JP4456563B2 - Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this - Google Patents

Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this Download PDF

Info

Publication number
JP4456563B2
JP4456563B2 JP2005504251A JP2005504251A JP4456563B2 JP 4456563 B2 JP4456563 B2 JP 4456563B2 JP 2005504251 A JP2005504251 A JP 2005504251A JP 2005504251 A JP2005504251 A JP 2005504251A JP 4456563 B2 JP4456563 B2 JP 4456563B2
Authority
JP
Japan
Prior art keywords
melting furnace
refractory
mass
waste melting
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005504251A
Other languages
Japanese (ja)
Other versions
JPWO2004087609A1 (en
Inventor
秀行 津田
浩 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Publication of JPWO2004087609A1 publication Critical patent/JPWO2004087609A1/en
Application granted granted Critical
Publication of JP4456563B2 publication Critical patent/JP4456563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9676Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【技術分野】
【0001】
本発明は、ガス化溶融炉、灰溶融炉等の廃棄物溶融炉の内張りに使用するクロムフリー不定形耐火物とこれを内張りした廃棄物溶融炉に関する。
【背景技術】
【0002】
廃棄物の減容化とダイオキシン発生抑制に優れた廃棄物処理炉として、近年、廃棄物を直接溶融するガス化溶融炉あるいは廃棄物の焼却灰を溶融する灰溶融炉が出現している。
これらの廃棄物溶融炉(以下、溶融炉と称する。)のスラグ成分は、廃棄物成分に由来したアルカリを多く含み、しかも溶融炉の操業は1300℃以上の超高温である厳しい使用条件によって、それに内張りされる耐火物の損耗が著しい。
溶融炉に使用される耐火物は、定形耐火物と不定形耐火物とに大別される。定形耐火物の施工はレンガ積み作業を伴い、重労働でしかも高度な技術を要する。そこで、近年は不定形耐火物による内張りが汎用されている。
【0003】
従来、溶融炉用に使用されている不定形耐火物は、アルミナ−酸化クロム質(例えば特開平10−324562号公報参照)に代表される酸化クロム含有品である。この材質は、アルミナの耐火性・容積安定性と酸化クロムの耐スラグ性とが相まって優れた耐食性を示す。しかし、耐火物成分の一部である酸化クロムが人体に有害な六価クロムに変化し、炉から排出されるスラグおよび使用後の耐火物が環境汚染をきたす問題がある。
【0004】
そこで、溶融炉用不定形耐火物として、実質的に酸化クロム原料を含まないクロムフリー材質が提案されている。例えば、アルミナ−ジルコニア質(例えば特開2000−281455号公報参照)、アルミナ−マグネシア質(例えば特開2001−153321号公報参照)、アルミナ−炭化珪素質(例えば特開2000−203952号公報参照)である。
しかし、上記従来のクロムフリー材質は溶融炉としての使用において、その耐用性は酸化クロム含有品に比べて大きく劣る。溶融炉のスラグが多アルカリのため、アルミナ−ジルコニア質あるいはアルミナ−マグネシア質は、ジルコニア成分・マグネシア成分がスラグ中に溶出し、耐食性に劣る。アルミナ−炭化珪素質は、溶融炉の操業が酸化雰囲気のため炭化珪素成分が酸化分解し、耐食性の低下が著しい。
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は溶融炉の内張りとして、酸化クロム含有品相当の優れた耐用性のクロムフリー質不定形耐火物と、これを内張りした溶融炉を提供することを課題とする。
【課題を解決するための手段】
【0006】
本発明の廃棄物溶融炉用クロムフリー不定形耐火物は、耐火性原料が粒径45μm以下のイットリア質原料と超微粉としての仮焼アルミナを含む主材のアルミナ質原料とからなり、化学分析値でY:1.1〜15質量%、Al:85質量%以上の組成を有する。
【0007】
前記従来のクロムフリー材質は、アルミナに相当量のジルコニア、マグネシアあるいは炭化珪素を組み合わせている。これに対し本発明は、アルミナ主材の材質に特定量のイットリア質原料を含んだものである。これにより、クロムフリー材質にもかかわらず、溶融炉用の内張りとして優れた耐用性を発揮する。その理由は以下のとおりと考えられる。
【0008】
廃棄物溶融炉は操業中にアルカリ(NaO+KO):1.5〜15質量%を含むスラグが炉内を通過する。溶融炉スラグは、前記のとおり多アルカリでしかも炉操業温度が超高温であることによって、溶融時の粘性がきわめて低い。また、アルカリは耐火物に対し激しい侵食作用をもつ。従来のクロムフリー不定形耐火物は、溶融炉スラグは粘性が低いことで耐火物組織にアルカリ成分が深く浸透し、耐火物の耐用性を大きく低下させる。
【0009】
これ対し本発明の耐火物は、特定量のイットリア質原料と、アルミナ質原料との組み合わせにより、耐火物使用中の高温下でイットリア質原料のY成分がアルミナ質原料のAl成分と反応し、分子量の大きなYAG(イットリウム・アルミニウム・ガーネット:YAl12)を生成させ、耐火物のマトリックスを緻密化する。
【0010】
さらに本発明の耐火物は、イットリア質原料のY成分が溶融炉スラグとの反応により、耐火物稼動面と接するスラグの粘性が高くなってスラグ浸透が防止され、しかもスラグと耐火物の反応速度が遅くなることで、耐火物の侵食が抑制される。
【0011】
耐火物の耐用性向上の要素には耐食性の他、耐スポーリング性がある。溶融炉の操業温度は1300℃以上の超高温で、しかも溶融炉の炉壁は一般に水冷構造が採用されている。このため耐火物は使用時において、炉壁厚さ方向に対する温度勾配がきわめて大きくなり、スポーリングが生じ易い。
【0012】
本発明の耐火物は、Al含有量が85質量%以上と多いためにAl成分自身がもつ容積安定性に優れている。しかも、前記したYAGの生成によるマトリックスを緻密化によって耐火物組織が低気孔率化し、熱伝度率が高い。これにより、本発明の耐火物は使用時において炉壁厚さ方向に対する温度勾配が小さくなり、耐スポーリング性においても優れた効果を発揮する。
【0013】
また、本発明の耐火物に含むイットリア質原料からのY成分は、多アルカリの溶融炉スラグに対して溶解度が低い性質がある。このため、耐火物マトリックスからのY成分の過度の溶出がなく、Y成分によるスラグ粘性向上による耐食性向上の効果が持続する。
【0014】
スラグ粘性の向上によるスラグ浸透防止の効果は、従来のアルミナ−酸化クロム質耐火物おける酸化クロム成分と同じである。しかし、酸化クロム成分はイットリア質原料と違って環境汚染の問題があり、本発明のクロムフリー材質としての環境汚染防止の効果は得られない。
【0015】
本発明は、イットリア質原料として富イットリウム混合希土酸化物を使用してもよい。この富イットリウム混合希土酸化物が化学成分値で、主成分のY以外に、Gd、Er、Dy、Ybから選ばれる一種以上を5〜35質量%含む場合は、溶融炉特有の多アルカリスラグに対する耐食性および耐スラグ浸透性が一段と向上する。これは以下の理由によるものと考えられる。
【0016】
耐火物使用中の高温下において、富イットリウム混合希土酸化物中のGd、Er、Dy、Ybの成分はYと同様にアルミナ原料のAl成分と反応し、分子量の大きなガーネット構造をとるYAl12,ErAl12,DyAl12,YbAl12を生成する。また、GdはAlとの反応でペロブスカイト構造をとるGdAlとなる。そして、この分子量の大きなガーネット構造あるいはペロブスカイト構造は耐火物組織を緻密化させ、しかもGd、Er、Dy、Yb自身が耐アルカリ性に優れていることによって、耐食性を向上させる。
【0017】
また、主成分のY以外に、Gd、Er、Dy、Ybから選ばれる一種以上を5〜35質量%含むこの富イットリウム混合希土酸化物は、Y純度の高いイットリアに比べてアルミナ原料のAl成分との反応が早く、耐火物は使用時の温度が低い稼動面後方の組織をも十分に緻密化し、耐スラグ浸透性がより一層向上する。
【0018】
本発明に使用するイットリア質原料の具体例は以上のイットリア、富イットリウム混合希土酸化物などから選ばれる一種以上である。Y純度は限定されるものではなく、例えばY純度が70質量%程度のものであっても特段の弊害成分を含んでいなければ使用できるが、品質の安定した高純度品の使用が好ましい。Gd、Er、Dy、Ybから選ばれる一種以上を5〜35質量%含む富イットリウム混合希土酸化物では、Y純度の下限は例えば50質量%でもよい。
【0019】
イットリア質原料の使用量は、不定形耐火物組成全体の化学成分値でY1.1〜15質量%となるように調整する。Yの割合がこれより少ないと本発明の耐食性、耐スラグ浸透性、耐スポーリング性の効果が得られず、多過ぎるとYとAlとの反応生成物が増え、緻密化が過多となって耐スポーリング性が低下する。
【0020】
化学成分値でYの割合をこの範囲にするには、イットリア質原料の使用量とY純度との調整で行うことができる。高純度イットリアを使用した場合は、実質的にイットリア質原料の使用量そのままが化学成分値でのYの割合となる。
【0021】
富イットリウム混合希土酸化物はY以外にGd、Er、Dy、Ybから選ばれる一種以上を含む原料である。合成品、粗精希土類酸化物より得ることができるが、経済面で粗精希土類酸化物が好ましい。
【0022】
粗精希土類酸化物は、希土類鉱石から希土類元素を精製する途中過程の原料である。例えば、ゼノタイム〔Y(PO)〕等のYを主成分とした希土類鉱石を酸、アルカリ処理により、燐、アルカリ土類金属等を除去して得たものである。
【0023】
富イットリウム混合希土酸化物は、化学成分値でGd、Er、Dy、Ybから選ばれる一種以上を5〜35質量%、さらに好ましくは10〜30質量%含むことが好ましい。Gd、Er、Dy、Ybから選ばれる一種以上が5質量%未満では耐食性、耐スラグ浸透性においてY純度の高いイットリアの使用と特に変わりなく、35質量%を超えるとYの割合が少なくなるために耐食性に劣る。
【0024】
富イットリウム混合希土酸化物において、Yの割合は50質量%以上が好ましく、さらに好ましくは60質量%以上である。Yの上限割合はGd、Er、Dy、Ybが占める割合から自ずから定まり、特に限定するものではないが、例えば95質量%、あるいは90質量%とする。
【0025】
また、粗精希土酸化物は鉱石から不可避的にNd、La、CeOの成分が含まれることがある。この成分は不定形耐火物施工時の施工水と反応し、施工体乾燥時に消化に伴う膨張によって耐火物組織のぜい弱化の原因となる。一方、CeOは多アルカリの溶融炉スラグに溶解しやすい。そこで、粗精希土酸化物はNd、La、CeOの一種以上が15質量%以下であることが好ましい。
【0026】
イットリア質原料の粒はアルミナとの反応性を高めるために45μm以下とする。耐火性原料組成の主材となるアルミナ質原料は、超微粉としての仮焼アルミナを含む。それ以外は、電融アルミナ、焼結アルミナ、ボーキサイト、あるいはこれらを主原料とした耐火物のリサイクル品のいずれでもよい。これらを粗粒、中粒、微粒に適宜調整して使用する。
【0027】
アルミナ質原料の使用量は、不定形耐火物組成全体に占める化学分析値でAl:85質量%以上になるように調整する。Alの割合がこの範囲より少ないと本発明の耐食性および耐スポーリング性の効果が得られない。Alのさらに好まし割合は90〜99.7質量%である。
【0028】
アルミナ質原料のAl成分を前記の割合にするのは、主としてアルミナ質原料のAl純度とその使用割合とによって定めることができる。例えば高純度アルミナを使用した場合は、実質的にアルミナ質原料の使用量そのままが化学成分値でのAl割合となる。
【0029】
後述する結合剤に、アルミナセメントを使用した場合は、わずかではあるがアルミナセメントからもAl成分が供給される。アルミナセメントは一般にAl:55〜80質量%含んでいる。本発明で規定するAlの割合は不定形耐火物組成全体に占めるものであり、このアルミナセメントからのAl成分量も含めての数値である。
結合剤と必要により添加する分散剤は、従来材質に使用されるものと特に変わりない。結合剤は前記したアルミナセメント以外にも、リン酸塩、珪酸塩等が挙げられる。施工体強度の面からアルミナセメントが好ましい。この結合剤の使用量は、耐火性原料組成と結合剤との合計量100質量%に占める割合で1〜10質量%が好ましい。
【0030】
分散剤は不定形耐火物施工時の流動性を付与する効果をもつ。分散剤の材質は従来から種々のものが提案されている。分散剤の種類は限定されるものではなく、例えばトリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ホウ酸ソーダ、炭酸ソーダ、ポリメタリン酸塩などの無機塩、クエン酸ソーダ、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ、ポリカルボン酸塩、β−ナフタレンスルホン酸塩類、ナフタレンスルホン酸、カルボキシル基含有ポリエーテル系分散剤等である。その添加量は耐火性原料と結合剤の合計量100質量部に対し、0.01〜1質量部が好ましい。
【0031】
施工には以上の不定形耐火物組成100質量部に対し水分を3〜7質量部程度添加して混練し、型枠を用いて流し込み施工する。流し込みの際には振動を付与して充填を図る。施工後は養生・乾燥させる。この施工は炉に直接流し込み施工する他、別の場所で流し込み施工して得た成形体を炉に内張するプレキャスト施工でもよい。また流し込み施工とプレキャスト施工の組み合わせでも良い。
【0032】
なお、本発明でいうクロムフリーとは、酸化クロムを実質的に含まないことを意味する。従来一般的な酸化クロム含有品は酸化クロムを5〜60質量%含んでいる。酸化クロムは例え1質量%以下でも環境汚染の問題が生じる。クロムフリーの効果を得るには、酸化クロムを不可避的以外に含まないことが好ましい。
【0033】
溶融炉は一般に冷却装置が設けられる。冷却装置は例えば水冷管、水冷ジャケット、空冷ジャケット、散水装置などの配設である。本発明による不定形耐火物は、その耐スポーリング性の効果によって、特にこの冷却装置を備えた溶融炉の内張りとして好適である。
【発明を実施するための最良の形態】
【0034】
以下に本発明実施例およびその比較例を説明する。同時に各例の試験結果を示す。表1は各例で使用した耐火性原料の化学成分、表2は本発明実施例、表3はその比較例である。
【0035】
【表1】

Figure 0004456563
【0036】
【表2】
Figure 0004456563
【0037】
【表3】
Figure 0004456563
【0038】
各例は、表2、表3に示す不定形耐火物組成をミキサーにて混練した後、金属製の型枠に流し込んだ。流し込みの際には型枠に振動を付与し、施工体の充填を促進した。ついで24時間養生し、脱型後、さらに110℃×24時間乾燥した。
【0039】
耐食性は、前記条件で230mm×114mm×65mmの並形れんがサイズに施工して得た成形体を試料とし、回転侵食試験で行った。侵食剤として化学成分値がSiO:42.8質量%、CaO:31.7質量%、Al:12.4質量%、Fe:4.8質量%、NaO:3.7質量%、KO:1.1質量%、Cl:0.9質量%、(CaO/SiO:0.74)のガス化溶融炉スラグを使用した。1600℃×30時間侵食させた後、侵食寸法を測定した。
【0039】
耐スポーリング性は、前記と同様、並形れんがのサイズに施工して得た成形体を試料とした。長さ方向に対する片面を電気炉にて1400℃×15分間加熱した後、強制空冷し、この加熱−冷却を10回繰り返した後、試料の亀裂発生状況から次の4段階で評価した。◎…亀裂殆どなし。○…微細亀裂の発生。△…亀裂が大きい。×…亀裂が極めて大きいか又は剥離。
【0040】
実機試験として、一日あたりのごみ処理量が100tの、側壁に水冷装置を備えたガス化溶融炉に内張りした。12ヶ月間の使用後において損耗速度(mm/月)を測定した。操業温度は約1400℃。
【0041】
試験結果が示すとおり、本発明の実施例による不定形耐火物はいずれも耐食性、耐スポーリング性共に優れている。表には示していないが、稼動面でのスラグ浸透が少なく、これも耐食性向上の効果に寄与していると思われる。また、イットリア質原料として富イットリウム混合希土酸化物を使用した実施例は、耐食性において一段と優れている。
【0042】
これに対し、イットリア質原料を含まない比較例1はスラグ浸透が大きく、耐食性に劣る。Y成分が本発明の限定範囲より多い比較例2及び比較例4はいずれも耐食性および耐スポーリング性に劣る。アルミナ含有量の少ない比較例3と、Al含有量が本発明で限定した範囲より少なく、しかもイットリア質原料を含まない比較例5についても耐食性、耐スポーリング性に劣る。
【0043】
ジルコニアを含みAl含有量が本発明の限定範囲より少ない比較例6、炭化珪素を含みAl含有量が本発明の限定範囲より少ない比較例7は、いずれも耐食性に大きく劣る。
【0044】
比較例8は酸化クロムを多量に含むことで耐食性に優れるものの、六価クロムの生成の問題があり、環境上の問題からクロムフリーとしての本発明の効果が得られない。また、耐スポーリング性に劣ることで側壁に水冷装置を備えた溶融炉への使用はスポーリング損傷が懸念される。
【0045】
実機試験において、本発明実施例1、5は比較例6のアルミナ−ジルコニア質、比較例7のアルミナ−炭化珪素質に比べ、耐用性が格段に優れている。
【0046】
本発明実施例1、5は、比較例8のアルミナ−酸化クロム質に対して耐食性に若干劣るが、耐スポーリング性に優れるためか、実機試験での耐用性は大差がない。
【0047】
図1は実施例1の不定形耐火物組成をベースに成形体のY成分の量を変化させ(Y量に合わせてAlを増減)、Y量と耐火物の耐食性との関係を示したグラフである。このグラフ結果から、Yの割合が本発明の範囲内のものが耐食性に優れていることが確認される。
【0048】
廃棄物処理炉は焼却炉と違って高温操業であり、しかもその耐火物の損耗機構は廃棄物成分に由来する多アルカリスラグに起因した廃棄物処理炉特有のものである。本発明の不定形耐火物は以上の実施例の試験結果が示すように、廃棄物処理炉用の不定形耐火物として、クロムフリー材質であるにもかかわらず、酸化クロム含有品に匹敵する耐用性を発揮する。
【産業上の利用可能性】
【0049】
廃棄物溶融炉はガス化溶融炉あるいは灰溶融炉が知られている。本発明にかかるクロムフリー不定形耐火物は、この廃棄物溶融炉の内張り材として使用する。
【図面の簡単な説明】
【0050】
【図1】不定形耐火物組成に占めるY量と、不定形耐火物の耐食性との関係を示したグラフである。【Technical field】
[0001]
The present invention relates to a chromium-free amorphous refractory used for the lining of a waste melting furnace such as a gasification melting furnace or an ash melting furnace, and a waste melting furnace with the lining thereof.
[Background]
[0002]
In recent years, gasification melting furnaces for directly melting waste or ash melting furnaces for melting incineration ash of waste have emerged as waste processing furnaces excellent in volume reduction of waste and suppression of dioxin generation.
The slag component of these waste melting furnaces (hereinafter referred to as melting furnaces) contains a large amount of alkali derived from the waste components, and the operation of the melting furnace is extremely high temperature of 1300 ° C. or higher due to severe use conditions. The wear of the refractory lining it is significant.
The refractories used in the melting furnace are roughly classified into regular refractories and irregular refractories. The construction of regular refractories involves brickwork and is labor intensive and requires advanced technology. In recent years, therefore, lining with an irregular refractory has been widely used.
[0003]
Conventionally, amorphous refractories used for melting furnaces are chromium oxide-containing products represented by alumina-chromium oxide (see, for example, JP-A-10-324562). This material exhibits excellent corrosion resistance in combination with the fire resistance and volume stability of alumina and the slag resistance of chromium oxide. However, there is a problem that chromium oxide, which is a part of the refractory component, is changed to hexavalent chromium harmful to the human body, and the slag discharged from the furnace and the refractory after use cause environmental pollution.
[0004]
Then, the chromium free material which does not contain a chromium oxide raw material substantially as an amorphous refractory for melting furnaces is proposed. For example, alumina-zirconia (see, for example, JP-A-2000-281455), alumina-magnesia (see, for example, JP-A-2001-153321), alumina-silicon carbide (see, for example, JP-A-2000-203952) It is.
However, the above-mentioned conventional chromium-free material is greatly inferior in durability to a chromium oxide-containing product when used as a melting furnace. Since the slag of the melting furnace is multi-alkali, the alumina-zirconia or alumina-magnesia is inferior in corrosion resistance because the zirconia component / magnesia component is eluted in the slag. In the case of alumina-silicon carbide, since the operation of the melting furnace is an oxidizing atmosphere, the silicon carbide component is oxidatively decomposed and the corrosion resistance is remarkably lowered.
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0005]
It is an object of the present invention to provide an excellent durable chromium-free amorphous refractory equivalent to a chromium oxide-containing product as a lining of a melting furnace and a melting furnace lining the same.
[Means for Solving the Problems]
[0006]
Waste melting furnace for chrome-free monolithic refractory of the present invention, the refractory material consists of an alumina raw material of the main material containing calcined alumina as yttria material and ultrafine powder having a particle size 45 [mu] m, chemical analysis It has a composition of Y 2 O 3 : 1.1 to 15% by mass and Al 2 O 3 : 85% by mass or more.
[0007]
In the conventional chromium-free material, a considerable amount of zirconia, magnesia or silicon carbide is combined with alumina. On the other hand, the present invention includes a specific amount of yttria-based material in the material of the alumina main material. This demonstrates excellent durability as a lining for the melting furnace despite the chromium-free material. The reason is considered as follows.
[0008]
During the operation of the waste melting furnace, slag containing alkali (Na 2 O + K 2 O): 1.5 to 15% by mass passes through the furnace. As described above, the melting furnace slag has a very low viscosity at the time of melting because it is multi-alkali and has an extremely high furnace operating temperature. Alkali also has a severe erosion effect on refractories. In the conventional chrome-free amorphous refractory, the melting furnace slag has a low viscosity, so that the alkali component penetrates deeply into the refractory structure, greatly reducing the durability of the refractory.
[0009]
On the other hand, the refractory of the present invention is a combination of a specific amount of yttria raw material and alumina raw material, so that the Y 2 O 3 component of the yttria raw material is Al 2 O of the alumina raw material at a high temperature while using the refractory. It reacts with the three components to generate YAG (yttrium / aluminum / garnet: Y 3 Al 5 O 12 ) having a large molecular weight, thereby densifying the refractory matrix.
[0010]
Furthermore, the refractory according to the present invention is such that the Y 2 O 3 component of the yttria-based raw material reacts with the melting furnace slag to increase the viscosity of the slag in contact with the refractory operating surface and prevent slag infiltration, and the slag and refractory Since the reaction rate of is slow, erosion of the refractory is suppressed.
[0011]
In addition to corrosion resistance, spalling resistance is one of the factors that improve the durability of refractories. The operation temperature of the melting furnace is an ultra-high temperature of 1300 ° C. or more, and the furnace wall of the melting furnace generally adopts a water cooling structure. For this reason, when the refractory is used, the temperature gradient with respect to the thickness direction of the furnace wall becomes extremely large, and spalling is likely to occur.
[0012]
Since the refractory according to the present invention has an Al 2 O 3 content as high as 85% by mass or more, the Al 2 O 3 component itself has excellent volume stability. In addition, the refractory structure has a low porosity by densifying the matrix formed by the above-described YAG, and the thermal conductivity is high. As a result, the refractory according to the present invention has a small temperature gradient with respect to the thickness direction of the furnace wall during use, and exhibits excellent effects in spalling resistance.
[0013]
In addition, the Y 2 O 3 component from the yttria raw material included in the refractory of the present invention has a property of low solubility with respect to a multi-alkali melting furnace slag. For this reason, there is no excessive elution of the Y 2 O 3 component from the refractory matrix, and the effect of improving the corrosion resistance by improving the slag viscosity by the Y 2 O 3 component is sustained.
[0014]
The effect of preventing slag penetration by improving the slag viscosity is the same as the chromium oxide component in the conventional alumina-chromium oxide refractory. However, unlike yttria-based materials, the chromium oxide component has a problem of environmental pollution, and the effect of preventing environmental pollution as the chromium-free material of the present invention cannot be obtained.
[0015]
In the present invention, a yttrium rich rare earth oxide may be used as a yttria-based raw material. This yttrium-rich rare earth oxide has a chemical component value, and in addition to Y 2 O 3 as a main component, 5 or more selected from Gd 2 O 3 , Er 2 O 3 , Dy 2 O 3 , and Yb 2 O 3 When it is contained in an amount of 35% by mass, the corrosion resistance and slag penetration resistance to the multi-alkali slag unique to the melting furnace are further improved. This is thought to be due to the following reasons.
[0016]
The components of Gd 2 O 3 , Er 2 O 3 , Dy 2 O 3 , and Yb 2 O 3 in the yttrium-rich mixed rare earth oxide are the same as Y 2 O 3 at a high temperature while using the refractory. It reacts with the Al 2 O 3 component to produce Y 3 Al 5 O 12 , Er 3 Al 5 O 12 , Dy 3 Al 5 O 12 , Yb 3 Al 5 O 12 having a large molecular weight garnet structure. Gd 2 O 3 becomes Gd 2 Al 2 O 6 having a perovskite structure by reaction with Al 2 O 3 . The garnet structure or perovskite structure having a large molecular weight densifies the refractory structure, and Gd 2 O 3 , Er 2 O 3 , Dy 2 O 3 , and Yb 2 O 3 itself are excellent in alkali resistance. , Improve corrosion resistance.
[0017]
In addition to Y 2 O 3 as a main component, this yttrium rich rare earth oxidation containing 5 to 35% by mass of one or more selected from Gd 2 O 3 , Er 2 O 3 , Dy 2 O 3 and Yb 2 O 3 Compared to yttria with a high purity of Y 2 O 3 , the product reacts faster with the Al 2 O 3 component of the alumina raw material, and the refractory has sufficiently refined the structure behind the working surface where the temperature during use is low. Slag permeability is further improved.
[0018]
Specific examples of the yttria-based raw material used in the present invention are one or more selected from the above yttria, yttrium-rich mixed rare earth oxides, and the like. The purity of Y 2 O 3 is not limited. For example, even if the purity of Y 2 O 3 is about 70% by mass, it can be used as long as it does not contain any special harmful components. The use of products is preferred. In the yttrium-rich mixed rare earth oxide containing 5 to 35% by mass of one or more selected from Gd 2 O 3 , Er 2 O 3 , Dy 2 O 3 , and Yb 2 O 3 , the lower limit of Y 2 O 3 purity is, for example, 50 It may be mass%.
[0019]
The amount of the yttria-based material used is adjusted so that the chemical component value of the entire amorphous refractory composition is Y 2 O 3 : 1.1 to 15% by mass. If the proportion of Y 2 O 3 is less than this, the effects of the corrosion resistance, slag penetration resistance and spalling resistance of the present invention cannot be obtained, and if it is too much, a reaction product of Y 2 O 3 and Al 2 O 3 is produced. Increased, densification becomes excessive, and spalling resistance decreases.
[0020]
In order to make the ratio of Y 2 O 3 within this range in terms of chemical component values, it can be carried out by adjusting the amount of yttria raw material used and the Y 2 O 3 purity. When high-purity yttria is used, the used amount of the yttria-based raw material is substantially the ratio of Y 2 O 3 in terms of chemical component values.
[0021]
The yttrium-rich rare earth oxide is a raw material containing at least one selected from Gd 2 O 3 , Er 2 O 3 , Dy 2 O 3 and Yb 2 O 3 in addition to Y 2 O 3 . Although it can be obtained from a synthetic product or a crude rare earth oxide, a crude rare earth oxide is preferred in terms of economy.
[0022]
Crude rare earth oxide is a raw material in the middle of refining rare earth elements from rare earth ores. For example, a rare earth ore mainly composed of Y 2 O 3 such as xenotime [Y (PO 4 )] is obtained by removing phosphorus, alkaline earth metal, and the like by acid and alkali treatment.
[0023]
The yttrium-rich rare earth oxide is 5 to 35% by mass, more preferably 10 to 30% of one or more selected from Gd 2 O 3 , Er 2 O 3 , Dy 2 O 3 and Yb 2 O 3 in terms of chemical component values. It is preferable to contain the mass%. If at least one selected from Gd 2 O 3 , Er 2 O 3 , Dy 2 O 3 , and Yb 2 O 3 is less than 5% by mass, it is particularly different from the use of yttria having high Y 2 O 3 purity in corrosion resistance and slag penetration resistance. If the amount exceeds 35% by mass, the proportion of Y 2 O 3 decreases, resulting in poor corrosion resistance.
[0024]
In the yttrium-rich rare earth oxide, the proportion of Y 2 O 3 is preferably 50% by mass or more, and more preferably 60% by mass or more. The upper limit ratio of Y 2 O 3 is naturally determined from the ratio of Gd 2 O 3 , Er 2 O 3 , Dy 2 O 3 , and Yb 2 O 3 , and is not particularly limited. For example, 95% by mass or 90% by mass %.
[0025]
The crude rare earth oxide may inevitably contain components of Nd 2 O 3 , La 2 O 3 , and CeO 2 from the ore. This component reacts with the construction water at the time of construction of the irregular refractory, and causes a weakening of the refractory structure due to expansion accompanying digestion when the construction body is dried. On the other hand, CeO 2 is easily dissolved in a multi-alkali melting furnace slag. Accordingly, the crude rare earth oxide preferably contains 15% by mass or less of one or more of Nd 2 O 3 , La 2 O 3 , and CeO 2 .
[0026]
The particle size of the yttria-containing material to 45μm or less in order to enhance the reactivity with alumina. The alumina raw material that is the main material of the refractory raw material composition includes calcined alumina as ultrafine powder. Other than that, any of fused alumina, sintered alumina, bauxite, or recycled refractories using these as main raw materials may be used. These are used by appropriately adjusting to coarse grains, medium grains and fine grains.
[0027]
The amount of the alumina raw material used is adjusted so that the chemical analysis value in the entire amorphous refractory composition is Al 2 O 3 : 85% by mass or more. When the proportion of Al 2 O 3 is less than this range, the effects of the corrosion resistance and spalling resistance of the present invention cannot be obtained. A more preferable ratio of Al 2 O 3 is 90 to 99.7% by mass.
[0028]
The ratio of the Al 2 O 3 component of the alumina raw material can be determined mainly by the Al 2 O 3 purity of the alumina raw material and its use ratio. For example, when high-purity alumina is used, the used amount of the alumina raw material is substantially the Al 2 O 3 ratio in terms of chemical component values.
[0029]
When alumina cement is used for the binder described later, the Al 2 O 3 component is also supplied from the alumina cement, though only slightly. Alumina cement generally contains Al 2 O 3 : 55-80% by mass. The proportion of Al 2 O 3 specified in the present invention is a value including the amount of Al 2 O 3 component from the alumina cement, which occupies the entire amorphous refractory composition.
The binder and the dispersant added if necessary are not particularly different from those used for conventional materials. Examples of the binder include phosphate and silicate in addition to the above-mentioned alumina cement. Alumina cement is preferable from the viewpoint of the strength of the construction body. The amount of the binder used is preferably 1 to 10% by mass in a proportion of 100% by mass of the total amount of the refractory raw material composition and the binder.
[0030]
The dispersant has the effect of imparting fluidity during construction of the irregular refractory. Various materials for the dispersant have been proposed. The type of the dispersant is not limited. For example, sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, sodium acid hexametaphosphate, sodium borate, sodium carbonate, polymetaphosphate, etc., sodium citrate, Examples thereof include sodium tartrate, sodium polyacrylate, sodium sulfonate, polycarboxylate, β-naphthalenesulfonate, naphthalenesulfonate, a carboxyl group-containing polyether dispersant, and the like. The addition amount is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the total amount of the refractory raw material and the binder.
[0031]
For the construction, about 3 to 7 parts by mass of water is added to 100 parts by mass of the above-mentioned amorphous refractory composition, and the mixture is kneaded and cast using a mold. When pouring, filling is performed by applying vibration. Curing and drying after construction. This construction may be performed by pouring directly into the furnace, or may be precast construction in which a molded product obtained by casting at another place is lined in the furnace. Also, a combination of casting construction and precast construction may be used.
[0032]
The term “chromium-free” as used in the present invention means that chromium oxide is not substantially contained. Conventionally, a general chromium oxide-containing product contains 5 to 60% by mass of chromium oxide. Even if chromium oxide is 1% by mass or less, there is a problem of environmental pollution. In order to obtain a chromium-free effect, it is preferable not to contain chromium oxide other than unavoidable.
[0033]
A melting furnace is generally provided with a cooling device. The cooling device is, for example, a water cooling tube, a water cooling jacket, an air cooling jacket, a watering device, or the like. The amorphous refractory according to the present invention is particularly suitable as a lining of a melting furnace equipped with this cooling device because of its spalling resistance effect.
BEST MODE FOR CARRYING OUT THE INVENTION
[0034]
Examples of the present invention and comparative examples thereof will be described below. At the same time, the test results of each example are shown. Table 1 shows chemical components of the refractory raw materials used in each example, Table 2 shows examples of the present invention, and Table 3 shows comparative examples.
[0035]
[Table 1]
Figure 0004456563
[0036]
[Table 2]
Figure 0004456563
[0037]
[Table 3]
Figure 0004456563
[0038]
In each example, the amorphous refractory compositions shown in Tables 2 and 3 were kneaded with a mixer and then poured into a metal mold. When pouring, the formwork was vibrated to promote the filling of the construction body. Subsequently, it was cured for 24 hours, and after demolding, it was further dried at 110 ° C. for 24 hours.
[0039]
Corrosion resistance was measured by a rotary erosion test using a molded product obtained by constructing 230 mm × 114 mm × 65 mm parallel bricks under the above conditions as a sample. Chemical component values as the erodant are SiO 2 : 42.8 mass%, CaO: 31.7 mass%, Al 2 O 3 : 12.4 mass%, Fe 2 O 3 : 4.8 mass%, Na 2 O: A gasification melting furnace slag of 3.7% by mass, K 2 O: 1.1% by mass, Cl: 0.9% by mass, (CaO / SiO 2 : 0.74) was used. After erosion at 1600 ° C. for 30 hours, the erosion dimension was measured.
[0039]
As for the spalling resistance, a molded body obtained by applying to the size of an ordinary brick was used as a sample as described above. One side in the length direction was heated at 1400 ° C. for 15 minutes in an electric furnace, then forced air cooling was performed, and this heating-cooling was repeated 10 times. ◎… There are almost no cracks. ○: Generation of fine cracks. Δ: Large cracks. X: Cracks are extremely large or peeling.
[0040]
As an actual machine test, the lining was placed in a gasification melting furnace having a water-cooling device on the side wall with a daily waste treatment amount of 100 t. The wear rate (mm / month) was measured after 12 months of use. The operating temperature is about 1400 ° C.
[0041]
As the test results show, the amorphous refractories according to the examples of the present invention are excellent in both corrosion resistance and spalling resistance. Although not shown in the table, there is little slag penetration on the operation side, which seems to contribute to the effect of improving corrosion resistance. Moreover, the Example which uses a yttrium rich rare earth oxide as a yttria quality raw material is much more excellent in corrosion resistance.
[0042]
On the other hand, the comparative example 1 which does not contain a yttria-like raw material has large slag penetration, and is inferior to corrosion resistance. Both Comparative Example 2 and Comparative Example 4 having more Y 2 O 3 components than the limited range of the present invention are inferior in corrosion resistance and spalling resistance. Comparative Example 3 having a low alumina content and Comparative Example 5 having an Al 2 O 3 content less than the range defined in the present invention and also containing no yttria-based material are also inferior in corrosion resistance and spalling resistance.
[0043]
Al 2 O 3 content less Comparative Example 6 than the limited range of the present invention comprises zirconia, Al 2 O 3 content less Comparative Example 7 than the limited range of the present invention comprises a silicon carbide are all significantly inferior in corrosion resistance .
[0044]
Although Comparative Example 8 contains a large amount of chromium oxide and is excellent in corrosion resistance, there is a problem of hexavalent chromium formation, and the effect of the present invention as chromium-free cannot be obtained due to environmental problems. Moreover, since it is inferior in spalling resistance, there is a concern that spalling damage is caused when it is used in a melting furnace having a water cooling device on the side wall.
[0045]
In the actual machine test, Examples 1 and 5 of the present invention have much superior durability compared to the alumina-zirconia of Comparative Example 6 and the alumina-silicon carbide of Comparative Example 7.
[0046]
Inventive Examples 1 and 5 are slightly inferior in corrosion resistance to the alumina-chromium oxide of Comparative Example 8, but the durability in the actual machine test is not much different because of excellent spalling resistance.
[0047]
1 (or decrease the Al 2 O 3 in accordance with the Y 2 O 3 amount) monolithic refractory composition based on varying amounts of Y 2 O 3 component of the molded product of Example 1, Y 2 O 3 amount It is the graph which showed the relationship between the corrosion resistance of refractories. From this graph result, it is confirmed that the Y 2 O 3 ratio within the range of the present invention is excellent in corrosion resistance.
[0048]
Unlike the incinerator, the waste treatment furnace is a high-temperature operation, and the wear mechanism of the refractory is unique to the waste treatment furnace due to the multi-alkali slag derived from the waste components. As shown by the test results of the above examples, the amorphous refractory of the present invention is an amorphous refractory for a waste treatment furnace. Demonstrate sex.
[Industrial applicability]
[0049]
As the waste melting furnace, a gasification melting furnace or an ash melting furnace is known. The chromium-free amorphous refractory according to the present invention is used as a lining material for this waste melting furnace.
[Brief description of the drawings]
[0050]
FIG. 1 is a graph showing the relationship between the amount of Y 2 O 3 in an amorphous refractory composition and the corrosion resistance of an amorphous refractory.

Claims (4)

耐火性原料が粒径45μm以下のイットリア質原料と超微粉としての仮焼アルミナを含む主材のアルミナ質原料とからなり、化学分析値でY:1.1〜15質量%、Al:85質量%以上の組成を有する廃棄物溶融炉用クロムフリー不定形耐火物。The refractory material is composed of an yttria material having a particle size of 45 μm or less and a main material alumina material including calcined alumina as ultrafine powder, and the chemical analysis value is Y 2 O 3 : 1.1 to 15% by mass, Al 2 O 3 : A chromium-free amorphous refractory for a waste melting furnace having a composition of 85% by mass or more. イットリア質原料がイットリア、富イットリウム混合希土酸化物から選ばれる1種以上である請求項1記載の廃棄物溶融炉用クロムフリー不定形耐火物。  The chromium-free amorphous refractory for a waste melting furnace according to claim 1, wherein the yttria-based material is at least one selected from yttria and yttrium-rich mixed rare earth oxides. 廃棄物溶融炉が操業中に、アルカリ(NaO+KO):1.5〜15質量%を含むスラグが炉内を通過する廃棄物溶融炉である、請求項1または請求項2記載の廃棄物溶融炉内張り用クロムフリー不定形耐火物。 3. The waste melting furnace according to claim 1, wherein a slag containing alkali (Na 2 O + K 2 O): 1.5 to 15% by mass passes through the furnace while the waste melting furnace is in operation. Chrome-free amorphous refractory for waste melting furnace lining. 請求項1ないし請求項3のいずれかに記載のクロムフリー不定形耐火物を流し込み施工および/またはプレキャスト施工にて内張りしてなる廃棄物溶融炉。  A waste melting furnace formed by lining the chrome-free amorphous refractory according to any one of claims 1 to 3 by pouring and / or precasting.
JP2005504251A 2003-03-31 2004-03-30 Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this Expired - Fee Related JP4456563B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003097062 2003-03-31
JP2003097062 2003-03-31
PCT/JP2004/004576 WO2004087609A1 (en) 2003-03-31 2004-03-30 Chromium-free monolithic refractory for melting furnace for waste and melting furnace for waste lined with the same

Publications (2)

Publication Number Publication Date
JPWO2004087609A1 JPWO2004087609A1 (en) 2006-06-29
JP4456563B2 true JP4456563B2 (en) 2010-04-28

Family

ID=33127536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005504251A Expired - Fee Related JP4456563B2 (en) 2003-03-31 2004-03-30 Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this

Country Status (4)

Country Link
JP (1) JP4456563B2 (en)
KR (1) KR101023711B1 (en)
CN (1) CN1315755C (en)
WO (1) WO2004087609A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227508A (en) * 2008-03-21 2009-10-08 Kurosaki Harima Corp Monolithic refractory and waste material melting furnace
US8278231B2 (en) 2008-11-24 2012-10-02 Exxonmobil Chemical Patents Inc. Heat stable formed ceramic, apparatus and method of using the same
US8512663B2 (en) 2009-05-18 2013-08-20 Exxonmobile Chemical Patents Inc. Pyrolysis reactor materials and methods
US8450552B2 (en) * 2009-05-18 2013-05-28 Exxonmobil Chemical Patents Inc. Pyrolysis reactor materials and methods
JP5271239B2 (en) * 2009-11-24 2013-08-21 黒崎播磨株式会社 Furnace
CN105503241B (en) * 2015-12-21 2018-04-17 四川欣意迈科技有限公司 A kind of manganese mud foaming rare-earth ceramic section bar and preparation method thereof
EP3453689B1 (en) * 2017-09-08 2020-08-26 AGC Ceramics Co., Ltd. High-zirconia electrocast refractory and method for manufacturing the same
CN110041087B (en) * 2019-05-16 2022-09-20 鞍山市和丰耐火材料有限公司 Chromium-free brick for vacuum treatment of silicon steel and production method thereof
CA3239000A1 (en) * 2021-11-26 2023-06-01 Topsoe A/S Refractory product and its use
CN115286405B (en) * 2022-08-25 2023-03-24 宜兴瑞泰耐火材料有限公司 Low-aluminum mullite brick with high molybdenum waste liquid corrosion resistance and preparation method thereof
CN115745636A (en) * 2022-12-07 2023-03-07 无锡远能耐火材料有限公司 Acid-resistant salt-resistant modified corundum brick for rotary kiln of hazardous waste incineration system and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3131537B2 (en) * 1993-12-27 2001-02-05 東芝セラミックス株式会社 Alumina jig for firing
JP2000281455A (en) * 1999-03-30 2000-10-10 Asahi Glass Co Ltd Alumina-zirconia-based amorphous refractory
JP3327536B2 (en) * 1999-11-26 2002-09-24 黒崎播磨株式会社 Irregular refractories for waste melting furnace pouring and waste melting furnace using the same
JP2001253768A (en) * 2000-03-07 2001-09-18 Asahi Glass Co Ltd Molded refractory and waste melting furnace
JP4094353B2 (en) 2002-06-25 2008-06-04 新日本製鐵株式会社 Rare earth metal-containing amorphous refractory and construction body and kiln furnace lined with these

Also Published As

Publication number Publication date
WO2004087609A8 (en) 2008-03-20
CN1761634A (en) 2006-04-19
WO2004087609A1 (en) 2004-10-14
JPWO2004087609A1 (en) 2006-06-29
KR20050113633A (en) 2005-12-02
KR101023711B1 (en) 2011-03-25
CN1315755C (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP4456563B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this
JP4234330B2 (en) Amorphous refractory composition
JP4094353B2 (en) Rare earth metal-containing amorphous refractory and construction body and kiln furnace lined with these
JP2001114571A (en) Castable refractory for trough of blast furnace
JP4220131B2 (en) Amorphous refractory composition for ladle
JP2874831B2 (en) Refractory for pouring
JP2004203702A (en) Monolithic refractory containing serpentine or talc, applied body of the same, and furnace lined with the same
JP2000203953A (en) Castable refractory for trough of blast furnace
JP2004352600A (en) Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JP4576367B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace using the same for lining
JP2000178074A (en) Castable refractory for blast furnace tapping spout
JP2604310B2 (en) Pouring refractories
JP2001316172A (en) Alumina-chromia based refractory for ash melting furnace
JP4355486B2 (en) Unshaped refractory for waste melting furnace and waste melting furnace lined with it
JP3327536B2 (en) Irregular refractories for waste melting furnace pouring and waste melting furnace using the same
JP3212856B2 (en) Irregular cast refractories and their moldings
JP2005314144A (en) Chromium-free monolithic refractory for waste material melting furnace and waste material melting furnace lined with the same
JP2009227508A (en) Monolithic refractory and waste material melting furnace
JP4445256B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this
JPH11130548A (en) Basic monolithic refractory material
JP2004352601A (en) Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JP3875054B2 (en) Refractory composition for ash melting furnace
JPH0967170A (en) Refractory for casting
JP2005213120A (en) Monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JP3426024B2 (en) Construction method of refractory construction body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4456563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160212

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees