JP2001316172A - Alumina-chromia based refractory for ash melting furnace - Google Patents

Alumina-chromia based refractory for ash melting furnace

Info

Publication number
JP2001316172A
JP2001316172A JP2000169731A JP2000169731A JP2001316172A JP 2001316172 A JP2001316172 A JP 2001316172A JP 2000169731 A JP2000169731 A JP 2000169731A JP 2000169731 A JP2000169731 A JP 2000169731A JP 2001316172 A JP2001316172 A JP 2001316172A
Authority
JP
Japan
Prior art keywords
alumina
chromia
weight
raw material
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000169731A
Other languages
Japanese (ja)
Inventor
Hiroshi Minamisono
広志 南園
Koji Moriwaki
宏治 森脇
Takashi Hiragushi
敬資 平櫛
Kazuyo Uchida
一世 内田
Yasuo Mizota
恭夫 溝田
Akira Yamaguchi
明良 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAYAMA CERAMICS GIJUTSU SHINK
Okayama Ceramics Research Foundation
Original Assignee
OKAYAMA CERAMICS GIJUTSU SHINK
Okayama Ceramics Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAYAMA CERAMICS GIJUTSU SHINK, Okayama Ceramics Research Foundation filed Critical OKAYAMA CERAMICS GIJUTSU SHINK
Priority to JP2000169731A priority Critical patent/JP2001316172A/en
Publication of JP2001316172A publication Critical patent/JP2001316172A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Abstract

PROBLEM TO BE SOLVED: To provide a alumina-chromia based refractory suitable for a lining material being in contact with molten slag which is generated in a digestant melting facility for industrial waste, daily living sludge and municipal refuse. SOLUTION: The alumina-chromia based refractory for the ash melting furnace is so constituted that 70-95 wt.% of an alumina raw material in which Al2O3 value is >=99.0 wt.%, and grain diameter is 0.044-5 mm, 5-23 wt.% of chromia fine powder raw material in which Cr2O3 value is >=99.0 %, grain diameter is <=3 μm, and 0.5-10 wt.% of a silica raw material in which SiO2 value is >=99.0 wt.%, grain diameter is <=0.015 mm, and its mineral composition is consisting of two phases of corundum and alumina-chromia solid solution, and their composing ranges are represented by 0.65-0.85, and 0.15-0.31 in X-ray relative intensity ratio respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明は、産業廃棄物、生活汚
泥および都市ごみの焼却溶融設備の溶融スラグと接触す
るうち張り材として好適なクロミア質耐火物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chromia refractory suitable as a lining material in contact with molten slag of an incineration melting facility for industrial waste, domestic sludge and municipal waste.

【0002】[0002]

【従来の技術】 クロミア系耐火材、特にアルミナ−ク
ロミア質耐火材は高温における耐食性に優れることか
ら、現在多くの産業廃棄物、生活汚泥および都市ごみの
焼却溶融設備の耐火材として適応され、また適応が検討
されている。さらにダイオキシンの排出規制およびごみ
の減溶化のため操業温度の高温化、飛灰投入などにより
耐火材寿命への影響が大きくなり、より高耐食性の耐火
材の要望が高まっている。そのためクロミア含有量の増
加やジルコニア系原料の添加などにより、耐食性向上が
図られているが、クロミア含有量を多くした場合、耐ス
ポーリング性の低下が生じやすい。クロミア粗角の利用
など粒度配合での対処が図られているが、複雑配合とな
り生産性の低下やコスト高となりやすい。
2. Description of the Related Art Chromia-based refractory materials, in particular, alumina-chromia refractory materials, are excellent in corrosion resistance at high temperatures, and therefore are currently used as refractory materials for incineration and melting equipment for many industrial wastes, household sludge and municipal waste. Adaptation is being considered. In addition, the effect on the life of refractory materials has been increased by increasing the operating temperature and throwing in fly ash due to dioxin emission regulations and reducing the amount of refuse, and the demand for refractory materials with higher corrosion resistance has been increasing. For this reason, the corrosion resistance is improved by increasing the chromia content or adding a zirconia-based raw material. However, when the chromia content is increased, the spalling resistance tends to decrease. Attempts have been made at grain size blending, such as the use of chromia coarse angles, but the blending is complicated and tends to result in lower productivity and higher costs.

【0003】 例えば特開平6−321628には、ク
ロミア粗角を主体とするクロミア質原料10〜50重量
%、ジルコン質原料5〜30重量%、および残部がアル
ミナ質原料からなる耐火物の焼結物であって、焼結物中
のAl、CrおよびZrO以外の成分の
合計が10重量%以下であることを特徴とするアルミナ
−クロミア−ジルコン系耐火物が開示されているが、原
料にクロミア粗角が使用されており、この粗角は発明の
詳細な説明には、含有量90〜99重量%程度の酸化ク
ロムを使用しており、耐火れんが中のCr含有量
としては、約10〜50重量%程度と予測される。した
がってCr含有量が多いため、耐スポール性に劣
るとともに、クロミア粗角は一度焼結されたものを粉砕
して得られると記載されておりコストアップとなる。
[0003] For example, JP-A-6-321628 discloses a sintering of a refractory composed of 10 to 50% by weight of a chromia raw material mainly composed of chromia coarse angle, 5 to 30% by weight of a zircon raw material, and a balance of an alumina raw material. be those, alumina and wherein the sum of the Al 2 O 3, Cr 2 O 3 and ZrO 2 other components in the sinter is 10 wt% or less - chromia - zircon-based refractories are disclosed However, chromia coarse angle is used as a raw material. In the detailed description of the invention, the coarse angle uses chromium oxide having a content of about 90 to 99% by weight, and Cr 2 in the refractory brick. The O 3 content is expected to be about 10 to 50% by weight. Therefore, since the content of Cr 2 O 3 is large, the spall resistance is inferior, and the coarse chromia angle is described as being obtained by pulverizing the material once sintered, which increases the cost.

【0004】 次に特開平8−48574には、Al
含量99.0重量%以上で、粒度0.044〜5m
mのアルミナ原料30〜75重量%、Al含量9
9.0重量%以上で、粒度0.03mm以下の仮焼アル
ミナ10〜20重量%、Cr含量90重量%以上
で、粒度0.03〜3mmのクロム原料5〜20重量
%、及び粒度1mm以下のジルコニア原料10〜30重
量%を含有してなる灰溶融炉用アルミナ・クロム・ジル
コニア質耐火物が開示されている。しかし、発明の詳細
な説明の中にクロム原料とを併用することにより、ジル
コニア原料による高膨張性と、クロム原料による収縮に
より、耐火物組織内にマイクロクラックを生成させて低
弾性化するとの記載があり、このように組織内にクラッ
クを発生させることはスラグ浸潤を助長する可能性があ
る。
Next, Japanese Patent Application Laid-Open No. 8-48574 discloses that Al 2
In O 3 content of 99.0 wt% or more, a particle size 0.044~5m
alumina raw material 30 to 75% by weight of m, Al 2 O 3 content 9
9.0 wt% or more, calcined alumina 10-20% by weight of particle size less than 0.03 mm, with Cr 2 O 3 content of 90 wt% or more chromium material 5 to 20 wt% of the particle size 0.03 to 3 mm, and Alumina-chromium-zirconia refractories for ash melting furnaces containing 10 to 30% by weight of a zirconia raw material having a particle size of 1 mm or less are disclosed. However, in the detailed description of the invention, it is described that by using a chromium raw material together with the chromium raw material, a high expansion property by the zirconia raw material and a microcrack are generated in the refractory structure by the shrinkage by the chromium raw material to reduce elasticity. Thus, the generation of cracks in the tissue may promote slag infiltration.

【0005】[0005]

【発明が解決しようとする課題】現在の灰溶融炉では、
下水汚泥、都市ごみ焼却灰、飛灰、シュレッダーダスト
など多岐に渡って溶融されており、塩基度も低いものか
ら高いものまであり、溶融条件は特定されない。またご
みの減溶化、ダイオキシンの排出規制により、ますます
使用条件が過酷化しており、耐食性に優れた耐火材が要
求されている。このような中アルミナ−クロミア質耐火
材は、優れた耐食性を有しているが、更なる耐食性の付
与のため高クロミア化の傾向にある。またジルコニア系
原料を添加することでの耐食性の向上が図られている。
In the current ash melting furnace,
It is melted in a wide variety of areas such as sewage sludge, municipal waste incineration ash, fly ash, and shredder dust, and has low to high basicity, and the melting conditions are not specified. In addition, due to the reduction of garbage and the regulation of dioxin emission, the usage conditions are becoming more severe, and fire-resistant materials with excellent corrosion resistance are required. Such a medium alumina-chromia refractory material has excellent corrosion resistance, but tends to have high chromia for further imparting corrosion resistance. Further, the corrosion resistance is improved by adding a zirconia-based raw material.

【0006】 したがって、本発明の目的は、灰溶融炉
において使用されているアルミナ−クロミア系耐火材に
比較して高純度シリカ原料を添加することおよび粒度が
3μm以下と細かいクロミア原料を用いることで、安価
に耐浸潤性および耐侵食性が改善されたアルミナ−クロ
ミア質耐火物を提供することにある。即ち、3μm以下
のクロミア原料を使用することで、微粉のアルミナ−ク
ロミア固溶体とすることでスラグとの反応性をより増大
させ、高粘性なスラグ融液を生成させること、さらに、
高純度シリカを添加した場合、耐火物組織内の粒間にガ
ラス相として存在させることで侵入したスラグ融液を高
粘性化することで、耐火物組織内へのスラグ浸潤を抑制
できる。
Accordingly, an object of the present invention is to add a high-purity silica raw material as compared with an alumina-chromia-based refractory material used in an ash melting furnace, and to use a chromia raw material having a fine particle size of 3 μm or less. Another object of the present invention is to provide an alumina-chromia refractory having improved infiltration resistance and erosion resistance at low cost. In other words, by using a chromia raw material of 3 μm or less, the reactivity with slag is further increased by forming a fine powder of alumina-chromia solid solution, and a highly viscous slag melt is generated.
When high-purity silica is added, slag infiltration into the refractory structure can be suppressed by increasing the viscosity of the slag melt that has penetrated by being present as a glass phase between grains in the refractory structure.

【0007】[0007]

【課題を解決するための手段】 本発明のアルミナ−ク
ロミア質耐火物は、Al値99.0重量%以上で
粒径0.044〜5mmでのアルミナ原料を70〜95
重量%、Cr値99.0重量%以上で粒径3μm
以下のクロミア微粉原料を5〜23重量%とSiO
99.0重量%以上で粒径0.015mm以下のシリカ
原料が0.5〜10重量%とからなることを特徴とする
灰溶融炉用アルミナ−クロミア質耐火物である。
Means for Solving the Problems The alumina-chromia refractory of the present invention is obtained by converting an alumina raw material having an Al 2 O 3 value of 99.0% by weight or more and a particle size of 0.044 to 5 mm to 70 to 95.
% By weight, Cr 2 O 3 value 99.0% by weight or more and particle size 3 μm
Ash melting furnace, characterized in that the following chromia pulverized raw materials 5 to 23 wt% and a particle size 0.015mm following silica raw materials SiO 2 value 99.0% by weight or more consisting of 0.5 to 10 wt% Alumina-chromia refractories for industrial use.

【0008】[0008]

【作用】 本発明者らは灰溶融炉用アルミナ−クロミア
質耐火物において、高純度シリカ原料を適宜加えたこと
また3μm以下の微粉クロミアを用いたことで、れんが
組織と溶融スラグとの界面での反応性を向上させること
により高粘性な融液を生成し、れんが組織内へのスラグ
の浸潤を抑制することで、耐食性を向上させることがで
きる事を見出し、本発明を完成させたものである。
The present inventors have found that the addition of a high-purity silica material as appropriate and the use of fine powdered chromia of 3 μm or less in the alumina-chromia refractory for ash melting furnaces results in the interface between the brick structure and the molten slag. By generating a highly viscous melt by improving the reactivity of, and by suppressing the infiltration of slag into the brick tissue, found that it is possible to improve the corrosion resistance, and completed the present invention. is there.

【0009】 本発明に使用するアルミナ原料は、Al
値99.0重量%以上の高純度品で、例えば電融
アルミナである。粒度は0.044〜5mm、好ましく
は0.044〜3mmの範囲である。また、アルミナ原
料のAl値が99.0重量%未満であると耐食性
低下のために好ましくない。また、粒度が0.044m
m未満であると耐スポーリング性の低下のため好ましく
ない。さらに5mmを超えると耐食性低下のため好まし
くない。なお、アルミナ原料の添加配合量は、70〜9
5重量%、好ましくは70〜80重量%の範囲内であ
る。配合量が70重量%未満であると組織が悪く、耐浸
潤性が低下するため好ましくなく、また95重量%を超
えると耐食性低下のため好ましくない。また、本発明に
使用する電融アルミナを、焼結アルミナに置き換えて使
用することも可能である。
The alumina raw material used in the present invention is Al
A high purity product having a 2 O 3 value of 99.0% by weight or more, for example, fused alumina. The particle size ranges from 0.044 to 5 mm, preferably from 0.044 to 3 mm. Further, if the Al 2 O 3 value of the alumina raw material is less than 99.0% by weight, it is not preferable because the corrosion resistance is reduced. The particle size is 0.044m
If it is less than m, undesirably, the spalling resistance decreases. Further, if it exceeds 5 mm, it is not preferable because the corrosion resistance is reduced. The added amount of the alumina raw material is 70 to 9
It is in the range of 5% by weight, preferably 70-80% by weight. If the amount is less than 70% by weight, the structure is poor, and the infiltration resistance is lowered, which is not preferable. If it exceeds 95% by weight, the corrosion resistance is lowered, which is not preferable. Further, the fused alumina used in the present invention can be replaced with sintered alumina.

【0010】 次に、本発明に使用するクロム原料は、
Cr値99.0重量%以上で、粒度3μm以下の
ものが好ましく、より好ましくは2μm以下のものであ
る。クロミア原料のCr値が99重量%未満であ
ると含まれるAl、TiO、FeOなどの不純
成分により、スラグとの反応で生成する融液の粘性を下
げ、耐侵食性が低下また焼結の進行によりスポーリング
性の低下などのために好ましくない。また、粒度が3μ
mを超えるとスラグとの高粘性融液を生じる反応性が低
下し、耐浸潤性が低下するため好ましくない。また、使
用されるクロミア原料の粒度が3μm以下と微粉である
ため成形性、焼結性及び耐スポール性を考慮して添加配
合量は、23重量%以下が好ましく、さらにクロミア原
料の配合量が、5重量%未満では耐食性が低下し好まし
くない。したがってクロミア原料の配合量は、5〜20
重量%の範囲が好ましく、さらに好ましくは10〜20
重量%の範囲である。
Next, the chromium raw material used in the present invention is:
The Cr 2 O 3 value is preferably 99.0% by weight or more, and the particle size is preferably 3 μm or less, more preferably 2 μm or less. When the chromia raw material has a Cr 2 O 3 value of less than 99% by weight, impurities such as Al 2 O 3 , TiO 2 , and FeO contained therein lower the viscosity of the melt produced by the reaction with the slag, thereby reducing erosion resistance. And the spalling property is lowered due to the progress of sintering. The particle size is 3μ
If it exceeds m, the reactivity of forming a highly viscous melt with the slag decreases, and the infiltration resistance decreases, which is not preferable. Also, since the particle size of the chromia raw material to be used is a fine powder of 3 μm or less, the amount to be added is preferably 23% by weight or less in consideration of moldability, sinterability and spall resistance. If it is less than 5% by weight, the corrosion resistance is undesirably reduced. Therefore, the mixing amount of the chromia raw material is 5 to 20.
%, More preferably from 10 to 20% by weight.
% By weight.

【0011】 また本発明に使用するシリカ原料は、S
iO値99.0重量%以上が好ましく、例えば、白珪
石である。SiO値が99.0重量%未満であれば不
純成分として含まれるAl、TiO、FeOな
どにより高温での粘性が低下し好ましくない。また、シ
リカ原料の添加配合量は、0.5〜10重量%の範囲
で、好ましくは1〜7重量%の範囲である。配合量が1
0%を超えると焼結し、耐スポール性が低下し好ましく
ない。また該アルミナ−クロミア質耐火物においては、
添加配合されるクロミア原料が3μm以下と粒度が小さ
いため、スラグとの反応で高粘性の融液を生じやすいた
め、場合によってはシリカ配合量を0重量%にしても差
し支えないが、高塩基度スラグの場合、アルカリ分が多
く含有されるので、シリカ原料を1〜5重量%添加配合
されることが好ましい。またシリカ原料としてAl
およびTiO、FeOなどが含まれるムライトや粘
土等の添加配合は好ましくない。
The silica raw material used in the present invention is S
The iO 2 value is preferably 99.0% by weight or more, for example, white silica. If the SiO 2 value is less than 99.0% by weight, the viscosity at high temperatures is undesirably reduced due to Al 2 O 3 , TiO 2 , FeO, etc. contained as impurity components. The amount of the silica material added is in the range of 0.5 to 10% by weight, and preferably in the range of 1 to 7% by weight. The amount is 1
If it exceeds 0%, sintering occurs, and the spall resistance decreases, which is not preferable. In the alumina-chromia refractory,
Since the chromia raw material to be added and mixed has a small particle size of 3 μm or less, a highly viscous melt is likely to be generated by the reaction with the slag. In some cases, the silica content may be set to 0% by weight. In the case of slag, since a large amount of alkali is contained, it is preferable to add and mix 1 to 5% by weight of a silica material. Al 2 O as a silica raw material
3 and addition of mullite or clay containing TiO 2 , FeO, etc. is not preferred.

【0012】 本発明のアルミナ−クロミア質耐火物
は、上述のような配合を有する原料混合物に所定量のバ
インダーを添加、混練した後、常法により成形し、15
00〜1820℃の温度範囲で焼成することによって得
られる。また得られた耐火物の鉱物組成としては、コラ
ンダムとアルミナ−クロミア固溶体のみからなることが
好ましい。その鉱物組成範囲は、X線相対強度比で、コ
ランダムおよびアルミナ−クロミア固溶体がそれぞれ
0.65〜0.85および0.15〜0.31であるこ
とが好ましい。
The alumina-chromia refractory of the present invention is prepared by adding a predetermined amount of a binder to a raw material mixture having the above-described composition, kneading the mixture, and molding the mixture by a conventional method.
It is obtained by baking in a temperature range of 00 to 1820 ° C. The mineral composition of the obtained refractory is preferably composed of only corundum and alumina-chromia solid solution. In the mineral composition range, corundum and alumina-chromia solid solutions are preferably 0.65 to 0.85 and 0.15 to 0.31 in X-ray relative intensity ratio, respectively.

【0013】 ここでバインダーとしては、糖蜜やリグ
ニンスルホン酸塩溶液などが使用することができ、両者
を適宜混合して粘性調整を行い好適なバインダーとする
ことができる。またメチルセルロース等の有機バインダ
ーなども使用することができるが、コストが増加する。
この混合バインダーの添加量は上記配合物の全量に対し
て外掛けで、2〜4重量%の範囲内であることが好まし
い。なお粘土等の無機質バインダーは耐食性を低下させ
るので好ましくない。
Here, as the binder, molasses, lignin sulfonate solution, or the like can be used, and a suitable binder can be obtained by appropriately mixing the two to adjust the viscosity. An organic binder such as methyl cellulose can also be used, but the cost increases.
The added amount of the mixed binder is preferably in the range of 2 to 4% by weight, based on the total amount of the above-mentioned blend. In addition, an inorganic binder such as clay is not preferable because it reduces corrosion resistance.

【0014】 また、成形方法は特に限定されるもので
はないが、例えば1トン/cm以上、好ましくは1.
5トン/cmの圧力で所定の形状に高圧成形して気孔
率を低下させることが好ましい。
The molding method is not particularly limited, but is, for example, 1 ton / cm 2 or more, preferably 1.
It is preferable to reduce the porosity by high-pressure molding into a predetermined shape at a pressure of 5 ton / cm 2 .

【0015】 上述のようにして所定の形状に成形した
後、50〜150℃の温度範囲で、15〜30時間、好
ましくは20〜30時間程度乾燥した後、焼成を行う。
焼成温度は1500〜1820℃で、好ましくは160
0〜1820℃の範囲で、10〜30時間、好ましくは
20〜30時間の範囲で焼成する事が好ましい。焼成温
度が1500℃未満であると機械的強度の不足及び組織
の緻密化が進んでおらず、耐食性が低下し好ましくな
い。
After being formed into a predetermined shape as described above, baking is performed after drying at a temperature range of 50 to 150 ° C. for 15 to 30 hours, preferably about 20 to 30 hours.
The firing temperature is 1500 to 1820 ° C., preferably 160
It is preferable to bake in the range of 0 to 1820 ° C for 10 to 30 hours, preferably in the range of 20 to 30 hours. If the firing temperature is lower than 1500 ° C., the mechanical strength is insufficient and the structure is not densified, and the corrosion resistance is undesirably reduced.

【0017】[0017]

【実施例】 以下に実施例とその比較例を挙げて本発明
のアルミナ−クロミア質耐火物をさらに説明する。 実施例 以下の表1に得られた耐火物の実施例と比較例を示す。
表1に記載する原料のうち、まず5〜1mmの粗粒部を
ミキサーに投入し、次に糖蜜およびリグニンスルホン酸
溶液の混合溶液を添加して混合し、さらに、0.5mm
以下の微粉部を投入して10分間混合した。得られた混
合物を1000Kg/cmの圧力で油圧プレスするこ
とにより成形し、得られた成形体を100℃で24時間
乾燥した後、1820℃で24時間焼成することにより
供試体を得た。得られた供試体の諸特性を表1中に併記
した。
EXAMPLES The alumina-chromia refractory of the present invention will be further described below with reference to examples and comparative examples. Examples Table 1 below shows Examples and Comparative Examples of the refractories obtained.
Of the raw materials described in Table 1, first, a coarse particle portion of 5 to 1 mm was put into a mixer, and then a mixed solution of molasses and a lignin sulfonic acid solution was added and mixed.
The following fine powder parts were charged and mixed for 10 minutes. The obtained mixture was molded by hydraulic pressing at a pressure of 1000 Kg / cm 2 , and the obtained molded body was dried at 100 ° C. for 24 hours and fired at 1820 ° C. for 24 hours to obtain a specimen. Various properties of the obtained specimen are also shown in Table 1.

【0018】 用いた原料粉体の組成は、電融アルミナ
としては、Al値は99.5重量%のものを、酸
化クロムとしては、Cr値99.6重量%もの
を、さらに石英としては、SiO値99.4重量%の
ものをそれぞれ使用した
[0018] The composition of the raw material powder used is such that the fused alumina has an Al 2 O 3 value of 99.5% by weight and the chromium oxide has a Cr 2 O 3 value of 99.6% by weight. Further, quartz having a SiO 2 value of 99.4% by weight was used.

【0019】 表1において、常温曲げ強さはJIS
R2213に基づいて、侵食試験は以下の条件で実施し
た。酸素−プロパンバーナーにより加熱し、試験温度は
1600℃、試験時間は4時間とした。侵食剤は、Ca
O/SiO比が0.54の実炉スラグを用いた。ま
た、CaO/SiO比が及ぼす影響を見るために、消
石灰を加えてCaO/SiO比が0.8のものを調整
し、塩基度を変えたものでも試験を行った。侵食剤は、
炉内温度が所定の温度に達した後、1.2Kg投入、3
0分間保持した後排出し、次の侵食剤を投入した。この
操作を8回繰り返した。なお、評価試験結果は、供試試
料を切断し、切断面の侵食深さおよび浸潤深さを測定し
た。参考として図1、図2に侵食試験装置の概略図を示
す。
In Table 1, the room temperature bending strength is JIS.
The erosion test was performed under the following conditions based on R2213. The sample was heated by an oxygen-propane burner, the test temperature was 1600 ° C., and the test time was 4 hours. The erosion agent is Ca
Actual furnace slag having an O / SiO 2 ratio of 0.54 was used. In addition, in order to see the effect of the CaO / SiO 2 ratio, slaked lime was added to adjust the CaO / SiO 2 ratio to 0.8, and a test was carried out even with a different basicity. Erosives are
After the furnace temperature reaches the predetermined temperature, 1.2kg
After holding for 0 minutes, the mixture was discharged, and the next erosion agent was charged. This operation was repeated eight times. The evaluation test results were obtained by cutting the test sample and measuring the erosion depth and the infiltration depth of the cut surface. 1 and 2 show schematic diagrams of an erosion test device for reference.

【0020】 また、本発明で得られたアルミナ−クロ
ミア質耐火物を実炉の挿入テストを実施した結果、スラ
グによる溶損および加熱によるクラックも認められず、
きわめて耐食性および耐スポール性が優れていることが
判明した。
In addition, the alumina-chromia refractory obtained in the present invention was subjected to an insertion test of a real furnace, and as a result, no erosion due to slag and no crack due to heating were observed.
It turned out to be extremely excellent in corrosion resistance and spall resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸素−プロパンバーナーにより加熱する侵食試
験装置の概略図である。
FIG. 1 is a schematic diagram of an erosion test device heated by an oxygen-propane burner.

【図2】試験片の内張り方法FIG. 2 Method of lining test pieces

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B09B 3/00 303M (72)発明者 内田 一世 岡山県備前市西片上1406番地の18 岡山セ ラミックス技術振興財団内 (72)発明者 溝田 恭夫 岡山県備前市西片上1406番地の18 岡山セ ラミックス技術振興財団内 (72)発明者 山口 明良 愛知県名古屋市昭和区御器所町 名古屋工 業大学 材料工学部内 Fターム(参考) 3K061 NB28 4D004 AA02 AA46 CA29 CB01 DA03 DA10 4D059 AA03 BB04 BB11 4G030 AA22 AA36 AA37 BA25 CA01 HA01 HA04 HA05 4K051 BE03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B09B 3/00 303M (72) Inventor Issei Uchida 1406, Nishikatagami, Bizen City, Okayama Prefecture 18 Okayama Ceramics Technology Promotion Inside the Foundation (72) Inventor Yasuo Mizota 1406-18 Nishikatagami, Nishikatagami, Bizen City, Okayama Prefecture Inside the Okayama Ceramics Technology Promotion Foundation (72) Inventor Akira Yamaguchi Nagoya Institute of Technology, Materials Engineering, Nagoya Institute of Technology, Nagoya-shi, Aichi F Terms (reference) 3K061 NB28 4D004 AA02 AA46 CA29 CB01 DA03 DA10 4D059 AA03 BB04 BB11 4G030 AA22 AA36 AA37 BA25 CA01 HA01 HA04 HA05 4K051 BE03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Al値99.0重量%以上で粒径
0.044〜5mmでのアルミナ原料を70〜95重量
%、Cr値99.0重量%以上で粒径3μm以下
のクロミア微粉原料を5〜23重量%とからなり、鉱物
組成としてコランダムおよびアルミナ−クロミア固溶体
の2相からなり、その構成範囲がX線の相対強度比でそ
れぞれ0.65〜0.85および0.15〜0.31か
らなることを特徴とする灰溶融炉用アルミナ−クロミア
質耐火物。
1. An alumina raw material having an Al 2 O 3 value of 99.0% by weight or more and a particle size of 0.044 to 5 mm is 70 to 95% by weight, and a Cr 2 O 3 value of 99.0% by weight or more and a particle size of 3 μm. The following chromia fine powder raw material is composed of 5 to 23% by weight, the mineral composition is composed of two phases of corundum and alumina-chromia solid solution, and the composition range is 0.65 to 0.85 and the relative intensity ratio of X-ray is 0.65 to 0.85, respectively. An alumina-chromia refractory for an ash melting furnace, comprising 0.15 to 0.31.
【請求項2】 Al値99.0重量%以上で粒径
0.044〜5mmでのアルミナ原料を70〜95重量
%、Cr値99.0重量%以上で粒径3μm以下
のクロミア微粉原料を5〜23重量%とSiO値9
9.0重量%以上で粒径0.015mm以下のシリカ原
料が0.5〜10重量%とからなり、鉱物組成としてコ
ランダムおよびアルミナ−クロミア固溶体の2相からな
り、その構成範囲がX線の相対強度比でそれそれ0.6
5〜0.85および0.15〜0.31からなることを
特徴とする灰溶融炉用アルミナ−クロミア質耐火物。
2. An alumina raw material having an Al 2 O 3 value of 99.0% by weight or more and a particle diameter of 0.044 to 5 mm is 70 to 95% by weight, and a Cr 2 O 3 value of 99.0% by weight or more and a particle diameter of 3 μm. 5 to 23% by weight of the following chromia fine powder raw material and SiO 2 value 9
The silica raw material having a particle size of not less than 9.0% by weight and not more than 0.015 mm is composed of 0.5 to 10% by weight, the mineral composition is composed of two phases of corundum and alumina-chromia solid solution, and the composition range is X-ray. 0.6 in relative intensity ratio
Alumina-chromia refractories for ash melting furnaces, comprising 5 to 0.85 and 0.15 to 0.31.
JP2000169731A 2000-04-28 2000-04-28 Alumina-chromia based refractory for ash melting furnace Pending JP2001316172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000169731A JP2001316172A (en) 2000-04-28 2000-04-28 Alumina-chromia based refractory for ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000169731A JP2001316172A (en) 2000-04-28 2000-04-28 Alumina-chromia based refractory for ash melting furnace

Publications (1)

Publication Number Publication Date
JP2001316172A true JP2001316172A (en) 2001-11-13

Family

ID=18672546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000169731A Pending JP2001316172A (en) 2000-04-28 2000-04-28 Alumina-chromia based refractory for ash melting furnace

Country Status (1)

Country Link
JP (1) JP2001316172A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527276A (en) * 2007-07-11 2011-10-27 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Sintered products based on alumina and chromium oxide
EP2829331A4 (en) * 2013-06-21 2015-05-27 Mitsubishi Materials Corp Method for processing starting materials for recycling
JP2016199449A (en) * 2015-04-14 2016-12-01 Dowaエコシステム株式会社 Monolithic refractory composition and monolithic refractory
JP2017206414A (en) * 2016-05-19 2017-11-24 品川リフラクトリーズ株式会社 Method for producing alumina-chromia fired brick
CN114656267A (en) * 2022-03-18 2022-06-24 洛阳阿尔法新材料有限公司 High-purity homogeneous compact chrome corundum material and preparation method thereof
CN115259841A (en) * 2022-07-18 2022-11-01 辽宁科技大学 Refractory material, preparation method, lining brick and hazardous waste disposal equipment
CN115466106A (en) * 2022-08-23 2022-12-13 郑州荣盛窑炉耐火材料有限公司 Aluminum-chromium unshaped refractory material for plasma incinerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527276A (en) * 2007-07-11 2011-10-27 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Sintered products based on alumina and chromium oxide
EP2829331A4 (en) * 2013-06-21 2015-05-27 Mitsubishi Materials Corp Method for processing starting materials for recycling
US9447479B2 (en) 2013-06-21 2016-09-20 Mitsubishi Materials Corporation Method of treating recyclable raw materials
JP2016199449A (en) * 2015-04-14 2016-12-01 Dowaエコシステム株式会社 Monolithic refractory composition and monolithic refractory
JP2017206414A (en) * 2016-05-19 2017-11-24 品川リフラクトリーズ株式会社 Method for producing alumina-chromia fired brick
CN114656267A (en) * 2022-03-18 2022-06-24 洛阳阿尔法新材料有限公司 High-purity homogeneous compact chrome corundum material and preparation method thereof
CN115259841A (en) * 2022-07-18 2022-11-01 辽宁科技大学 Refractory material, preparation method, lining brick and hazardous waste disposal equipment
CN115466106A (en) * 2022-08-23 2022-12-13 郑州荣盛窑炉耐火材料有限公司 Aluminum-chromium unshaped refractory material for plasma incinerator

Similar Documents

Publication Publication Date Title
JP6259643B2 (en) High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them
WO2013057756A1 (en) Burned magnesia brick
JP2001316172A (en) Alumina-chromia based refractory for ash melting furnace
JP2002193681A (en) Castable refractory and waste melting furnace utilizing it
JP4456563B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this
JP2599896B2 (en) Alumina-chromium-zirconia refractory and method for producing the same
JP2002241173A (en) Shaped refractory
JP2020001991A (en) Chromia-enriched brick
JP2004203702A (en) Monolithic refractory containing serpentine or talc, applied body of the same, and furnace lined with the same
JP4355486B2 (en) Unshaped refractory for waste melting furnace and waste melting furnace lined with it
JP2004352600A (en) Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JP3327536B2 (en) Irregular refractories for waste melting furnace pouring and waste melting furnace using the same
JP4474658B2 (en) Alumina-magnesia refractory brick
JP2000281455A (en) Alumina-zirconia-based amorphous refractory
JP2005314144A (en) Chromium-free monolithic refractory for waste material melting furnace and waste material melting furnace lined with the same
JP3617012B2 (en) Waste melting furnace
JP2008081361A (en) MgO-NiO COMPOSITE CLINKER AND REFRACTORY MATERIAL OBTAINED USING THE SAME
JP4445256B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this
JP3875054B2 (en) Refractory composition for ash melting furnace
JP2001182921A (en) A castable refractory for constructing waste fusing furnace with casting process and waste fusing furnace using the same
JP2004299929A (en) Chromium-free monolithic refractory for waste melting furnace and waste melting furnace lined with the same
JP2004149340A (en) Monolithic refractory material for waste melting furnace, and waste melting furnace lined with the material
JP2005213120A (en) Monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JP2004352601A (en) Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JP2004307293A (en) Monolithic refractory composition