JPWO2015011949A1 - 半導体スイッチ回路 - Google Patents

半導体スイッチ回路 Download PDF

Info

Publication number
JPWO2015011949A1
JPWO2015011949A1 JP2015528165A JP2015528165A JPWO2015011949A1 JP WO2015011949 A1 JPWO2015011949 A1 JP WO2015011949A1 JP 2015528165 A JP2015528165 A JP 2015528165A JP 2015528165 A JP2015528165 A JP 2015528165A JP WO2015011949 A1 JPWO2015011949 A1 JP WO2015011949A1
Authority
JP
Japan
Prior art keywords
nth
voltage
semiconductor
semiconductor switch
switch circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015528165A
Other languages
English (en)
Other versions
JP6198828B2 (ja
Inventor
岩蕗 寛康
寛康 岩蕗
一史 田中
一史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2015011949A1 publication Critical patent/JPWO2015011949A1/ja
Application granted granted Critical
Publication of JP6198828B2 publication Critical patent/JP6198828B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/107Modifications for increasing the maximum permissible switched voltage in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/74Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Abstract

半導体スイッチ回路(1)は、高電圧ノード(NH)および低電圧ノード(NL)間に直列接続された複数のスイッチングユニット(2d〜2a)と、それぞれ複数のスイッチングユニット(2d〜2a)に対応して設けられた複数のダイオード(11d〜11a)とを備える。複数のダイオード(11d〜11a)のカソードはそれぞれ複数のスイッチングユニット(2d〜2a)に接続され、低電圧ノード(NL)に接続されたスイッチングユニット(2a)に対応するダイオード(11a)のアノードは所定の電源電圧を受ける。各スイッチングユニット(2a)は、半導体スイッチング素子(30a)と、半導体スイッチング素子(30a〜30d)を駆動するゲート駆動回路(20a)と、対応するダイオード(11a)のカソードから直流電圧を受けてゲート駆動回路(20a)へ駆動電力を供給する直流/直流コンバータ(13a)とを含む。

Description

本発明は、高電圧直流遮断器に用いられる半導体スイッチ回路に関する。
高電圧直流遮断器に用いられる半導体スイッチ回路は、直列接続された複数の半導体スイッチング素子を有し、それら半導体スイッチング素子をスイッチング動作させることで、高電圧/大電流の電力供給ラインを制御する。直列接続された複数の半導体スイッチング素子の導通状態を制御するには、各半導体スイッチング素子のゲート端子に、そのソース端子を基準電位とするゲート駆動回路で生成したゲート信号を供給する必要がある。
特開2000−4059号公報(特許文献1)は、コアを共通とし、複数の異なる2次巻線を有するトランスが、各2次巻線に交流電圧を生成し、その交流電圧を直流電圧に変換して各々のゲート駆動回路へ給電する構成を開示する。
特開平3−237813号公報(特許文献2)は、主コンデンサ、直列接続された複数の電界効果トランジスタからなるスイッチ手段、各電界効果トランジスタにゲート信号を供給するゲート回路、およびゲート回路へ電源電圧を供給するゲート電源を備えたパルス発生回路を開示する。ゲート電源は、直流電源と、この直流電源の電圧をダイオードを介して入力して保持するコンデンサで構成される。
特開2009−177951号公報(特許文献3)は、主回路を構成する複数スイッチにそれぞれ接続されるゲートドライバおよびインターフェース回路で構成される個別ゲートドライブ部を備える電力変換装置を開示する。個別ゲートドライブ部は専用電源を必要とせず、インターフェース回路にそれぞれ設けられた1つ以上の電力供給端子を介して、スイッチ数よりも少ない共有電源または主回路から、ゲートドライブ部に電力を供給する。信号源から各ゲートドライブには、絶縁を取って信号を伝達する。
米国特許出願公開第2012/0299393号明細書(特許文献4)は、パワー半導体スイッチを直列接続した高速スイッチで、電力供給ラインを流れる電流を遮断する遮断回路を開示する。
特開2000−4059号公報 特開平3−237813号公報 特開2009−177951号公報 米国特許出願公開第2012/0299393号明細書
直列接続された複数の半導体スイッチング素子で構成された半導体スイッチ回路において、例えば、数10kVの電圧をスイッチングする場合、特許文献1の給電方法では、以下の問題が発生する。
特許文献1における絶縁トランスの2次側は、グランドに対してフローティング状態にあるため、絶縁トランスの1次側巻線と2次側巻線間の電位差は数10kVの高電圧となる。1次側巻線と2次側巻線間の絶縁電圧を数10kV以上確保した場合、トランスの大型化や重量化を回避することは困難となる。さらに、1つのトランスコアから多数の2次側出力を取り出す構造を有するトランスは、配線の複雑化や配線間の絶縁処理に伴うコスト増加と、組立や保守点検の煩雑化と、という問題を発生させる。
また、トランスの1次巻線および2次巻線間を絶縁材料で絶縁すると、1次巻線および2次巻線間には、誘電率の大きい絶縁材料を誘電体とする数百〜数千pF程度の浮遊容量(トランス結合容量)が形成される。この浮遊容量を有するトランスで、半導体スイッチ回路をオンからオフへスイッチング動作させた瞬間、半導体スイッチ回路を構成する各半導体スイッチング素子に印加される電圧の値は、数10kVの高電圧を、トランス結合容量と、半導体スイッチング素子の出力容量と、で分圧した値となる。この分圧電圧の値は、高電圧側に近い半導体スイッチング素子ほど、増加する。その結果、半導体スイッチ回路において、必要以上の高耐圧特性を有する半導体スイッチング素子を採用する必要があり、半導体スイッチ回路のコスト増加という問題を発生させる。
この分圧電圧の不均衡を解消するため、半導体スイッチング素子に並列接続するコンデンサの値を、高電圧側の半導体スイッチング素子ほど増加させる方法を採用する場合もある。しかしながら、部品点数の増加を招き、半導体スイッチ回路の大型化やコスト増加という問題を発生させる。
特許文献2において、パルス発生回路が備えるDC−DCコンバータは、ダイオードの順方向電圧のばらつきを調整し、コンデンサで平滑後、電界効果トランジスタに入力することが記載されている。この構成は、各ゲート回路に供給される電源としての電圧を均等化することを目的とするものである。各ダイオードのアノードには、直流電源の電圧が印加され、カソードは、DC−DCコンバータへ電圧を供給する。
各ダイオードのカソードは、コンデンサを介して、電界効果トランジスタのソースと接続される。直列接続された各電界効果トランジスタには、充電用リアクトル、および充電用ダイオードを介して、高圧電源の高電圧が印加される。この高電圧は、直列接続された電界効果トランジスタの電流経路が導通状態から非導通状態に変化した時、各ダイオードのカソードへ印加される。各ダイオードは、直列接続された電界効果トランジスタと接地配線間に並列接続されているため、高圧電源の高電圧により逆バイアスされる。逆バイアスによるダイオードの破壊を防止するには、逆バイアス電圧に見合った高耐圧のダイオードが必要となり、その結果、パルス発生回路の大型化や高価格化を招く。
本発明は、上述のような課題を解決するためになされたもので、直列接続された複数の半導体スイッチング素子を備える半導体スイッチ回路において、均一なゲート電圧を半導体スイッチング素子のゲートに供給しつつ、半導体スイッチング素子がオンからオフに転じた際、各整流素子に印加される逆バイアス電圧の値が低減可能な半導体スイッチ回路を実現する。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
半導体スイッチ回路は、高電圧ノードおよび低電圧ノード間に直列接続された第1〜第N(ただし、Nは2以上の整数である)のスイッチングユニットと、それぞれ第1〜第Nのスイッチングユニットに対応して設けられた第1〜第Nの整流素子とを備える。第1〜第Nの整流素子のカソードはそれぞれ第1〜第Nのスイッチングユニット接続され、第1〜第(N−1)の整流素子のアノードはそれぞれ第2〜第Nの整流素子のカソードに接続され、第Nの整流素子のアノードは予め定められた直流電圧を受ける。高電圧ノードの電圧値は低電圧ノードの電圧値より高い。第1〜第Nのスイッチングユニットの各々は、半導体スイッチング素子と、半導体スイッチング素子を駆動するゲート駆動回路と、対応する整流素子のカソードから直流電圧を受けてゲート駆動回路へ駆動電力を供給する直流/直流コンバータとを含む。第1〜第Nのスイッチングユニットに含まれるN個の半導体スイッチング素子は、高電圧ノードおよび低電圧ノード間に直列接続される。
直列接続された半導体スイッチング素子の電圧不均衡を改善し、小型かつ低コストな半導体スイッチ回路が実現される。
実施の形態1に係る半導体スイッチ回路を備える半導体直流遮断器の構成を説明する回路ブロック図である。 実施の形態1に係る半導体スイッチ回路の回路図である。 実施の形態1に係る半導体スイッチ回路の動作を説明するタイミング図である。 図3の時刻t0から時刻taまでの時間における、実施の形態1に係る半導体スイッチの動作を説明する回路図である。 図3の時刻taから時刻tbまでの時間における、実施の形態1に係る半導体スイッチ回路の動作を説明する回路図である。 図3の時刻tbから時刻tcまでの時間における、実施の形態1に係る半導体スイッチ回路の動作を説明する回路図である。 図3の時刻tcから時刻tdまでの時間における、実施の形態1に係る半導体スイッチ回路の動作を説明する回路図である。 実施の形態1に係る半導体スイッチ回路の変形例に係る半導体スイッチ回路の一部を説明する回路図である。
以下、図面を参照しつつ、実施の形態について説明する。実施の形態の説明において、個数、量などに言及する場合、特に記載ある場合を除き、必ずしもその個数、量などに限定されない。実施の形態の図面において、同一の参照符号や参照番号は、同一部分または相当部分を表わすものとする。また、実施の形態の説明において、同一の参照符号等を付した部分等に対しては、重複する説明は繰り返さない場合がある。
<実施の形態1>
図1は、実施の形態1に係る半導体スイッチ回路1を備える半導体直流遮断器200の構成を説明する回路ブロック図である。
半導体直流遮断器200は、例えば、数10kV/数kA以上の直流送電経路220の接続点Aおよび接続点B間に配置され、通電電流や事故電流を遮断する。半導体直流遮断器200の一端および他端は、それぞれ、接続点Aおよび接続点Bと接続される。高電圧ノードNHは、残留電流遮断用直流遮断器204の一端と接続され、低電圧ノードNLは、接続点Bと接続される。残留電流遮断用直流遮断器204の他端は、限流リアクトル201の一端と接続される。限流リアクトル201の他端は、接続点Aと接続される。
高電圧ノードNHおよび低電圧ノードNL間には、補助直流断路器203および高速断路器202が直列に接続される。補助直流断路器203の一端および他端は、それぞれ、低電圧ノードNLおよび高速断路器202の一端と接続される。高速断路器202の他端は、高電圧ノードNHと接続される。高電圧ノードNHおよび低電圧ノードNL間には、さらに、非線形抵抗205が接続される。即ち、高電圧ノードNHおよび低電圧ノードNL間には、直列に接続された補助直流断路器203および高速断路器202、半導体スイッチ回路1、および非線形抵抗205が並列に接続される。
(半導体直流遮断器200の動作)
通常の送電時において、高速断路器202、補助直流断路器203、および半導体スイッチ回路1は、いずれも導通状態にある。高速断路器202および補助直流断路器203からなる直列回路の通電電圧は、半導体スイッチ回路1の通電電圧よりも十分に小さいため、直流送電電流は、高速断路器202および補助直流断路器203の直流回路に流れる。
この通電状態において、何らかの事情により、直流送電経路220の通電を遮断する必要が生じた場合、最初に、補助直流断路器203がオフする。この瞬間、直流送電経路220の電流(以下、直流送電電流、とも記載)は、高速断路器202および補助直流断路器203からなる直列回路から、オンで待機している半導体スイッチ回路1へ転流することになる。直流送電電流の半導体スイッチ回路1への転流により、高速断路器202の電流値は、ほぼゼロとなり、このタイミングで高速断路器202が開放される。高速断路器202の電流が、ほぼゼロとなることにより、高速断路器202の接点間にはアークが点孤しないため、高速断路器202も速やかに開放される。
高速断路器202の開放後、半導体スイッチ回路1をオフさせることで、直流送電電流は、非線形抵抗205に転流するとともに、その値は、大きく減少する。直流送電電流が十分に減流した時点で、残留電流遮断用直流遮断器204は開放する。この時、残留電流遮断用直流遮断器204の接点間にはアークが点孤しないため、残留電流遮断用直流遮断器204も速やかに開放される。以上の一連の動作により、直流送電経路220は、最終的に、確実かつ高速に、遮断される。
図2は、実施の形態1に係る半導体スイッチ回路1の回路図である。
(半導体スイッチ回路1の全体構成)
半導体スイッチ回路1の全体構成を説明する。
半導体スイッチ回路1は、スイッチングユニット2a〜2d、充電用ダイオード11a〜11d、および直流電源5を備える。
スイッチングユニット2aは、半導体スイッチング素子30a、ゲート駆動回路20a、直流/直流コンバータ13a、入力コンデンサ12a、および平滑コンデンサ14aを含む。
半導体スイッチング素子30aは、電圧制御自己消弧型の高速半導体素子であり、MOSFET(電界効果トランジスタ)やIGBT(絶縁ゲートバイポーラトランジスタ)が例示される。また、高速スイッチング特性を有する炭化珪素(SiC)や窒化ガリウム(GaN)等のワイドギャップ半導体を用いれば、より高速動作が可能な半導体スイッチ回路1を実現することが可能となる。図2は、半導体スイッチング素子30aとして、IGBTを適用した場合の例を示す。
スイッチングユニット2aが有する半導体スイッチング素子30aのエミッタは、スイッチ接続ノードNaを介して、低電圧ノードNLと接続され、スイッチングユニット2dが有する半導体スイッチング素子30dのコレクタは、高電圧ノードNHと接続される。
スイッチングユニット2aおよび2bは、スイッチ接続ノードNbを共有し、スイッチングユニット2aが有する半導体スイッチング素子30aのコレクタと、スイッチングユニット2bが有する半導体スイッチング素子30bのエミッタは、ともに、スイッチ接続ノードNbと接続される。スイッチングユニット2bおよび2cは、スイッチ接続ノードNcを共有し、スイッチングユニット2cおよび2dは、スイッチ接続ノードNdを共有する。この結果、半導体スイッチング素子30a〜30dは、高電圧ノードNHおよび低電圧ノードNL間に、直列に接続される。
充電用ダイオード11aのアノード端子は、ダイオード接続ノードN1と接続される。充電用ダイオード11aのカソード端子および充電用ダイオード11bのアノード端子は、ダイオード接続ノードN1aを介して、互いに接続される。充電用ダイオード11bのカソード端子および充電用ダイオード11cのアノード端子は、ダイオード接続ノードN1bを介して、互いに接続される。充電用ダイオード11cのカソード端子および充電用ダイオード11dのアノード端子は、ダイオード接続ノードN1cを介して、互いに接続される。充電用ダイオード11dのカソード端子は、ダイオード接続ノードN1dと接続される。
この結果、充電用ダイオード11a〜11dは、ダイオード接続ノードN1、およびダイオード接続ノードN1a〜N1dを介して、ダイオード接続ノードN1およびダイオード接続ノードN1d間に、直列に接続される。充電用ダイオード11aのアノード端子は、ダイオード接続ノードN1を介して、直流電源5の正極と接続され、直流電源5の負極は、低電圧ノードNLと接続される。直流電源5は、バッテリ等の直流電源、または交流/直流コンバータ等で得られる直流電源である。
制御回路50は、制御信号16に応答して、駆動信号17a〜17dを、それぞれ、光ファイバ15a〜15dを介して、ゲート駆動回路20a〜20dへ出力する。
(スイッチングユニット2a〜2dの構成)
スイッチングユニット2a〜2dの構成を説明する。
スイッチングユニット2aにおいて、入力コンデンサ12aの一端は、充電用ダイオード11aのカソード端子および直流/直流コンバータ13aの入力端子と接続される。直流/直流コンバータ13aの出力端子には、平滑コンデンサ14aの一端が接続される。入力コンデンサ12aの他端、平滑コンデンサ14aの他端、および直流/直流コンバータ13aには、スイッチ接続ノードNaの電圧が印加される。
充電用ダイオード11aのカソード端子の電圧により、入力コンデンサ12aの両端子間の電圧が、直流/直流コンバータ13aを動作させるのに必要な入力電圧Va’まで充電されると、直流/直流コンバータ13aは、入力電圧Va’をゲート駆動回路20aが動作するのに必要な出力電圧Vaに変換し、平滑コンデンサ14aを充電する。
ゲート駆動回路20aに出力電圧Vaおよび駆動信号17aが入力されると、ゲート駆動回路20aは、ゲート駆動信号18aの電圧値を、半導体スイッチング素子30aがオンする値まで引き上げる。具体的には、半導体スイッチング素子30aのゲート−エミッタ間の順方向電圧の値が閾値電圧以上となるように、ゲート駆動信号18aの電圧値を引き上げる。このゲート駆動信号18aに応答して、半導体スイッチング素子30aは、オフ状態からオン状態に変化する。
以上、スイッチングユニット2aの構成を説明したが、他のスイッチングユニット2b〜2dの構成も同様である。スイッチングユニット2aに含まれる入力コンデンサ12aやゲート駆動回路20a等の添え字”a”を、”b”等と読み替えることにより、スイッチングユニット2b等の構成が理解される。
なお、後述の通り、直流/直流コンバータ13a〜13dにより、それぞれ充電される平滑コンデンサ14a〜14dの出力電圧Va〜Vdの値は、互いに等しい所望の値に設定される。ただし、半導体スイッチング素子30a〜30dのスイッチングタイミングの不均一が解消されるのであれば、出力電圧Va〜Vdの値は、必ずしも完全に等しい値である必要はなく、ある程度の電圧差は許容される。
図3は、実施の形態1に係る半導体スイッチ回路1の動作を説明するタイミング図である。
図3において、横軸は時刻を示し、縦軸は、スイッチングユニット2a〜2dにおけるゲート駆動信号18a〜18d、平滑コンデンサ14a〜14dの出力電圧Va〜Vd、および駆動信号17a〜17dの波形を示す。
(時刻t0から時刻taまでの時間における半導体スイッチ回路1の動作)
残留電流遮断用直流遮断器204が開放状態、または高速断路器202と補助直流断路器203に直流送電電流が流れている状態、即ち、半導体スイッチ回路1への印加電圧が十分低い状態において、時刻t0に、充電用ダイオード11aのアノードへ直流電源5の電圧が印加される。
図4は、図3の時刻t0から時刻taまでの時間における、実施の形態1に係る半導体スイッチ回路1の動作を説明する回路図である。
図4に示される通り、時刻t0に、導通した充電用ダイオード11a、入力コンデンサ12a、スイッチ接続ノードNa、低電圧ノードNL、および直流電源5に至る閉路が形成されると、入力コンデンサ12aの充電が開始される。直流/直流コンバータ13aは、入力コンデンサ12aの入力電圧Va’(図2参照)を出力電圧Vaに変換し、時刻taまでに、平滑コンデンサ14aを、ゲート駆動回路20aが動作するのに必要な出力電圧Vaまで充電する。
(時刻taから時刻tbまでの時間における半導体スイッチ回路1の動作)
図3において、時刻taに、制御回路50は、駆動信号17a〜17dを、それぞれ、ゲート駆動回路20a〜20dへ同時に出力する。この時、すでに、動作に必要な出力電圧Vaが入力されているゲート駆動回路20aは、駆動信号17aに応答して、ゲート駆動信号18aを半導体スイッチング素子30aのゲートへ出力する。半導体スイッチング素子30aは、このゲート駆動信号18aに応答して、時刻ta以降、速やかに、オフ状態からオン状態へ変化する。
図5は、図3の時刻taから時刻tbまでの時間における、実施の形態1に係る半導体スイッチ回路1の動作を説明する回路図である。
図5に示される通り、半導体スイッチング素子30aがオンすると、充電用ダイオード11a、充電用ダイオード11b、入力コンデンサ12b、半導体スイッチング素子30a、低電圧ノードNL、および直流電源5に至る閉路が形成され、入力コンデンサ12bの充電が開始される。直流/直流コンバータ13bは、入力コンデンサ12bの入力電圧Vb’(図2参照)を出力電圧Vbに変換し、時刻tbには、平滑コンデンサ14bを、ゲート駆動回路20bが動作するのに必要な出力電圧Vbまで充電する。
(時刻tbから時刻tcまでの時間における半導体スイッチ回路1の動作)
図3において、時刻tbに、直流/直流コンバータ13bが、平滑コンデンサ14bを、ゲート駆動回路20bが動作するのに必要な出力電圧Vbまで充電すると、ゲート駆動回路20bは、すでに制御回路50が出力している駆動信号17bとともに、ゲート駆動信号18bを半導体スイッチング素子30bのゲートへ出力する。半導体スイッチング素子30bは、このゲート駆動信号18bに応答して、時刻tb以降、速やかに、オフ状態からオン状態に変化する。
図6は、図3の時刻tbから時刻tcまでの時間における、実施の形態1に係る半導体スイッチ回路1の動作を説明する回路図である。
図6に示される通り、半導体スイッチング素子30bがオンすると、充電用ダイオード11a〜11c、入力コンデンサ12c、半導体スイッチング素子30a〜30b、低電圧ノードNL、および直流電源5に至る閉路が形成され、入力コンデンサ12cの充電が開始される。直流/直流コンバータ13cは、入力コンデンサ12cの入力電圧Vc’(図2参照)を出力電圧Vcに変換し、時刻tcには、平滑コンデンサ14cを、ゲート駆動回路20cが動作するのに必要な出力電圧Vcまで充電する。
(時刻tcから時刻tdまでの時間における半導体スイッチ回路1の動作)
図3において、時刻tcに、直流/直流コンバータ13cが、平滑コンデンサ14cを、ゲート駆動回路20cが動作するのに必要な出力電圧Vcまで充電すると、ゲート駆動回路20cは、すでに制御回路50が出力している駆動信号17cとともに、ゲート駆動信号18cを半導体スイッチング素子30cのゲートへ出力する。半導体スイッチング素子30cは、このゲート駆動信号18cに応答して、時刻tc以降、速やかに、オフ状態からオン状態に変化する。
図7は、図3の時刻tcから時刻tdまでの時間における、実施の形態1に係る半導体スイッチ回路1の動作を説明する回路図である。
図7に示される通り、半導体スイッチング素子30cがオンすると、充電用ダイオード11a〜11d、入力コンデンサ12d、半導体スイッチング素子30a〜30c、低電圧ノードNL、および直流電源5に至る閉路が形成され、入力コンデンサ12dの充電が開始される。直流/直流コンバータ13dは、入力コンデンサ12dの入力電圧Vd’(図2参照)を出力電圧Vdに変換し、時刻tdには、平滑コンデンサ14dを、ゲート駆動回路20dが動作するのに必要な出力電圧Vdまで充電する。
図3において、時刻tdに、直流/直流コンバータ13dが、平滑コンデンサ14dを、ゲート駆動回路20dが動作するのに必要な出力電圧Vdまで充電すると、ゲート駆動回路20dは、すでに制御回路50が出力している駆動信号17dとともに、ゲート駆動信号18dを半導体スイッチング素子30dのゲートへ出力する。半導体スイッチング素子30dは、このゲート駆動信号18dに応答して、時刻td以降、速やかに、オフ状態からオン状態に変化する。
時刻td以降、半導体スイッチング素子30a〜30dは、全てオン状態が維持され、半導体スイッチ回路1は、オン状態を維持する。
残留電流遮断用直流遮断器204の開放状態、あるいは高速断路器202および補助直流断路器203に直流電流が流れている状態において、半導体スイッチ回路1に印加される電圧は十分に低い。そのため、半導体スイッチング素子30a〜30dを、低電圧段、即ち、低電圧ノードNLと接続される半導体スイッチング素子30aから、高電圧段の半導体スイッチング素子30dまで、順次オンさせた場合であっても、各々の半導体スイッチング素子30a〜30dに印加される電圧は、半導体スイッチング素子30a等の定格電圧より、十分に小さい。従って、半導体スイッチング素子30a〜30dに過大な電圧を印加することなく、確実に半導体スイッチ回路1をオン状態に設定することが可能となる。
半導体直流遮断器200が通電遮断動作に入り、オンしている半導体スイッチ回路1をオフさせる場合、制御回路50は、ゲート駆動回路20a〜20dへ、それぞれ、駆動信号17a〜17dを同時に出力する。駆動信号17a〜17dに応答して、ゲート駆動回路20a〜20dは、それぞれ同時に、半導体スイッチング素子30a〜30dをオフさせ、半導体スイッチ回路1は、オフする。
半導体スイッチング素子30a〜30dがオフすると、直流電源5から直流/直流コンバータ13a〜13dへの電力供給が停止する。半導体直流遮断器200の通電遮断処理を確実に実行するには、通電遮断処理の開始から完了までの時間にわたり、ゲート駆動回路20a〜20dを動作させる必要がある。そのため、ゲート駆動回路20a〜20dへ駆動電力を供給する平滑コンデンサ14a〜14dの容量値は、通電遮断処理の開始から完了までの時間よりも十分に長い放電時間を確保できる値に設定することが好ましい。
図7を参照して説明すると、半導体スイッチ回路1がオフした時刻において、スイッチ接続ノードNdの電圧値は、高電圧ノードNHの電圧値近くまで上昇しているため、ダイオード接続ノードN1dには、高電圧ノードNHの電圧値近くの高電圧(以下、遮断電圧、とも記載)が印加されている。この時、直列接続された充電用ダイオード11a〜11dには、ほぼ、この逆バイアスの遮断電圧が印加される。しかしながら、各充電用ダイオード11a〜11dに印加される遮断電圧は、その高電圧の値を直列接続された充電用ダイオード11a〜11dの個数で除算した値となる。その結果、充電用ダイオード11a〜11dを選択する際、適切な耐圧を有する素子を選択することが可能となり、半導体スイッチ回路1は、より小型化される。
図2において、直流電源5が出力する電源電圧VOの値は、充電用ダイオード11a〜11d、および半導体スイッチング素子30a〜30dの特性を考慮して設定する必要がある。各充電用ダイオード11a〜11dの通電電圧(順方向電圧)をVD、各半導体スイッチング素子30a〜30dのオン電圧(コレクタ−エミッタ間のオン電圧)をVon、ゲート駆動信号18a〜18dの電圧(半導体スイッチング素子30a〜30dをオンさせるゲート−エミッタ間の電圧)をVG、半導体スイッチング素子30a等の直列数をnとする。
半導体スイッチ回路1を動作させるには、直流電源5の電源電圧VOの値は、以下の数式(1)を満たす必要がある。
VO>n*VD+(n−1)*Von+VG ……(1)
ここで、記号”*”は乗算記号である。
図4から図7に示される通り、低電圧ノードNLに接続されたスイッチングユニット2aが有する入力コンデンサ12aの入力電圧Va’の値に対し、入力電圧Vb’、Vc’、およびVd’の値は、この順に、小さくなる(Va’>Vb’>Vc’>Vd’)。これは、充電用ダイオード11b、11c、および11dの通電電圧VDが、高電圧ノードNHに近いスイッチングユニット程、累積するからである。このため、入力コンデンサ12d,12c,12bの耐圧値は、それぞれ入力コンデンサ12c,12b,12aの耐圧値より小さくなっている。耐圧値の小さなコンデンサは耐圧値の大きなコンデンサよりも安いので、同じ耐圧値の入力コンデンサ12a〜12dを使用する場合に比べ、低コスト化を図ることができる。
入力電圧Va’〜Vd’を、それぞれ、直流/直流コンバータ13a〜13dで、同じ倍率で変換して出力電圧Va〜Vdを生成した場合、ゲート駆動信号18a、18b、18c、および18dの電圧(ゲート−エミッタ間電圧)は、この順に小さくなり、半導体スイッチング素子30a〜30dのスイッチングタイミングが不均一になる。
そこで、互いに異なる値を有する入力電圧Va’〜Vd’から、同じ値を有する出力電圧Va〜Vdを生成するように、直流/直流コンバータ13a〜13dの特性を調整することで、半導体スイッチング素子30a〜30dのスイッチングタイミングが均一化される。ただし、半導体スイッチング素子30a〜30dのスイッチングタイミングの不均一が解消されるのであれば、出力電圧Va〜Vdの値は、必ずしも完全に等しい値である必要はなく、ある程度の電圧差は許容される。
実施の形態1に係る半導体スイッチ回路1の効果を説明する。以下の説明において、特に断りが無い限り、スイッチングユニット2aの記載は、スイッチングユニット2a〜2dを例示するものである。充電用ダイオード11a等の記載の意味も同様である。
半導体スイッチ回路1は、高電圧ノードNHおよび低電圧ノードNL間に直列接続された複数のスイッチングユニット2a〜2dと、ダイオード接続ノードN1およびN1d間に直列接続された複数の充電用ダイオード11a〜11dを備える。スイッチングユニット2aは、充電用ダイオード11aで、入力コンデンサ12aの端子間電圧を入力電圧Va’に充電する。直流/直流コンバータ13aは、入力電圧Va’を出力電圧Vaに変換し、平滑コンデンサ14aを充電する。ゲート駆動回路20aは、平滑コンデンサ14aから駆動電力を受け、ゲート駆動信号18aを生成する。半導体スイッチング素子30aは、ゲート駆動信号18aの電圧値が所定値を超えるとオンする。
半導体スイッチング素子30aは、直流/直流コンバータ13aが生成する駆動電力、および制御回路50が出力する駆動信号17aに基づき、オン/オフ動作が決定される。特許文献1と異なり、トランスの1次巻線に対し、複数の異なる2次巻線で生成した交流電圧を直流電圧に変換して、各々のゲート駆動回路へ給電する構成を採用していない。従って、半導体スイッチ回路1によれば、トランスの1次側巻線と2次側巻線の絶縁耐圧確保やトランス結合容量に伴う種々の課題(大型化、重量化、コスト増加、保守点検の煩雑化、半導体スイッチング素子の必要以上の高耐圧化)が解決される。
直流/直流コンバータ13a〜13dは、それぞれ、充電用ダイオード11a〜11dで充電される入力コンデンサ12a〜12dの入力電圧Va’〜Vd’の減少値を見込んで、同一の値を有する出力電圧Va〜Vdを生成する。この結果、半導体スイッチング素子30a〜30dのスイッチングタイミングは均一化され、半導体スイッチ回路1の応答速度が向上する。
半導体スイッチ回路1は、直列接続された充電用ダイオード11a〜11dの各々のカソード電圧を、各スイッチングユニット2a〜2dに供給する。半導体スイッチ回路1がオン状態からオフ状態に変化すると、直列接続された充電用ダイオード11a〜11dには、高電圧ノードNHの電圧に近い逆電圧が印加される。しかしながら、各充電用ダイオード11a〜11dに印加される逆電圧の値は、高電圧ノードNHの電圧を充電用ダイオード11a〜11dの個数で除算した値程度であるため、その除算して求められる逆電圧に耐性を有するダイオードを適用できる。その結果、半導体スイッチ回路1は、より小型化される。
<実施の形態1の変形例>
図8は、実施の形態1に係る半導体スイッチ回路1の変形例に係る半導体スイッチ回路1Aの一部を説明する回路図である。
図8に示される半導体スイッチ回路1Aは、図2に示される半導体スイッチ回路1と、以下の点で相違する。即ち、図2に示されるダイオード接続ノードN1〜N1dにおいて、隣接するダイオード接続ノードの一方(例えば、N1)および他方(N1a)には、それぞれ、充電用ダイオード11aのアノードおよびカソードが接続される。他の隣接するダイオード接続ノード間も、同様に、1つの充電用ダイオードが接続される。図8で省略されている他の回路構成は、図2に示される回路構成と同一である。
図8に示されるダイオード接続ノードN1〜N1dにおいて、隣接するダイオード接続ノードの一方(N1)および他方(N1a)には、それぞれ、充電ダイオードユニット111aのアノードおよびカソードが接続される。充電ダイオードユニット111aは、3つの直列接続された充電用ダイオードで構成される。他の隣接するダイオード接続ノード間も、同様に、充電ダイオードユニット111b〜111dが接続される。半導体スイッチ回路1Aにおいて、他の回路構成は、半導体スイッチ回路1と同一である。
上述の図7を参照した説明の通り、半導体スイッチ回路1Aがオフした時、ダイオード接続ノードN1d−N1間には、遮断電圧が印加される。充電ダイオードユニット111a〜111dは、直列接続された3個の充電用ダイオードで構成されているため、1つの充電用ダイオードに印加される逆バイアスの電圧値は、半導体スイッチ回路1の各充電用ダイオード11a〜11dに印加される逆バイアスの電圧値の3分の1となる。
その結果、実施の形態1の変形例に係る半導体スイッチ回路1Aにおける充電ダイオードユニット111a〜111dを構成する充電用ダイオードに求められる耐圧値は、半導体スイッチ回路1における充電用ダイオード11a〜11dに求められる耐圧値よりも小さくなり、半導体スイッチ回路1Aの小型化、および抵抗コスト化に貢献する。
実施の形態1およびその変形例において、図1に示される半導体直流遮断器200は、半導体スイッチ回路1と、直列接続された高速断路器202および補助直流断路器203と、非線形抵抗205が並列に接続された構成であることを説明した。半導体スイッチ回路1と、高速断路器202、補助直流断路器203、および非線形抵抗205との接続関係は、その構成に限定されず、他の接続関係においても半導体スイッチ回路1を適用することができる。
さらに、図2に示される半導体スイッチ回路1は、高電圧ノードNHおよび低電圧ノードNL間に直列に接続された4段のスイッチングユニット2a〜2dを備える。このスイッチングユニット2a等の段数は4段に限定されるものではなく、半導体スイッチ回路1に印加される直流送電経路220の遮断電圧の値により、適宜設定される。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1,1A 半導体スイッチ回路、11a〜11d 充電用ダイオード、12a〜12d 入力コンデンサ、13a〜13d 直流コンバータ、14a〜14d 平滑コンデンサ、15a〜15d 光ファイバ、17a〜17d 駆動信号、18a〜18d ゲート駆動信号、111a〜111d 充電ダイオードユニット、20a〜20d ゲート駆動回路、2a〜2d スイッチングユニット、30a〜30d 半導体スイッチング素子、2a〜2d スイッチングユニット、5 直流電源、16 制御信号、17a〜17d 駆動信号、18a〜18d ゲート駆動信号、20a〜20d ゲート駆動回路、30a〜30d 半導体スイッチング素子、50 制御回路、200 半導体直流遮断器、201 限流リアクトル、202 高速断路器、203 補助直流断路器、204 残留電流遮断用直流遮断器、205 非線形抵抗、220 直流送電経路、A,B 接続点、N1,N1a〜N1d ダイオード接続ノード、Na〜Nd スイッチ接続ノード、NH 高電圧ノード、NL 低電圧ノード、Va’〜Vd’ 入力電圧、Va〜Vd 出力電圧、VO 電源電圧。
半導体スイッチ回路は、高電圧ノードおよび低電圧ノード間に直列接続された第1〜第Nのスイッチングユニットと、それぞれ第1〜第Nのスイッチングユニットに対応して設けられた第1〜第Nの整流素子と、予め定められた直流電圧を出力する直流電源とを備える。Nは2以上の整数である。第1〜第Nの整流素子のカソードはそれぞれ第1〜第Nのスイッチングユニット接続され、第1〜第(N−1)の整流素子のアノードはそれぞれ第2〜第Nの整流素子のカソードに接続され、第Nの整流素子のアノードは直流電源の正極に接続されて予め定められた直流電圧を受け、直流電源の負極は低電圧ノードに接続される。高電圧ノードの電圧値は低電圧ノードの電圧値より高い。第1〜第Nのスイッチングユニットの各々は、半導体スイッチング素子と、半導体スイッチング素子を駆動するゲート駆動回路と、対応する整流素子のカソードから直流電圧を受けてゲート駆動回路へ駆動電力を供給する直流/直流コンバータとを含む。第1〜第Nのスイッチングユニットに含まれるN個の半導体スイッチング素子は、高電圧ノードおよび低電圧ノード間に直列接続される。

Claims (9)

  1. 半導体スイッチ回路であって、
    高電圧ノードおよび低電圧ノード間に直列接続された第1〜第N(ただし、Nは2以上の整数である)のスイッチングユニットと、
    それぞれ前記第1〜第Nのスイッチングユニットに対応して設けられた第1〜第Nの整流素子とを備え、
    前記第1〜第Nの整流素子のカソードはそれぞれ前記第1〜第Nのスイッチングユニットに接続され、前記第1〜第(N−1)の整流素子のアノードはそれぞれ前記第2〜第Nの整流素子のカソードに接続され、前記第Nの整流素子のアノードは予め定められた直流電圧を受け、
    前記高電圧ノードの電圧値は前記低電圧ノードの電圧値より高く、
    前記第1〜第Nのスイッチングユニットの各々は、
    半導体スイッチング素子と、
    前記半導体スイッチング素子を駆動するゲート駆動回路と、
    対応する整流素子のカソードから直流電圧を受けて前記ゲート駆動回路へ駆動電力を供給する直流/直流コンバータとを含み、
    前記第1〜第Nのスイッチングユニットに含まれるN個の前記半導体スイッチング素子は、前記高電圧ノードおよび前記低電圧ノード間に直列接続される、半導体スイッチ回路。
  2. 前記第1〜第Nのスイッチングユニットの前記直流/直流コンバータの出力電圧は同じ値である、請求項1に記載の半導体スイッチ回路。
  3. 前記第1〜第Nのスイッチングユニットの各々は、さらに、入力コンデンサを含み、
    前記第1〜第Nのスイッチングユニットの前記入力コンデンサの一方端子はそれぞれ前記第1〜第Nの整流素子のカソードに接続され、それらの他方端子はそれぞれ前記第1〜第Nのスイッチングユニットの前記半導体スイッチング素子の前記低電圧ノード側の電極に接続されている、請求項1に記載の半導体スイッチ回路。
  4. 前記第1〜第(N−1)のスイッチングユニットの前記入力コンデンサの耐圧値は、それぞれ前記第2〜第Nのスイッチングユニットの前記入力コンデンサの耐圧値より小さい、請求項3に記載の半導体スイッチ回路。
  5. 前記第1〜第(N−1)のスイッチングユニットの前記直流/直流コンバータの入力電圧の値は、それぞれ前記第2〜第Nのスイッチングユニットの前記直流/直流コンバータの入力電圧の値より小さい、請求項1に記載の半導体スイッチ回路。
  6. 前記半導体スイッチング素子は、珪素のバンドギャップの値よりも大きいバンドギャップの値を有する半導体で形成される、請求項1に記載の半導体スイッチ回路。
  7. 非導通にされた前記第N〜第1のスイッチングユニットの前記半導体スイッチング素子は、前記ゲート駆動回路によって駆動されて1つずつ順次導通し、
    導通した前記第N〜第1のスイッチングユニットの前記半導体スイッチング素子は、前記ゲート駆動回路によって同時に非導通にされる、請求項1に記載の半導体スイッチ回路。
  8. 前記予め定められた直流電圧を出力する直流電源をさらに備え、
    前記直流電源の正極は前記第Nの整流素子のアノードと接続され、
    前記直流電源の負極は前記低電圧ノードと接続される、請求項1に記載の半導体スイッチ回路。
  9. 前記第1〜第Nの整流素子の各々は、1つのダイオードまたは直列接続された複数のダイオードを含む、請求項1に記載の半導体スイッチ回路。
JP2015528165A 2013-07-24 2014-03-26 半導体スイッチ回路 Active JP6198828B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013153443 2013-07-24
JP2013153443 2013-07-24
PCT/JP2014/058414 WO2015011949A1 (ja) 2013-07-24 2014-03-26 半導体スイッチ回路

Publications (2)

Publication Number Publication Date
JPWO2015011949A1 true JPWO2015011949A1 (ja) 2017-03-02
JP6198828B2 JP6198828B2 (ja) 2017-09-20

Family

ID=52393008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015528165A Active JP6198828B2 (ja) 2013-07-24 2014-03-26 半導体スイッチ回路

Country Status (4)

Country Link
US (1) US9680464B2 (ja)
EP (1) EP3026688B1 (ja)
JP (1) JP6198828B2 (ja)
WO (1) WO2015011949A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680464B2 (en) * 2013-07-24 2017-06-13 Mitsubishi Electric Corporation Semiconductor switch circuit
CN204011078U (zh) * 2014-04-22 2014-12-10 比亚迪股份有限公司 电动汽车及其电容器
JP6049957B2 (ja) * 2014-09-26 2016-12-21 三菱電機株式会社 直流遮断器
KR101658539B1 (ko) * 2014-10-10 2016-09-22 엘에스산전 주식회사 직류 차단기 및 이를 이용하는 방법
KR102021863B1 (ko) * 2015-05-13 2019-09-17 엘에스산전 주식회사 직류 차단기
DE102017130443A1 (de) * 2017-12-19 2019-06-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Flexibles Bootstrapping für Leistungselektronikschaltungen
JP7212341B2 (ja) * 2018-02-23 2023-01-25 国立大学法人東北大学 電力用開閉装置、送配電システム、発電システム、負荷システム、及び電力用開閉装置の制御方法
US11283440B2 (en) * 2018-04-03 2022-03-22 Siemens Energy Global GmbH & Co. KG Circuit arrangement and power converter module having semiconductor switches connected in series
EP3783634A4 (en) * 2018-04-19 2021-05-19 Mitsubishi Electric Corporation DC BREAKER

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914335Y1 (ja) * 1968-05-30 1974-04-09
JPS6068517A (ja) * 1983-09-22 1985-04-19 株式会社日立製作所 直流スイツチ
JPH04126395A (ja) * 1990-06-18 1992-04-27 Tokyo Electric Co Ltd 放電灯点灯装置
JPH0851770A (ja) * 1994-08-09 1996-02-20 Mitsubishi Electric Corp 半導体スイッチのゲートドライブ回路
JP2002281737A (ja) * 2001-03-21 2002-09-27 Fuji Electric Co Ltd Igbt直列接続式ゲート駆動回路
JP2008096754A (ja) * 2006-10-12 2008-04-24 Nikon Corp スイッチ回路、電源回路、および閃光装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237813A (ja) 1990-02-15 1991-10-23 Mitsubishi Electric Corp パルス発生回路
US5266869A (en) 1990-09-27 1993-11-30 Tokyo Electric Co., Ltd. Discharge lamp lighting apparatus having output impedance which limits current flow therethrough after start of discharging
JP3657014B2 (ja) * 1994-02-15 2005-06-08 松下電工株式会社 電源装置
JP3991450B2 (ja) 1998-06-16 2007-10-17 三菱電機株式会社 高周波交流電源装置
JP2002084762A (ja) 2000-09-04 2002-03-22 Asmo Co Ltd インバータ回路
JP4765093B2 (ja) 2001-06-28 2011-09-07 富士電機株式会社 ゲート駆動回路
JP5532192B2 (ja) 2008-01-24 2014-06-25 独立行政法人産業技術総合研究所 電力変換装置
JP5200738B2 (ja) 2008-07-31 2013-06-05 ダイキン工業株式会社 インバータ回路
US8237422B2 (en) * 2009-05-09 2012-08-07 Cosmic Circuits Private Limited Efficient switch cascode architecture for switching devices
JP5289565B2 (ja) * 2009-05-19 2013-09-11 三菱電機株式会社 ゲート駆動回路
EP2502248B1 (en) 2009-11-16 2017-01-25 ABB Schweiz AG Device and method to break the current of a power transmission or distribution line and current limiting arrangement
JP5594728B2 (ja) * 2010-07-23 2014-09-24 松尾博文 直流スイッチ
GB201311997D0 (en) * 2013-07-04 2013-08-21 Amantys Ltd Synchronising parallel power switches
US9680464B2 (en) * 2013-07-24 2017-06-13 Mitsubishi Electric Corporation Semiconductor switch circuit
WO2015016146A1 (ja) * 2013-08-01 2015-02-05 三菱電機株式会社 ゲート電源装置及びこれを用いた半導体遮断器
US9837996B2 (en) * 2015-01-07 2017-12-05 Raytheon Company Method and apparatus for control of pulsed power in hybrid energy storage module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914335Y1 (ja) * 1968-05-30 1974-04-09
JPS6068517A (ja) * 1983-09-22 1985-04-19 株式会社日立製作所 直流スイツチ
JPH04126395A (ja) * 1990-06-18 1992-04-27 Tokyo Electric Co Ltd 放電灯点灯装置
JPH0851770A (ja) * 1994-08-09 1996-02-20 Mitsubishi Electric Corp 半導体スイッチのゲートドライブ回路
JP2002281737A (ja) * 2001-03-21 2002-09-27 Fuji Electric Co Ltd Igbt直列接続式ゲート駆動回路
JP2008096754A (ja) * 2006-10-12 2008-04-24 Nikon Corp スイッチ回路、電源回路、および閃光装置

Also Published As

Publication number Publication date
US9680464B2 (en) 2017-06-13
EP3026688A4 (en) 2017-03-22
EP3026688A1 (en) 2016-06-01
JP6198828B2 (ja) 2017-09-20
US20160197604A1 (en) 2016-07-07
WO2015011949A1 (ja) 2015-01-29
EP3026688B1 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP6198828B2 (ja) 半導体スイッチ回路
US8493759B2 (en) Inverter
JP6191965B2 (ja) 電力変換装置、およびそれを用いたパワーコンディショナ
JP6454936B2 (ja) 電力変換装置、およびそれを用いたパワーコンディショナ
US9397636B2 (en) System and method for driving transistors
TW201301758A (zh) 包含常關型及常開型裝置的疊接開關以及包括該等開關的電路
US10951131B2 (en) Converter and method for driving converter
US10985653B1 (en) Charge pump converter and control method
US20160314914A1 (en) Power switch circuit
CN108141210B (zh) 半导体开关串
KR102051001B1 (ko) 인버터 내 하이 사이드 스위치용 마이너스 전압의 생성을 위한 장치 및 방법
JP3133166B2 (ja) ゲート電力供給回路
JP2018033303A (ja) 半導体スイッチング素子駆動回路及び電力変換器
JP5814759B2 (ja) 電力変換装置
EP3477861B1 (en) Switching device and power conversion device
JP6790853B2 (ja) 電力変換装置の制御方法
US10715055B2 (en) Power semiconductor circuit having a field effect transistor with low energy losses
KR102208248B1 (ko) 컨버터 및 그것을 이용한 전력 변환 장치
TW201916559A (zh) 用於對直流-直流轉換器的死區時間進行控制的控制電路
WO2019039064A1 (ja) 半導体電力変換回路、並びにそれを用いた半導体装置及びモータ駆動装置
CN113746305B (zh) 栅极驱动电路和多相智能功率模块
JP6370524B1 (ja) ゲート駆動回路
EP3723288A1 (en) Driver circuit for driving a semiconductor switching element, voltage converter, arrangement with an electric machine and a voltage converter and vehicle
WO2018216251A1 (ja) ゲート駆動回路
JP2017220994A (ja) 絶縁型フライバック式電力変換回路

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170822

R150 Certificate of patent or registration of utility model

Ref document number: 6198828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250