JPWO2014156991A1 - Thermal switch, temperature control structure, and battery pack - Google Patents

Thermal switch, temperature control structure, and battery pack Download PDF

Info

Publication number
JPWO2014156991A1
JPWO2014156991A1 JP2015508427A JP2015508427A JPWO2014156991A1 JP WO2014156991 A1 JPWO2014156991 A1 JP WO2014156991A1 JP 2015508427 A JP2015508427 A JP 2015508427A JP 2015508427 A JP2015508427 A JP 2015508427A JP WO2014156991 A1 JPWO2014156991 A1 JP WO2014156991A1
Authority
JP
Japan
Prior art keywords
thermal expansion
expansion member
protective layer
thermal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015508427A
Other languages
Japanese (ja)
Other versions
JP6312656B2 (en
Inventor
拓 西垣
拓 西垣
崇弘 冨田
崇弘 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2014156991A1 publication Critical patent/JPWO2014156991A1/en
Application granted granted Critical
Publication of JP6312656B2 publication Critical patent/JP6312656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/46Thermally-sensitive members actuated due to expansion or contraction of a solid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/72Switches in which the opening movement and the closing movement of a contact are effected respectively by heating and cooling or vice versa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

温度によって伝熱性能を変化させることができる簡易な構造の熱スイッチ、それを備えた温度調整構造、及びバッテリーパックを提供する。熱スイッチ1は、第1保護層2と、第1保護層2と対になるよう配置された第2保護層3と、第1保護層2の、第2保護層3と対向する側に接合された、温度変化に伴いその体積が可逆的に変化する熱膨張部材4と、を備え、熱膨張部材4と第2保護層3とは、常温時に接触することなく間隙5を有した状態で対向しており、熱膨張部材4と第2保護層3とが、熱膨張部材4の熱膨張によって接触し熱伝導可能となるよう、間隙5の大きさが定められている。Provided are a heat switch having a simple structure capable of changing heat transfer performance depending on temperature, a temperature adjustment structure including the heat switch, and a battery pack. The thermal switch 1 is bonded to the first protective layer 2, the second protective layer 3 arranged to be paired with the first protective layer 2, and the side of the first protective layer 2 facing the second protective layer 3. The thermal expansion member 4 whose volume reversibly changes with temperature change, and the thermal expansion member 4 and the second protective layer 3 have a gap 5 without being in contact at normal temperature. The size of the gap 5 is determined so that the thermal expansion member 4 and the second protective layer 3 are in contact with each other by thermal expansion of the thermal expansion member 4 and can conduct heat.

Description

本発明は、温度によって伝熱性能が変化する熱スイッチ、それを備えた温度調整構造、及びバッテリーパックに関する。   The present invention relates to a thermal switch whose heat transfer performance varies with temperature, a temperature control structure including the thermal switch, and a battery pack.

近年、COの排出規制、エネルギー問題などから熱エネルギーの有効利用が求められている。熱発生源を搭載した装置等において、熱は必要とされる場合と不要とされる場合がある。例えば、EVに搭載されるバッテリーパックでは、温度が低くなると抵抗が高くなるため、低温時には断熱性が求められ、温度が高くなりすぎると電解液の分解による発火が懸念されるため、高温時には放熱性が求められる。従って、熱の流れを制御する技術が、熱の有効利用に繋がるとして求められている。In recent years, effective utilization of thermal energy has been required due to CO 2 emission regulations and energy problems. In an apparatus or the like equipped with a heat generation source, heat may be required or unnecessary. For example, in a battery pack mounted on an EV, the resistance increases as the temperature decreases, so heat insulation is required at low temperatures, and if the temperature is too high, there is a concern of ignition due to decomposition of the electrolyte. Sex is required. Therefore, a technique for controlling the flow of heat is demanded as leading to effective use of heat.

このような技術としては、電極に挟まれた転移体にエネルギー(磁場、電場、光など)を印加することにより熱伝導状態を切り替える素子(特許文献1)、基材1とカーボンナノチューブ層を有した基材2とが、接触する接続状態及び接触しない非接続状態を切り替えるスイッチ(特許文献2)が開示されている。   Such a technique includes an element (Patent Document 1) that switches a heat conduction state by applying energy (magnetic field, electric field, light, etc.) to a transition body sandwiched between electrodes, a substrate 1 and a carbon nanotube layer. The switch (patent document 2) which switches the connection state which the base material 2 which contacted and the non-connection state which does not contact is disclosed is disclosed.

国際公開第2004/068604号International Publication No. 2004/068604 国際公開第2012/140927号International Publication No. 2012/140927

しかしながら、特許文献1では、エネルギーを印加してスイッチの切り替えを行うため電極や配線等が必要である。また、特許文献2では、スイッチの接続状態を変化させるためにアクチュエータ等が必要である。従って、いずれの発明においても、スイッチそのものの他にスイッチを作動させるための付加部材が必須であり、スイッチ全体が大型化したり、付加部材の耐熱性等の観点から搭載場所が制限されたりする、といった問題があった。   However, in Patent Document 1, an electrode, wiring, and the like are necessary to switch the switch by applying energy. In Patent Document 2, an actuator or the like is required to change the connection state of the switch. Therefore, in any invention, an additional member for operating the switch is essential in addition to the switch itself, the entire switch is enlarged, or the mounting location is limited from the viewpoint of heat resistance of the additional member, There was a problem.

本発明の課題は、温度変化に応じて自ら伝熱性能を変化させることができる簡易な構造の熱スイッチ、それを備えた温度調整構造、及びバッテリーパックを提供することにある。   An object of the present invention is to provide a heat switch having a simple structure capable of changing the heat transfer performance by itself according to a temperature change, a temperature adjusting structure including the heat switch, and a battery pack.

本発明者らは、温度変化に伴いその体積が可逆的に変化する熱膨張部材を有する構造の熱スイッチとすることにより、上記課題を解決できることを見出した。すなわち、本発明によれば、以下の熱スイッチ、それを備えた温度調整構造、及びバッテリーパックが提供される。   The present inventors have found that the above problem can be solved by using a thermal switch having a thermal expansion member whose volume reversibly changes with a temperature change. That is, according to the present invention, the following thermal switch, a temperature adjustment structure including the same, and a battery pack are provided.

[1] 第1保護層と、前記第1保護層と対になるよう配置された第2保護層と、前記第1保護層の、前記第2保護層と対向する側に接合された、温度変化に伴いその体積が可逆的に変化する熱膨張部材と、を備え、前記熱膨張部材と前記第2保護層とは、常温時に接触することなく間隙を有した状態で対向しており、前記熱膨張部材と前記第2保護層とが、前記熱膨張部材の熱膨張によって接触し熱伝導可能となるよう、前記間隙の大きさが定められた熱スイッチ。 [1] Temperature bonded to the first protective layer, the second protective layer arranged to be paired with the first protective layer, and the side of the first protective layer facing the second protective layer A thermal expansion member whose volume reversibly changes with a change, and the thermal expansion member and the second protective layer are opposed to each other with a gap without contact at room temperature, A thermal switch in which the size of the gap is determined so that the thermal expansion member and the second protective layer come into contact with each other by thermal expansion of the thermal expansion member and can conduct heat.

[2] 前記熱膨張部材の前記第2保護層に対向する側と、前記第2保護層の前記熱膨張部材に対向する側との最短距離が、0.1〜100μmの範囲となるよう、前記間隙の大きさが定められた前記[1]に記載の熱スイッチ。 [2] The shortest distance between the side of the thermal expansion member facing the second protective layer and the side of the second protective layer facing the thermal expansion member is in the range of 0.1 to 100 μm. The thermal switch according to [1], wherein the size of the gap is defined.

[3] 第1保護層と、前記第1保護層と対になるよう配置された第2保護層と、温度変化に伴いその体積が可逆的に変化する熱膨張部材と、を備え、前記熱膨張部材として、前記第1保護層の前記第2保護層と対向する側に接合された第1熱膨張部材と、前記第2保護層の前記第1保護層と対向する側に接合された第2熱膨張部材とを含み、前記第1熱膨張部材と前記第2熱膨張部材とは、常温時に互いに接触することなく間隙を有した状態で対向しており、前記第1熱膨張部材と前記第2熱膨張部材とが、前記第1熱膨張部材及び前記第2熱膨張部材の熱膨張によって互いに接触し熱伝導可能となるよう、前記間隙の大きさが定められた熱スイッチ。 [3] A first protective layer, a second protective layer disposed so as to be paired with the first protective layer, and a thermal expansion member whose volume reversibly changes with a temperature change, As the expansion member, a first thermal expansion member bonded to the side of the first protective layer facing the second protective layer, and a first bonded of the second protective layer to the side of the second protective layer facing the first protective layer The first thermal expansion member and the second thermal expansion member are opposed to each other with a gap without contacting each other at room temperature, and the first thermal expansion member and the second thermal expansion member A thermal switch in which the size of the gap is determined such that the second thermal expansion member comes into contact with each other and can conduct heat by thermal expansion of the first thermal expansion member and the second thermal expansion member.

[4] 前記第1熱膨張部材と、前記第1熱膨張部材と隣接する前記第2熱膨張部材との最短距離が、0.1〜100μmの範囲となるよう、前記間隙の大きさが定められた前記[3]に記載の熱スイッチ。 [4] The size of the gap is determined so that the shortest distance between the first thermal expansion member and the second thermal expansion member adjacent to the first thermal expansion member is in a range of 0.1 to 100 μm. The thermal switch according to [3].

[5] 前記熱膨張部材は、少なくともその一部として、互いに独立する複数の凸状熱膨張部材を含む前記[1]〜[4]のいずれかに記載の熱スイッチ。 [5] The thermal switch according to any one of [1] to [4], wherein the thermal expansion member includes a plurality of independent convex thermal expansion members as at least a part thereof.

[6] 前記熱膨張部材は、任意の温度T℃からT±100℃に温度変化した場合に、その寸法が0.1%以上増加又は減少する材料から形成された前記[1]〜[5]のいずれかに記載の熱スイッチ。 [6] The thermal expansion member is formed of a material whose dimensions increase or decrease by 0.1% or more when the temperature changes from an arbitrary temperature T ° C. to T ± 100 ° C. ] The thermal switch in any one of.

[7] 前記熱膨張部材は、40℃から400℃に温度変化した場合の平均線熱膨張率が、5×10−6〜5×10−4/Kの範囲である前記[1]〜[6]のいずれかに記載の熱スイッチ。[7] The thermal expansion member has an average linear thermal expansion coefficient in the range of 5 × 10 −6 to 5 × 10 −4 / K when the temperature changes from 40 ° C. to 400 ° C. 6] The thermal switch according to any one of the above.

[8] 前記熱膨張部材は、その体積が温度変化に応じて漸増又は漸減する材料によって形成された前記[1]〜[7]のいずれかに記載の熱スイッチ。 [8] The thermal switch according to any one of [1] to [7], wherein the thermal expansion member is formed of a material whose volume gradually increases or decreases according to a temperature change.

[9] 前記熱膨張部材は、40℃から800℃に温度変化した場合の平均線熱膨張率が、7×10−6〜1×10−4/Kの範囲である前記[8]に記載の熱スイッチ。[9] The thermal expansion member according to [8], wherein an average linear thermal expansion coefficient when the temperature is changed from 40 ° C. to 800 ° C. is in a range of 7 × 10 −6 to 1 × 10 −4 / K. Thermal switch.

[10] 前記熱膨張部材は、ジルコニア、アルミナ、スピネル、マグネシア、カルシア、チタニア、イットリア、フォルステライト、エンスタタイトからなる群より選択されるいずれかによって形成された前記[8]又は[9]に記載の熱スイッチ。 [10] In the above [8] or [9], the thermal expansion member is formed by any one selected from the group consisting of zirconia, alumina, spinel, magnesia, calcia, titania, yttria, forsterite, and enstatite. The described thermal switch.

[11] 前記熱膨張部材を形成する材料は、前記材料固有の温度を境に、相転移を伴ってその熱膨張率が急激に変化する材料である前記[1]〜[7]のいずれかに記載の熱スイッチ。 [11] The material forming the thermal expansion member is any one of the above [1] to [7], which is a material whose coefficient of thermal expansion changes abruptly with a phase transition at a temperature unique to the material. The thermal switch described in.

[12] 前記熱膨張部材を形成する前記材料は、前記材料固有の温度を境に、相転移を伴ってその寸法が0.1%以上増加又は減少する材料である前記[11]に記載の熱スイッチ。 [12] The material according to [11], wherein the material forming the thermal expansion member is a material whose size increases or decreases by 0.1% or more with a phase transition at a temperature inherent to the material. Thermal switch.

[13] 前記熱膨張部材は、SiO(クリストバライト)、Ba,Srヘキサセルシアン((BaOSr1−x)O・Al・2SiO(0<x<1))、Ca,Srヘキサセルシアン((CaOSr1−x)O・Al・2SiO(0<x<1))、AuCu合金からなる群より選択されるいずれかによって形成された前記[11]又は[12]に記載の熱スイッチ。[13] The thermal expansion member is made of SiO 2 (Cristobalite), Ba, Sr hexacelsian ((BaO x Sr 1-x ) O · Al 2 O 3 · 2SiO 2 (0 <x <1)), Ca, Sr hexacelsian ((CaO x Sr 1-x ) O · Al 2 O 3 · 2SiO 2 (0 <x <1)), the formed by one selected from the group consisting of AuCu alloy [11] Or the thermal switch as described in [12].

[14] 前記第1保護層及び前記第2保護層は、1〜500W/mKの熱伝導率を有する材料によって形成された前記[1]〜[13]のいずれかに記載の熱スイッチ。 [14] The thermal switch according to any one of [1] to [13], wherein the first protective layer and the second protective layer are formed of a material having a thermal conductivity of 1 to 500 W / mK.

[15] 前記第1保護層及び前記第2保護層は、金属、又は、酸化物、窒化物、若しくは炭化物からなるセラミックスからなる群より選択されるいずれかによって形成された前記[1]〜[14]のいずれかに記載の熱スイッチ。 [15] The [1] to [1], wherein the first protective layer and the second protective layer are formed of any one selected from the group consisting of metals or ceramics made of oxide, nitride, or carbide. [14] The thermal switch according to any one of [14].

[16] 前記第1保護層と前記第2保護層とが、断熱性を有する連結手段によって互いに連結された前記[1]〜[15]のいずれかに記載の熱スイッチ。 [16] The thermal switch according to any one of [1] to [15], wherein the first protective layer and the second protective layer are coupled to each other by a coupling means having heat insulation properties.

[17] 前記[1]〜[16]のいずれかに記載の熱スイッチを、熱を発生する熱発生源の周囲に備え、第1温度と前記第1温度よりも高温の第2温度との間で放熱状態を変化させることにより、前記熱発生源の熱に起因する温度の調整を行う温度調整構造。 [17] The thermal switch according to any one of [1] to [16] is provided around a heat generation source that generates heat, and includes a first temperature and a second temperature higher than the first temperature. The temperature adjustment structure which adjusts the temperature resulting from the heat of the said heat generation source by changing a heat dissipation state between.

[18] 前記[17]に記載の温度調整構造を有するバッテリーパック。 [18] A battery pack having the temperature adjustment structure according to [17].

本発明の熱スイッチは、常温時や低温時には非接続状態(オフ状態)となるため断熱効果を有し、高温時には熱膨張によって自ら伝熱可能な接続状態(オン状態)を生み出すため放熱効果を有するという、自立的な熱スイッチとして動作する。   The thermal switch of the present invention has a heat insulating effect because it is in a disconnected state (off state) at room temperature or low temperature, and has a heat dissipating effect because it generates a connected state (on state) that can conduct heat by thermal expansion at high temperatures. It operates as a self-supporting thermal switch.

このように、本発明の熱スイッチは、周囲の温度変化に伴い自ら伝熱性能を変化させることが可能であるため、エネルギー印加手段や駆動手段などの付加部品を必要とせず、スイッチ全体を小型化することができる。また、搭載性が高く、形状の自由度も高い。本発明の熱スイッチを備えた温度調整構造は、特にバッテリーパック等の熱発生源において、内部の熱を有効利用し、熱発生源の機能を向上させるという点において顕著な効果を奏するものである。   As described above, the thermal switch of the present invention can change the heat transfer performance itself according to a change in ambient temperature, and thus does not require additional parts such as an energy applying unit and a driving unit, and the entire switch is small. Can be In addition, it is highly mountable and has a high degree of freedom in shape. The temperature adjustment structure provided with the heat switch of the present invention has a remarkable effect in that the internal heat is effectively used and the function of the heat generation source is improved, particularly in a heat generation source such as a battery pack. .

本発明の熱スイッチの実施形態1を示す模式的断面図である。It is typical sectional drawing which shows Embodiment 1 of the thermal switch of this invention. 本発明の熱スイッチの実施形態2を示す模式的断面図である。It is typical sectional drawing which shows Embodiment 2 of the thermal switch of this invention. 本発明の熱スイッチの実施形態3を示す模式的断面図である。It is typical sectional drawing which shows Embodiment 3 of the thermal switch of this invention. 本発明の熱スイッチの実施形態4を示す模式的断面図である。It is typical sectional drawing which shows Embodiment 4 of the thermal switch of this invention. 間隙の形成方法の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the formation method of a gap | interval. 間隙の形成方法の他の実施形態を示す模式図である。It is a schematic diagram which shows other embodiment of the formation method of a gap | interval. 本発明のバッテリーパックの一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the battery pack of this invention.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

図1は、本発明の熱スイッチの実施形態1を示す模式的断面図である。図1の左側の図は非接続状態(オフ状態)にある熱スイッチ1(1a)を、図1の右側の図は接続状態(オン状態)にある熱スイッチ1(1b)を示す。本発明の熱スイッチ1は、第1保護層2と、第1保護層2と対になるよう配置された第2保護層3と、第1保護層2の、第2保護層3と対向する側に接合された、温度変化に伴いその体積が可逆的に変化する熱膨張部材4と、を備える。図1に示す通り、常温時においては、熱膨張部材4と第2保護層3とは、接触することなく間隙5を有した状態で対向している。この時、熱膨張部材4と第2保護層3との間では熱交換が行われ難く、スイッチ1(1a)は非接続状態(オフ状態)にある。一方で、周辺温度が上昇すると、熱膨張部材4が熱膨張することにより、熱膨張部材4と第2保護層3とが接触する。この時、熱膨張部材4と第2保護層3との間における伝熱率が急激に上昇し、スイッチ1(1b)は接続状態(オン状態)となる。熱膨張部材4は、温度変化に伴いその体積が可逆的に変化する材料により形成されているため、周辺温度が再び低下した際には、その収縮により、第2保護層3との接触状態が解かれ、再度間隙5が生じる。この時、スイッチ1(1a)は再び非接続状態(オフ状態)となる。   FIG. 1 is a schematic cross-sectional view showing Embodiment 1 of the thermal switch of the present invention. The left diagram in FIG. 1 shows the thermal switch 1 (1a) in the unconnected state (off state), and the right diagram in FIG. 1 shows the thermal switch 1 (1b) in the connected state (on state). The thermal switch 1 of the present invention faces the second protective layer 3 of the first protective layer 2, the second protective layer 3 arranged to be paired with the first protective layer 2, and the first protective layer 2. And a thermal expansion member 4 whose volume is reversibly changed with a change in temperature. As shown in FIG. 1, at the normal temperature, the thermal expansion member 4 and the second protective layer 3 are opposed to each other with a gap 5 without contact. At this time, it is difficult to exchange heat between the thermal expansion member 4 and the second protective layer 3, and the switch 1 (1a) is in a disconnected state (off state). On the other hand, when the ambient temperature rises, the thermal expansion member 4 thermally expands, so that the thermal expansion member 4 and the second protective layer 3 come into contact with each other. At this time, the heat transfer rate between the thermal expansion member 4 and the second protective layer 3 rapidly increases, and the switch 1 (1b) is in a connected state (ON state). Since the thermal expansion member 4 is formed of a material whose volume reversibly changes with a change in temperature, when the ambient temperature decreases again, the contraction state of the thermal expansion member 4 with the second protective layer 3 is reduced. It is unwound and the gap 5 is generated again. At this time, the switch 1 (1a) is again disconnected (off state).

間隙5の大きさは、熱膨張部材4と第2保護層3とが、熱膨張部材4の熱膨張によって接触し熱伝導可能となるよう、熱膨張部材4の材料特性と使用環境との関連に応じて定められている。上記の要件を満たす範囲である限り、間隙5の大きさは特に限定されるものでは無いが、熱膨張部材4の第2保護層3に対向する側と、第2保護層3の熱膨張部材4に対向する側との最短距離が0.1〜100μmの範囲であることが好ましく、1〜100μmの範囲であることが更に好ましい。上記の距離が0.1μmを下回ると、接続状態(オン状態)において熱膨張部材4と第2保護層3とが過剰に接触し、両者に応力が発生して破損する場合があるため好ましくない。また、上記の距離が100μmを超えると、接続状態(オン状態)において熱膨張部材4と第2保護層3との接触状態が不十分となる場合があるため好ましくない。なお、間隙5は真空であることが好ましいが、空気などの気体で満たされていてもよい。   The size of the gap 5 is related to the material characteristics of the thermal expansion member 4 and the usage environment so that the thermal expansion member 4 and the second protective layer 3 can be brought into contact with each other by the thermal expansion of the thermal expansion member 4 and can conduct heat. It is determined according to. The size of the gap 5 is not particularly limited as long as it satisfies the above requirements, but the side of the thermal expansion member 4 facing the second protective layer 3 and the thermal expansion member of the second protective layer 3 are not limited. 4 is preferably in the range of 0.1 to 100 μm, and more preferably in the range of 1 to 100 μm. If the distance is less than 0.1 μm, the thermal expansion member 4 and the second protective layer 3 are excessively contacted in the connected state (ON state), and stress may be generated in both of them, which may be damaged. . Further, if the distance exceeds 100 μm, the contact state between the thermal expansion member 4 and the second protective layer 3 may be insufficient in the connected state (on state), which is not preferable. The gap 5 is preferably a vacuum, but may be filled with a gas such as air.

図2は、本発明の熱スイッチの実施形態2を示す模式的断面図である。図2の左側の図は非接続状態(オフ状態)にある熱スイッチ11(11a)を、図2の右側の図は接続状態(オン状態)にある熱スイッチ11(11b)を示す。本発明の熱スイッチ11は、第1保護層2と、第1保護層2と対になるよう配置された第2保護層3と、温度変化に伴いその体積が可逆的に変化する熱膨張部材4と、を備える。熱膨張部材4は、第1保護層2の第2保護層3と対向する側に接合された第1熱膨張部材4aと、第2保護層3の第1保護層2と対向する側に接合された第2熱膨張部材4bとを含む。図2に示す通り、常温時においては、第1熱膨張部材4aと第2熱膨張部材4bとは、互いに接触することなく間隙15を有した状態で対向している。この時、第1熱膨張部材4aと第2熱膨張部材4bとの間では熱交換が行われ難く、スイッチ11(11a)は非接続状態(オフ状態)にある。一方で、周辺温度が上昇すると、第1熱膨張部材4a及び第2熱膨張部材4bが熱膨張することにより、第1熱膨張部材4aと第2熱膨張部材4bとが互いに接触する。この時、第1熱膨張部材4aと第2熱膨張部材4bとの間における伝熱率が急激に上昇し、スイッチ11(11b)は接続状態(オン状態)となる。熱膨張部材4は、温度変化に伴いその体積が可逆的に変化する材料により形成されているため、周辺温度が再び低下した際には、第1熱膨張部材4a及び第2熱膨張部材4bの収縮により、互いの接触状態が解かれ、再度間隙15が生じる。この時、スイッチ11(11a)は再び非接続状態(オフ状態)となる。   FIG. 2 is a schematic cross-sectional view showing Embodiment 2 of the thermal switch of the present invention. 2 shows the thermal switch 11 (11a) in the non-connected state (off state), and the right diagram in FIG. 2 shows the thermal switch 11 (11b) in the connected state (on state). The thermal switch 11 of the present invention includes a first protective layer 2, a second protective layer 3 disposed so as to be paired with the first protective layer 2, and a thermal expansion member whose volume reversibly changes with a temperature change. 4. The thermal expansion member 4 is bonded to the first thermal expansion member 4 a bonded to the side of the first protective layer 2 facing the second protective layer 3 and to the side of the second protective layer 3 facing the first protective layer 2. Second thermal expansion member 4b. As shown in FIG. 2, at normal temperature, the first thermal expansion member 4a and the second thermal expansion member 4b face each other with a gap 15 without contacting each other. At this time, it is difficult to exchange heat between the first thermal expansion member 4a and the second thermal expansion member 4b, and the switch 11 (11a) is in a disconnected state (off state). On the other hand, when the ambient temperature rises, the first thermal expansion member 4a and the second thermal expansion member 4b thermally expand, so that the first thermal expansion member 4a and the second thermal expansion member 4b come into contact with each other. At this time, the heat transfer rate between the first thermal expansion member 4a and the second thermal expansion member 4b rapidly increases, and the switch 11 (11b) is in the connected state (ON state). Since the thermal expansion member 4 is formed of a material whose volume reversibly changes with a temperature change, when the ambient temperature decreases again, the first thermal expansion member 4a and the second thermal expansion member 4b By contraction, the contact state with each other is released, and the gap 15 is generated again. At this time, the switch 11 (11a) is again disconnected (off state).

間隙15の大きさは、第1熱膨張部材4aと第2熱膨張部材4bとが、熱膨張によって互いに接触し熱伝導可能となるよう、熱膨張部材4の材料特性と使用環境との関連に応じて定められている。このような要件を満たす範囲である限り、間隙15の大きさは特に限定されるものでは無いが、第1熱膨張部材4aと、第1熱膨張部材4aと隣接する第2熱膨張部材4bとの最短距離は、0.1〜100μmの範囲であることが好ましく、1〜100μmの範囲であることが更に好ましい。上記の距離が0.1μmを下回ると、接続状態(オン状態)において第1熱膨張部材4aと第2熱膨張部材4bとが過剰に接触し、両者に応力が発生して破損する場合があるため好ましくない。また、上記の距離が100μmを超えると、接続状態(オン状態)において第1熱膨張部材4aと第2熱膨張部材4bとの接触状態が不十分となる場合があるため好ましくない。なお、間隙15は真空であることが好ましいが、空気などの気体で満たされていてもよい。   The size of the gap 15 depends on the relationship between the material characteristics of the thermal expansion member 4 and the usage environment so that the first thermal expansion member 4a and the second thermal expansion member 4b can contact each other by thermal expansion and can conduct heat. It is determined accordingly. The size of the gap 15 is not particularly limited as long as it satisfies such a requirement, but the first thermal expansion member 4a and the second thermal expansion member 4b adjacent to the first thermal expansion member 4a The shortest distance is preferably in the range of 0.1 to 100 μm, and more preferably in the range of 1 to 100 μm. If the above distance is less than 0.1 μm, the first thermal expansion member 4a and the second thermal expansion member 4b may be excessively contacted in the connected state (on state), and stress may be generated in both of them to cause damage. Therefore, it is not preferable. In addition, if the distance exceeds 100 μm, the contact state between the first thermal expansion member 4a and the second thermal expansion member 4b may be insufficient in the connected state (on state), which is not preferable. The gap 15 is preferably a vacuum, but may be filled with a gas such as air.

上記のように、本発明の熱スイッチ1,11は、周囲の温度変化に応じて、自らオン/オフを切り替えることが可能であるため、エネルギー印加手段や駆動手段等、従来の熱スイッチでは必須であった付加部品を必要としない。従って、本発明の熱スイッチ1,11は、従来のものと比べ、格段の小型化が可能であると共に、付加部品の耐熱性等を考慮する必要も無い。従って、本発明の熱スイッチ1,11をエンジンやバッテリーパック等の熱発生源に用いる際にも、搭載性や形状の自由度を大幅に向上させることが可能となった。   As described above, the thermal switches 1 and 11 of the present invention can be switched on / off by themselves according to a change in ambient temperature. Therefore, the thermal switches 1 and 11 are indispensable for conventional thermal switches such as energy applying means and driving means. The additional parts which were were not required. Therefore, the thermal switches 1 and 11 of the present invention can be remarkably reduced in size as compared with the conventional switches, and there is no need to consider the heat resistance of the additional components. Therefore, when the thermal switches 1 and 11 of the present invention are used as a heat generation source such as an engine or a battery pack, it is possible to greatly improve the mountability and the freedom of shape.

本発明の熱スイッチ1,11における熱膨張部材4は、少なくともその一部として、互いに独立する複数の凸状熱膨張部材を含んでいてもよい。凸状熱膨張部材の形状、個数、形成方法等は特に限定されるものではなく、温度変化に応じて確実にスイッチ機能をはたすものであればよい。図3は、本発明の熱スイッチの実施形態3を示す模式的断面図であり、本発明の熱スイッチ1において、熱膨張部材4が、互いに独立する複数の凸状熱膨張部材4cからなる例を示すものである。図4は、本発明の熱スイッチの実施形態4を示す模式的断面図であり、本発明の熱スイッチ11において、第1熱膨張部材4a及び第2熱膨張部材4bのそれぞれが、互いに独立する複数の凸状熱膨張部材4cからなる例を示すものである。図4に示すような、凸状熱膨張部材4cが針状のものである場合には、複数の凸状熱膨張部材4cが第1保護層2及び第2保護層3に均等に接合され、且つ、凸状熱膨張部材4c同士が、それぞれの伸長方向とは垂直な方向に、間隙15を有しつつ重なり合うよう配置されることが好ましい。すなわちこの時、第1熱膨張部材4aと、第1熱膨張部材4aと隣接する第2熱膨張部材4bとの最短距離である間隙15は、凸状熱膨張部材4cの伸長方向と垂直な方向に形成される。   The thermal expansion member 4 in the thermal switches 1 and 11 of the present invention may include a plurality of convex thermal expansion members that are independent from each other as at least a part thereof. The shape, the number, the forming method, and the like of the convex thermal expansion member are not particularly limited as long as the switch function surely functions according to the temperature change. FIG. 3 is a schematic cross-sectional view showing Embodiment 3 of the thermal switch of the present invention. In the thermal switch 1 of the present invention, the thermal expansion member 4 is composed of a plurality of convex thermal expansion members 4c that are independent from each other. Is shown. FIG. 4 is a schematic cross-sectional view showing Embodiment 4 of the thermal switch of the present invention. In the thermal switch 11 of the present invention, each of the first thermal expansion member 4a and the second thermal expansion member 4b is independent of each other. An example of a plurality of convex thermal expansion members 4c is shown. As shown in FIG. 4, when the convex thermal expansion member 4c is needle-shaped, a plurality of convex thermal expansion members 4c are evenly bonded to the first protective layer 2 and the second protective layer 3, Moreover, it is preferable that the convex thermal expansion members 4c are arranged so as to overlap each other with the gap 15 in a direction perpendicular to each extending direction. That is, at this time, the gap 15 which is the shortest distance between the first thermal expansion member 4a and the second thermal expansion member 4b adjacent to the first thermal expansion member 4a is a direction perpendicular to the extending direction of the convex thermal expansion member 4c. Formed.

熱膨張部材4は、温度変化に伴いその体積が可逆的に変化する材料であって、任意の温度T℃からT±100℃に温度変化した場合に、その寸法が0.1%以上増加又は減少する材料から形成されることが好ましい。任意の温度T℃からT±100℃に温度変化した場合の材料の寸法変化が0.1%未満であると、熱膨張部材4が実使用時にスイッチとして機能しない可能性があるため好ましくない。   The thermal expansion member 4 is a material whose volume reversibly changes with a change in temperature, and when the temperature changes from an arbitrary temperature T ° C. to T ± 100 ° C., the dimension increases by 0.1% or more or Preferably formed from a decreasing material. If the dimensional change of the material when the temperature changes from an arbitrary temperature T ° C. to T ± 100 ° C. is less than 0.1%, the thermal expansion member 4 may not function as a switch in actual use, which is not preferable.

熱膨張部材4は、40℃から400℃に温度変化した場合の平均線熱膨張率が、5×10−6〜5×10−4/Kの範囲であることがより好ましい。40℃から400℃に温度変化した場合の平均線熱膨張率が5×10−6/K未満であると、熱膨張部材4の寸法変化が小さすぎて、実使用時にスイッチとして機能しない可能性があるため好ましくない。また、40℃から400℃に温度変化した場合の平均線熱膨張率が5×10−4/Kを超えると、熱膨張部材4の寸法変化が大きすぎて、熱膨張部材4の接合された保護層2,3を破損する可能性があるため好ましくない。The thermal expansion member 4 more preferably has an average linear thermal expansion coefficient in the range of 5 × 10 −6 to 5 × 10 −4 / K when the temperature changes from 40 ° C. to 400 ° C. If the average linear thermal expansion coefficient when the temperature changes from 40 ° C. to 400 ° C. is less than 5 × 10 −6 / K, the dimensional change of the thermal expansion member 4 may be too small to function as a switch in actual use. This is not preferable. When the average linear thermal expansion coefficient when the temperature changes from 40 ° C. to 400 ° C. exceeds 5 × 10 −4 / K, the dimensional change of the thermal expansion member 4 is too large and the thermal expansion member 4 is joined. This is not preferable because the protective layers 2 and 3 may be damaged.

熱膨張部材4は、その体積が温度変化に応じて漸増又は漸減する材料によって形成されていてもよい。具体的には、熱膨張部材4は、40℃から800℃に温度変化した場合の平均線熱膨張率が、7×10−6〜1×10−4/Kの範囲であるとよい。このような熱膨張部材4の材料としては、ジルコニア、アルミナ、スピネル、マグネシア、カルシア、チタニア、イットリア、フォルステライト、エンスタタイト等が挙げられる。このような材料は、特定の温度領域を迎えると同時に急激に体積膨張が進む、といったことが無い。従って、熱膨張部材4としてこのような材料を用いた熱スイッチ1,11においては、材料と間隙5,15の大きさとを様々に組み合わせることによって、使用環境や使用目的に応じた熱スイッチ1,11を得ることが可能である。The thermal expansion member 4 may be formed of a material whose volume gradually increases or decreases according to a temperature change. Specifically, the thermal expansion member 4 may have an average linear thermal expansion coefficient in the range of 7 × 10 −6 to 1 × 10 −4 / K when the temperature changes from 40 ° C. to 800 ° C. Examples of the material of the thermal expansion member 4 include zirconia, alumina, spinel, magnesia, calcia, titania, yttria, forsterite, enstatite, and the like. Such a material does not suddenly undergo volume expansion as soon as it reaches a specific temperature range. Therefore, in the thermal switches 1 and 11 using such a material as the thermal expansion member 4, the thermal switches 1 and 11 corresponding to the use environment and usage purpose can be obtained by variously combining the materials and the sizes of the gaps 5 and 15. 11 can be obtained.

また、熱膨張部材4を形成する材料は、当該材料固有の温度を境に、相転移を伴ってその熱膨張率が急激に変化する材料であってもよい。具体的には、熱膨張部材4を形成する材料は、当該材料固有の温度を境に、相転移を伴ってその寸法が0.1%以上増加又は減少する材料であるとよい。このような熱膨張部材4の材料としては、SiO(クリストバライト)、Ba,Srヘキサセルシアン((BaOSr1−x)O・Al・2SiO(0<x<1))、Ca,Srヘキサセルシアン((CaOSr1−x)O・Al・2SiO(0<x<1))、AuCu合金等が挙げられる。例えばBa,Srヘキサセルシアンは、約300℃前後を境に熱膨張係数が急激に変化する材料である。熱膨張部材4としてこのような材料を用いた熱スイッチ1,11においては、その材料固有の温度領域においてスイッチ1,11のオン/オフが切り替わることとなる。従って、熱膨張部材4として用いる材料の種類や組成を選択することによって、使用環境や使用目的に応じた熱スイッチ1,11を得ることが可能である。Further, the material forming the thermal expansion member 4 may be a material whose thermal expansion coefficient changes abruptly with phase transition at the temperature inherent to the material. Specifically, the material forming the thermal expansion member 4 may be a material whose size increases or decreases by 0.1% or more with a phase transition at the temperature inherent to the material. As a material for the thermal expansion member 4, SiO 2 (cristobalite), Ba, Sr hexacelsian ((BaO x Sr 1-x ) O · Al 2 O 3 · 2SiO 2 (0 <x <1)) , Ca, Sr hexacelsian ((CaO x Sr 1-x ) O · Al 2 O 3 · 2SiO 2 (0 <x <1)), AuCu alloy, and the like. For example, Ba, Sr hexacelsian is a material whose thermal expansion coefficient changes abruptly around about 300 ° C. In the thermal switches 1 and 11 using such a material as the thermal expansion member 4, the switches 1 and 11 are switched on / off in a temperature region unique to the material. Therefore, by selecting the type and composition of the material used as the thermal expansion member 4, it is possible to obtain the thermal switches 1 and 11 corresponding to the usage environment and usage purpose.

本発明の熱スイッチ1,11における第1保護層2及び第2保護層3は、物理的ダメージ、化学的ダメージから熱膨張部材4を保護する機能を有する。物理的ダメージとは、非定常な熱履歴がかかるところで使用する際の熱衝撃や、稼働部で使用する際の摺動によるダメージ等を指す。また、化学的なダメージとは、酸化性雰囲気で使用する際の腐食や劣化を指す。上記の要件を満たし、熱伝導性を有するものであれば、第1保護層2及び第2保護層3を形成する材料は特に限定されるものではないが、材料の熱伝導率は高いほうが好ましい。具体的には、第1保護層2及び第2保護層3は、1〜500W/mKの熱伝導率を有する材料によって形成されることが好ましい。材料の熱伝導率が高いほど、スイッチのOFF時及びON時における見かけ上の熱伝導率の変化比が大きくなる。また、第1保護層2及び第2保護層3を形成する材料は、金属、又は、酸化物、窒化物、若しくは炭化物からなるセラミックスによって形成されることが好ましい。具体的には、Al、Ti、Mn、Fe、Ni、Cu、Mo、Ag、W、Au、Pt、及びこれらの合金等の金属、並びに、炭化珪素、窒化アルミ、アルミナ、窒化珪素、サイアロン、及びイットリア等のセラミックスが挙げられる。   The first protective layer 2 and the second protective layer 3 in the thermal switches 1 and 11 of the present invention have a function of protecting the thermal expansion member 4 from physical damage and chemical damage. Physical damage refers to thermal shock when used where an unsteady thermal history is applied, damage due to sliding when used in an operating part, and the like. Chemical damage refers to corrosion or deterioration when used in an oxidizing atmosphere. The material for forming the first protective layer 2 and the second protective layer 3 is not particularly limited as long as it satisfies the above requirements and has thermal conductivity. However, it is preferable that the material has a higher thermal conductivity. . Specifically, the first protective layer 2 and the second protective layer 3 are preferably formed of a material having a thermal conductivity of 1 to 500 W / mK. The higher the thermal conductivity of the material, the larger the change ratio of the apparent thermal conductivity when the switch is OFF and ON. Moreover, it is preferable that the material which forms the 1st protective layer 2 and the 2nd protective layer 3 is formed with the ceramics which consist of a metal or an oxide, nitride, or a carbide | carbonized_material. Specifically, metals such as Al, Ti, Mn, Fe, Ni, Cu, Mo, Ag, W, Au, Pt, and alloys thereof, and silicon carbide, aluminum nitride, alumina, silicon nitride, sialon, And ceramics such as yttria.

本発明の熱スイッチ1,11において、間隙5,15を所定の大きさに設ける方法としては、オフ状態において断熱状態が維持される構造である限り特に限定されるものではない。図5Aは、間隙の形成方法の一実施形態を示す模式図であり、図5Bは、間隙の形成方法の他の実施形態を示す模式図である。本発明の熱スイッチ1,11における間隙5,15の形成方法としては、例えば、図5Aに示すように、断熱性を有する連結手段である断熱部材8を用いてスイッチ1全体を固定する方法、又は、図5Bに示すように、断熱部材8を用いて第1保護層2と第2保護層3とを固定する方法、などが挙げられる。   In the thermal switches 1 and 11 of the present invention, the method of providing the gaps 5 and 15 in a predetermined size is not particularly limited as long as the heat insulation state is maintained in the off state. FIG. 5A is a schematic diagram showing an embodiment of a gap forming method, and FIG. 5B is a schematic diagram showing another embodiment of a gap forming method. As a method of forming the gaps 5 and 15 in the thermal switches 1 and 11 of the present invention, for example, as shown in FIG. 5A, a method of fixing the entire switch 1 using a heat insulating member 8 that is a connecting means having heat insulating properties, Or the method of fixing the 1st protective layer 2 and the 2nd protective layer 3 using the heat insulation member 8 as shown in FIG. 5B, etc. are mentioned.

次に、本発明の熱スイッチ1,11を、熱を発生する熱発生源の周囲に備えた温度調整構造について説明する。本明細書において、温度調整構造とは、本発明の熱スイッチ1,11を周囲に備えた熱発生源から熱を有効利用しつつ、その温度を調整することにより、当該熱発生源の機能を向上させることができる構造を指す。ここで熱発生源とは、熱を発生するもののことをいい、特に限定されるものではない。本発明の温度調整構造は、第1温度と第1温度よりも高温の第2温度とで、放熱状態を変化させることにより、熱発生源の熱による温度を調整し、当該温度調整構造を備えた装置の性能を向上させることができる。従って、本願発明の温度調整構造は、特に使用時に温度が不定常に高温となるような熱発生源において好適に用いられる。このような熱発生源の具体的な例としては、バッテリーパック、モーター、CPU、制御回路、エンジン、ブレーキ、ギアボックス等が挙げられる。これらの熱発生源の周囲に熱スイッチ1,11を備えた構造が、温度調整構造である。また、熱発生源を太陽光とした場合には、建材、窓、サッシ等に熱スイッチ1,11を備えることにより、室内の温度を調整する温度調整構造とすることができる。   Next, a temperature adjustment structure in which the thermal switches 1 and 11 of the present invention are provided around a heat generation source that generates heat will be described. In this specification, the temperature adjustment structure refers to the function of the heat generation source by adjusting the temperature while effectively using the heat from the heat generation source including the thermal switches 1 and 11 of the present invention. Refers to a structure that can be improved. Here, the heat generation source means one that generates heat, and is not particularly limited. The temperature adjustment structure of the present invention includes a temperature adjustment structure that adjusts the temperature due to heat of the heat generation source by changing the heat radiation state between the first temperature and the second temperature higher than the first temperature. The performance of the apparatus can be improved. Therefore, the temperature adjustment structure of the present invention is preferably used in a heat generation source in which the temperature becomes irregularly high during use. Specific examples of such a heat generation source include a battery pack, a motor, a CPU, a control circuit, an engine, a brake, a gear box, and the like. A structure including the heat switches 1 and 11 around these heat generation sources is a temperature adjustment structure. Moreover, when sunlight is used as the heat generation source, it is possible to provide a temperature adjustment structure that adjusts the indoor temperature by providing the building materials, windows, sashes, and the like with the thermal switches 1 and 11.

図6は、本発明のバッテリーパックの一実施形態を示す模式図である。バッテリーパック30は、熱発生源である。図6に示す通り、本発明のバッテリーパック30は、複数の電池を含み、それらを電気的に接続してケース31内に収容している。また、バッテリーパック30の周囲、すなわちケース31には、熱スイッチ1,11が備えられている。   FIG. 6 is a schematic view showing an embodiment of the battery pack of the present invention. The battery pack 30 is a heat generation source. As shown in FIG. 6, the battery pack 30 of the present invention includes a plurality of batteries, and these are electrically connected and accommodated in a case 31. In addition, thermal switches 1 and 11 are provided around the battery pack 30, that is, in the case 31.

バッテリーパック30は、始動時には、低温であるため電池抵抗が高い。従って、バッテリーパック30内部の熱をできるだけ放熱しないようにすることが好ましい。一方、暖機完了後は、バッテリーパック30の内部の温度が高くなり電解液分解による発火の懸念があるため、バッテリーパック30の内部の熱を積極的に放熱することが好ましい。本発明のバッテリーパック30に備えた熱スイッチ1,11は、バッテリーパック30の始動時には非接続状態(オフ状態)であるため、バッテリーパック30の内部の熱を放熱しにくく、熱を有効に用いることができる。一方、暖機完了後は、バッテリーパック30の内部温度が上昇し、熱スイッチ1,11が接続状態(オン状態)となり、伝熱効率が急激に上昇するため、バッテリーパック30内部の熱を積極的に外部に放出することができる。   The battery pack 30 has a high battery resistance because it is at a low temperature when it is started. Therefore, it is preferable that the heat inside the battery pack 30 is not radiated as much as possible. On the other hand, it is preferable to actively dissipate the heat inside the battery pack 30 because the temperature inside the battery pack 30 becomes high after the warm-up is completed, and there is a concern of ignition due to decomposition of the electrolyte. Since the heat switches 1 and 11 provided in the battery pack 30 of the present invention are in a disconnected state (off state) when the battery pack 30 is started, it is difficult to dissipate the heat inside the battery pack 30 and the heat is used effectively. be able to. On the other hand, after the warm-up is completed, the internal temperature of the battery pack 30 rises, the thermal switches 1 and 11 are connected (on state), and the heat transfer efficiency increases rapidly. Can be released to the outside.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例1)
板状のジルコニア(熱膨張部材4)の片側にコージェライト(第1保護層2)を接合し、もう片側に、3μmの間隙5を設けつつ対になる別のコージェライト(第2保護層3)を配置した熱スイッチ1を作製した。部材全体(熱スイッチ1)としての熱の伝わり方を、熱流計を用いて評価した。具体的には、片方のコージェライト(第1保護層2)の温度を調節し、25℃にした場合と90℃にした場合とにおいて、もう片方のコージェライト(第2保護層3)に取り付けた熱流センサーを通過する熱流量を計測した。
Example 1
A cordierite (first protective layer 2) is bonded to one side of a plate-like zirconia (thermal expansion member 4), and another cordierite (second protective layer 3) is formed while providing a gap 5 of 3 μm on the other side. The thermal switch 1 in which is disposed) was produced. The way of heat transfer as the whole member (thermal switch 1) was evaluated using a heat flow meter. Specifically, the temperature of one cordierite (first protective layer 2) is adjusted to be attached to the other cordierite (second protective layer 3) when adjusted to 25 ° C and 90 ° C. The heat flow through the heat flow sensor was measured.

熱スイッチ1がオフの状態すなわち25℃での熱流量を100とすると、熱スイッチ1がオンの状態すなわち90℃での熱流量は1200となり、スイッチとして機能することが確認できた。   Assuming that the heat flow rate when the heat switch 1 is off, that is, 25 ° C., is 100, the heat flow rate when the heat switch 1 is turned on, ie, 90 ° C., is 1200, confirming that it functions as a switch.

(実施例2)
板状のコージェライト(第1保護層2)の片側に、複数の針状のジルコニア(第1熱膨張部材4a(凸状熱膨張部材4c))を均等に接合した第1接合体と、同じく板状のコージェライト(第2保護層3)の片側に、複数の針状のジルコニア(第2熱膨張部材4b(凸状熱膨張部材4c))を均等に接合した第2接合体とを作製した。次に、第1接合体と第2接合体とを、ジルコニアの接合された面が互いに対向するよう配置し、第1接合体から伸びるジルコニア(第1熱膨張部材4a(凸状熱膨張部材4c))と、第2接合体から伸びるジルコニア(第2熱膨張部材4b(凸状熱膨張部材4c))との間に3μmの間隙15を設けた熱スイッチ11を作製した。部材全体(熱スイッチ11)としての熱の伝わり方を、熱流計を用いて評価した。具体的には、片方のコージェライト(第1保護層2)の温度を調節し、25℃にした場合と90℃にした場合とにおいて、もう片側のコージェライト(第2保護層3)に取り付けた熱流センサーを通過する熱流量を計測した。
(Example 2)
Same as the first joined body in which a plurality of needle-shaped zirconia (first thermal expansion member 4a (convex thermal expansion member 4c)) are evenly bonded to one side of the plate-shaped cordierite (first protective layer 2). A second joined body in which a plurality of needle-like zirconia (second thermal expansion member 4b (convex thermal expansion member 4c)) are evenly joined to one side of a plate-shaped cordierite (second protective layer 3) is produced. did. Next, the first joined body and the second joined body are arranged so that the surfaces to which the zirconia is joined face each other, and the zirconia extending from the first joined body (first thermal expansion member 4a (convex thermal expansion member 4c). )) And zirconia (second thermal expansion member 4b (convex thermal expansion member 4c)) extending from the second joined body, a thermal switch 11 having a 3 μm gap 15 was produced. The way of heat transfer as the whole member (thermal switch 11) was evaluated using a heat flow meter. Specifically, the temperature of one cordierite (first protective layer 2) is adjusted to be attached to the other side cordierite (second protective layer 3) when adjusted to 25 ° C and 90 ° C. The heat flow through the heat flow sensor was measured.

熱スイッチ11がオフの状態すなわち25℃での熱流量を100とすると、熱スイッチ1がオンの状態すなわち90℃での熱流量は1200となり、スイッチとして機能することが確認できた。   Assuming that the heat flow rate when the heat switch 11 is off, that is, at 25 ° C., is 100, the heat flow rate when the heat switch 1 is turned on, ie, at 90 ° C., is 1200, confirming that it functions as a switch.

本発明の熱スイッチは、温度によって伝熱性能が変化するスイッチとして利用することができる。例えば、本発明の熱スイッチを、バッテリーパック等の熱発生源に備えることにより、熱発生源の熱を有効に回収、又は放熱させることができる。   The thermal switch of the present invention can be used as a switch whose heat transfer performance varies depending on the temperature. For example, by providing the heat switch of the present invention in a heat generation source such as a battery pack, the heat of the heat generation source can be effectively recovered or radiated.

1,1a,1b,11,11a,11b:熱スイッチ、2:第1保護層、3:第2保護層、4:熱膨張部材、4a:第1熱膨張部材、4b:第2熱膨張部材、4c:凸状熱膨張部材、5,15:間隙、8:断熱部材、30:バッテリーパック、31:ケース。 1, 1a, 1b, 11, 11a, 11b: thermal switch, 2: first protective layer, 3: second protective layer, 4: thermal expansion member, 4a: first thermal expansion member, 4b: second thermal expansion member 4c: convex thermal expansion member, 5, 15: gap, 8: heat insulating member, 30: battery pack, 31: case.

Claims (18)

第1保護層と、
前記第1保護層と対になるよう配置された第2保護層と、
前記第1保護層の、前記第2保護層と対向する側に接合された、温度変化に伴いその体積が可逆的に変化する熱膨張部材と、を備え、
前記熱膨張部材と前記第2保護層とは、常温時に接触することなく間隙を有した状態で対向しており、
前記熱膨張部材と前記第2保護層とが、前記熱膨張部材の熱膨張によって接触し熱伝導可能となるよう、前記間隙の大きさが定められた熱スイッチ。
A first protective layer;
A second protective layer arranged to be paired with the first protective layer;
A thermal expansion member that is bonded to the side of the first protective layer facing the second protective layer and whose volume reversibly changes with a temperature change,
The thermal expansion member and the second protective layer are opposed to each other with a gap without contact at room temperature,
The thermal switch in which the size of the gap is determined so that the thermal expansion member and the second protective layer are in contact with each other by thermal expansion of the thermal expansion member and can conduct heat.
前記熱膨張部材の前記第2保護層に対向する側と、前記第2保護層の前記熱膨張部材に対向する側との最短距離が、0.1〜100μmの範囲となるよう、前記間隙の大きさが定められた請求項1に記載の熱スイッチ。   The gap is set so that the shortest distance between the side of the thermal expansion member facing the second protective layer and the side of the second protective layer facing the thermal expansion member is in the range of 0.1 to 100 μm. The thermal switch of claim 1, wherein the size is defined. 第1保護層と、
前記第1保護層と対になるよう配置された第2保護層と、
温度変化に伴いその体積が可逆的に変化する熱膨張部材と、を備え、
前記熱膨張部材として、
前記第1保護層の前記第2保護層と対向する側に接合された第1熱膨張部材と、
前記第2保護層の前記第1保護層と対向する側に接合された第2熱膨張部材とを含み、
前記第1熱膨張部材と前記第2熱膨張部材とは、常温時に互いに接触することなく間隙を有した状態で対向しており、
前記第1熱膨張部材と前記第2熱膨張部材とが、前記第1熱膨張部材及び前記第2熱膨張部材の熱膨張によって互いに接触し熱伝導可能となるよう、前記間隙の大きさが定められた熱スイッチ。
A first protective layer;
A second protective layer arranged to be paired with the first protective layer;
A thermal expansion member whose volume reversibly changes with a temperature change, and
As the thermal expansion member,
A first thermal expansion member joined to a side of the first protective layer facing the second protective layer;
A second thermal expansion member joined to a side of the second protective layer facing the first protective layer,
The first thermal expansion member and the second thermal expansion member are opposed to each other with a gap without contacting each other at room temperature,
The size of the gap is determined so that the first thermal expansion member and the second thermal expansion member come into contact with each other and can conduct heat by thermal expansion of the first thermal expansion member and the second thermal expansion member. Thermal switch.
前記第1熱膨張部材と、前記第1熱膨張部材と隣接する前記第2熱膨張部材との最短距離が、0.1〜100μmの範囲となるよう、前記間隙の大きさが定められた請求項3に記載の熱スイッチ。   The size of the gap is determined so that the shortest distance between the first thermal expansion member and the second thermal expansion member adjacent to the first thermal expansion member is in a range of 0.1 to 100 μm. Item 4. The thermal switch according to item 3. 前記熱膨張部材は、少なくともその一部として、互いに独立する複数の凸状熱膨張部材を含む請求項1〜4のいずれか1項に記載の熱スイッチ。   The thermal switch according to any one of claims 1 to 4, wherein the thermal expansion member includes a plurality of convex thermal expansion members that are independent from each other as at least a part thereof. 前記熱膨張部材は、任意の温度T℃からT±100℃に温度変化した場合に、その寸法が0.1%以上増加又は減少する材料から形成された請求項1〜5のいずれか1項に記載の熱スイッチ。   The said thermal expansion member is formed from the material from which the dimension increases or decreases 0.1% or more when temperature changes from arbitrary temperature T degree C to T +/- 100 degreeC. The thermal switch described in. 前記熱膨張部材は、40℃から400℃に温度変化した場合の平均線熱膨張率が、5×10−6〜5×10−4/Kの範囲である請求項1〜6のいずれか1項に記載の熱スイッチ。7. The thermal expansion member has an average linear thermal expansion coefficient in the range of 5 × 10 −6 to 5 × 10 −4 / K when the temperature changes from 40 ° C. to 400 ° C. 7. The thermal switch according to item. 前記熱膨張部材は、その体積が温度変化に応じて漸増又は漸減する材料によって形成された請求項1〜7のいずれか1項に記載の熱スイッチ。   The thermal switch according to any one of claims 1 to 7, wherein the thermal expansion member is formed of a material whose volume gradually increases or decreases according to a temperature change. 前記熱膨張部材は、40℃から800℃に温度変化した場合の平均線熱膨張率が、7×10−6〜1×10−4/Kの範囲である請求項8に記載の熱スイッチ。The thermal switch according to claim 8, wherein the thermal expansion member has an average linear thermal expansion coefficient in a range of 7 × 10 −6 to 1 × 10 −4 / K when the temperature changes from 40 ° C. to 800 ° C. 9. 前記熱膨張部材は、ジルコニア、アルミナ、スピネル、マグネシア、カルシア、チタニア、イットリア、フォルステライト、エンスタタイトからなる群より選択されるいずれかによって形成された請求項8又は9に記載の熱スイッチ。   The thermal switch according to claim 8 or 9, wherein the thermal expansion member is formed of any one selected from the group consisting of zirconia, alumina, spinel, magnesia, calcia, titania, yttria, forsterite, and enstatite. 前記熱膨張部材を形成する材料は、前記材料固有の温度を境に、相転移を伴ってその熱膨張率が急激に変化する材料である請求項1〜7のいずれか1項に記載の熱スイッチ。   The heat according to any one of claims 1 to 7, wherein the material forming the thermal expansion member is a material whose thermal expansion coefficient changes rapidly with a phase transition at a temperature unique to the material. switch. 前記熱膨張部材を形成する前記材料は、前記材料固有の温度を境に、相転移を伴ってその寸法が0.1%以上増加又は減少する材料である請求項11に記載の熱スイッチ。   The thermal switch according to claim 11, wherein the material forming the thermal expansion member is a material whose dimension increases or decreases by 0.1% or more with a phase transition at a temperature specific to the material. 前記熱膨張部材は、SiO(クリストバライト)、Ba,Srヘキサセルシアン((BaOSr1−x)O・Al・2SiO(0<x<1))、Ca,Srヘキサセルシアン((CaOSr1−x)O・Al・2SiO(0<x<1))、AuCu合金からなる群より選択されるいずれかによって形成された請求項11又は12に記載の熱スイッチ。The thermal expansion member is made of SiO 2 (Cristobalite), Ba, Sr hexacelsian ((BaO x Sr 1-x ) O · Al 2 O 3 · 2SiO 2 (0 <x <1)), Ca, Sr hexacel cyan ((CaO x Sr 1-x ) O · Al 2 O 3 · 2SiO 2 (0 <x <1)), according to claim 11 or 12 formed by any one selected from the group consisting of AuCu alloy Thermal switch. 前記第1保護層及び前記第2保護層は、1〜500W/mKの熱伝導率を有する材料によって形成された請求項1〜13のいずれか1項に記載の熱スイッチ。   The thermal switch according to any one of claims 1 to 13, wherein the first protective layer and the second protective layer are formed of a material having a thermal conductivity of 1 to 500 W / mK. 前記第1保護層及び前記第2保護層は、金属、又は、酸化物、窒化物、若しくは炭化物からなるセラミックスからなる群より選択されるいずれかによって形成された請求項1〜14のいずれか1項に記載の熱スイッチ。   The said 1st protective layer and the said 2nd protective layer are any one of Claims 1-14 formed from the group which consists of ceramics which consist of a metal or an oxide, a nitride, or a carbide | carbonized_material. The thermal switch according to item. 前記第1保護層と前記第2保護層とが、断熱性を有する連結手段によって互いに連結された請求項1〜15のいずれか1項に記載の熱スイッチ。   The thermal switch according to any one of claims 1 to 15, wherein the first protective layer and the second protective layer are connected to each other by a connecting means having heat insulation properties. 請求項1〜16のいずれか1項に記載の熱スイッチを、熱を発生する熱発生源の周囲に備え、
第1温度と前記第1温度よりも高温の第2温度との間で放熱状態を変化させることにより、前記熱発生源の熱に起因する温度の調整を行う温度調整構造。
The thermal switch according to any one of claims 1 to 16 is provided around a heat generation source that generates heat,
A temperature adjustment structure that adjusts a temperature caused by heat of the heat generation source by changing a heat dissipation state between a first temperature and a second temperature higher than the first temperature.
請求項17に記載の温度調整構造を有するバッテリーパック。   A battery pack having the temperature adjustment structure according to claim 17.
JP2015508427A 2013-03-29 2014-03-20 Thermal switch, temperature control structure, and battery pack Active JP6312656B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013074922 2013-03-29
JP2013074922 2013-03-29
PCT/JP2014/057852 WO2014156991A1 (en) 2013-03-29 2014-03-20 Thermal switch, temperature regulating structure and battery pack

Publications (2)

Publication Number Publication Date
JPWO2014156991A1 true JPWO2014156991A1 (en) 2017-02-16
JP6312656B2 JP6312656B2 (en) 2018-04-18

Family

ID=51623968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015508427A Active JP6312656B2 (en) 2013-03-29 2014-03-20 Thermal switch, temperature control structure, and battery pack

Country Status (2)

Country Link
JP (1) JP6312656B2 (en)
WO (1) WO2014156991A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608624A (en) * 2018-06-14 2019-12-24 舍弗勒技术股份两合公司 Heat exchange unit and heat exchange system for hybrid vehicle
CN110915060A (en) * 2018-02-07 2020-03-24 株式会社Lg化学 Apparatus and method for battery temperature control

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016152688A1 (en) * 2015-03-23 2018-01-18 日本碍子株式会社 Heat dissipation adjustment structure, battery pack, and fluid distribution device
JP6671716B2 (en) * 2015-05-26 2020-03-25 国立大学法人名古屋大学 Variable thermal conductivity device
JP6414364B2 (en) * 2016-03-22 2018-10-31 日立化成株式会社 Resin member, heat switch, heat switch composition and temperature control structure
DE102017213281A1 (en) * 2017-08-01 2019-02-07 Robert Bosch Gmbh Battery module and use of such a battery module
DE102017213276A1 (en) * 2017-08-01 2019-02-07 Robert Bosch Gmbh Battery module and use of such a battery module
DE102017213272A1 (en) * 2017-08-01 2019-02-07 Robert Bosch Gmbh Battery module and use of such a battery module
CN111052494B (en) * 2018-01-31 2024-05-07 松下知识产权经营株式会社 Battery modules and battery packs
CN108565366B (en) * 2018-03-14 2023-12-01 华霆(合肥)动力技术有限公司 Thermal management device and power supply device
JP7559588B2 (en) * 2021-02-02 2024-10-02 マツダ株式会社 Battery unit and control method thereof
JP7567549B2 (en) * 2021-02-25 2024-10-16 マツダ株式会社 Temperature control device for vehicle battery unit and control method thereof
JP7575681B2 (en) * 2021-03-02 2024-10-30 マツダ株式会社 Vehicle battery unit and control method thereof
JP7575682B2 (en) * 2021-03-03 2024-10-30 マツダ株式会社 Vehicle power supply system and method for controlling vehicle battery unit
JP7569710B2 (en) * 2021-03-05 2024-10-18 住友理工株式会社 Thermal Switch
KR20240033060A (en) * 2021-09-16 2024-03-12 레이던 컴퍼니 Phase change material (PCM)-based conductive thermal actuator switch
DE102023114891A1 (en) * 2023-06-06 2024-12-12 Technische Universität Darmstadt, Körperschaft des öffentlichen Rechts Adaptive thermal bridge for a thermally insulated shell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163482A (en) * 2001-11-26 2003-06-06 Nec Corp Heat-resistant control device
JP2008258199A (en) * 2007-03-30 2008-10-23 Sumitomo Bakelite Co Ltd Heat transfer sheet and heat dissipation structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163482A (en) * 2001-11-26 2003-06-06 Nec Corp Heat-resistant control device
JP2008258199A (en) * 2007-03-30 2008-10-23 Sumitomo Bakelite Co Ltd Heat transfer sheet and heat dissipation structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110915060A (en) * 2018-02-07 2020-03-24 株式会社Lg化学 Apparatus and method for battery temperature control
CN110915060B (en) * 2018-02-07 2023-04-18 株式会社Lg新能源 Apparatus and method for battery temperature control
CN110608624A (en) * 2018-06-14 2019-12-24 舍弗勒技术股份两合公司 Heat exchange unit and heat exchange system for hybrid vehicle
CN110608624B (en) * 2018-06-14 2023-03-28 舍弗勒技术股份两合公司 Heat exchange unit and heat exchange system for hybrid vehicle

Also Published As

Publication number Publication date
WO2014156991A1 (en) 2014-10-02
JP6312656B2 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
JP6312656B2 (en) Thermal switch, temperature control structure, and battery pack
JPWO2008111218A1 (en) Thermoelectric converter
CN104868046B (en) Thermal power unit, especially thermoelectric generator or heat pump
WO2014148585A1 (en) Thermal switch, temperature adjustment structure, and battery pack
US9728704B2 (en) Thermoelectric module
JP6632885B2 (en) Thermal switch element
JP2014165188A (en) Thermoelectric transducer
JP2014515071A (en) Exhaust train with integrated thermoelectric generator
JP7670525B2 (en) Thermal control sheet for battery pack and battery pack
JP2009170438A (en) Method for manufacturing thermoelectric conversion device
CN106165134A (en) Thermo-electric conversion module
JP2015005596A (en) Thermoelectric conversion module and method of manufacturing thermoelectric conversion module
JP2009088457A (en) Thermoelectric conversion device and method of manufacturing thermoelectric conversion device
JP2023056748A (en) HEAT TRANSFER SUPPRESSION SHEET, HEAT TRANSFER SUPPRESSION SHEET MANUFACTURING METHOD AND ASSEMBLY BATTERY
JP2005228915A (en) Separated peltier system
JP2013211471A (en) Thermoelectric power generating device
KR102292907B1 (en) Heater core, heater and heating system including thereof
JP5469549B2 (en) Thermoelectric conversion generator
KR102292906B1 (en) Heater core, heater and heating system including thereof
CN217849369U (en) Terminal box
JP6681356B2 (en) Thermoelectric conversion module
KR20210092480A (en) car heater using PTC element and method thereof
JP7519497B2 (en) CERAMIC PLATE, SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR MODULE
CN218755556U (en) Novel heat conduction silica gel gasket
JP2010278191A (en) Thermoelectric conversion element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180320

R150 Certificate of patent or registration of utility model

Ref document number: 6312656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150