JPWO2014208618A1 - Powder composition for tin oxide amorphous refractories, method for producing tin oxide amorphous refractories, glass melting furnace and waste melting furnace - Google Patents

Powder composition for tin oxide amorphous refractories, method for producing tin oxide amorphous refractories, glass melting furnace and waste melting furnace Download PDF

Info

Publication number
JPWO2014208618A1
JPWO2014208618A1 JP2015524094A JP2015524094A JPWO2014208618A1 JP WO2014208618 A1 JPWO2014208618 A1 JP WO2014208618A1 JP 2015524094 A JP2015524094 A JP 2015524094A JP 2015524094 A JP2015524094 A JP 2015524094A JP WO2014208618 A1 JPWO2014208618 A1 JP WO2014208618A1
Authority
JP
Japan
Prior art keywords
tin oxide
refractory
powder composition
zro
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015524094A
Other languages
Japanese (ja)
Inventor
小川 修平
修平 小川
泰夫 篠崎
泰夫 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2014208618A1 publication Critical patent/JPWO2014208618A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

高温場におけるSnO2の揮散を抑制し、さらにガラスに対する高耐侵食性を併せて保有する酸化スズ質不定形耐火物が得られる紛体組成物を提供する。SnO2およびZrO2を必須成分とする耐火性配合物を含有する酸化スズ質不定形耐火物用紛体組成物であって、耐火性配合物中におけるSnO2およびZrO2の合量が70質量%以上であり、かつ、SnO2およびZrO2の合量に対するZrO2の含有割合が、1〜30モル%である酸化スズ質不定形耐火物用紛体組成物。Disclosed is a powder composition that can suppress the volatilization of SnO2 in a high-temperature field and that can provide a tin oxide amorphous refractory that also possesses high erosion resistance against glass. A powder composition for a tin oxide amorphous refractory containing a refractory composition containing SnO2 and ZrO2 as essential components, the total amount of SnO2 and ZrO2 in the refractory composition being 70% by mass or more, And the powder composition for tin oxide amorphous refractories whose content ratio of ZrO2 with respect to the total amount of SnO2 and ZrO2 is 1-30 mol%.

Description

本発明は、酸化スズ質不定形耐火物用紛体組成物、酸化スズ質不定形耐火物の製造方法、ガラス溶解炉および廃棄物溶融炉に係り、特に、SnOおよびZrOを必須成分として含有し、これらを所定量含有させてSnOの揮散を抑制し、耐食性を向上させた新規の酸化スズ質不定形耐火物が得られる紛体組成物ならびにそれを利用した不定形耐火物の製造方法、ガラス溶解炉および廃棄物溶融炉に関する。The present invention relates to a powder composition for a tin oxide amorphous refractory, a method for producing a tin oxide amorphous refractory, a glass melting furnace and a waste melting furnace, and particularly contains SnO 2 and ZrO 2 as essential components. and, to a process for the preparation of these the by containing a predetermined amount to suppress the volatilization of SnO 2, powder composition novel tin oxide electrolyte monolithic refractories having improved corrosion resistance is obtained, as well as monolithic refractories using the same, The present invention relates to a glass melting furnace and a waste melting furnace.

ガラス溶解炉や廃棄物溶融炉に使用される耐火物は、定形耐火物と不定形耐火物に大別される。定形耐火物の施工は、れんが積み作業であり、重労働でしかも高度な技術を要するため、近年は不定形耐火物による内張りが汎用されつつある。   Refractories used in glass melting furnaces and waste melting furnaces are roughly classified into regular refractories and irregular refractories. Since the construction of the fixed refractory is a brick-stacking operation and requires heavy labor and high technology, lining with an irregular refractory has been widely used in recent years.

溶融炉用の不定形耐火物として従来使用されている材質は、ガラス製造用においてはジルコニア質やクロミア質の不定形耐火物、廃棄物溶融炉ではアルミナ−酸化クロム質不定形耐火物である。しかし、これらの材質は、ジルコニア質不定形耐火物では耐食性が低く、クロミア質の不定形耐火物では耐食性は高いが六価クロムを生成し、スラグおよび使用後、耐火物の廃棄物が環境汚染を招く問題があった。   The materials conventionally used as the amorphous refractories for melting furnaces are zirconia and chromia amorphous refractories for glass production, and alumina-chromium oxide amorphous refractories for waste melting furnaces. However, these materials have low corrosion resistance for zirconia amorphous refractories, and chromia amorphous refractories have high corrosion resistance but produce hexavalent chromium. There was a problem inviting.

こうした背景の中、SnOを主成分とする耐火組成物を焼結してなる酸化スズ質耐火物は、一般に使用される耐火物と比較し、スラグに対する耐食性が非常に高く、ガラス溶解炉や廃棄物溶融炉用の耐火物としての使用が検討されている。In such a background, tin oxide refractories obtained by sintering a refractory composition mainly composed of SnO 2 have very high corrosion resistance against slag as compared to commonly used refractories. Use as a refractory for waste melting furnaces is being studied.

たとえば、特許文献1には、SnOを85〜99重量%含有する緻密質なガラス溶融炉用酸化スズ耐火物が提案されている。しかし、このような耐火物は、ガラス製造装置におけるガラス接触部の耐火物として実際に再利用されている例は知られていない。For example, Patent Document 1 proposes a dense tin oxide refractory for a glass melting furnace containing 85 to 99% by weight of SnO 2 . However, there is no known example in which such a refractory is actually reused as a refractory for a glass contact portion in a glass manufacturing apparatus.

その理由としては、基本的な特性として、SnOは高温場、特に1200℃以上の高温場においてはSnOとして揮散する性質がある。この揮散により、耐火物の組織が多孔質化して脆化し、耐火物が剥離したり、あるいはガラスの製造においては、揮散したSnO成分がガラス製造装置中の低温部において濃縮・凝固したりして、SnO成分がガラス中に異物として落下、混入し、ガラス成形体の製造における歩留まりを低下させるという問題が考えられる。また、SnOを不定形耐火物の耐火材料として使用した場合には、スラグが浸潤する前から酸化スズ粒子が揮散により脆化し、スラグに対する耐食性が大幅に低下する。The reason is that, as a basic characteristic, SnO 2 is volatilized as SnO in a high temperature field, particularly in a high temperature field of 1200 ° C. or higher. Due to this volatilization, the structure of the refractory becomes porous and embrittled, and the refractory peels off, or in the production of glass, the volatilized SnO component is concentrated and solidified in the low temperature part of the glass production apparatus. The SnO 2 component may be dropped and mixed as a foreign substance in the glass, resulting in a decrease in yield in the production of the glass molded body. In addition, when SnO 2 is used as a refractory material for an amorphous refractory, tin oxide particles become brittle due to volatilization before the slag infiltrates, and the corrosion resistance against the slag is greatly reduced.

一方、酸化スズ焼結体は、高温場においてはガラス溶融用の電極材料として使用されており、一般的にこのような酸化スズ電極材料は、90〜98質量%以上のSnOと、0.1〜2.0質量%程度の焼結助剤および低抵抗化剤から作製されており、溶融ガラスに対する高耐侵食性と、通電に充分な低抵抗性の両方の特性を有する材料として利用されている。しかし、このような一般的な酸化スズ電極材料は、高温場、特に1200℃以上の高温場においてはSnOとして徐々に揮散してしまうため、劣化が避けられなかった。On the other hand, the tin oxide sintered body is used as an electrode material for melting glass in a high-temperature field. Generally, such a tin oxide electrode material is composed of 90 to 98 mass% or more of SnO 2 and 0.0. It is made from about 1 to 2.0% by mass sintering aid and low resistance agent, and is used as a material that has both high erosion resistance against molten glass and low resistance sufficient for energization. ing. However, such a general tin oxide electrode material gradually evaporates as SnO in a high temperature field, particularly at a high temperature field of 1200 ° C. or more, and thus deterioration cannot be avoided.

SnOの高温場での揮散問題を解決するための既存技術として、非特許文献1には、酸化スズ粉末に焼結助剤CoOを0.5モル%、揮散抑制成分としてZrOを、ZrOおよびSnOの含有量の合量に対して0〜10モル%含有せしめ、SnOの揮散を抑制する酸化スズ焼結体が報告されている。As an existing technique for solving the volatilization problem of SnO 2 in a high temperature field, Non-Patent Document 1 discloses that 0.5 mol% of a sintering aid CoO is added to tin oxide powder, ZrO 2 is used as a volatilization suppressing component, and ZrO 2 is used. There has been reported a tin oxide sintered body that contains 0 to 10 mol% with respect to the total content of 2 and SnO 2 and suppresses volatilization of SnO 2 .

また、特許文献2には、焼結助剤、低抵抗化剤とともに、揮散抑制剤としてZrO、HfO、TiO、Ta、CeOなどの酸化物であるY成分を、YおよびSnOの含有量の合量に対して0〜8質量%となるように含有せしめ、SnOの揮散を抑制したガラス溶融用電極材料が提案されている。Patent Document 2 discloses a Y component that is an oxide such as ZrO 2 , HfO 2 , TiO 2 , Ta 2 O 5 , and CeO 2 as a volatilization inhibitor, together with a sintering aid and a low resistance agent. and the additional inclusion against total content of SnO 2 such that 0-8 wt%, the glass melting electrode material has been proposed which suppresses volatilization of SnO 2.

これら揮散抑制成分を含有した酸化スズ焼結体は、酸化スズ粒子内部に揮散抑制成分が固溶した組織を有しており、高温場でSnOが揮散していくと、酸化スズ粒子内部に固溶していた揮散抑制成分が濃縮され、酸化スズ粒子表面に析出し、酸化スズ粒子表面を被覆していくため、SnOの揮散の抑制を可能としている。The tin oxide sintered body containing these volatilization-suppressing components has a structure in which the volatilization-suppressing component is dissolved in the tin oxide particles. When SnO 2 is volatilized in a high temperature field, the tin oxide particles are contained in the tin oxide particles. Since the volatilization suppressing component that has been dissolved is concentrated and deposited on the surface of the tin oxide particles and coats the surface of the tin oxide particles, the volatilization of SnO 2 can be suppressed.

また、特許文献3では、SnOを不定形耐火物の耐火材料として使用した例として、SnOを0.5〜40重量%含有する廃棄物溶融炉用の不定形耐火物が提案されている。In Patent Document 3, as an example of using SnO 2 as a refractory material of the monolithic refractories, monolithic refractories for waste melting furnace containing SnO 2 0.5 to 40% by weight has been proposed .

特開昭54−132611号公報JP-A-54-132611 国際公開第2006/124742号パンフレットInternational Publication No. 2006/124742 Pamphlet 特開2004−196637号公報Japanese Patent Laid-Open No. 2004-196637

Maitre, D.Beyssen, R.Podor、「Effect of ZrO2 additions on sintering of SnO2-based ceramics」、Journal of the European Ceramic Society、2004年、第24巻、p.3111-3118Maitre, D. Beyssen, R. Podor, `` Effect of ZrO2 additions on sintering of SnO2-based ceramics '', Journal of the European Ceramic Society, 2004, Vol. 24, p.3111-3118

しかしながら、特許文献3においては、SnO含有量が40重量%を超えると酸化スズが耐火性原料あるいは結合剤成分と反応し、低融点物質を多量に生成して耐食性が低下すると報告されており、40重量%を超えるSnOを含有する不定形耐火物はこれまでに提案されていない。この原因としては、SnOの揮散によりスラグ浸潤前から耐火物が脆化することや、特許文献3の実施例に見られるように、微粒の酸化スズが用いられることでスラグとの反応性が高いことが要因と考えられる。However, Patent Document 3 reports that when the SnO 2 content exceeds 40% by weight, tin oxide reacts with a refractory raw material or a binder component to produce a large amount of a low-melting-point substance, resulting in a decrease in corrosion resistance. No amorphous refractory containing more than 40% by weight of SnO 2 has been proposed so far. The cause of this is that the refractory material becomes brittle before the slag infiltrate due to the volatilization of SnO 2 , and the reactivity with slag is caused by the use of fine tin oxide as seen in the examples of Patent Document 3. High is considered to be a factor.

そこで、本発明は、上記した従来技術が抱える課題を解決して、高温場におけるSnOの揮散を抑制し、かつ、ガラスに対する高耐侵食性を併せて有し、ガラス溶解炉や廃棄物溶融炉用の耐火物として好適な酸化スズ質不定形耐火物を得られる紛体組成物、酸化スズ質不定形耐火物の製造方法、ガラス溶解炉および廃棄物溶融炉の提供を目的とする。Therefore, the present invention solves the problems of the prior art described above, suppresses the volatilization of SnO 2 in a high temperature field, and also has a high erosion resistance against glass. The object is to provide a powder composition capable of obtaining a tin oxide amorphous refractory suitable as a refractory for a furnace, a method for producing a tin oxide amorphous refractory, a glass melting furnace, and a waste melting furnace.

[1]SnOおよびZrOを必須成分とする耐火性配合物を含有する酸化スズ質不定形耐火物用紛体組成物であって、前記耐火性配合物中におけるSnOおよびZrOの合量が70質量%以上であり、かつ、前記SnOおよびZrOの合量に対するZrOの含有割合が1〜30モル%であることを特徴とする酸化スズ質不定形耐火物用紛体組成物。
[2]前記SnOおよびZrOの含有量の合量が、95質量%以上である[1]に記載の酸化スズ質不定形耐火物用紛体組成物。
[3]前記SnOおよびZrOの含有量の合量に対するZrOの含有割合が、11〜30モル%である[1]または[2]に記載の酸化スズ質不定形耐火物用紛体組成物。
[4]前記耐火性配合物中に、10μm以下の酸化スズ粒子および10μm以下の酸化スズとジルコニアの固溶体粒子からなる群から選ばれる1種類以上を含んでなる微細粉を含む微粉を1〜10質量%含有する[1]乃至[3]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物。
[5]前記耐火性配合物中に、3μm以下の酸化スズ粒子および3μm以下の酸化スズとジルコニアの固溶体粒子からなる群から選ばれる1種類以上を含んでなる微細粉を1〜10質量%含有する[1]乃至[4]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物。
[6]前記耐火性配合物中に、CuO、ZnO、MnO、CoOおよびLiOの酸化物からなる群から選ばれる少なくとも1種類以上の成分を含む[1]乃至[5]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物。
[7]前記耐火性配合物に対し、分散剤を外掛けで0.01〜2質量%含有する[1]乃至[6]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物。
[8]結合剤として、アルミナセメントおよびコロイダルアルミナからなる群から選ばれる1種類以上を含有し、前記耐火性配合物中における前記結合剤の含有量が5質量%以下である[1]乃至[7]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物。
[9]前記耐火性配合物として、ZrOが1〜25モル%固溶している酸化スズ粒子を使用することを特徴とする[1]乃至[8]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物。
[10]前記酸化スズ質不定形耐火物用紛体組成物が、施工後、1300℃、350時間の熱処理したとき、酸化スズ粒子の表面にジルコニア相が形成される[1]乃至[9]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物。
[11][1]乃至[10]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物を、水と混練し、施工してなることを特徴とする酸化スズ質不定形耐火物の製造方法。
[12]前記施工後、1200℃以上で熱処理することを特徴とする[11]に記載の酸化スズ質不定形耐火物の製造方法。
[13][1]乃至[10]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物を施工して得られる酸化スズ質不定形耐火物を具備してなるガラス溶解炉。
[14][1]乃至[10]のいずれかに記載の酸化スズ質不定形耐火物用紛体組成物を施工して得られる酸化スズ質不定形耐火物を具備してなる廃棄物溶融炉。
[1] A powder composition for a tin oxide amorphous refractory containing a refractory composition containing SnO 2 and ZrO 2 as essential components, the total amount of SnO 2 and ZrO 2 in the refractory composition And a content ratio of ZrO 2 with respect to the total amount of SnO 2 and ZrO 2 is 1 to 30 mol%.
[2] The powder composition for a tin oxide amorphous refractory according to [1], wherein the total content of the SnO 2 and ZrO 2 is 95% by mass or more.
[3] The powder composition for a tin oxide amorphous refractory according to [1] or [2], wherein the content ratio of ZrO 2 with respect to the total content of SnO 2 and ZrO 2 is 11 to 30 mol%. object.
[4] A fine powder containing 1 to 10 fine powders containing at least one kind selected from the group consisting of tin oxide particles of 10 μm or less and solid solution particles of tin oxide and zirconia of 10 μm or less in the fireproof compound. The powder composition for tin oxide amorphous refractories according to any one of [1] to [3], which is contained by mass%.
[5] 1 to 10% by mass of fine powder containing at least one selected from the group consisting of tin oxide particles of 3 μm or less and solid solution particles of tin oxide and zirconia of 3 μm or less in the fireproof compound The powder composition for tin oxide amorphous refractories according to any one of [1] to [4].
[6] In any one of [1] to [5], the refractory composition includes at least one component selected from the group consisting of oxides of CuO, ZnO, MnO, CoO, and Li 2 O. The powder composition for tin oxide amorphous refractories as described.
[7] The powder composition for a tin oxide amorphous refractory according to any one of [1] to [6], which contains 0.01 to 2% by mass of a dispersant as an outer coating with respect to the refractory compound. .
[8] The binder contains one or more selected from the group consisting of alumina cement and colloidal alumina, and the content of the binder in the refractory composition is 5% by mass or less. 7] The powder composition for tin oxide amorphous refractories according to any one of [7].
[9] The tin oxide material according to any one of [1] to [8], wherein tin oxide particles in which 1 to 25 mol% of ZrO 2 is solid-solved are used as the fireproof compound. Powder composition for irregular refractories.
[10] When the powder composition for a tin oxide amorphous refractory is heat-treated at 1300 ° C. for 350 hours after application, a zirconia phase is formed on the surface of the tin oxide particles. The powder composition for tin oxide amorphous refractories according to any one of the above.
[11] A tin oxide amorphous refractory comprising the powder composition for a tin oxide amorphous refractory according to any one of [1] to [10], which is kneaded with water and applied. Manufacturing method.
[12] The method for producing a tin oxide amorphous refractory according to [11], wherein heat treatment is performed at 1200 ° C. or higher after the construction.
[13] A glass melting furnace comprising a tin oxide amorphous refractory obtained by applying the powder composition for a tin oxide amorphous refractory according to any one of [1] to [10].
[14] A waste melting furnace comprising a tin oxide amorphous refractory obtained by applying the powder composition for a tin oxide amorphous refractory according to any one of [1] to [10].

本発明の酸化スズ質不定形耐火物用紛体組成物および酸化スズ質不定形耐火物の製造方法によれば、ガラスに対する耐侵食性の高いSnOと、高温場におけるSnOの揮散を抑制する効果が高いZrOをバランスよく含有する耐火物が得られるため、優れたSnOの揮散抑制効果を発揮させ、スラグに対する耐侵食性に優れた酸化スズ質不定形耐火物を提供できる。さらに、この不定形耐火物は、施工対象物の形状に合わせて施工できるため、対象が限定されず広く適用できる。
また、本発明のガラス溶解炉および廃棄物溶融炉によれば、上記酸化スズ質不定形耐火物用紛体組成物を施工して得られる不定形耐火物を具備するため、炉壁等に隙間なく形成でき、優れた耐火性を発揮すると共に、SnOの揮散抑制効果を発揮させ、スラグに対する耐侵食性に優れた酸化スズ質不定形耐火物を有するため、炉の製品寿命を長くすることができる。
According to the powder composition for a tin oxide amorphous refractory and the method for producing a tin oxide amorphous refractory according to the present invention, the volatilization of SnO 2 having high erosion resistance to glass and SnO 2 in a high temperature field is suppressed. Since a highly effective refractory containing ZrO 2 in a balanced manner is obtained, an excellent SnO 2 volatilization suppressing effect can be exhibited, and a tin oxide amorphous refractory excellent in erosion resistance against slag can be provided. Furthermore, since this amorphous refractory can be constructed according to the shape of the construction object, the object is not limited and can be widely applied.
Further, according to the glass melting furnace and the waste melting furnace of the present invention, since the amorphous refractory obtained by applying the powder composition for tin oxide amorphous refractory is provided, there is no gap in the furnace wall or the like. It can be formed, exhibits excellent fire resistance, exhibits SnO 2 volatilization suppression effect, and has a tin oxide amorphous refractory with excellent erosion resistance against slag, thus extending the product life of the furnace it can.

上記のとおり、本発明の酸化スズ質不定形耐火物用紛体組成物は、酸化スズ質不定形耐火物中のSnOおよびZrOの含有量の合量が、所定の量になるように耐火性配合物を含有する点に特徴を有するものである。以下、本発明について詳細に説明する。As described above, the powder composition for a tin oxide amorphous refractory according to the present invention is refractory so that the total content of SnO 2 and ZrO 2 in the tin oxide amorphous refractory is a predetermined amount. It is characterized by the fact that it contains a sex compound. Hereinafter, the present invention will be described in detail.

本発明の酸化スズ質不定形耐火物用紛体組成物は、骨材として、SnOおよびZrOを必須成分として含有する耐火性配合物を含有するものである。The powder composition for tin oxide amorphous refractories according to the present invention contains a fire-resistant compound containing SnO 2 and ZrO 2 as essential components as an aggregate.

本発明に用いられるSnOは、溶融スラグの侵食に対する抵抗力が強く、耐熱性が高いため不定形耐火物の主要成分として含有される。SnO 2 used in the present invention has a strong resistance to the erosion of molten slag and has a high heat resistance, so it is contained as a main component of the amorphous refractory.

本発明に用いられるZrOは、この成分も溶融スラグの侵食に対する抵抗力が強く、さらに、不定形耐火物の主成分であるSnOの揮散を抑制する作用を有する成分である。ZrO 2 used in the present invention is a component that also has a strong resistance to erosion of molten slag, and further has an action of suppressing volatilization of SnO 2 which is a main component of the amorphous refractory.

本発明の酸化スズ質不定形耐火物用紛体組成物には、耐火性配合物に加え、結合剤を含有することが好ましい。結合剤は、不定形耐火物の施工性向上のために用いられる結合剤成分である。この成分を含有していると施工後の成形体強度が向上するため、施工性が向上する。一方で、スラグに対する耐食性は低く、また、酸化スズ、ジルコニア粒子のネックの形成を阻害する。本発明に用いられる結合剤の種類、添加量は、従来の不定形耐火物に用いられるものと特に変わらない。例えば、アルミナセメント、コロイダルアルミナ、マグネシアセメント、リン酸塩、ケイ酸塩などが使用できる。これらの中でもアルミナセメント、コロイダルアルミナが好ましく、アルミナセメントがより好ましい。結合剤の使用量は、耐火性配合物中に0〜10質量%が好ましく、0〜5質量%がより好ましい。ここで、コロイダルアルミナは水溶液であるが、本発明において使用量は固形物換算で表記した。   The powder composition for tin oxide amorphous refractories of the present invention preferably contains a binder in addition to the refractory composition. The binder is a binder component used for improving the workability of the amorphous refractory. When this component is contained, since the strength of the molded body after construction is improved, workability is improved. On the other hand, the corrosion resistance with respect to slag is low, and formation of the neck of a tin oxide and a zirconia particle is inhibited. The kind and addition amount of the binder used in the present invention are not particularly different from those used in conventional amorphous refractories. For example, alumina cement, colloidal alumina, magnesia cement, phosphate, silicate and the like can be used. Among these, alumina cement and colloidal alumina are preferable, and alumina cement is more preferable. The amount of the binder used is preferably 0 to 10% by mass and more preferably 0 to 5% by mass in the refractory composition. Here, colloidal alumina is an aqueous solution, but in the present invention, the amount used is expressed in terms of solid matter.

また、上記酸化スズ質耐火物用紛体組成物には、耐火性配合物に加え分散剤を含有することが好ましい。分散剤は、不定形耐火物の施工時の流動性を付与する。具体例な種類は何ら限定されるものではなく、例えばトリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ホウ酸ソーダ、炭酸ソーダ、ポリメタリン酸塩などの無機塩、クエン酸ソーダ、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ、ポリカルボン酸塩、β−ナフタレンスルホン酸塩類、ナフタリンスルフォン酸、カルボキシル基含有ポリエーテル系分散剤等である。
添加量は耐火性配合物100質量%に対し、外掛けで好ましくは0.01〜2質量%、さらに好ましくは0.03〜1質量%である。
The tin oxide refractory powder composition preferably contains a dispersant in addition to the refractory compound. The dispersant imparts fluidity during construction of the irregular refractory. Specific examples are not limited in any way. For example, sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, sodium acid hexametaphosphate, sodium borate, sodium carbonate, polymetaphosphate, etc., sodium citrate Sodium tartrate, sodium polyacrylate, sodium sulfonate, polycarboxylate, β-naphthalene sulfonate, naphthalene sulfonic acid, carboxyl group-containing polyether dispersant and the like.
The addition amount is preferably 0.01 to 2% by mass, more preferably 0.03 to 1% by mass, based on 100% by mass of the refractory compound.

本発明の酸化スズ質不定形耐火物用紛体組成物においては、前記耐火性配合物中に含有されるSnOおよびZrOの含有量の合量を70質量%以上とする。これは、前記耐火性配合物中に他の成分があまりに多量に含まれてしまうと、SnOおよびZrOの含有量が低下し、特に、SnOが有しているガラスに対する優れた耐侵食性が損なわれてしまうためである。耐侵食性を良好なものとするには、SnOおよびZrOの含有量の合量は、85質量%以上が好ましく、95質量%以上がより好ましい。特に、SnOおよびZrOの含有量の合量としては、97〜99.5質量%が好ましい。In the tin oxide amorphous refractory powder composition of the present invention, the total content of SnO 2 and ZrO 2 contained in the refractory composition is 70% by mass or more. This is because if the refractory compound contains too many other components, the content of SnO 2 and ZrO 2 decreases, and in particular, excellent corrosion resistance to the glass of SnO 2. This is because the properties are impaired. In order to improve the erosion resistance, the total content of SnO 2 and ZrO 2 is preferably 85% by mass or more, and more preferably 95% by mass or more. In particular, the total content of SnO 2 and ZrO 2 is preferably 97 to 99.5% by mass.

さらに、本発明においては、これら必須成分であるSnOおよびZrOの含有量の合量を100モル%としたとき、SnOおよびZrOの含有量の合量に対するZrOの含有割合を、1〜30モル%とする。Furthermore, in the present invention, when the total content of SnO 2 and ZrO 2 as these essential components is 100 mol%, the content ratio of ZrO 2 with respect to the total content of SnO 2 and ZrO 2 is: 1 to 30 mol%.

耐火性配合物として用いる骨材は、粒子として適用されるのが好ましく、その粒子の粒子径は、例えば最大粒子径を1〜3mmとし、粗粒、中粒、細粒、微粒と粒径の異なる粒子を組み合わせて適宜調整するのが好ましい。
また、不定形耐火物の耐スポーリング性の付与を目的として、上記の粗粒、中粒、細粒、微粒に加え、例えば粒径3〜50mmの粗大粒径の耐火骨材を組み合わせてもよい。
ここで、例えば、粗粒は1700μm未満840μm以上、中粒は840μm未満250μm以上、細粒は250μm未満75μm以上、微粒は75μm未満15μm以上、とした場合、これら4種の骨材をそれぞれ調整して配合する。これら4種の骨材についてのみ説明すれば、これらを100質量%としたとき、粗粒を21〜33質量%、中粒を15〜28質量%、細粒を30〜45質量%、微粒を5〜18質量%、の範囲となる含有割合が坏土の充填の点で好ましい。なお、本明細書において、粒度は、JIS R2552に準じて測定された値をいう。この耐火性原料は、耐火物使用後品、耐火物廃材等を粉砕し、粒径を調整したものを使用してもよい。
Aggregates used as a refractory compound are preferably applied as particles, and the particle diameter of the particles is, for example, a maximum particle diameter of 1 to 3 mm, coarse particles, medium particles, fine particles, fine particles and particle sizes. It is preferable to adjust appropriately by combining different particles.
For the purpose of imparting the spalling resistance of the irregular refractory material, in addition to the coarse particles, medium particles, fine particles, and fine particles described above, for example, a refractory aggregate having a coarse particle size of 3 to 50 mm may be combined. Good.
Here, for example, when coarse particles are less than 1700 μm and 840 μm or more, medium particles are less than 840 μm and 250 μm or more, fine particles are less than 250 μm and 75 μm or more, and fine particles are less than 75 μm and 15 μm or more, these four kinds of aggregates are respectively adjusted. Mix. If only these 4 kinds of aggregates are explained, when these are defined as 100% by mass, the coarse particles are 21 to 33% by mass, the medium particles are 15 to 28% by mass, the fine particles are 30 to 45% by mass, and the fine particles are A content ratio in the range of 5 to 18% by mass is preferable in terms of filling the clay. In addition, in this specification, a particle size says the value measured according to JISR2552. As the refractory raw material, a product obtained by pulverizing a product after using a refractory, a refractory waste, etc., and adjusting the particle size may be used.

さらに、骨材として、粒子径が15μm未満の酸化スズ粒子および15μm未満の酸化スズとジルコニアの固溶体粒子からなる群から選ばれる1種類以上を含んでなる粉末状の粒子の微粉を配合することが好ましい。ここで使用する微粉の粒子径は、好ましくは10μm以下の微粉、より好ましくは3μm以下の微細粉である。ここで、3μm以下の微粉を特に微細粉と称する。
このような粉末状の粒子として、上記した微細粉を含む微粉を、耐火性配合物中に1〜10質量%含有するように配合させることが好ましい。このように粉末状の粒子の微細粉を含む微粉を所定の範囲で含有することにより、それよりも大きい粒径の酸化スズ粒子同士にネックが形成され、スラグに対する耐食性を向上させることができる。
特に、前記耐火性配合物中に、3μm以下の酸化スズ粒子および3μm以下の酸化スズとジルコニアの固溶体粒子からなる群から選ばれる1種類以上を含んでなる微細粉を1〜10質量%含有させるのが好ましく、スラグに対する耐食性をより向上させることができる。
Furthermore, as an aggregate, a fine powder of powdery particles containing one or more kinds selected from the group consisting of tin oxide particles having a particle diameter of less than 15 μm and solid solution particles of tin oxide and zirconia having a particle diameter of less than 15 μm may be blended. preferable. The particle size of the fine powder used here is preferably a fine powder of 10 μm or less, more preferably a fine powder of 3 μm or less. Here, fine powder of 3 μm or less is particularly referred to as fine powder.
As such powdery particles, it is preferable to blend the fine powder containing the fine powder described above so as to be contained in an amount of 1 to 10% by mass in the fireproof compound. Thus, by containing the fine powder containing the fine powder of the powdery particles in a predetermined range, a neck is formed between the tin oxide particles having a larger particle diameter, and the corrosion resistance against the slag can be improved.
In particular, 1 to 10% by mass of a fine powder containing at least one selected from the group consisting of tin oxide particles of 3 μm or less and solid solution particles of tin oxide and zirconia of 3 μm or less is contained in the fireproof compound. It is preferable that the corrosion resistance against slag can be further improved.

上記のように、耐火性配合物中における、SnOおよびZrOの含有量の合量を所定の範囲とし、さらに、これら成分の関係が所定の関係を有するようにすることにより、高温場におけるSnOの揮散を抑制し、スラグに対する高い耐侵食性を有する酸化スズ質不定形耐火物が得られる。As described above, the total amount of SnO 2 and ZrO 2 in the refractory composition is set within a predetermined range, and further, the relationship between these components has a predetermined relationship. It is possible to obtain a tin oxide amorphous refractory that suppresses volatilization of SnO 2 and has high erosion resistance against slag.

必須成分であるSnOおよびZrOの含有量を上記の組成に限定した理由を、さらに詳細に説明する。
得られる耐火物の特性は、耐火物の使用時または使用前の熱処理時の温度および降温速度に影響されるが、例えば、1400℃で5時間熱処理し、300℃/時間で降温させた場合、SnOへのZrOの固溶限界濃度は約20〜25モル%であった。
The reason why the contents of the essential components SnO 2 and ZrO 2 are limited to the above composition will be described in more detail.
The characteristics of the obtained refractory are affected by the temperature and the temperature lowering rate at the time of heat treatment before or before using the refractory. For example, when heat treatment is performed at 1400 ° C. for 5 hours and the temperature is decreased at 300 ° C./hour, The solid solution limit concentration of ZrO 2 in SnO 2 was about 20 to 25 mol%.

また、SnOの揮散抑制成分であるZrOは、焼成によるSnOの揮散により酸化スズ粒子内で濃縮され、ZrOの固溶限界濃度を超えた時点で初めて、酸化スズ粒子表面へ析出してくる。そのため、1400℃〜1600℃の高温場で使用する場合には、SnOおよびZrOの含有量の合量に対するZrOの割合を増大させるほど、優れた揮散抑制効果を発現可能となり、スラグが浸潤する前から酸化スズ粒子が揮散により脆化することを抑制し、スラグに対する耐食性を向上させることが可能となる。一方で、ZrO含有量を増加させ過ぎると、スラグに対する耐浸食性が低下する。Further, ZrO 2 is volatilization suppressing component of SnO 2 is concentrated in the tin oxide particles by evaporation of SnO 2 by calcination, for the first time at the time of exceeding the solid solubility limit concentration of ZrO 2, and precipitated into the tin oxide particles surface Come. Therefore, when used in a high temperature field of 1400 ° C. to 1600 ° C., the greater the ratio of ZrO 2 to the total content of SnO 2 and ZrO 2 , the better the volatilization suppression effect can be expressed, and the slag It is possible to suppress the tin oxide particles from becoming brittle due to volatilization before infiltration, and to improve the corrosion resistance against slag. On the other hand, when the ZrO 2 content is excessively increased, the erosion resistance against slag is lowered.

以上の点から、SnOおよびZrOの含有量の合量に対するZrOの含有割合は、1〜30モル%である。好ましくは、SnOおよびZrOの含有量の合量に対するZrOの含有割合が、11〜30モル%であり、より好ましくは、11〜25モル%であり、特に好ましくは、15〜20モル%である。
このような配合量としておくと、優れたSnOの揮散抑制効果が発現され、かつ、スラグに対する耐侵食性に優れた酸化スズ質不定形耐火物を得ることができる。
From the above points, the content ratio of ZrO 2 with respect to the total content of SnO 2 and ZrO 2 is 1 to 30 mol%. Preferably, the content ratio of ZrO 2 with respect to the total content of SnO 2 and ZrO 2 is 11 to 30 mol%, more preferably 11 to 25 mol%, particularly preferably 15 to 20 mol%. %.
With such a blending amount, it is possible to obtain a tin oxide amorphous refractory material that exhibits an excellent SnO 2 volatilization suppressing effect and has excellent erosion resistance against slag.

なお、ここで固溶限界濃度は、ジルコニアの添加量を変えて1400℃で焼成して得られた耐火物において、耐火物組織をSEM−EDX(Scanning Electron Microscope−Energy Dispersive X−ray Detector、日立ハイテクノロジーズ社製、S−3000H)で分析し、SnO中に固溶しているZrOの、おおよその固溶限界濃度として決定した。Here, the solid solution limit concentration is a refractory obtained by firing at 1400 ° C. by changing the amount of zirconia added, and the structure of the refractory is SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray Detector, Hitachi (S-3000H, manufactured by Hi-Technologies Corporation), and determined as an approximate solid solution limit concentration of ZrO 2 dissolved in SnO 2 .

本発明の酸化スズ質不定形耐火物用紛体組成物は、このような所定量の成分を含有する構成とすることで、施工して得られる不定形耐火物に対して、例えば、1300℃、350時間の熱処理をする場合でも、熱処理の初期段階から酸化スズ粒子表面にジルコニア相が形成される。このような高温処理によって、酸化スズ粒子表面にジルコニア相が形成されることでSnOの揮散抑制効果を発揮できる。このように揮散抑制効果を発揮させることで、耐火物の使用時において、スラグが浸潤する前から酸化スズ粒子が揮散により脆化することを抑制し、スラグに対する耐食性を向上させることが可能となる。The powder composition for a tin oxide amorphous refractory according to the present invention is configured to contain such a predetermined amount of components, so that for an amorphous refractory obtained by construction, for example, 1300 ° C., Even when heat treatment is performed for 350 hours, a zirconia phase is formed on the surface of the tin oxide particles from the initial stage of the heat treatment. By such a high-temperature treatment, the SnO 2 volatilization suppressing effect can be exhibited by forming a zirconia phase on the surface of the tin oxide particles. By exhibiting the volatilization suppressing effect in this manner, it becomes possible to suppress the tin oxide particles from becoming brittle due to volatilization before the slag infiltrates during use of the refractory and to improve the corrosion resistance against the slag. .

なお、使用前に行う場合の熱処理の条件は、上記条件によらず、一般に、1200〜1600℃で、3〜5時間の加熱処理で行われるため、実際に処理する熱処理条件によって、耐火組成物中のZrOとSnOの配合量を調整すればよい。In addition, since the conditions of the heat processing in the case of performing before use do not depend on the above-mentioned conditions and are generally performed by heat treatment at 1200 to 1600 ° C. for 3 to 5 hours, the refractory composition depends on the heat treatment conditions to be actually processed. it may be adjusted ZrO 2 and the amount of SnO 2 in.

なお、上記の耐火性配合物には、本発明の耐火物としての特性を損なわない範囲で他の成分を含有させることができ、他の成分としては、酸化スズ質不定形耐火物に使用される公知の成分が挙げられる。
この他の成分としては、例えば、CuO、ZnO、MnO、CoO、LiO、Al、TiO、Ta、CeO、CaO、Sb、Nb、Bi、UO、HfO、Cr、MgO、SiOなどの酸化物が挙げられる。
In addition, the above-mentioned refractory compound can contain other components as long as the properties of the refractory of the present invention are not impaired, and the other components are used for tin oxide amorphous refractories. And known components.
Examples of other components include CuO, ZnO, MnO, CoO, Li 2 O, Al 2 O 3 , TiO 2 , Ta 2 O 5 , CeO 2 , CaO, Sb 2 O 3 , Nb 2 O 5 , Bi. Examples thereof include oxides such as 2 O 3 , UO 2 , HfO 2 , Cr 2 O 3 , MgO, and SiO 2 .

これら酸化物のなかでも、CuO、ZnO、MnO、CoO、およびLiOからなる群から選ばれる少なくとも1種以上の酸化物を含有することが好ましい。また、CuO、ZnO、MnO、CoO、LiOなどは、焼結助剤として有効に作用する。これら焼結助剤を含有させると、例えば1400℃、5時間の焼成で酸化スズ粒子同士にネックが形成され、耐火物の耐食性をより向上できる。したがって、CuO、ZnO、MnO、CoO、およびLiOからなる群から選ばれる少なくとも1種以上の酸化物を含有することがより好ましく、CuOを含有することが特に好ましい。Among these oxides, it is preferable to contain at least one oxide selected from the group consisting of CuO, ZnO, MnO, CoO, and Li 2 O. Further, CuO, ZnO, MnO, CoO, Li 2 O, etc. act effectively as a sintering aid. When these sintering aids are contained, for example, a neck is formed between the tin oxide particles by firing at 1400 ° C. for 5 hours, and the corrosion resistance of the refractory can be further improved. Therefore, it is more preferable to contain at least one oxide selected from the group consisting of CuO, ZnO, MnO, CoO, and Li 2 O, and it is particularly preferable to contain CuO.

なお、本発明の好ましい酸化スズ質不定形耐火物用紛体組成物は、例えば、施工して得られた不定形耐火物が、1300℃、−700mmHg、350時間の熱処理後(使用開始後)において、SnO含有量99モル%以上の酸化スズ質不定形耐火物と比較してSnOの揮散速度が1/5以下となる耐火物が好ましい。なお、このとき、互いに開気孔率差を2%以下として比較する。ここで、開気孔率は、公知のアルキメデス法により算出する。The preferred tin oxide amorphous refractory powder composition of the present invention is, for example, an amorphous refractory obtained by construction after heat treatment at 1300 ° C., −700 mmHg, 350 hours (after the start of use). A refractory having a SnO 2 volatilization rate of 1/5 or less as compared with a tin oxide amorphous refractory having a SnO 2 content of 99 mol% or more is preferred. At this time, the comparison is made with a difference in open porosity of 2% or less. Here, the open porosity is calculated by a known Archimedes method.

次に、本発明の酸化スズ質不定形耐火物の製造方法を説明する。
まず、上記説明したように粒度配合された骨材を所要量秤取し均質に混合し、耐火性配合物を得、この耐火性配合物に所定量の結合剤(粉末原料)および/または分散剤を所要量秤取し均質に混合し、さらに水分を添加混合して、再び均質に混合することで坏土とする。次いで、得られた坏土を所望の形状に成形、塗布するなどし、これを乾燥させることで施工され、酸化スズ質不定形耐火物が得られる。所望の形状に成形するには、例えば、振動機を使用するなどして行えばよく、乾燥は40℃の温度下に24時間放置して行うことができる。また、揮散抑制効果を使用前の段階から高めるためには、予め1200℃以上、好ましくは1300〜1450℃となるような高温で熱処理すればよい。
Next, a method for producing a tin oxide amorphous refractory according to the present invention will be described.
First, as described above, the required amount of aggregate mixed with the particle size is weighed and mixed homogeneously to obtain a refractory compound, and a predetermined amount of binder (powder raw material) and / or dispersion is added to this refractory compound. The required amount of the agent is weighed and mixed homogeneously, and water is further added and mixed, and then mixed homogeneously again to obtain clay. Next, the obtained clay is formed and applied in a desired shape, and dried, and then applied to obtain a tin oxide amorphous refractory. In order to form a desired shape, for example, a vibrator may be used, and drying can be performed by leaving it at a temperature of 40 ° C. for 24 hours. Moreover, in order to raise the volatilization suppression effect from the stage before use, it may be heat-treated in advance at a high temperature of 1200 ° C. or higher, preferably 1300 to 1450 ° C.

原料は、上記粉末の組み合わせに限定されるものではなく、SnOおよびZrOの原料として、例えば所定割合でジルコニアが固溶した酸化スズ粒子を使用できる。ジルコニアが固溶した酸化スズ粒子としては、例えばZrOが固溶した酸化スズ焼結体を所望の粒度に粉砕した粒子や、不定形耐火物を粉砕し再利用した粒子が使用できる。ZrOおよびCuOの原料としては、例えばZr、Cu等の単体金属の粉末、これら金属を含んだ金属塩化合物、水酸化ジルコニウム(Zr(OH))、ジルコニウム酸銅(CuZrO)、炭酸銅(CuCO)、または水酸化銅(Cu(OH))などを使用できる。中でも、ジルコニウム酸銅(CuZrO)または炭酸銅(CuCO)が好ましい。The raw material is not limited to the combination of the above powders, and for example, tin oxide particles in which zirconia is solid-solved at a predetermined ratio can be used as a raw material for SnO 2 and ZrO 2 . As the tin oxide particles in which zirconia is dissolved, for example, particles obtained by pulverizing a tin oxide sintered body in which ZrO 2 is dissolved in a desired particle size, or particles obtained by pulverizing and reusing an amorphous refractory can be used. Examples of raw materials for ZrO 2 and CuO include powders of simple metals such as Zr and Cu, metal salt compounds containing these metals, zirconium hydroxide (Zr (OH) 2 ), copper zirconate (CuZrO 3 ), copper carbonate (CuCO 3 ), copper hydroxide (Cu (OH) 2 ), or the like can be used. Among these, copper zirconate (CuZrO 3 ) or copper carbonate (CuCO 3 ) is preferable.

本発明の酸化スズ質不定形耐火物の製造方法は、上記の成形、塗布以外にも、流し込み、圧入、吹付け等によって施工することもできる。吹付けでは、骨材、結合剤および分散剤の混合紛体組成物をノズルで気流搬送し、ノズル部で施工水を添加して壁面等に吹き付けて施工するのが一般的であるが、これは公知の施工法にアレンジできる。例えば、骨材、分散剤をノズルで気流搬送し、これらの搬送された粒子に対して、結合剤の一部または全部あるいは急結剤等をノズル部で添加して施工してもよい。施工水分は不定形耐火物全体に対して例えば2〜11質量%、さらに好ましくは3〜7質量%とする。また、この施工は、炉壁等の新規な施工に限らず、補修のための継ぎ足し施工がある。なお、ここで急結剤とは、粉体組成物の凝結を著しく速めるための混和剤である。具体的な種類は何ら限定されるものではなく、例えば、亜硝酸塩、硫酸塩、アルミン酸塩、炭酸塩などが使用できる。添加量は、耐火性配合物100質量%に対し、外掛けで好ましくは1〜15質量%、さらに好ましくは2〜8質量%である。   The method for producing a tin oxide amorphous refractory according to the present invention can be applied by pouring, press-fitting, spraying, etc., in addition to the above-described molding and application. In spraying, the mixed powder composition of aggregate, binder and dispersant is generally air-conveyed with a nozzle, and it is generally applied by adding construction water at the nozzle part and spraying it on the wall surface, etc. It can be arranged in a known construction method. For example, the aggregate and the dispersing agent may be conveyed by airflow with a nozzle, and a part or all of the binder or the rapid setting agent may be added to the conveyed particles at the nozzle portion. The construction moisture is, for example, 2 to 11% by mass, and more preferably 3 to 7% by mass with respect to the entire amorphous refractory. Moreover, this construction is not limited to new construction such as a furnace wall, but there is addition construction for repair. Here, the quick setting agent is an admixture for remarkably accelerating the setting of the powder composition. A specific kind is not limited at all, and for example, nitrite, sulfate, aluminate, carbonate and the like can be used. The addition amount is preferably 1 to 15% by mass, and more preferably 2 to 8% by mass with respect to 100% by mass of the refractory compound.

流し込み施工では、耐火性配合物に分散剤、施工水を混合して坏土を得ておき、この坏土を型枠を使用して施工する。施工水分は、不定形耐火物全体に対して例えば3〜7質量%が好ましい。施工時には振動を付与して充填化を促進させることが好ましい。施工後は養生および乾燥を行う。   In the pouring construction, a refractory compound is mixed with a dispersant and construction water to obtain a clay, and this clay is constructed using a formwork. The construction moisture is preferably 3 to 7% by mass with respect to the entire amorphous refractory. It is preferable to promote filling by applying vibration during construction. Curing and drying after construction.

施工は、ガラス溶融炉または廃棄物溶融炉に対し直接施工する他、予め施工して作製したプレキャスト品を使用してもよい。また、直接の施工とプレキャスト品の両者を組み合わせてもよい。このように、本発明の不定形耐火物を壁面または天井に施工して得られたガラス溶解炉または廃棄物溶融炉は、上記不定形耐火物の効果が得られる炉が得られ、好ましい。特に、溶融ガラスや溶融スラグと直接接触する炉の内壁に本発明の不定形耐火物を具備するものが好ましい。   The construction may be performed directly on a glass melting furnace or a waste melting furnace, or a precast product that has been pre-constructed may be used. Moreover, you may combine both a direct construction and a precast goods. As described above, the glass melting furnace or the waste melting furnace obtained by applying the amorphous refractory of the present invention to the wall surface or the ceiling is preferable because a furnace capable of obtaining the effect of the amorphous refractory is obtained. In particular, it is preferable to equip the inner wall of the furnace in direct contact with molten glass or molten slag with the amorphous refractory of the present invention.

ガラス溶融炉または廃棄物溶融炉において、内張りが不定形耐火物で施工される場合においても、部分的には耐火煉瓦が使用されることがある。また、不定形耐火物の種類もスラグと直接接触しない場所には、断熱不定形耐火物等の異なる材質の不定形耐火物が使用されることもある。本発明により得られる不定形耐火物は、このようなゾーン毎に異なる材質の耐火物が使用されるガラス溶融炉または廃棄物溶融炉においては、最も使用条件の厳しい部位の内張りとしてその優れた耐食性の効果を発揮する。   In a glass melting furnace or a waste melting furnace, refractory bricks may be partially used even when the lining is constructed of an irregular refractory. In addition, amorphous refractories made of different materials such as heat-insulated amorphous refractories may be used in places where the irregular refractories are not in direct contact with the slag. The amorphous refractory obtained by the present invention has excellent corrosion resistance as the lining of the most severe part in the glass melting furnace or waste melting furnace in which different refractory materials are used for each zone. The effect of.

以下、本発明を実施例および比較例によって具体的に説明するが、本発明はこれらの記載によって何ら限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited and interpreted by these description at all.

(例1〜23)
まず、酸化スズ質不定形耐火物用紛体組成物を製造するための原料として、表1に示した平均粒径、化学成分および純度を有する粉末原料を準備した。
(Examples 1 to 23)
First, powder raw materials having the average particle diameter, chemical components and purity shown in Table 1 were prepared as raw materials for producing a tin oxide amorphous refractory powder composition.

Figure 2014208618
Figure 2014208618

次に、酸化スズ、ジルコニア、アルミナ、酸化銅、酸化亜鉛等の各粉末を、表2に示した割合で調合した。表2中の「ジルコニア−酸化スズ」とは、表1に示した「12モル%ジルコニア−酸化スズ」のことであり、12モル%のZrOが固溶した酸化スズ粒子であることを示している。この粒子は、12モル%のZrOが固溶した酸化スズ焼結体を作製し、ジョークラッシャ(レッチェ社製、BB51WC/WC)にて粉砕し、篩により分級した粒子を用いた。ここで、ZrOが固溶した酸化スズ焼結体は、88モル%の酸化スズ粉末と12モル%のジルコニア粉末およびSnOとZrOの合量に対し0.5質量%の酸化銅粉末を、回転ボールミルを使用し、エタノールを媒体として48時間混合、粉砕した後、得られたスラリーを減圧乾燥し、147MPaで静水圧プレスして成形体とし、得られた成形体を大気雰囲気中において1400℃で5時間焼成することで得た。Next, each powder of tin oxide, zirconia, alumina, copper oxide, zinc oxide and the like was prepared at the ratio shown in Table 2. “Zirconia-tin oxide” in Table 2 is “12 mol% zirconia-tin oxide” shown in Table 1, and indicates that the oxide is tin oxide particles in which 12 mol% of ZrO 2 is dissolved. ing. As this particle, a tin oxide sintered body in which 12 mol% of ZrO 2 was dissolved was prepared, pulverized with a jaw crusher (BB51WC / WC, manufactured by Lecce), and classified by a sieve. Here, the tin oxide sintered body in which ZrO 2 is solid solution is composed of 88 mol% tin oxide powder, 12 mol% zirconia powder, and 0.5 mass% copper oxide powder with respect to the total amount of SnO 2 and ZrO 2. Were mixed and pulverized for 48 hours using ethanol as a medium using a rotating ball mill, and the resulting slurry was dried under reduced pressure, and then hydrostatically pressed at 147 MPa to form a molded product. It was obtained by baking at 1400 ° C. for 5 hours.

Figure 2014208618
Figure 2014208618

表2に示すように、耐火性配合物として用いる原料は、粗粒(840μm以上、1700μm未満)、中粒(250μm以上、840μm未満)、細粒(75μm以上、250μm未満)、微粒(15μm以上、75μm未満)、微粉(3μm超、10μm以下、微細粉(0.1μm以上、3μm以下)を組み合わせて用いた。
なお、表1および表2においては、それぞれの粒径として、(1700−840μm)、(840−250μm)、(250−75μm)、(75−15μm)、(10(15?)−3μm)、(3−0.1μm)と表記しているが、この表記は、上記した通りの意味である。
As shown in Table 2, the raw materials used as the refractory compound are coarse particles (840 μm or more and less than 1700 μm), medium particles (250 μm or more and less than 840 μm), fine particles (75 μm or more and less than 250 μm), fine particles (15 μm or more) , Less than 75 μm), fine powder (over 3 μm, 10 μm or less, fine powder (0.1 μm or more, 3 μm or less).
In Tables 1 and 2, the respective particle sizes are (1700-840 μm), (840-250 μm), (250-75 μm), (75-15 μm), (10 (15?)-3 μm), Although described as (3-0.1 μm), this notation has the same meaning as described above.

調合された各原料粉末を均質に混合した後、所定量の水分、分散剤を添加し、再び均質に混合し、振動機(シンフォニアテクノロジー株式会社製、商品名:バイブレートリパッカVP−40)を使用して成形体を作製した。得られた成形体を、大気雰囲気中40℃で24時間乾燥させた後、1400℃で5時間保持して焼成後、300℃/時間で降温して酸化スズ質不定形耐火物を得た。   After each prepared raw material powder is homogeneously mixed, a predetermined amount of water and a dispersant are added, and the mixture is homogeneously mixed again. A vibrator (Symphonia Technology Co., Ltd., trade name: Vibrate Repacker VP-40) A molded body was produced using the same. The obtained molded body was dried at 40 ° C. for 24 hours in an air atmosphere, then held at 1400 ° C. for 5 hours, fired, and then cooled at 300 ° C./hour to obtain a tin oxide amorphous refractory.

得られた酸化スズ質不定形耐火物の一部からφ15mm、高さ5mmの試験片を切り取って、1300℃、−700mmHgの環境下で、10時間から400時間熱処理した後の質量減少量を、それぞれ測定し(エー・アンド・デイ社製、商品名:GH−252を使用)、揮散量(単位:mg)および揮散速度(単位:mg/hr)を算出した。   A test piece having a diameter of 15 mm and a height of 5 mm was cut from a part of the obtained tin oxide amorphous refractory, and the mass reduction amount after heat treatment for 10 to 400 hours in an environment of 1300 ° C. and −700 mmHg, Each was measured (A & D, product name: GH-252 was used), and the volatilization amount (unit: mg) and the volatilization rate (unit: mg / hr) were calculated.

また、得られた酸化スズ質不定形耐火物から切り取った15mm×25mm×50mm(縦×横×長さ)の試験片を、ソーダライムガラス(旭硝子社製、商品名:サングリーンVFL)に、大気雰囲気中1300℃で100時間浸漬処理し、その後、侵食量を測定し、耐侵食性を調べた。   In addition, a test piece of 15 mm × 25 mm × 50 mm (length × width × length) cut from the obtained tin oxide amorphous refractory was placed on soda lime glass (product name: Sun Green VFL, manufactured by Asahi Glass Co., Ltd.). Immersion treatment was performed at 1300 ° C. for 100 hours in an air atmosphere, and then the amount of erosion was measured to examine the erosion resistance.

上記で得られた揮散速度および侵食量のデータを表3にまとめて示した。   The volatilization rate and erosion data obtained above are summarized in Table 3.

Figure 2014208618
Figure 2014208618

表2および3において、例1〜17は本発明の実施例であり、例18〜23は比較例である。
実施例および比較例のそれぞれのガラスに対する耐侵食性は、1300℃の温度域において、ガラス製造装置に広く利用されているアルミナ質不定形耐火物の例19と比較し、アルミナ質不定形耐火物の侵食試験後の侵食部の最大侵食深さを100として、相対的な侵食量を示した。
In Tables 2 and 3, Examples 1 to 17 are examples of the present invention, and Examples 18 to 23 are comparative examples.
The erosion resistance of the glass of each of the examples and the comparative examples is compared with Example 19 of the alumina amorphous refractory widely used in the glass manufacturing apparatus in the temperature range of 1300 ° C. The relative erosion amount was shown with the maximum erosion depth of the erosion part after the erosion test of 100 as 100.

また、上記例1〜17および例18〜23のそれぞれの揮散速度は、例20の試験片を1300℃、−700mmHgの環境下で、10時間および400時間熱処理した後の揮散速度をそれぞれ100とし、相対的な揮散速度を示した。ここで10時間および350時間熱処理した後の、表中のそれぞれの揮散速度とは、熱処理時間0時間から10時間までの質量減少量から算出される単位表面積当たりの平均的な揮散速度、および熱処理時間350時間から400時間までの質量減少量から算出される単位表面積当たりの平均的な揮散速度とした。   The volatilization rates of Examples 1 to 17 and Examples 18 to 23 were set to 100 after volatilizing the test piece of Example 20 for 10 hours and 400 hours in an environment of 1300 ° C. and −700 mmHg, respectively. The relative volatilization rate was shown. Here, the volatilization rates in the table after the heat treatment for 10 hours and 350 hours are the average volatilization rate per unit surface area calculated from the mass reduction amount from the heat treatment time of 0 hour to 10 hours, and the heat treatment. It was set as the average volatilization rate per unit surface area calculated from the amount of mass reduction from 350 hours to 400 hours.

なお、各サンプルの開気孔率はアルキメデス法により測定し、いずれも開気孔率差が2.0%以下であるサンプルを用いた。   In addition, the open porosity of each sample was measured by Archimedes method, and all used the sample whose open porosity difference is 2.0% or less.

例18は、ジルコニア質不定形耐火物であり、揮散は起こらないがガラスに対する耐侵食性が例1〜17よりも低い。   Example 18 is a zirconia amorphous refractory, and does not cause volatilization, but has a lower erosion resistance to glass than Examples 1-17.

例19は、アルミナ質不定形耐火物であり、揮散は起こらないがガラスに対する耐侵食性が例1〜17よりも低い。   Example 19 is an alumina amorphous refractory, and does not cause volatilization, but the erosion resistance to glass is lower than those of Examples 1-17.

例20および21は、ZrOを含有せず、SnOを主成分とする組成からなる酸化スズ質不定形耐火物であり、ガラスに対する耐侵食性が例1〜17とほぼ同等であるが、揮散抑制成分を含有していないためにSnOの揮散速度が非常に速い。Examples 20 and 21 are tin oxide amorphous refractories not containing ZrO 2 and composed of SnO 2 as a main component, and the erosion resistance to glass is almost the same as in Examples 1 to 17, Since no volatilization suppressing component is contained, the volatilization rate of SnO 2 is very fast.

例22は、酸化スズ質不定形耐火物におけるZrOを増量した組成の酸化スズ質不定形耐火物であり、揮散速度は例1〜17とほぼ同等であるが、SnOの含有量が少ないために、ガラスに対する耐侵食性が例1〜17よりも低い。Example 22 is a tin oxide amorphous refractory having a composition in which the amount of ZrO 2 in the tin oxide amorphous refractory is increased. The volatilization rate is almost the same as in Examples 1 to 17, but the content of SnO 2 is small. Therefore, the erosion resistance with respect to glass is lower than Examples 1-17.

例23は、酸化スズ質不定形耐火物におけるAlを、その他成分として含有せしめた組成の酸化スズ不定形耐火物であり、揮散速度は例1〜17とほぼ同等であるが、SnOの含有量が少ないために、ガラスに対する耐侵食性が例1〜17よりも低い。Example 23 is a tin oxide amorphous refractory having a composition containing Al 2 O 3 in the tin oxide amorphous refractory as other components, and the volatilization rate is substantially the same as in Examples 1 to 17, but SnO Since there is little content of 2 , erosion resistance with respect to glass is lower than Examples 1-17.

一方、本発明の実施例である例1〜17は、例18〜23と比較し、揮散速度およびガラスに対する耐侵食性が全て良好な結果となっている。   On the other hand, Examples 1 to 17, which are examples of the present invention, all have good results in volatilization rate and erosion resistance against glass compared with Examples 18 to 23.

例3〜17は、アルミナセメントおよび/またはコロイダルアルミナの含有量を5質量%以下にした組成の酸化スズ質不定形耐火物であり、ガラスに対する耐侵食性が例1および例2よりも高い。   Examples 3 to 17 are tin oxide amorphous refractories having a composition in which the content of alumina cement and / or colloidal alumina is 5% by mass or less, and have higher erosion resistance to glass than Examples 1 and 2.

例10〜14は、それぞれ10μm以下の酸化スズ粒子(例10〜13)、ZrOを12モル%固溶している酸化スズ粒子(例14)を使用した酸化スズ質不定形耐火物であり、酸化スズ粒子同士のネックが形成されやすいため、ガラスに対する耐侵食性が例1〜9よりも高い。Examples 10-14 are tin oxide amorphous refractories using tin oxide particles of 10 μm or less (Examples 10-13) and tin oxide particles (Example 14) in which 12 mol% of ZrO 2 is dissolved. Moreover, since the neck of tin oxide particles tends to be formed, the erosion resistance with respect to glass is higher than Examples 1-9.

これらの評価結果から、本発明の実施例である酸化スズ質不定形耐火物は、比較例の酸化スズ質不定形耐火物と比較し、いずれもSnOの揮散抑制効果およびガラスに対する耐侵食性が高く、これら両物性のバランスが取れた優れた酸化スズ質不定形耐火物であることが明らかとなった。From these evaluation results, the tin oxide amorphous refractory which is an example of the present invention is compared with the tin oxide amorphous refractory of the comparative example, both of which are SnO 2 volatilization suppressing effect and erosion resistance to glass. It was revealed that this was an excellent tin oxide amorphous refractory with a balance between these physical properties.

また、これらの結果から耐火性配合物の原料として、10μm以下の酸化スズ粒子および10μm以下の酸化スズとジルコニアの固溶体粒子からなる群から選ばれる1種類以上の微細粉を含む微粉を耐火性配合物中に1〜10質量%含有させることで、これらの微小粒子が酸化スズ粒子同士にネックが形成され、スラグに対する耐食性が向上できたことがわかった。さらに、酸化スズ粒子同士でのネックの形成は、不定形耐火物中の気体の流動性を低下させるため、揮散速度の抑制にも寄与すると考えられる。   Further, from these results, as a raw material of the fireproof compound, a fine powder containing at least one fine powder selected from the group consisting of tin oxide particles of 10 μm or less and solid solution particles of tin oxide and zirconia of 10 μm or less is blended with fireproof It was found that the inclusion of 1 to 10% by mass in the product formed a neck between the tin oxide particles and improved the corrosion resistance against slag. Furthermore, the formation of the neck between the tin oxide particles is considered to contribute to the suppression of the volatilization rate because the fluidity of the gas in the amorphous refractory is lowered.

本発明の酸化スズ質不定形耐火物用紛体組成物により得られる不定形耐火物は、スラグに対する耐侵食性に優れ、SnOの揮散を有効に防止できるため、ガラス溶解炉用および廃棄物溶融炉用の不定形耐火物として好適である。
なお、2013年6月26日に出願された日本特許出願2013−133687号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The amorphous refractory obtained from the tin oxide amorphous refractory powder composition of the present invention has excellent erosion resistance to slag and can effectively prevent SnO 2 volatilization. It is suitable as an irregular refractory for furnaces.
In addition, the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2013-133687 filed on June 26, 2013 are incorporated herein as the disclosure of the specification of the present invention. It is.

Claims (14)

SnOおよびZrOを必須成分とする耐火性配合物を含有する酸化スズ質不定形耐火物用紛体組成物であって、前記耐火性配合物中におけるSnOおよびZrOの含有量の合量が70質量%以上であり、かつ、前記SnOおよびZrOの合量に対するZrOの含有割合が1〜30モル%であることを特徴とする酸化スズ質不定形耐火物用紛体組成物。A powder composition for a tin oxide amorphous refractory containing a refractory composition containing SnO 2 and ZrO 2 as essential components, the total content of SnO 2 and ZrO 2 in the refractory composition And a content ratio of ZrO 2 with respect to the total amount of SnO 2 and ZrO 2 is 1 to 30 mol%. 前記SnOおよびZrOの含有量の合量が、95質量%以上である請求項1に記載の酸化スズ質不定形耐火物用紛体組成物。Total content of the SnO 2 and ZrO 2 are tin oxide electrolyte monolithic refractories for powder composition according to claim 1 is at least 95 mass%. 前記SnOおよびZrOの含有量の合量に対するZrOの含有割合が、11〜30モル%である請求項1または2に記載の酸化スズ質不定形耐火物用紛体組成物。3. The powder composition for a tin oxide amorphous refractory according to claim 1, wherein the content ratio of ZrO 2 with respect to the total content of SnO 2 and ZrO 2 is 11 to 30 mol%. 前記耐火性配合物中に、10μm以下の酸化スズ粒子および10μm以下の酸化スズとジルコニアの固溶体粒子からなる群から選ばれる1種類以上を含んでなる微細粉を含む微粉を1〜10質量%含有する請求項1乃至3のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物。   1 to 10% by mass of fine powder containing fine powder comprising at least one selected from the group consisting of tin oxide particles of 10 μm or less and solid solution particles of tin oxide and zirconia of 10 μm or less in the fireproof compound The powder composition for tin oxide amorphous refractories according to any one of claims 1 to 3. 前記耐火性配合物中に、3μm以下の酸化スズ粒子および3μm以下の酸化スズとジルコニアの固溶体粒子からなる群から選ばれる1種類以上を含んでなる微細粉を1〜10質量%含有する請求項1乃至4のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物。   The said refractory compound contains 1 to 10% by mass of fine powder comprising at least one selected from the group consisting of tin oxide particles of 3 μm or less and solid solution particles of tin oxide and zirconia of 3 μm or less. The powder composition for tin oxide amorphous refractories according to any one of 1 to 4. 前記耐火性配合物中に、CuO、ZnO、MnO、CoOおよびLiOの酸化物からなる群から選ばれる少なくとも1種類以上の成分を含む請求項1乃至5のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物。Oxidation described in the refractory compositions, the CuO, ZnO, MnO, to any one of claims 1 to 5 comprising at least one or more components selected from the group consisting of oxides of CoO and Li 2 O Powder composition for tin-shaped amorphous refractories. 前記耐火性配合物に対し、分散剤を外掛けで0.01〜2質量%含有する請求項1乃至6のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物。   The powder composition for tin oxide amorphous refractories according to any one of claims 1 to 6, comprising 0.01 to 2% by mass of a dispersant as an outer coating with respect to the refractory compound. 結合剤として、アルミナセメントおよびコロイダルアルミナからなる群から選ばれる1種類以上を含有し、前記耐火性配合物中における前記結合剤の含有量が5質量%以下である請求項1乃至7のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物。   8. The binder according to claim 1, wherein the binder contains at least one selected from the group consisting of alumina cement and colloidal alumina, and the content of the binder in the refractory composition is 5% by mass or less. Item 1. The powder composition for tin oxide amorphous refractories according to item 1. 前記耐火性配合物として、ZrOが1〜25モル%固溶している酸化スズ粒子を使用することを特徴とする請求項1乃至8のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物。As the refractory formulations, tin oxide electrolyte monolithic refractories according to any one of claims 1 to 8, characterized by the use of tin oxide particles ZrO 2 is dissolved 1-25 mole% A powder composition for physical use. 前記酸化スズ質不定形耐火物用紛体組成物が、施工後、1300℃、350時間の熱処理したとき、酸化スズ粒子の表面にジルコニア相が形成される請求項1乃至9のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物。   10. The zirconia phase is formed on the surface of the tin oxide particles when the powdered composition for a tin oxide amorphous refractory is heat treated at 1300 ° C. for 350 hours after application. The powder composition for tin oxide amorphous refractories as described. 請求項1乃至10のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物を、水と混練し、施工してなることを特徴とする酸化スズ質不定形耐火物の製造方法。   A method for producing a tin oxide amorphous refractory, characterized in that the powder composition for a tin oxide amorphous refractory according to any one of claims 1 to 10 is kneaded with water and applied. . 前記施工後、1200℃以上で熱処理することを特徴とする請求項11に記載の酸化スズ質不定形耐火物の製造方法。   The method for producing a tin oxide amorphous refractory according to claim 11, wherein heat treatment is performed at 1200 ° C. or higher after the construction. 請求項1乃至10のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物を施工して得られる酸化スズ質不定形耐火物を具備してなるガラス溶解炉。   A glass melting furnace comprising a tin oxide amorphous refractory obtained by applying the powder composition for a tin oxide amorphous refractory according to any one of claims 1 to 10. 請求項1乃至10のいずれか1項に記載の酸化スズ質不定形耐火物用紛体組成物を施工して得られる酸化スズ質不定形耐火物を具備してなる廃棄物溶融炉。   A waste melting furnace comprising a tin oxide amorphous refractory obtained by applying the powder composition for a tin oxide amorphous refractory according to any one of claims 1 to 10.
JP2015524094A 2013-06-26 2014-06-25 Powder composition for tin oxide amorphous refractories, method for producing tin oxide amorphous refractories, glass melting furnace and waste melting furnace Pending JPWO2014208618A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013133687 2013-06-26
JP2013133687 2013-06-26
PCT/JP2014/066887 WO2014208618A1 (en) 2013-06-26 2014-06-25 Powder composition for tin oxide monolithic refractory, production method for tin oxide monolithic refractory, glass melting furnace, and waste-product melting furnace

Publications (1)

Publication Number Publication Date
JPWO2014208618A1 true JPWO2014208618A1 (en) 2017-02-23

Family

ID=52141947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015524094A Pending JPWO2014208618A1 (en) 2013-06-26 2014-06-25 Powder composition for tin oxide amorphous refractories, method for producing tin oxide amorphous refractories, glass melting furnace and waste melting furnace

Country Status (2)

Country Link
JP (1) JPWO2014208618A1 (en)
WO (1) WO2014208618A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117285345B (en) * 2023-11-24 2024-01-26 淄博工陶新材料集团有限公司 Tin oxide ceramic electrode and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2467144A (en) * 1944-11-22 1949-04-12 Corning Glass Works Electrically conducting refractory body
DD205888A1 (en) * 1982-04-29 1984-01-11 Gerhard Lautenschlaeger SINTERED FIRE-RESISTANT MATERIALS WITH HIGH CORROSION RESISTANCE
JPS63103869A (en) * 1986-10-17 1988-05-09 旭硝子株式会社 Zro2 base monolithic refractories
JP4355486B2 (en) * 2002-12-20 2009-11-04 黒崎播磨株式会社 Unshaped refractory for waste melting furnace and waste melting furnace lined with it
JP2015044693A (en) * 2011-12-28 2015-03-12 旭硝子株式会社 Tin oxide refractory

Also Published As

Publication number Publication date
WO2014208618A1 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
WO2010047136A1 (en) Binder for unshaped refractory, and unshaped refractory
CN108424124B (en) Spinel reinforced magnesium oxide base crucible synthesized in situ by magnesium oxide whisker and preparation method thereof
JP4234330B2 (en) Amorphous refractory composition
JP6044552B2 (en) Tin oxide refractory and method for producing the same
JP4094353B2 (en) Rare earth metal-containing amorphous refractory and construction body and kiln furnace lined with these
JP4456563B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this
JPWO2014208620A1 (en) Powder composition for tin oxide amorphous refractories, method for producing tin oxide amorphous refractories, glass melting furnace and waste melting furnace
JPWO2014208618A1 (en) Powder composition for tin oxide amorphous refractories, method for producing tin oxide amorphous refractories, glass melting furnace and waste melting furnace
JP4220131B2 (en) Amorphous refractory composition for ladle
JP5126984B2 (en) Method for producing SiC-containing castable refractory
WO2013100071A1 (en) Tin-oxide refractory
JP2020050572A (en) Castable refractory
JP2015009992A (en) Powder composition for tin oxide-based castable refractory, method for producing tin oxide-based castable refractory, glass melting furnace, and waste melting furnace
JP2004203702A (en) Monolithic refractory containing serpentine or talc, applied body of the same, and furnace lined with the same
JP2017066025A (en) Monolithic refractory
JP2005008496A (en) Monolithic refractory
WO2003095391A1 (en) Monothilic refractory composition
JP2004352600A (en) Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JP4576367B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace using the same for lining
KR20200133119A (en) Zirconium Based Ceramic Material and Method of Producing the same
JP2011047563A (en) Powder material composition for monolithic refractory and method of manufacturing refractory using the same
JP4445256B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this
JPH0867558A (en) Refractory for molten metal for nozzle or the like
JP2023086544A (en) Method for producing magnesia-chrome brick
JP3875054B2 (en) Refractory composition for ash melting furnace