JP2004352600A - Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining - Google Patents
Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining Download PDFInfo
- Publication number
- JP2004352600A JP2004352600A JP2003155612A JP2003155612A JP2004352600A JP 2004352600 A JP2004352600 A JP 2004352600A JP 2003155612 A JP2003155612 A JP 2003155612A JP 2003155612 A JP2003155612 A JP 2003155612A JP 2004352600 A JP2004352600 A JP 2004352600A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- refractory
- phosphate
- melting furnace
- chromium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、ガス化溶融炉、灰溶融炉等の廃棄物溶融炉の内張りに使用するクロムフリー不定形耐火物とこれを内張りした廃棄物溶融炉に関する。
【0002】
【従来の技術】
廃棄物の減容化とダイオキシン発生抑制に優れた廃棄物処理炉として、近年、廃棄物を直接溶融するガス化溶融炉あるいは廃棄物の焼却灰を溶融する灰溶融炉が出現している。
【0003】
これらの廃棄物溶融炉(以下、溶融炉と称する。)内に生成するスラグは、廃棄物成分に由来するナトリウム等のアルカリ(Na2O+K2O: 1〜15質量%)、塩素(Cl: 0.2〜15質量%)等の酸を含み、しかもCaO/SiO2質量比が0.3〜1.5の低塩基度である。
【0004】
溶融炉スラグは、低塩基度であることに加え炉が1300℃以上の超高温操業のために溶融時の粘性が極めて低い。その結果、耐火物組織の脆弱化原因となるアルカリ、酸等のスラグ成分の耐火物組織に対する浸透が促進され、内張りの損耗が著しい。また、溶融炉に投入される廃棄物あるいは焼却灰は炉内において低温物であり、その急冷作用によって耐火物がスポーリング損傷する。
【0005】
溶融炉に使用される耐火物は、定形耐火物と不定形耐火物とに大別される。定形耐火物の施工はレンガ積み作業を伴い、重労働でしかも高度な技術を要することから、近年は不定形耐火物による内張りが汎用されている。
【0006】
溶融炉の不定形耐火物として従来使用されている材質は、アルミナ−クロミア質(例えば特許文献1参照)に代表されるクロミア含有品である。この材質はアルミナの耐火性・容積安定性と、クロミアの耐スラグ性とが相まって優れた耐食性を示す。しかし、耐火物成分の酸化クロムが人体に有害な六価クロムに変化し、炉から排出されるスラグおよび使用後の耐火物が環境汚染をきたす重大な問題がある。
【0007】
そこで、溶融炉用不定形耐火物として、実質的にクロミア原料を含まないクロムフリー材質が提案されている。例えば、アルミナ−ジルコニア質(例えば特許文献2参照)、アルミナ−マグネシア質(例えば特許文献3参照)、アルミナ−炭化珪素質(例えば特許文献4参照)である。
【0008】
【特許文献1】
特開平10−324562号公報(第1−3頁)
【0009】
【特許文献2】
特開2000−281455号公報(第1−6頁)
【0010】
【特許文献3】
特開2001−153321号公報(第1−7頁)
【0011】
【特許文献4】
特開2000−203952号公報(第1−8頁)
【0012】
【発明が解決しようとする課題】
しかし、溶融炉としての使用において上記従来のクロムフリー材質は、いずれも十分な耐用性が得られない。溶融炉スラグが低塩基度のため、アルミナ−ジルコニア質あるいはアルミナ−マグネシア質は、ジルコニア成分・マグネシア成分がスラグ中に溶出し、耐食性に劣る。アルミナ−炭化珪素質は、溶融炉の操業が酸化雰囲気であることで炭化珪素成分が酸化分解し、耐食性の低下が著しい。
【0013】
本発明は溶融炉の内張りとしてその耐用性が、アルミナ−クロミヤ質不定形耐火物相当あるいはそれ以上のクロムフリー質不定形耐火物を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の廃棄物溶融炉用クロムフリー不定形耐火物は、アルミナ質原料を主材とし且つリン酸および/またはリン酸塩を含む耐火性原料組成に結合剤および分散剤を添加してなる不定形耐火物であって、流し込み施工後、乾燥した成形体の測定において、Al2O3が90質量%以上、リン酸成分をP2O5換算で0.1〜5質量%、その他成分5質量%未満の化学成分を有することを特徴とする。
【0015】
従来のクロムフリー材質は、アルミナに相当量のジルコニア、マグネシアあるいは炭化珪素を組み合わせている。これに対し本発明の不定形耐火物は、アルミナを主材とした材質に微量のリン酸成分を含むことで、クロムフリー材質にもかかわらず、溶融炉の内張りにおいてクロミヤ含有品と同等あるいはそれ以上の耐用性を発揮する。その理由は以下のとおりと考えられる。
【0016】
また、リン酸、リン酸塩は酸性の酸化物原料であり、耐火物使用中の高温下でアルミナ質原料と反応して耐火物のマトリックスを緻密化する効果をもつ。また、低塩基度スラグは換言すれば酸性スラグであり、酸性の酸化物原料の使用は溶融炉の低塩基度スラグに対して耐食性に優れる。
【0017】
溶融炉の内張り損耗の大きな原因として、スラグの粘性が低いことにある。リン酸、リン酸アルミニウムのリン酸成分はガラスの失透化(結晶化)の作用を持つことが知れている。溶融化したスラグはガラス状態にあるが、本発明の耐火物はリン酸成分が耐火物稼動面と接するスラグを失透化の作用で粘性を高め、耐火物組織へのスラグ浸透を防止すると共に、スラグが耐火物稼動面を被覆保護して耐食性を向上させる。
【0018】
本発明では、さらにイットリアおよび/またはYAGのイットリア成分を含ませた場合、前記したリン酸および/またはリン酸アルミニウムのもつ耐食性を損なうことなく、耐スポーリング性が向上する。その理由は、イットリア成分はリン酸成分に比べて高融点であり、リン酸成分使用によるマトリックスの過焼結を抑制して耐スポーリング性を向上させる。しかも、自身が酸性の酸化物であることで低塩基度スラグに対する耐食性を向上させる
酸性の酸化物原料であっても、例えばSiO2等では本発明の効果が得られない。SiO2は耐火物中の他の成分と反応してSiO2系低融点物質を生成し易く、過焼結と耐食性の低下を招く。
【0019】
【発明の実施の形態】
本発明において、耐火性原料組成の主材となるアルミナ質原料は電融品、焼結品のいずれでもよい。これらを粗粒、中粒、微粒に粒度を適宜調整して使用する。微粉部は、超微粉として入手し易い仮焼アルミナを使用してもよい。
【0020】
耐火物に占めるアルミナ質原料の使用量の下限値は、リン酸成分を含む場合と、リン酸成分と共にイットリア成分を含む場合とで異なる。リン酸成分を含む材質では、耐火物を流し込み施工後、乾燥した成形体の測定においてAl2O3が90質量%以上、さらに好ましくは95〜99.7質量%の化学分析値になるようにアルミナ質原料の使用量を調整する。これらは、例えばアルミナ質原料を90質量%以上あるいは95質量%以上の範囲で調整することができる。
【0021】
一方、リン酸成分と共にイットリア成分を含む材質では、乾燥した成形体の測定においてAl2O3が80質量%以上、さらに好ましくは90〜98.7質量%の化学分析値になるようにアルミナ質原料の使用量を調整する。これらは、例えばアルミナ質原料を80質量%以上あるいは90質量%以上の範囲で調整することができる。化学分析値においてAl2O3が少ないと、Al2O3成分がもつ耐食性、容積安定性の効果が不十分となる。
【0022】
なお、結合剤にアルミナセメントを使用した場合、Al2O3成分はアルミナセメントからも供給されるが、本発明のAl2O3の割合は、このアルミナセメント等の成分も含めた限定である。
【0023】
リン酸は粉体と溶液とがあるが、粉体は大気中で吸湿による自然発火が懸念され作業安全上、溶液での使用が好ましい。リン酸塩は粉体、溶液のいずれもリン酸に見られるような自然発火もなく、取り扱い上の問題はない。粉体は例えば粒子径250μm以下あるいはそれらの顆粒として使用する。
【0024】
リン酸塩の具体例はリン酸アルミニウム、リン酸亜鉛、リン酸マグネシウム、リン酸カルシウムであり、これらから選ばれる1種または2種以上を使用することができる。中でもリン酸アルミニウムが好ましい。リン酸アルミニウムのアルミニウム成分は耐火物使用中の高温下において酸化し、容積安定性および耐食性に優れたAl2O3成分となるためである。
【0025】
リン酸および/またはリン酸塩の使用量は、耐火物を流し込み施工後、乾燥した成形体の測定において、P2O5換算で0.1〜5質量%、さらに好ましくは0.5〜3質量%になるように調整する。P2O5の割合が少ないと本発明における耐食性の効果が得られず、多過ぎる場合もP2O5が低融点物質であることで耐食性が低下する。
【0026】
イットリア質原料の具体例はイットリア(酸化イットリウム:Y2O3)、YAG(イットリウム・アルミニウム・ガーネット:Y3Al5O12)である。イットリアのY2O3純度は例えば70質量%程度のものも知られているが、本発明での使用は品質の安定した高純度品の使用が好ましい。イットリア質原料は、耐火物を流し込み施工後、乾燥した成形体の測定において、Y2O3が15質量%以下、さらに好ましくは0.5〜10質量%の化学分析値なるように調整し、使用する。Y2O3成分が少ないと、イットリア成分使用による耐食性、耐スポーリング性の効果が得られず、多いとY2O3とAl2O3との反応生成物が過多となって耐食性が低下する。
【0027】
イットリアあるいはYAGの粒子径は、リン酸成分との反応性を高めるために例えば0.1mmmm以下、平均1〜45μmが好ましい。
【0028】
結合剤は成形体の強度付与の効果が大きいアルミナセメントが好ましい。その使用量は、耐火性原料と結合剤との合計量に占める割合で1〜10質量%が好ましい。
【0029】
分散剤は解こう剤とも称され、不定形耐火物施工時の流動性を付与する効果をもつ。分散剤の材質は従来から種々のものが提案されている。本発明における分散剤の種類は限定されるものではないが、例えばトリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、カルボキシル基含有ポリエーテル、ホウ酸ソーダ、クエン酸ソーダ、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ等である。
【0030】
分散剤の添加量は耐火性原料と結合剤の合計量に対し外掛けで0.01〜1質量%が適切である。また、カルボキシル基含有ポリエーテル系分散剤では、十分な分散効果を得るために、さらに消石灰、石灰、炭酸カルシウム等のCa化合物を1質量%以下の範囲で組み合わせることで、不定形耐火物組織のpH値を10以上にすることが好ましい。
【0031】
以上のアルミナ質原料、リン酸、リン酸塩、イットリア、YAG,結合剤、分散剤以外にも本発明の効果を損なわない範囲において、他の耐火性原料(アルミナ質原料以外)、硬化調節剤、乳酸アルミニウム、有機繊維、乾燥促進剤等を添加してもよい。他の耐火性原料としては、マグネシア、スピネル、珪石等のシリカ、酸化チタン、金属シリコン、ニッケル、アルミニウム等の金属粉、揮発シリカ、ガラス等が挙げられる。
【0032】
本発明の効果を損なわないために、流し込み施工後、乾燥した成形体の測定において、化学分析値がAl2O3、P2O5以外のその他成分は5質量%未満になるように調整することが必要である。このためにも、前記したアルミナ以外の耐火性原料等の使用量は自ずと限定される。
【0033】
施工には以上の耐火物組成に水分を外掛け3〜5質量%程度添加して混練し、型枠を用いて流し込み施工する。流し込みの際には振動を付与して充填を図る。施工後は養生・乾燥させる。この施工は炉に直接流し込み施工する他、別の場所で型枠に流し込み施工して得たプレキャスト品を炉に内張りしてもよい。
【0034】
【実施例】
以下に本発明実施例およびその比較例を説明する。同時に各例の試験結果を示す。表1は各例で使用した耐火性原料の化学成分、表2は本発明実施例、表3はその比較例である。
【0035】
【表1】
【表2】
【表3】
各例は、表2、表3に示す不定形耐火物の配合組成物をミキサーにて混練した後、金属製の型枠に流し込んだ。流し込みの際には型枠に振動を付与し、施工体の充填を促進した。ついで24時間養生し、脱型後、さらに110℃×24時間乾燥した。
【0036】
成形体の化学分析値の測定は、前記の条件で230mm×114mm×65mmの並形れんがのサイズに施工して得た成形体について、蛍光X線分析法(JIS R2216)にて測定した。成形体の見掛気孔率は、前記条件で並形れんがのサイズに施工して得た成形体を1/4のサイズに切断し、JIS R2205に準じた真空法にて測定した。
【0037】
耐食性は、前記条件で並形れんがのサイズに施工して得た成形体を試料とし、回転侵食試験で行った。侵食剤はガス化溶融炉スラグ〔化学成分値がSiO2:42.8質量%、CaO:31.7質量%、Al2O3:12.4質量%、Fe2O3:4.8質量%、Na2O:3.7質量%、K2O:1.1質量%、Cl:0.9質量%、(CaO/SiO2:0.74)〕を用いて試験を行った。1650℃×20時間侵食させた後、侵食寸法を測定した。
【0038】
耐スポーリング性は、前記並形れんがサイズの成形体を試料とした。長さ方向に対する片面を電気炉にて1400℃×15分間加熱した後、強制空冷し、この加熱−冷却を10回繰り返した後、試料の亀裂発生状況から次の4段階で評価した。◎…亀裂は殆どなし。○…微細亀裂の発生。△…亀裂が大きい。×…亀裂がきわめて大きい、または剥離。
【0039】
実機試験として、一日あたりのごみ処理量約100t、操業温度約1400℃のガス化溶融炉に内張りした。12ヶ月間の使用後において内張り耐火物の損耗速度(mm/月)を測定した。
【0040】
試験結果が示すとおり、本発明の実施例はいずれも溶融炉スラグに対する耐食性において、比較例8の酸化クロム含有品に匹敵あるいはそれ以上の耐用性が得られた。また、リン酸成分に加えてイットリア成分を含む実施例7〜10は、耐食性に加えて耐スポーリン性に優れている。
【0041】
これに対し、アルミナ−炭化珪素質の比較例1および比較例2、アルミナ−ジルコニア質の比較例3、アルミナ−マグネシア質の比較例4はいずれも溶融炉スラグに対する耐食性が大幅に劣る。アルミナ質であるがリン酸成分、イットリア成分共に含まない比較例5、リン酸成分あるいはイットリア成分が本発明の範囲より多い比較例6、比較例7についても同様に溶融炉スラグに対する耐食性に劣る。
【0042】
比較例8は酸化クロムを多量に含むことで耐食性に優れるものの、六価クロムの生成が懸念され、環境上の問題からクロムフリーとしての本発明の効果が得られない。
【0043】
【発明の効果】
廃棄物処理炉は焼却炉と違って高温操業であり、しかもその耐火物の損耗機構は廃棄物成分に由来する廃棄物処理炉特有のスラグ成分が原因したものである。
本発明の不定形耐火物は以上の実施例の試験結果が示すように、廃棄物処理炉用の不定形耐火物として優れた耐用性を発揮する。しかも、クロムフリー材質であることで、従来のクロミア含有材質のような環境汚染の問題もない。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a chromium-free amorphous refractory used for lining a waste melting furnace such as a gasification melting furnace and an ash melting furnace, and a waste melting furnace lined with the same.
[0002]
[Prior art]
In recent years, gasification melting furnaces that directly melt waste and ash melting furnaces that melt incineration ash of waste have emerged as waste treatment furnaces excellent in reducing the volume of waste and suppressing dioxin generation.
[0003]
Slag generated in these waste melting furnaces (hereinafter, referred to as melting furnaces) is composed of alkalis such as sodium (Na 2 O + K 2 O: 1 to 15% by mass) and chlorine (Cl: 0.2 to 15% by mass) and a low basicity with a CaO / SiO 2 mass ratio of 0.3 to 1.5.
[0004]
Melting furnace slag has a very low viscosity when melted due to the low basicity and the extremely high temperature operation of the furnace at 1300 ° C. or higher. As a result, penetration of slag components, such as alkali and acid, which cause the refractory structure to become brittle, is promoted into the refractory structure, and the lining is significantly worn. Further, the waste or incinerated ash charged into the melting furnace is a low-temperature substance in the furnace, and the quenching action causes spalling damage to the refractory.
[0005]
Refractories used in melting furnaces are broadly classified into fixed refractories and irregular refractories. The construction of fixed refractories involves brickwork, requires heavy labor and requires a high level of technology. In recent years, lining with irregular shaped refractories has been widely used.
[0006]
A material conventionally used as an amorphous refractory for a melting furnace is a chromia-containing product represented by alumina-chromia (see, for example, Patent Document 1). This material exhibits excellent corrosion resistance in combination with the fire resistance and volume stability of alumina and the slag resistance of chromia. However, there is a serious problem that chromium oxide as a refractory component is changed to hexavalent chromium, which is harmful to the human body, and slag discharged from the furnace and refractory after use cause environmental pollution.
[0007]
Therefore, a chromium-free material that does not substantially contain a chromia raw material has been proposed as an amorphous refractory for a melting furnace. For example, they are alumina-zirconia (for example, see Patent Document 2), alumina-magnesia (for example, see Patent Document 3), and alumina-silicon carbide (for example, see Patent Document 4).
[0008]
[Patent Document 1]
JP-A-10-324562 (pages 1-3)
[0009]
[Patent Document 2]
JP-A-2000-281455 (pages 1 to 6)
[0010]
[Patent Document 3]
JP 2001-153321 A (pages 1-7)
[0011]
[Patent Document 4]
JP-A-2000-203952 (pages 1-8)
[0012]
[Problems to be solved by the invention]
However, none of the above-mentioned conventional chromium-free materials have sufficient durability when used as a melting furnace. Since the melting furnace slag has a low basicity, alumina-zirconia or alumina-magnesia has zirconia and magnesia components eluted into the slag, and is inferior in corrosion resistance. In the case of alumina-silicon carbide, when the operation of the melting furnace is in an oxidizing atmosphere, the silicon carbide component is oxidized and decomposed, and the corrosion resistance is significantly reduced.
[0013]
An object of the present invention is to provide a chromium-free amorphous refractory having a durability equivalent to or higher than that of an alumina-chromia amorphous refractory as a lining of a melting furnace.
[0014]
[Means for Solving the Problems]
The chromium-free amorphous refractory for a waste melting furnace according to the present invention is obtained by adding a binder and a dispersant to a refractory raw material composition containing an alumina raw material as a main material and containing phosphoric acid and / or phosphate. It is a fixed refractory, and after the pouring work, in the measurement of the dried molded body, Al 2 O 3 is 90% by mass or more, the phosphoric acid component is 0.1 to 5% by mass in terms of P 2 O 5 , and the other component 5 It has a chemical component of less than mass%.
[0015]
Conventional chromium-free materials combine alumina with a considerable amount of zirconia, magnesia or silicon carbide. On the other hand, the amorphous refractory of the present invention contains a trace amount of a phosphoric acid component in a material mainly composed of alumina, so that it is equivalent to or equal to a chromia-containing product in a lining of a melting furnace despite the chromium-free material. Exhibits the above durability. The reason is considered as follows.
[0016]
Further, phosphoric acid and phosphate are acidic oxide raw materials, and have an effect of reacting with the alumina raw material at a high temperature during use of the refractory to densify the refractory matrix. In addition, the low basicity slag is, in other words, an acidic slag, and the use of an acidic oxide raw material is excellent in corrosion resistance to a low basicity slag of a melting furnace.
[0017]
A major cause of the lining wear of the melting furnace is the low viscosity of the slag. It is known that phosphoric acid and a phosphoric acid component of aluminum phosphate have an effect of devitrification (crystallization) of glass. Although the molten slag is in a glassy state, the refractory of the present invention increases the viscosity of the slag in contact with the refractory operating surface due to the phosphoric acid component, thereby preventing slag from penetrating into the refractory structure. In addition, the slag covers and protects the refractory working surface to improve corrosion resistance.
[0018]
In the present invention, when yttria and / or the yttria component of YAG are further contained, the spalling resistance is improved without impairing the corrosion resistance of the phosphoric acid and / or aluminum phosphate. The reason is that the yttria component has a higher melting point than the phosphoric acid component, and suppresses oversintering of the matrix due to the use of the phosphoric acid component and improves spalling resistance. Moreover, even if it is an acidic oxide raw material that improves the corrosion resistance to low basicity slag by itself being an acidic oxide, the effect of the present invention cannot be obtained with, for example, SiO 2 or the like. SiO 2 easily reacts with other components in the refractory to form a SiO 2 -based low-melting substance, causing oversintering and a reduction in corrosion resistance.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the alumina raw material which is the main material of the refractory raw material composition may be either an electrofused product or a sintered product. These are used by appropriately adjusting the particle size to coarse particles, medium particles, and fine particles. For the fine powder portion, calcined alumina that is easily available as ultrafine powder may be used.
[0020]
The lower limit of the amount of the alumina raw material used in the refractory differs between the case where the phosphoric acid component is contained and the case where the yttria component is contained together with the phosphoric acid component. In the material containing the phosphoric acid component, after pouring the refractory, the dried molded body is measured so that the Al 2 O 3 has a chemical analysis value of 90% by mass or more, more preferably 95 to 99.7% by mass. Adjust the amount of alumina raw material used. These can be adjusted, for example, in a range of 90% by mass or more or 95% by mass or more of the alumina raw material.
[0021]
On the other hand, in the case of the material containing the yttria component together with the phosphoric acid component, it is preferable to use an alumina so that Al 2 O 3 has a chemical analysis value of 80% by mass or more, more preferably 90 to 98.7% by mass in the measurement of the dried molded product. Adjust the amount of raw materials used. These can be adjusted, for example, in the range of 80% by mass or more or 90% by mass or more of the alumina raw material. When the amount of Al 2 O 3 is small in the chemical analysis value, the effects of the corrosion resistance and volume stability of the Al 2 O 3 component become insufficient.
[0022]
When alumina cement is used as the binder, the Al 2 O 3 component is also supplied from the alumina cement, but the ratio of Al 2 O 3 in the present invention is limited to include the components such as the alumina cement. .
[0023]
Phosphoric acid has a powder and a solution, and the powder is preferably used in a solution from the viewpoint of work safety because of spontaneous ignition due to moisture absorption in the atmosphere. Phosphate does not cause spontaneous ignition as seen in phosphoric acid in both powder and solution, and there is no problem in handling. The powder is used, for example, as a particle diameter of 250 μm or less or as granules thereof.
[0024]
Specific examples of the phosphate are aluminum phosphate, zinc phosphate, magnesium phosphate, and calcium phosphate, and one or more selected from these can be used. Among them, aluminum phosphate is preferred. This is because the aluminum component of aluminum phosphate is oxidized at a high temperature during use of the refractory, and becomes an Al 2 O 3 component having excellent volume stability and corrosion resistance.
[0025]
The amount of phosphoric acid and / or phosphate used is preferably from 0.1 to 5% by mass, more preferably from 0.5 to 3% in terms of P 2 O 5 , in the measurement of a dried molded article after pouring and refractory construction. Adjust so as to be mass%. If the proportion of P 2 O 5 is small, the effect of the corrosion resistance in the present invention cannot be obtained, and if it is too large, the corrosion resistance is reduced because P 2 O 5 is a low-melting substance.
[0026]
Specific examples of the yttria raw material are yttria (yttrium oxide: Y 2 O 3 ) and YAG (yttrium aluminum garnet: Y 3 Al 5 O 12 ). It is known that Yttria has a Y 2 O 3 purity of, for example, about 70% by mass, but it is preferable to use a high-purity product having stable quality for use in the present invention. The yttria raw material is adjusted such that Y 2 O 3 has a chemical analysis value of 15% by mass or less, more preferably 0.5 to 10% by mass in the measurement of the dried molded body after the casting of the refractory material, use. If the Y 2 O 3 component is small, the effect of corrosion resistance and spalling resistance due to the use of the yttria component cannot be obtained, and if the Y 2 O 3 component is large, the reaction product of Y 2 O 3 and Al 2 O 3 becomes excessive and the corrosion resistance is reduced. I do.
[0027]
The particle diameter of yttria or YAG is preferably, for example, 0.1 mmmm or less, and an average of 1 to 45 μm in order to increase the reactivity with the phosphoric acid component.
[0028]
The binder is preferably alumina cement which has a large effect of imparting strength to the molded body. The use amount thereof is preferably 1 to 10% by mass relative to the total amount of the refractory raw material and the binder.
[0029]
The dispersant is also called a deflocculant, and has an effect of imparting fluidity during construction of an amorphous refractory. Various materials have been conventionally proposed for the dispersant. Although the kind of the dispersant in the present invention is not limited, for example, sodium tripolyphosphate, sodium hexametaphosphate, sodium polypolyphosphate, sodium acid hexametaphosphate, polyether containing carboxyl group, sodium borate, sodium citrate, tartaric acid Soda, sodium polyacrylate, sodium sulfonate and the like.
[0030]
The addition amount of the dispersant is appropriately 0.01 to 1% by mass on the basis of the total amount of the refractory raw material and the binder. In addition, in order to obtain a sufficient dispersing effect, a carboxyl group-containing polyether dispersant is further combined with a Ca compound such as slaked lime, lime, calcium carbonate or the like in an amount of 1% by mass or less to form an amorphous refractory structure. Preferably, the pH value is at least 10.
[0031]
In addition to the above alumina raw materials, phosphoric acid, phosphate, yttria, YAG, binder, and dispersant, other refractory raw materials (other than alumina raw materials) and curing regulators as long as the effects of the present invention are not impaired. , Aluminum lactate, organic fibers, drying accelerators and the like. Other refractory raw materials include silica such as magnesia, spinel, and silica, metal powder such as titanium oxide, metallic silicon, nickel, and aluminum, volatile silica, and glass.
[0032]
In order not to impair the effects of the present invention, in the measurement of the dried molded body after the casting, the chemical analysis value is adjusted so that the other components other than Al 2 O 3 and P 2 O 5 are less than 5% by mass. It is necessary. For this reason, the use amount of the refractory raw materials other than the above-mentioned alumina is naturally limited.
[0033]
In the construction, about 3 to 5% by mass of water is externally added to the refractory composition and kneaded, and the mixture is poured using a mold. At the time of pouring, vibration is applied to achieve filling. After construction, cure and dry. In this work, besides directly pouring into the furnace, a precast product obtained by pouring into the formwork at another place may be lined with the furnace.
[0034]
【Example】
Hereinafter, Examples of the present invention and Comparative Examples thereof will be described. At the same time, the test results of each example are shown. Table 1 shows the chemical components of the refractory raw materials used in each example, Table 2 shows the examples of the present invention, and Table 3 shows the comparative examples.
[0035]
[Table 1]
[Table 2]
[Table 3]
In each example, the compounded composition of the amorphous refractories shown in Tables 2 and 3 was kneaded with a mixer and then poured into a metal mold. At the time of pouring, vibration was applied to the formwork to promote filling of the construction body. Then, it was cured for 24 hours, and after demolding, further dried at 110 ° C. for 24 hours.
[0036]
The measurement of the chemical analysis value of the molded article was performed by X-ray fluorescence analysis (JIS R2216) on the molded article obtained by applying the same size of 230 mm × 114 mm × 65 mm brick under the above conditions. The apparent porosity of the molded article was measured by a vacuum method according to JIS R2205, by cutting a molded article obtained by applying a regular brick size under the above conditions to a quarter size.
[0037]
The corrosion resistance was measured by a rotary erosion test using a molded body obtained by constructing a regular brick under the above conditions as a sample. The erosion agent was a gasification melting furnace slag [chemical component values: SiO 2 : 42.8 mass%, CaO: 31.7 mass%, Al 2 O 3 : 12.4 mass%, Fe 2 O 3: 4.8 mass% , Na 2 O: 3.7% by mass, K 2 O: 1.1% by mass, Cl: 0.9% by mass, (CaO / SiO 2 : 0.74)]. After erosion at 1650 ° C. × 20 hours, the erosion dimensions were measured.
[0038]
The spalling resistance was determined by using a sample of the molded article having the above-mentioned average brick size. After heating one side in the length direction in an electric furnace at 1400 ° C. for 15 minutes, the air-cooling was performed, and this heating-cooling was repeated 10 times. …: Almost no cracks. …: Occurrence of fine cracks. Δ: The crack is large. X: Extremely large crack or peeling.
[0039]
As an actual machine test, it was lined with a gasification and melting furnace having a daily waste treatment amount of about 100 t and an operating temperature of about 1400 ° C. After 12 months of use, the wear rate (mm / month) of the lining refractory was measured.
[0040]
As shown by the test results, all of the examples of the present invention exhibited a corrosion resistance to the slag of the melting furnace which was comparable to or higher than that of the chromium oxide-containing product of Comparative Example 8. Further, Examples 7 to 10 containing the yttria component in addition to the phosphoric acid component are excellent in sporin resistance in addition to corrosion resistance.
[0041]
On the other hand, Comparative Examples 1 and 2 of the alumina-silicon carbide type, Comparative Example 3 of the alumina-zirconia type, and Comparative Example 4 of the alumina-magnesia type all have significantly poor corrosion resistance to the melting furnace slag. Comparative Example 5, which is alumina but does not contain both the phosphoric acid component and the yttria component, Comparative Example 6 and Comparative Example 7, which have a phosphoric acid component or an yttria component larger than the range of the present invention, are similarly inferior in corrosion resistance to the melting furnace slag.
[0042]
Comparative Example 8 is excellent in corrosion resistance because it contains a large amount of chromium oxide, but there is concern about the formation of hexavalent chromium, and the effect of the present invention as chromium-free cannot be obtained due to environmental problems.
[0043]
【The invention's effect】
The waste treatment furnace is operated at a high temperature unlike the incinerator, and the refractory wear mechanism is caused by the slag component peculiar to the waste treatment furnace derived from the waste component.
As shown by the test results of the above examples, the amorphous refractory of the present invention exhibits excellent durability as an amorphous refractory for a waste treatment furnace. In addition, since the chromium-free material is used, there is no problem of environmental pollution unlike the conventional chromia-containing material.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003155612A JP2004352600A (en) | 2003-05-30 | 2003-05-30 | Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003155612A JP2004352600A (en) | 2003-05-30 | 2003-05-30 | Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004352600A true JP2004352600A (en) | 2004-12-16 |
Family
ID=34049947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003155612A Pending JP2004352600A (en) | 2003-05-30 | 2003-05-30 | Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004352600A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150274568A1 (en) * | 2011-03-11 | 2015-10-01 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory object, glass overflow forming block, and process for glass object manufacture |
US9796630B2 (en) | 2011-03-30 | 2017-10-24 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory object, glass overflow forming block, and process of forming and using the refractory object |
US9902653B2 (en) | 2012-01-11 | 2018-02-27 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory object and process of forming a glass sheet using the refractory object |
CN108467218A (en) * | 2018-04-05 | 2018-08-31 | 南京市雨花台区绿宝工业设计服务中心 | A kind of preparation method of fire proofing material |
CN109265182A (en) * | 2018-08-23 | 2019-01-25 | 安徽瑞泰新材料科技有限公司 | A kind of anti-corrosion castable |
WO2019031297A1 (en) * | 2017-08-07 | 2019-02-14 | 黒崎播磨株式会社 | Patching refractory |
US11814317B2 (en) | 2015-02-24 | 2023-11-14 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory article and method of making |
-
2003
- 2003-05-30 JP JP2003155612A patent/JP2004352600A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150274568A1 (en) * | 2011-03-11 | 2015-10-01 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory object, glass overflow forming block, and process for glass object manufacture |
US9714185B2 (en) * | 2011-03-11 | 2017-07-25 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory object, glass overflow forming block, and process for glass object manufacture |
US9796630B2 (en) | 2011-03-30 | 2017-10-24 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory object, glass overflow forming block, and process of forming and using the refractory object |
US9902653B2 (en) | 2012-01-11 | 2018-02-27 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory object and process of forming a glass sheet using the refractory object |
US10590041B2 (en) | 2012-01-11 | 2020-03-17 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory object and process of forming a glass sheet using the refractory object |
US11814317B2 (en) | 2015-02-24 | 2023-11-14 | Saint-Gobain Ceramics & Plastics, Inc. | Refractory article and method of making |
WO2019031297A1 (en) * | 2017-08-07 | 2019-02-14 | 黒崎播磨株式会社 | Patching refractory |
JP2019031414A (en) * | 2017-08-07 | 2019-02-28 | 黒崎播磨株式会社 | Patching refractory |
CN108467218A (en) * | 2018-04-05 | 2018-08-31 | 南京市雨花台区绿宝工业设计服务中心 | A kind of preparation method of fire proofing material |
CN108467218B (en) * | 2018-04-05 | 2020-12-11 | 湖南大川新型建材有限公司 | Preparation method of fireproof material |
CN109265182A (en) * | 2018-08-23 | 2019-01-25 | 安徽瑞泰新材料科技有限公司 | A kind of anti-corrosion castable |
CN109265182B (en) * | 2018-08-23 | 2021-06-08 | 安徽瑞泰新材料科技有限公司 | Anticorrosive castable |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4456563B2 (en) | Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this | |
JP4796170B2 (en) | Chromium castable refractories and precast blocks using the same | |
JP2002193681A (en) | Castable refractory and waste melting furnace utilizing it | |
JP2004352600A (en) | Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining | |
JP6527443B2 (en) | Method for producing zirconia-based precast refractory for waste melting furnace | |
JP2020050572A (en) | Castable refractory | |
JP2004203702A (en) | Monolithic refractory containing serpentine or talc, applied body of the same, and furnace lined with the same | |
JP2004352601A (en) | Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining | |
JP4576367B2 (en) | Chrome-free amorphous refractory for waste melting furnace and waste melting furnace using the same for lining | |
JP4355486B2 (en) | Unshaped refractory for waste melting furnace and waste melting furnace lined with it | |
JP2001316172A (en) | Alumina-chromia based refractory for ash melting furnace | |
JP2005008496A (en) | Monolithic refractory | |
JP4445256B2 (en) | Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this | |
JPH06345550A (en) | Castable refractory | |
JP4205926B2 (en) | Unshaped refractory for waste melting furnace and waste melting furnace lined with it | |
JP2005314144A (en) | Chromium-free monolithic refractory for waste material melting furnace and waste material melting furnace lined with the same | |
JP3327536B2 (en) | Irregular refractories for waste melting furnace pouring and waste melting furnace using the same | |
JPH0640774A (en) | Castable refractory | |
JP2010260770A (en) | Chromium-free monolithic refractory for waste melting furnace | |
JP2005213120A (en) | Monolithic refractory for waste melting furnace and waste melting furnace using the same for lining | |
JP4404515B2 (en) | Unshaped refractories for waste treatment furnaces | |
JP3875054B2 (en) | Refractory composition for ash melting furnace | |
JP2001182921A (en) | A castable refractory for constructing waste fusing furnace with casting process and waste fusing furnace using the same | |
JPH10158072A (en) | Magnesia-carbon castable refractory and its applied body | |
JP2005075680A (en) | Chromium free monolithic refractory for waste melting furnace, and waste melting furnace using the same as inner lining |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090403 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090527 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090717 |