に追従制御するための第3制御指令Vpp、第4制御指令Vnpを演算する。
ipr+=(1/2)ipr+(1/3)idcr+izpr
ipr−=−(1/2)ipr+(1/3)idcr+izpr
PWM回路22は、正側アーム電圧指令Vp+、負側アーム電圧指令Vp-に基づいて、各相の正側アーム5、負側アーム6内の各変換器セル10をPWM制御するゲート信号22aを生成する。
電力変換器1の1相分における各部の電圧、電流の関係は、上記実施の形態1の図5で示したものと同様で、上記式(1)〜式(4)が成立する。
交流電流ipと、正側アーム電流ip+、負側アーム電流ip-との関係式である、
ip=ip+−ip-
と、式(3)、式(4)より、ipを消去して電流の時間微分について整理すると、
正側アーム電流ip+と負側アーム電流ip-との非干渉化のために、式(14)を対角化すると、以下の式(15)が得られる。
電圧を制御するためのVp+(v)、Vp−(v)は、式(15)より、
また、電流を制御するためのVp+(i)、Vp−(i)は、式(15)より、
式(17)に基づいて、正側アーム電流ip+を正側アーム電流指令に追従制御するための第3制御指令Vpp、負側アーム電流ip-を負側アーム電流指令に追従制御するための第4制御指令Vnpは、以下の式(18)で示される。
この正側アーム電圧指令Vp+、負側アーム電圧指令Vp−は式(3)を満たし、即ち、正側アーム5、負側アーム6がそれぞれ出力分担する電圧から、各アーム5、6内のインダクタンス成分による電圧降下分をそれぞれ差し引いた電圧である。
式(20)で示されるVp+、Vp−において、正側アーム電流ip+、負側アーム電流ip−をそれぞれ制御する第3制御指令Vpp、第4制御指令Vnpの係数は、連系変圧器13および正側リアクトル9p、負側リアクトル9nの各インダクタンスLac、Lc+、Lc−から求められる。
交流電圧Vsp、中性点電圧Vsnおよび直流電圧指令値Vdcに係る電圧成分については、上記実施の形態1と同様である。これらが分担する電圧については、インダクタンス成分による差異はない。
次に、この発明の実施の形態4による電力変換装置を以下に説明する。この実施の形態では、図6で示した上記実施の形態2と同様の電力変換器1の構成を用い、図7で示した上記実施の形態3による制御を適用したものである。
即ち、この実施の形態4では、図6に示すように、各レグ回路4の正側アーム5、負側アーム6のそれぞれは、1以上の変換器セル10を直列接続したセル群5a、6aで構成され、負側アーム6のみに、セル群6aの負極側に負側リアクトル9nが直列に挿入される。そして、上記実施の形態3と同様の制御装置20を用いるが、この場合、正側リアクトル9pが無いので、指令分配部25aでの演算が異なり、以下に示す。
インダクタンスLc+を0として、上記実施の形態3での式(20)を変形すると、以下の式(21)が得られる。
式(21)で示されるVp+、Vp−において、正側アーム電流ip+、負側アーム電流ip−をそれぞれ制御する第3制御指令Vpp、第4制御指令Vnpの係数は、連系変圧器13および負側リアクトル9nの各インダクタンスLac、Lc−から求められる。
交流電圧Vsp、中性点電圧Vsnおよび直流電圧指令値Vdcに係る電圧成分については、上記実施の形態1と同様である。これらが分担する電圧については、インダクタンス成分による差異はない。
また、電力変換器1の各相のレグ回路4において、負側アーム6のセル群6aの負極側のみにリアクトル(負側リアクトル9n)が挿入される。このため負側リアクトル9nは、耐電圧特性が低い小型の素子で良く、電力変換器1は小型化に適した構成となる。
このように、小型化に適した電力変換器1の正側アーム電圧指令Vp+と負側アーム電圧指令Vp-とが信頼性良く生成され、正側アーム電流ip+の電流制御と負側アーム電流ip-の電流制御との間で干渉が生じることなく、電力変換器1は安定して信頼性良く制御される。また、正側アーム電流ip+、負側アーム電流ip−をそれぞれ制御することにより、交流電流ipは交流電流指令に制御され、循環電流ipは循環電流指令に制御される。
次に、この発明の実施の形態4による電力変換装置を以下に説明する。この実施の形態では、上記実施の形態3において、正側リアクトル9pのインダクタンスLc+と負側リアクトル9nのインダクタンスLc−とが等しい場合を示す。
即ち、この実施の形態5では、図1に示すように、各レグ回路4の正側アーム5、負側アーム6のそれぞれは、1以上の変換器セル10を直列接続したセル群5a、6aで構成され、正側アーム5、負側アーム6に、それぞれ正側リアクトル9p、負側リアクトル9nが直列に挿入される。そして、上記実施の形態3と同様の制御装置20において、指令分配部25aでの演算は以下のようになる。
Lc+=Lc−=Lcとして、上記実施の形態3での式(20)を変形すると、以下の式(22)が得られる。
式(22)で示されるVp+、Vp−において、正側アーム電流ip+、負側アーム電流ip−をそれぞれ制御する第3制御指令Vpp、第4制御指令Vnpの係数は、連系変圧器13および正側リアクトル9p、負側リアクトル9nの各インダクタンスLac、Lcから求められる。
交流電圧Vsp、中性点電圧Vsnおよび直流電圧指令値Vdcに係る電圧成分については、上記実施の形態1と同様である。これらが分担する電圧については、インダクタンス成分による差異はない。
このように、正側リアクトル9p、負側リアクトル9nのインダクタンスが等しい場合にも、異なる場合と同様の制御が適用でき、同様に安定した制御が実現できる。
次に、この発明の実施の形態6による電力変換装置を以下に説明する。
この実施の形態では、図8に示すように、制御装置20内で生成される正側アーム電圧指令Vp+、負側アーム電圧指令Vp-を、変調率補正信号により補正してPWM回路22に入力する。
正側アーム5、負側アーム6内の各変換器セル10の直流コンデンサ34(44)は、交流電源14の位相に応じて変動する。このため、制御装置20は、直流コンデンサ34(44)の電圧に基づく変調率補正信号を生成して、正側アーム電圧指令Vp+、負側アーム電圧指令Vp-を変調率補正信号により除して用いる。これにより正側アーム電圧指令Vp+、負側アーム電圧指令Vp-にて決定される正側アーム5、負側アーム6の各変調率は交流電源14の位相に応じて補正され制御性が向上する。
また、正側アーム電圧指令Vp+、負側アーム電圧指令Vp-を各変換器セル10毎に導出し、各変換器セル10毎の直流コンデンサ34(44)の電圧を変調率補正信号に用いてもよい。
Claims (11)
- それぞれ正側アームと負側アームとが直列接続されその接続点が各相交流線に接続される複数のレグ回路を正負の直流母線間に並列接続して備え、複数相交流と直流との間で電力変換を行う電力変換器と、
該電力変換器を制御する制御装置とを備えた電力変換装置において、
上記各レグ回路の上記正側アーム、上記負側アームのそれぞれは、互いに直列接続された複数の半導体スイッチング素子の直列体とこの直列体に並列接続された直流コンデンサとから成り上記半導体スイッチング素子の端子を出力端とする変換器セルを、1あるいは複数直列接続して構成され、
上記制御装置は、上記正側アームに対する第1電圧指令と上記負側アームに対する第2電圧指令とを生成する電圧指令生成部を有して、上記正側アーム、上記負側アーム内の上記各変換器セルを出力制御し、
上記電圧指令生成部は、
上記各相交流線に流れる交流電流成分および上記各レグ回路間で循環する各相の循環電流成分を制御する制御指令を演算する電流制御部と、
上記制御指令と上記直流母線間の電圧の直流電圧指令値とに基づいて、上記正側アーム、上記負側アームがそれぞれ出力分担する電圧から該正側アーム内、該負側アーム内の各インダクタンス成分による電圧降下分をそれぞれ差し引いて上記第1電圧指令、上記第2電圧指令を決定する指令分配部とを備えた
電力変換装置。 - 上記各相交流線が交流回路に接続され、上記電圧指令生成部は、上記交流回路の各相電圧をフィードフォワード項に用いて上記正側アームに対する第1電圧指令と上記負側アームに対する第2電圧指令とを生成する請求項1に記載の電力変換装置。
- 上記電流制御部が演算する上記制御指令は、上記各相交流線に流れる交流電流が交流電流指令に近づくように演算された第1制御指令と、上記各レグ回路間で循環する各相の循環電流が循環電流指令に近づくように演算された第2制御指令とである請求項1または請求項2に記載の電力変換装置。
- 上記電流制御部が演算する上記制御指令は、上記各レグ回路の上記正側アーム、上記負側アームをそれぞれ流れる各アーム電流が、設定された各電流指令に近づくように演算された第3制御指令と第4制御指令とであり、上記電流制御部は、上記各アーム電流を制御することにより、上記交流電流成分および上記循環電流成分を制御する請求項1または請求項2に記載の電力変換装置。
- 上記各レグ回路の上記正側アーム、上記負側アームの少なくとも一方に、リアクトルが直列に挿入されている請求項1または請求項2に記載の電力変換装置。
- 上記指令分配部は、挿入された上記リアクトルのインダクタンスを上記インダクタンス成分として、上記第1電圧指令、上記第2電圧指令の演算に用いる請求項5に記載の電力変換装置。
- 上記各レグ回路の上記負側アームのみに上記リアクトルが直列に挿入されている請求項5に記載の電力変換装置。
- 上記リアクトルは、上記負側アーム内の上記変換器セルの負極側に挿入される請求項7に記載の電力変換装置。
- 上記各レグ回路の上記正側アーム、上記負側アームの双方に、等しいインダクタンスを有する上記リアクトルが直列に挿入されている請求項5に記載の電力変換装置。
- 上記電圧指令生成部は、上記変換器セル内の上記直流コンデンサの電圧に基づいて変調率補正信号を生成し、上記指令分配部からの上記第1電圧指令、上記第2電圧指令を上記変調率補正信号で除算して補正する請求項1または請求項2に記載の電力変換装置。
- 上記電圧降下分は、上記正側アーム、上記負側アームによる並列インダクタンス成分を除いたインダクタンス成分によるものである請求項1または請求項2に記載の電力変換装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014002069 | 2014-01-09 | ||
JP2014002069 | 2014-01-09 | ||
PCT/JP2014/081951 WO2015104922A1 (ja) | 2014-01-09 | 2014-12-03 | 電力変換装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015104922A1 true JPWO2015104922A1 (ja) | 2017-03-23 |
JP6188827B2 JP6188827B2 (ja) | 2017-08-30 |
Family
ID=53523760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015556733A Active JP6188827B2 (ja) | 2014-01-09 | 2014-12-03 | 電力変換装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9812992B2 (ja) |
EP (1) | EP3093975B1 (ja) |
JP (1) | JP6188827B2 (ja) |
WO (1) | WO2015104922A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3093975B1 (en) * | 2014-01-09 | 2022-09-28 | Mitsubishi Electric Corporation | Power conversion system |
WO2015178376A1 (ja) | 2014-05-21 | 2015-11-26 | 三菱電機株式会社 | 直流送電電力変換装置および直流送電電力変換方法 |
EP3176934B1 (en) | 2014-08-01 | 2021-05-12 | Mitsubishi Electric Corporation | Power conversion device |
WO2016147935A1 (ja) | 2015-03-17 | 2016-09-22 | 三菱電機株式会社 | 電力変換装置 |
EP3352361B1 (en) * | 2015-09-17 | 2019-11-27 | Mitsubishi Electric Corporation | Power conversion device |
WO2017046908A1 (ja) * | 2015-09-17 | 2017-03-23 | 三菱電機株式会社 | 電力変換装置 |
WO2017046909A1 (ja) * | 2015-09-17 | 2017-03-23 | 三菱電機株式会社 | 電力変換装置 |
US10673352B2 (en) * | 2016-03-28 | 2020-06-02 | Mitsubishi Electric Corporation | Power conversion apparatus comprising cell blocks each including cascaded converter cells and a bypass circuit connected thereto |
WO2018158935A1 (ja) * | 2017-03-03 | 2018-09-07 | 三菱電機株式会社 | 電力変換装置、および通信方法 |
JP6771707B1 (ja) * | 2020-03-11 | 2020-10-21 | 三菱電機株式会社 | 電力変換装置 |
EP4354725A4 (en) | 2021-06-10 | 2024-08-07 | Mitsubishi Electric Corp | POWER CONVERTER |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0365045A (ja) * | 1989-07-31 | 1991-03-20 | Hitachi Ltd | 電力変換装置及びスナバ回路 |
JPH05316734A (ja) * | 1992-05-13 | 1993-11-26 | Fuji Electric Co Ltd | 直流電源装置 |
JPH09135570A (ja) * | 1995-11-07 | 1997-05-20 | Yaskawa Electric Corp | 多重整流回路 |
JP2011078213A (ja) * | 2009-09-30 | 2011-04-14 | Tokyo Institute Of Technology | モータ始動方法 |
JP2011193615A (ja) * | 2010-03-15 | 2011-09-29 | Hitachi Ltd | 電力変換装置 |
JP2013027260A (ja) * | 2011-07-26 | 2013-02-04 | Hitachi Ltd | 電力変換装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2656684B2 (ja) * | 1991-06-12 | 1997-09-24 | 三菱電機株式会社 | エレベータの停電時運転装置 |
US7972031B2 (en) * | 2007-05-31 | 2011-07-05 | Nthdegree Technologies Worldwide Inc | Addressable or static light emitting or electronic apparatus |
JP5269102B2 (ja) * | 2009-01-13 | 2013-08-21 | 三菱電機株式会社 | 電力変換装置 |
US9276489B2 (en) * | 2009-06-04 | 2016-03-01 | Daikin Industries, Ltd. | Power converter having clamp circuit with capacitor and component for limiting current flowing into capacitor |
RU2537958C2 (ru) | 2009-12-01 | 2015-01-10 | Абб Швайц Аг | Способ работы преобразовательной схемы и устройство для его осуществления |
JP5455055B2 (ja) | 2010-02-26 | 2014-03-26 | 国立大学法人東京工業大学 | 電力変換器 |
JP5721096B2 (ja) | 2010-08-23 | 2015-05-20 | 国立大学法人東京工業大学 | 電力変換器 |
JP5825902B2 (ja) | 2011-07-25 | 2015-12-02 | 株式会社日立製作所 | 電力変換装置 |
JP6091781B2 (ja) | 2012-07-11 | 2017-03-08 | 株式会社東芝 | 半導体電力変換装置 |
US9564827B2 (en) * | 2013-04-02 | 2017-02-07 | Mitsubishi Electric Corporation | Power conversion device |
US9712084B2 (en) * | 2014-01-06 | 2017-07-18 | Mitsubishi Electric Corporation | Electric power conversion device |
EP3093975B1 (en) * | 2014-01-09 | 2022-09-28 | Mitsubishi Electric Corporation | Power conversion system |
WO2015178376A1 (ja) * | 2014-05-21 | 2015-11-26 | 三菱電機株式会社 | 直流送電電力変換装置および直流送電電力変換方法 |
-
2014
- 2014-12-03 EP EP14877686.7A patent/EP3093975B1/en active Active
- 2014-12-03 JP JP2015556733A patent/JP6188827B2/ja active Active
- 2014-12-03 US US15/109,594 patent/US9812992B2/en active Active
- 2014-12-03 WO PCT/JP2014/081951 patent/WO2015104922A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0365045A (ja) * | 1989-07-31 | 1991-03-20 | Hitachi Ltd | 電力変換装置及びスナバ回路 |
JPH05316734A (ja) * | 1992-05-13 | 1993-11-26 | Fuji Electric Co Ltd | 直流電源装置 |
JPH09135570A (ja) * | 1995-11-07 | 1997-05-20 | Yaskawa Electric Corp | 多重整流回路 |
JP2011078213A (ja) * | 2009-09-30 | 2011-04-14 | Tokyo Institute Of Technology | モータ始動方法 |
JP2011193615A (ja) * | 2010-03-15 | 2011-09-29 | Hitachi Ltd | 電力変換装置 |
JP2013027260A (ja) * | 2011-07-26 | 2013-02-04 | Hitachi Ltd | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3093975A4 (en) | 2017-08-09 |
US9812992B2 (en) | 2017-11-07 |
EP3093975A1 (en) | 2016-11-16 |
WO2015104922A1 (ja) | 2015-07-16 |
EP3093975B1 (en) | 2022-09-28 |
US20160329831A1 (en) | 2016-11-10 |
JP6188827B2 (ja) | 2017-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6188827B2 (ja) | 電力変換装置 | |
JP6180641B2 (ja) | 電力変換装置 | |
JP6207730B2 (ja) | 直流送電電力変換装置および直流送電電力変換方法 | |
US9960709B2 (en) | Power conversion device | |
JP6509352B2 (ja) | 電力変換装置 | |
JP6522141B2 (ja) | 電力変換装置 | |
JP6522140B2 (ja) | 電力変換装置 | |
US11936306B2 (en) | Power conversion device | |
KR20170071491A (ko) | 변환 장치 | |
US20230369956A1 (en) | Power Conversion Device | |
Perez et al. | Capacitor voltage ripple minimization in modular multilevel converters | |
JP6253548B2 (ja) | 電力変換装置 | |
JP5904834B2 (ja) | 電力変換装置の制御装置、制御方法及び制御プログラム | |
JP2012080753A (ja) | 電力変換装置 | |
JP2019216509A (ja) | 多段変換器の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170801 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6188827 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |