JP2010278191A - Thermoelectric conversion element - Google Patents

Thermoelectric conversion element Download PDF

Info

Publication number
JP2010278191A
JP2010278191A JP2009128621A JP2009128621A JP2010278191A JP 2010278191 A JP2010278191 A JP 2010278191A JP 2009128621 A JP2009128621 A JP 2009128621A JP 2009128621 A JP2009128621 A JP 2009128621A JP 2010278191 A JP2010278191 A JP 2010278191A
Authority
JP
Japan
Prior art keywords
heat exchange
thermoelectric conversion
conversion element
fin
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009128621A
Other languages
Japanese (ja)
Inventor
Hiroaki Ando
浩明 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2009128621A priority Critical patent/JP2010278191A/en
Publication of JP2010278191A publication Critical patent/JP2010278191A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion element which has a large-area heat exchange structure that is produced by a simple method, and has high efficiency of thermoelectric conversion and durability. <P>SOLUTION: In the thermoelectric conversion element including a pair of electrode substrates 11 and 12 disposed opposing each other, a thermoelectric conversion module for which a plurality of thermoelectric semiconductors are electrically connected to the opposing inner surface side of the electrode substrates, and a fin for heat exchange on the outer surface side of at least one of the pair of electrode substrates, the fin for the heat exchange is a spiral heat exchange fin 16. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ゼーベック効果を用いた熱電変換素子に関するものである。   The present invention relates to a thermoelectric conversion element using the Seebeck effect.

熱電半導体を用いた発電素子は、熱源となる高温側と、冷却源となる低温側との熱的な接触状態にその性能が大きく影響を受ける。例えば、高温側熱源が平面で無く凹凸がある場合、素子と高温側熱源間の熱交換構造が重要となるような技術が知られて(例えば、特許文献1、2参照)いる。特許文献1では、熱的な接触状態を改良するため、低融点の金属を含有したクッション材を封入した材を熱源と素子間に配し、熱伝達効率を高めているものの、比較的大きな凸点があった場合、近くのクッション剤は熱源に接触できず熱伝導効率が低下するという課題を有している。また、特許文献2では、中空形状のフィンを用いることで、流体を通した熱伝達効率を高めているものの、中空形状のフィンによる熱交換は流体を流し続けないと熱交換の効率が大きく低下すると言う課題を有している。また熱交換の効率は流体の向きにも大きな影響を受け、向きによってはフィンとしての機能を殆ど果たしえないという課題を有している。一方、いわゆるヒートシンクとして、らせん状の構造が提案されて(例えば、特許文献3参照)いる。しかし、熱電変換による発電素子へ適用可能な、耐久性が高く安価な大面積の熱交換構造に関する示唆はされていなかった。また、上記技術では、凹凸を有する熱源への密着を高めると、素子に内部応力が発生し易く、加熱冷却サイクル等に対して耐久性に優れた素子とはいえなかった。   The performance of a power generating element using a thermoelectric semiconductor is greatly affected by the thermal contact state between the high temperature side serving as a heat source and the low temperature side serving as a cooling source. For example, when the high temperature side heat source is not flat but uneven, a technique is known in which a heat exchange structure between the element and the high temperature side heat source is important (see, for example, Patent Documents 1 and 2). In Patent Document 1, in order to improve the thermal contact state, a material enclosing a cushioning material containing a metal having a low melting point is arranged between the heat source and the element to improve heat transfer efficiency, but a relatively large convex When there is a point, the nearby cushioning agent cannot contact the heat source and has a problem that the heat conduction efficiency is lowered. Further, in Patent Document 2, although the heat transfer efficiency through the fluid is improved by using the hollow fins, the heat exchange efficiency by the hollow fins greatly decreases unless the fluid continues to flow. Then there is a problem to say. Further, the efficiency of heat exchange is greatly influenced by the direction of the fluid, and there is a problem that the function as a fin can hardly be achieved depending on the direction. On the other hand, a spiral structure has been proposed as a so-called heat sink (see, for example, Patent Document 3). However, there has been no suggestion of a heat exchange structure with a large area that is durable and inexpensive and can be applied to a power generation element by thermoelectric conversion. Further, in the above technique, when the adhesion to the heat source having unevenness is increased, internal stress is likely to be generated in the element, and it cannot be said that the element is excellent in durability against a heating / cooling cycle or the like.

特開2006−24608号公報JP 2006-24608 A 特開2008−78587号公報JP 2008-78587 A 特開2004−311711号公報JP 2004-311711 A

本発明は上記課題に鑑みなされたものであり、その目的は簡便な方法で作製できる大面積な熱交換構造を有し、高い熱電変換効率と耐久性を有する熱電変換素子を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a thermoelectric conversion element having a large area heat exchange structure that can be manufactured by a simple method and having high thermoelectric conversion efficiency and durability. .

本発明の上記課題は以下の手段によって達成される。   The above object of the present invention is achieved by the following means.

1.対向して配置された一対の電極基板と、前記電極基板の対向する内面側に複数の熱電半導体が電気的に連結された熱電変換モジュールと、前記一対の電極基板のうち、少なくとも一方の電極基板の外面側に熱交換用のフィンを有する熱電変換素子において、前記熱交換用のフィンがらせん状の熱交換フィンであることを特徴とする熱電変換素子。   1. A pair of electrode substrates disposed opposite to each other, a thermoelectric conversion module in which a plurality of thermoelectric semiconductors are electrically connected to opposite inner surfaces of the electrode substrate, and at least one of the pair of electrode substrates A thermoelectric conversion element having heat exchange fins on the outer surface side thereof, wherein the heat exchange fins are helical heat exchange fins.

2.前記らせん状の熱交換フィンが、各々平行になるように配置されていることを特徴とする前記1記載の熱電変換素子。   2. 2. The thermoelectric conversion element according to 1, wherein the spiral heat exchange fins are arranged so as to be parallel to each other.

3.前記らせん状の熱交換フィンが、金属箔からなることを特徴とする前記前記1又は2に記載の熱電変換素子。   3. Said 1 or 2 thermoelectric conversion element characterized by the said helical heat exchange fin consisting of metal foil.

4.前記らせん状の熱交換フィンが両方の前記電極基板に配置されていることを特徴とする前記1〜3のいずれか1項に記載の熱電変換素子。   4). 4. The thermoelectric conversion element according to any one of 1 to 3, wherein the spiral heat exchange fins are disposed on both of the electrode substrates.

5.前記らせん状の熱交換フィンの直径に対する長さの比が2以上であることを特徴とする前記1〜4のいずれか1項に記載の熱電変換素子。   5. 5. The thermoelectric conversion element according to any one of 1 to 4, wherein a ratio of a length to a diameter of the helical heat exchange fin is 2 or more.

本発明により、熱電変換素子に大面積の熱交換構造を簡便な方法で作製でき、かつ高い熱電変換能力が得られ、耐久性にも優れる。   According to the present invention, a heat exchange structure having a large area can be produced in a thermoelectric conversion element by a simple method, high thermoelectric conversion capability is obtained, and durability is excellent.

本発明に係る熱電変換素子の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the thermoelectric conversion element which concerns on this invention. 本発明の熱電変換素子の、高温側と低温側におけるらせん状導電部材の配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of the helical conductive member in the high temperature side and low temperature side of the thermoelectric conversion element of this invention.

本発明の熱電変換素子は、対向して配置された一対の電極基板と、電極基板の対向する内面側に複数の熱電半導体が電気的に連結された熱電変換モジュールと、電極基板の外面側にらせん状の熱交換用フィンを有することを特徴としている。   The thermoelectric conversion element of the present invention includes a pair of electrode substrates arranged opposite to each other, a thermoelectric conversion module in which a plurality of thermoelectric semiconductors are electrically connected to the inner surface of the electrode substrate facing each other, and an outer surface of the electrode substrate. It has a helical heat exchange fin.

〔らせん状の熱交換用フィン〕
本発明に係るらせん状の熱交換用フィンは、1本(枚)または複数の細長い材料を、断面の大きさ、形状がピッチごとに略同一になるよう巻くことで得られる構造をいう。また、らせん形状は擬似的にパイプとみなすことが出来、本発明ではらせん形状をパイプとみなした場合の外径をらせん状の熱交換用フィンの直径、最も数値が大きくなるように測定したときの長さをらせん状の熱交換用フィンの長さと定義する。このような構造には、幾つかの特徴がある。
[Helical heat exchange fins]
The helical heat exchange fin according to the present invention refers to a structure obtained by winding one (sheet) or a plurality of elongated materials so that the cross-sectional size and shape are substantially the same for each pitch. In addition, the spiral shape can be regarded as a pseudo-pipe. In the present invention, when the spiral shape is regarded as a pipe, the outer diameter is measured so that the diameter of the spiral heat exchange fin is the largest value. Is defined as the length of the helical heat exchange fin. Such a structure has several features.

(i)伸縮性がある:らせん状の熱交換用フィンは、らせんを円柱としてみなした場合、その高さ方向の伸縮が可能である。この時に部材内部にかかる応力は、単なる円柱、角柱構造と比して小さくすることができる。また、らせんの断面に垂直な方向に対しても、同様に伸縮性がある。更には、断面と長さ方向に共に垂直な方向に対しては、もともと応力が働かない。   (I) Stretchable: Helical heat exchange fins can stretch in the height direction when the spiral is regarded as a cylinder. At this time, the stress applied to the inside of the member can be reduced as compared with a simple columnar or prismatic structure. Similarly, it has elasticity in the direction perpendicular to the cross section of the helix. Further, no stress is originally applied to a direction perpendicular to both the cross section and the length direction.

また、らせん状の熱交換フィンは柔軟性や屈曲性にも優れており、パイプなどの曲面や凹凸のある面に対しても追従が可能であり、高い熱伝導性を有することが出来る。特にコルゲートフィンなどの従前の熱交換フィンを吸熱フィンとして用い、パイプなどの曲面への適応を試みた場合にフィン同士が干渉し、熱交換の効率が著しく低下する恐れがある。らせん状の熱交換フィンはピッチという空間的余地を有しているため、いかなる方向に屈曲させて用いる場合にもらせん状の熱交換フィンが干渉すること無く、高い熱交換性を維持することが出来る。   In addition, the helical heat exchange fin is excellent in flexibility and flexibility, and can follow a curved surface such as a pipe or an uneven surface, and can have high thermal conductivity. In particular, when conventional heat exchange fins such as corrugated fins are used as heat absorption fins and adaptation to curved surfaces such as pipes is attempted, the fins interfere with each other, and the efficiency of heat exchange may be significantly reduced. Spiral heat exchange fins have a spatial space called pitch, so that they can maintain high heat exchange without interfering with spiral heat exchange fins when bent in any direction. I can do it.

(ii)熱伝導が均一:らせん状の熱交換用フィンを用いる場合には、熱交換用フィンに熱源(冷却源)となる流体を流すことも、固体の熱源(冷却源)に熱交換用フィンを接触させて熱交換を行うことも可能である。   (Ii) Heat conduction is uniform: When a spiral heat exchange fin is used, a fluid serving as a heat source (cooling source) is allowed to flow through the heat exchange fin, or a solid heat source (cooling source) is used for heat exchange. It is also possible to exchange heat by bringing fins into contact.

特に本発明にかかるらせん状の熱交換用フィンを横倒しにした状態で、固体の熱源に接触させて使用する場合には、らせん状の熱交換フィンは熱源に対して点、もしくは面で接触するため、支持基板と熱源間のらせん状の熱交換フィンを介した距離(熱伝導路)は均一となるため効率よい熱伝導が行える。   In particular, when the spiral heat exchange fin according to the present invention is used in contact with a solid heat source while being laid down, the spiral heat exchange fin contacts the heat source at a point or a surface. Therefore, since the distance (heat conduction path) between the support substrate and the heat source via the spiral heat exchange fins is uniform, efficient heat conduction can be performed.

また、熱源などに凹凸があった場合、その凸の大きさより十分に大きなピッチ(線間隔)があれば、その凸を逃れて熱伝導の均一性を保つことができる。また、らせん状の熱交換フィンに凸が接触しても、らせん状の熱交換フィンは高い弾性を有しているため、凹凸面にも柔軟に対応することができる。さらにらせんの各ピッチは物理的な影響を受けないため、凸が接触しているピッチの左右のピッチが影響をうけ変形することも無い。   Further, when the heat source has irregularities, if there is a pitch (line interval) sufficiently larger than the size of the projections, the projections can be escaped and the uniformity of heat conduction can be maintained. In addition, even if the convex contacts the helical heat exchange fin, the helical heat exchange fin has high elasticity, so that it can flexibly cope with uneven surfaces. Further, since each pitch of the helix is not physically affected, the left and right pitches of the pitches with which the projections are in contact are not affected and deformed.

らせん状の熱交換用フィンを放熱用のフィンとして用いる場合には表面積を大きく取れるため、放熱性に優れているため、冷却媒体のを流し続けなくても(ファンなどで風を送らなくても)効率よい放熱が可能である。また、放熱性能が風などの冷却媒体の流れる方向に影響を受けないので、熱電変換素子を設置する場所や方向などを考慮することなく様々な場所に設置することが可能となる。   When using helical heat exchange fins as heat dissipation fins, the surface area can be increased, and heat dissipation is excellent, so even if the cooling medium does not continue to flow (even if air is not sent by a fan, etc.) ) Efficient heat dissipation is possible. Further, since the heat dissipation performance is not affected by the flow direction of the cooling medium such as wind, it can be installed in various places without considering the place and direction of installing the thermoelectric conversion element.

(iii)生産性が高い:連続的に作製することが容易な部材であり、低コストで大量に生産することが可能である。   (Iii) High productivity: It is a member that can be easily produced continuously, and can be produced in large quantities at low cost.

本発明におけるらせん状の熱交換用フィンは、その長さ/直径比が2以上であるが、20以上が好ましく、さらに好ましくは100以上である。これにより熱交換効率が向上し、変換効率が上昇すると共に、耐久性も向上する。逆に以下の場合、変換効率、耐久性とも劣化する。ここでらせん状の熱交換用フィンの巻き方が正確な円でない場合は、その長軸を直径とみなしてよい。   The helical heat exchange fin in the present invention has a length / diameter ratio of 2 or more, preferably 20 or more, and more preferably 100 or more. Thereby, the heat exchange efficiency is improved, the conversion efficiency is increased, and the durability is also improved. Conversely, in the following cases, both conversion efficiency and durability deteriorate. Here, when the winding method of the spiral heat exchange fin is not an accurate circle, the major axis may be regarded as the diameter.

熱交換用フィンの好ましい直径は、必要に応じて決められるが、外径が小さい場合、熱交換能が十分に得られなくなるため好ましくなく、逆に大きすぎる場合、素子の使用に支障が出るばかりでなく、コスト的にも好ましくないため、適当な値が存在する。本素子においては、好ましい外径の最小値は、0.1mm以上である。更に好ましくは、0.5mm以上である。また外径の最大値は、熱交換フィンを含まない素子本体の厚みに対して10倍以下が好ましく、さらに好ましくは5倍以下である。   The preferred diameter of the heat exchange fin is determined according to need. However, if the outer diameter is small, it is not preferable because the heat exchange ability cannot be sufficiently obtained. On the other hand, if it is too large, the use of the element will be hindered. In addition, an appropriate value exists because it is not preferable in terms of cost. In this element, the minimum value of a preferable outer diameter is 0.1 mm or more. More preferably, it is 0.5 mm or more. Further, the maximum value of the outer diameter is preferably 10 times or less, more preferably 5 times or less, with respect to the thickness of the element body not including the heat exchange fins.

本発明におけるらせん状の熱交換用フィンは、その母線断面が円筒状あるいは四角等の、いわゆるコイルバネ状でもよいし、細線を芯線に巻きつけて得られるような部材であっても、特に問題なく使用可能である。中でも、細線断面が略楕円または、略長方形状の金属箔を芯線に巻きつけて得られる、いわゆる箔線であることが好ましい。本発明に係る長さ/直径比は、2以上であることが好ましく、更に好ましくは5以上である。長さ/直径比は、コイルバネでは数十程度でも実用化される場合が多い。コイルバネの場合の長さ/直径比は、2〜50、好ましくは5〜30である。一方、本発明においては、箔線のように、数十から数百μm程度の直径で数kmの長さを有するよう生産される部材、すなわち長さ/直径比が10万以上の部材をそのまま、ないし、一部適当な長さに切断して使用することも好ましい。このような部材を用いると、凹凸を有する面に対する追従性が高い熱交換構造を、大面積に効率よく設ける場合、薄くて長い電極上に、長手方向に沿うようにして、このような線状の部材を多数平行に、しかも一度に配することが可能なため、略平面状の熱交換空間と同形状に広がる熱交換構造を、低コストに作製することも可能となる。   The helical heat exchange fin in the present invention may be a so-called coil spring having a cross section of a generatrix or a square shape, or a member obtained by winding a thin wire around a core wire. It can be used. Among these, a so-called foil wire obtained by winding a metal foil having a thin wire cross section around a substantially elliptical shape or a substantially rectangular shape around a core wire is preferable. The length / diameter ratio according to the present invention is preferably 2 or more, more preferably 5 or more. In many cases, the length / diameter ratio of a coil spring is about several tens of times. The length / diameter ratio in the case of a coil spring is 2-50, preferably 5-30. On the other hand, in the present invention, a member produced to have a length of several kilometers with a diameter of about several tens to several hundreds of μm, such as a foil wire, that is, a member having a length / diameter ratio of 100,000 or more Alternatively, it is also preferable to use it after cutting it to an appropriate length. When such a member is used, when a heat exchange structure having high followability to a surface having irregularities is efficiently provided in a large area, such a linear shape is formed on a thin and long electrode along the longitudinal direction. Since a large number of the members can be arranged in parallel and at the same time, it is possible to produce a heat exchange structure that extends in the same shape as the substantially planar heat exchange space at low cost.

細線や金属箔は一重で巻くことで本発明に係るらせん状の熱交換用フィンとすることができる。また、二重以上の多層、特に金属箔を多層に巻くことで得られるらせん状の熱交換用フィンも好ましい。芯線に巻きつけることで得られるらせん状の熱交換用フィンの場合、内部に芯線を残存させたままで使用することも可能であるが、芯線を除去して使用することも可能である。芯線を溶解できる溶媒で溶解除去する手法や、焼成により除去する手法が適用可能である。   By winding the thin wire or metal foil in a single layer, the helical heat exchange fin according to the present invention can be obtained. Further, a spiral heat exchange fin obtained by winding a double or more multilayer, especially a metal foil in multiple layers is also preferable. In the case of a helical heat exchange fin obtained by winding around a core wire, it can be used with the core wire remaining inside, but it can also be used with the core wire removed. A method of dissolving and removing the core wire with a solvent that can dissolve the core wire and a method of removing the core wire by firing are applicable.

本発明に係るらせん状の熱交換用フィンは長さ/直径比の2以上の部材は、2W/(m・K)以上の熱伝導率を有する材料からなることが好ましい。2W/(m・K)以上の熱伝導率を有する材料としては、銅、アルミ、銀などの各種金属、アルミナや窒化アルミ、炭化珪素、ジルコニアなどのセラミックス、高伝熱性フィラーを配した樹脂コンポジット、炭素繊維、カーボンナノチューブのような炭素材料などを使用することが好ましい。これらの材料を複合化した材料、表面処理をほどこし、熱輻射能を高めた材料も無論使用可能である。それらのらせん状の熱交換用フィンの熱伝導率は、10W/(m・K)以上が好ましく、更に好ましくは50W/(m・K)以上である。   In the helical heat exchange fin according to the present invention, the member having a length / diameter ratio of 2 or more is preferably made of a material having a thermal conductivity of 2 W / (m · K) or more. Resin composites with various metals such as copper, aluminum and silver, ceramics such as alumina, aluminum nitride, silicon carbide and zirconia, and high heat transfer fillers as materials having thermal conductivity of 2W / (m · K) or more It is preferable to use carbon materials such as carbon fibers and carbon nanotubes. Of course, a material obtained by combining these materials and a material that has been subjected to surface treatment to improve heat radiation ability can also be used. The thermal conductivity of these helical heat exchange fins is preferably 10 W / (m · K) or more, more preferably 50 W / (m · K) or more.

らせん形状の作製法としては、先述した、一般的なコイルスプリングの作製法が適用できる他、銅箔糸線の作製法、例えば、公開実用新案公報昭62−7113に記載の銅箔糸線作製法等を用いることができる。セラミックであれば、セラミックの前駆体を型に入れ焼成する手法、セラミックコイル内に金属を配するのであれば、特開2005−340584号に記載の方法などを用いることができる。   As a method for producing a spiral shape, the above-described general method for producing a coil spring can be applied, and a method for producing a copper foil yarn wire, for example, copper foil yarn wire production described in Japanese Published Utility Model Publication Sho 62-7113 The law etc. can be used. In the case of ceramic, a method of putting a ceramic precursor into a mold and firing, and a method described in JP-A-2005-340484 can be used if a metal is disposed in the ceramic coil.

2W/(m・K)以上の熱伝導率を有する材料は、弾性変形能が高いバネ状の部材を用いることは好ましいが、塑性変形を起こしやすい部材を用いることも好ましい。特に局所的な凹凸に追従できる変形能が高いこと重要な場合は、弾性率の低い材料や、いわゆる塑性変形領域の広い金属材料を用いることが好ましい。   As a material having a thermal conductivity of 2 W / (m · K) or more, it is preferable to use a spring-like member having a high elastic deformability, but it is also preferable to use a member that easily causes plastic deformation. In particular, when it is important that the deformability capable of following local irregularities is high, it is preferable to use a material having a low elastic modulus or a metal material having a wide so-called plastic deformation region.

らせん状の熱交換用フィンの母材表面は、平滑でも良いが、微細な凹凸を有していても良い。必要な性能に応じて、材質種とともに選択することが可能である。   The surface of the base material of the helical heat exchange fin may be smooth or may have fine irregularities. Depending on the required performance, it can be selected along with the material type.

〔熱電半導体の選択〕
熱電変換素子を構成する熱電半導体の種類としては、ビスマス−テルル系の半導体のほか、Si−Ge系の半導体、Pb−Te系の半導体などが適用可能である。その他、充填スクッテルダイト化合物、ホウ素化合物、亜鉛アンチモン、クラスレート、擬ギャップ系ホイスラー型化合物、各種酸化物などがある。詳細は、例えば、「熱電変換システムの高効率化・高信頼化技術」(2006年、技術情報協会)、「熱電変換技術ハンドブック」(2008年、株式会社エヌ・ティー・エス)等の記載を参考にできる。有機材料の熱電半導体も使用可能である。これらの中から、使用する温度領域、必要な電力量に応じて適当な半導体を選択することができる。
[Selection of thermoelectric semiconductor]
As the type of thermoelectric semiconductor constituting the thermoelectric conversion element, a bismuth-tellurium-based semiconductor, a Si-Ge-based semiconductor, a Pb-Te-based semiconductor, or the like is applicable. In addition, there are filled skutterudite compounds, boron compounds, zinc antimony, clathrates, pseudogap-based Heusler compounds, various oxides, and the like. Details include, for example, “High-efficiency and high-reliability technology for thermoelectric conversion systems” (2006, Technical Information Association), “Thermoelectric Conversion Technology Handbook” (2008, NTS Corporation), etc. Can be helpful. Organic thermoelectric semiconductors can also be used. From these, an appropriate semiconductor can be selected according to the temperature range to be used and the required electric energy.

〔熱電変換素子の構造〕
基板間に挟まれた電極と熱電半導体の配置については、成書の記載を参考にすることができる。例えば先述の、「熱電変換システムの高効率化・高信頼化技術」(2006年、技術情報協会)、「熱電変換技術ハンドブック」(2008年、株式会社エヌ・ティー・エス)等の記載を参考にできる。
[Structure of thermoelectric conversion element]
Regarding the arrangement of the electrodes and thermoelectric semiconductors sandwiched between the substrates, the description in the book can be referred to. For example, refer to the descriptions in “Thermoelectric Conversion System High Efficiency and High Reliability Technology” (2006, Technical Information Association), “Thermoelectric Conversion Technology Handbook” (2008, NTS Corporation), etc. Can be.

さらに本発明の熱電変化素子の構成について図を用いて説明する。なお、以下の図に示す熱電変換素子は、本発明の熱電変化素子の一例を示すものであり、本発明はここで例示する構成にのみ限定されるものではない。   Furthermore, the structure of the thermoelectric change element of this invention is demonstrated using figures. In addition, the thermoelectric conversion element shown in the following figures shows an example of the thermoelectric change element of this invention, and this invention is not limited only to the structure illustrated here.

図1は、本発明の熱電変換素子の構成の一例を示す概略断面図である。   FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the thermoelectric conversion element of the present invention.

図1(a)に示す熱電変換素子1では、それぞれp型の熱電半導体14とn型の熱電半導体15の対が、電極基板11、12の間に挟まれ、電極と熱電半導体間には、ハンダ等からなる接合空間13が存在している。接合空間13は、応力緩和能を有していても良く、図1に示すように熱電半導体14、15の両側に存在することが好ましい。   In the thermoelectric conversion element 1 shown in FIG. 1A, a pair of a p-type thermoelectric semiconductor 14 and an n-type thermoelectric semiconductor 15 is sandwiched between electrode substrates 11 and 12, respectively. There is a bonding space 13 made of solder or the like. The joint space 13 may have stress relaxation ability, and preferably exists on both sides of the thermoelectric semiconductors 14 and 15 as shown in FIG.

電極基板として、導電性金属である銅板やアルミ板などを電極基板として用意し、その外面に直接熱交換用フィンを設けることが可能である。複数素子を直列接合して用いる場合には、電極間の電気的絶縁を確保するため、電極基板間を部分的に切除するなどしても良い。   As the electrode substrate, it is possible to prepare a copper plate, an aluminum plate, or the like, which is a conductive metal, as the electrode substrate, and directly provide heat exchange fins on the outer surface. When using a plurality of elements connected in series, the electrode substrate may be partially cut away to ensure electrical insulation between the electrodes.

別途電気的に絶縁性の基板を用意し、それと電極基板を組み合わせる手法も適用することができる。すなわち電極基板の外側に、素子の形態を保ち、内部を保護すると共に外部からの熱交換を阻害しないよう、電気絶縁性の基板、例えば絶縁膜付きのステンレス薄板などを用いることができる。その内面に電気伝導性を有する電極基板を後から作製することで、その部分を電極基板として利用することが可能である。   A method of separately preparing an electrically insulating substrate and combining it with an electrode substrate can also be applied. That is, on the outside of the electrode substrate, an electrically insulating substrate such as a stainless steel plate with an insulating film can be used so as to keep the element form, protect the inside and prevent the heat exchange from the outside. By producing an electrode substrate having electrical conductivity on the inner surface later, the portion can be used as an electrode substrate.

上記電極基板を後から作製する手法として、絶縁性基板の表面に、導電性の材料を、メッキ、溶射などの手法により直接層状に作製する手法や、銅箔、アルミ箔などを適当な大きさ、厚みにしたものを貼り付けるなどする手法を用いることができる。これらの電極基板作製時にパターン化を同時に行うことで、素子間の絶縁処理を不要にすることも可能である。   As a method of manufacturing the electrode substrate later, a method of directly forming a conductive material on the surface of the insulating substrate in a layered manner by plating, spraying, or the like, copper foil, aluminum foil or the like having an appropriate size Alternatively, a method of pasting a material having a thickness can be used. By performing patterning at the same time when these electrode substrates are manufactured, it is possible to eliminate the insulation treatment between the elements.

本発明におけるらせん状の熱交換用フィン16および16’は、その外部に、電極面に対してらせん軸が平行になるよう配される(p、n対に対する向きは模式的に示したもので、これに限るものではない)。図1(b)の立体図に示すように、らせん状の熱交換用フィンが平行な平面状になるように配されることも好ましい。   The helical heat exchange fins 16 and 16 'in the present invention are arranged on the outside so that the helical axis is parallel to the electrode surface (the orientation with respect to the p and n pairs is schematically shown). Not limited to this). As shown in the three-dimensional view of FIG. 1B, it is also preferable that the helical heat exchange fins are arranged in parallel planes.

図2は本発明の熱電変換素子の、高温側と低温側におけるらせん状導電部材の配置を示す模式図である。   FIG. 2 is a schematic view showing the arrangement of the spiral conductive members on the high temperature side and the low temperature side of the thermoelectric conversion element of the present invention.

らせん状の熱交換用フィンは空隙部を有し、熱電変換素子が壁状の外壁面を有する熱源や冷却源と接触する時には応力緩和能を発揮すると同時に、熱的な密着性を高める働きをする。らせん状の熱交換用フィンは、局所的な凹凸に対して、個々の接触部のみが変形し、隣接する接触部は変形しにくい構造であるため、微小な凹凸に対して追従性が高い。凹凸が大きい場合は凹凸に見合うらせん外径を有する部材を用いることで容易に追従が可能である。さらにこの場合、流体の対流による熱伝達よりも、らせん状の熱交換用フィンを通した直接の熱伝達が有効な事が多いので、らせん状の熱交換用フィンの母材の、熱源や冷却源との接触面積が線(ないし面)状の接触で大きくなる、例えば箔線のような形状を取ることが好ましい。   Spiral heat exchange fins have voids, and when the thermoelectric conversion element comes into contact with a heat source or cooling source having a wall-like outer wall surface, it exerts stress relaxation capability and at the same time enhances thermal adhesion. To do. The helical heat exchange fin has a structure in which only individual contact portions are deformed with respect to local unevenness and adjacent contact portions are not easily deformed, and therefore has high followability with respect to minute unevenness. When the unevenness is large, it can be easily followed by using a member having a helical outer diameter corresponding to the unevenness. Furthermore, in this case, direct heat transfer through the spiral heat exchange fins is often more effective than heat transfer by fluid convection. Therefore, the heat source and cooling of the base material of the spiral heat exchange fins are effective. It is preferable that the contact area with the source is increased by contact in a line (or plane) shape, for example, a shape like a foil wire.

一方、冷却源が空気、いわゆる空冷の場合、らせん状の熱交換用フィンは他の部材と接触し、変形する必要はない。空冷は、空気との接触、またその対流による熱交換を通した冷却なので、効率よく大面積と接触できる構造を有する熱交換部であることが好ましい。そのため、先に示したように、らせんを構成する部材の比表面積を高める加工を施したらせん状の熱交換用フィンの使用が好ましい。たとえば金属母材として、対向するギアで挟んで凹凸を設けた線や、エッチングで微小な凹凸を設けたらせん状の熱交換用フィンなどが好ましい。らせん状の熱交換用フィンの断面は、生産性を妨げない程度に大きく、空気層中に入り込む形状が好ましい。基板との接合形状は上述のように線状である必要はなく、対流による、流体のらせん状の熱交換用フィンの内外の熱交換を妨げない形状であれば良い。これは空冷だけでなく、水冷のような液体を冷媒とする場合も同様である。熱源が高温の流体で素子表面のらせん状構造が直接接する場合、前記の空冷と同様に断面が大きく流体内に大きく入り込む構造をとることが望ましい。   On the other hand, when the cooling source is air, so-called air cooling, the helical heat exchange fins are in contact with other members and do not need to be deformed. Since air cooling is cooling through contact with air or heat exchange by convection, it is preferably a heat exchange part having a structure capable of efficiently contacting a large area. For this reason, as described above, it is preferable to use a spiral heat exchange fin after processing to increase the specific surface area of the member constituting the helix. For example, a metal base material is preferably a wire provided with irregularities sandwiched between opposing gears or a spiral heat exchange fin provided with minute irregularities by etching. The cross section of the helical heat exchange fin is large enough not to impede productivity, and preferably has a shape that enters the air layer. The bonding shape with the substrate does not need to be linear as described above, and may be any shape that does not hinder heat exchange inside and outside the spiral heat exchange fin of the fluid by convection. This applies not only to air cooling but also to liquids such as water cooling. When the heat source is a high-temperature fluid and the spiral structure on the surface of the element is in direct contact, it is desirable to take a structure that has a large cross-section and greatly enters the fluid, similar to the air cooling described above.

本発明では、熱源側、冷却源側のいずれかにらせん状の熱交換用フィンを有していれば良いが、熱電変換効率向上のためには、少なくとも熱源側に設けることが好ましく、さらに両側に設けることが好ましい。特に、変換効率が高く、耐久性の高い熱交換構造を作製するためには、片側のらせん状の熱交換用フィン同士の長軸が各々平行であるだけでなく。熱源、冷却源両側の部材の長軸も各々平行であることが好ましい。これにより、熱電変換素子を曲面へ貼り付ける場合にも、素子の密着性を高めやすくなり高効率化が達成できると共に、応力緩和能も高まり、熱交換部の耐久性を高めることが可能になる。   In the present invention, it is only necessary to have a helical heat exchange fin on either the heat source side or the cooling source side. However, in order to improve the thermoelectric conversion efficiency, it is preferably provided at least on the heat source side, and further on both sides. It is preferable to provide in. In particular, in order to produce a heat exchange structure with high conversion efficiency and high durability, not only the long axes of the spiral heat exchange fins on one side are parallel to each other. It is preferable that the major axes of the members on both sides of the heat source and the cooling source are also parallel to each other. As a result, even when the thermoelectric conversion element is pasted on a curved surface, it is easy to improve the adhesion of the element and achieve high efficiency, and also the stress relaxation ability can be increased, and the durability of the heat exchange part can be increased. .

らせん状の熱交換用フィンは、電気絶縁基板に直接接合しても、中間接合部材を介して絶縁基板に接合されても良いし、絶縁基板を持たない素子では電極に直接接合することも可能である。この場合、電極同士が短絡しないように接合する必要がある。接合には、ハンダ等の低融点金属を用いることが可能であると共に、各種接着剤、溶接、ロウ付け等が適用可能である。接合においては、必要以上に多量の接合材を用いると、接合に必要な材料が多くコスト的に不利になると同時に、上記の密着性、応力緩和性が損なわれる可能性がある。逆に少なすぎると接合信頼性とともに熱伝導効率が低下し十分な熱交換能が得られず、起電力も損なわれるため適度な値が存在する。その値は実験的に求めることができるが、らせん状の熱交換用フィンが平面状の空間をなすと考えると、その全体積に対して、10体積%以上、90体積%以下であることが好ましい。より好ましくは、20体積%以上、80体積%以下である。   Spiral heat exchange fins can be directly bonded to an electrically insulating substrate, bonded to an insulating substrate via an intermediate bonding member, or directly to an electrode in an element without an insulating substrate. It is. In this case, it is necessary to join the electrodes so as not to short-circuit each other. For joining, a low melting point metal such as solder can be used, and various adhesives, welding, brazing and the like can be applied. In joining, if a larger amount of joining material is used than necessary, a large amount of materials are required for joining, which is disadvantageous in terms of cost, and at the same time, the above-mentioned adhesion and stress relaxation properties may be impaired. On the other hand, if the amount is too small, the heat conduction efficiency is lowered together with the bonding reliability, and sufficient heat exchange ability cannot be obtained, and the electromotive force is also impaired, so that an appropriate value exists. The value can be obtained experimentally. However, when it is considered that the helical heat exchange fin forms a planar space, it is 10% by volume or more and 90% by volume or less with respect to the total volume. preferable. More preferably, it is 20 volume% or more and 80 volume% or less.

〔らせん状の熱交換用フィンの配列方法〕
本発明におけるらせん状の熱交換用フィンは、支持基板の必要な厚みに応じて適当な太さで、かつ太さの分布を適宜選択し、適切な製造装置で配することで作製可能であり、従来公知のすべての手法が適用可能である。らせん状の熱交換用フィンが各々平行に配されているとき、隣接するらせん状の熱交換用フィンが接触ないし密着していても良いが、らせん状の熱交換用フィンのなす空間に対し、必ずしも高密度を占めている必要は無い。空冷用の熱交換部材として用いる場合は、若干の間隙を有することで空気の対流を増し冷却能を上げることも可能である。若干の間隙は、上記の曲面への密着性においても有利に働く。ただし、らせん状の熱交換用フィンの配置時に局所的に空隙が存在すると、局所的には熱交換能力が得られるが、素子全体の機能を向上することは期待できない。そのため空隙は熱交換空間面内に、小さく均一に分布していることが好ましい。たとえば平面状の熱交換空間の投影面から厚み方向に観察した場合に、導電性材料の存在していない空隙は、見かけ上小さいことが望ましい。好ましくは30%以上、より好ましくは70%以上である。
[Method of arranging helical heat exchange fins]
The helical heat exchange fin according to the present invention can be manufactured by appropriately selecting the thickness distribution according to the required thickness of the support substrate and arranging the thickness distribution with an appropriate manufacturing apparatus. All conventionally known methods are applicable. When the spiral heat exchange fins are arranged in parallel, the adjacent spiral heat exchange fins may be in contact or in close contact with each other, but with respect to the space formed by the spiral heat exchange fins, It does not necessarily occupy a high density. When used as a heat exchange member for air cooling, it is possible to increase the air convection and increase the cooling capacity by having a slight gap. A slight gap also works advantageously in the adhesion to the curved surface. However, if voids are present locally when the helical heat exchange fins are arranged, heat exchange capability can be obtained locally, but it cannot be expected to improve the function of the entire device. Therefore, it is preferable that the voids are small and uniformly distributed in the heat exchange space. For example, when observed in the thickness direction from the projection surface of the planar heat exchange space, it is desirable that the gap where no conductive material exists is apparently small. Preferably it is 30% or more, more preferably 70% or more.

上記の観点から、らせん状導電性部材はその長軸が各々平行に配されていることが好ましい。これにより、空隙をより均一に熱交換空間内に配置できる他、少なくとも一定方向への可撓性を高め、耐久性を高めることが可能になる。   From the above viewpoint, it is preferable that the long axis of the helical conductive member is arranged in parallel. As a result, the air gaps can be disposed more uniformly in the heat exchange space, and at the same time, the flexibility in at least a certain direction can be improved and the durability can be improved.

らせん状の導電性部材を各々平行に配するためには、例えば下記の手法、およびその組合せが考えられる。   In order to arrange the spiral conductive members in parallel, for example, the following methods and combinations thereof are conceivable.

(1)らせん状の熱交換用フィンをあらかじめ平行に仮固定後、基板等と接合する。   (1) A helical heat exchange fin is temporarily fixed in parallel and then joined to a substrate or the like.

(2)らせん状の熱交換用フィンを基板等と、逐次接合する。   (2) A spiral heat exchange fin is sequentially joined to a substrate or the like.

上記(1)の場合は、らせん状の熱交換用フィンとして、銅箔糸線を用いる場合、光ファイバー用V溝基板などを用いることで容易に配列・固定が可能であり、必要に応じて結着剤等でこの箔線をリボン状に仮成型した後、接合面のみ結着材を取り除き、クリームハンダや銀ぺーストを塗布する。リフロー炉を通して基板と接合後、溶剤を用いて結着材、箔線の芯線を除去することで、らせん状の熱交換用フィンと基板の結合を完了することができる。仮成型の代わりに、テープ状の保持部材に箔線を平行に並べて貼り付けた状態で、クリームハンダを塗布した電極に一括して半田付け接合することも可能である。   In the case of (1) above, when a copper foil wire is used as the helical heat exchange fin, it can be easily arranged and fixed by using a V-groove substrate for optical fibers, etc. After temporarily forming the foil wire into a ribbon shape with an adhesive or the like, the binder is removed only on the joint surface, and cream solder or silver paste is applied. After bonding to the substrate through a reflow furnace, the binder and the core wire of the foil wire are removed using a solvent, whereby the bonding of the spiral heat exchange fin and the substrate can be completed. Instead of temporary molding, it is also possible to perform soldering and joining to the electrodes coated with cream solder in a state where foil wires are arranged in parallel and attached to a tape-like holding member.

上記(2)の場合は、らせん状の熱交換用フィンとして金属を用いると、コイルとしての働きを有するため、いわゆる高周波加熱が可能である。そのため、芯線中にハンダ等の接合金属を少量含有させておき、電極と密着後、高周波加熱で芯線中の接合用の金属を溶融させると、自重でらせん状の熱交換用フィンから染み出し、電極と接合することが期待できる。この手法を用い、1本ずつ基板上に配置、加熱接合を繰り返すことでらせん状の導電性部材を配した熱交換空間を作製できる。これ以外にも抵抗加熱など、各種の加熱接合法が適用可能である。   In the case of (2) above, when a metal is used as the helical heat exchange fin, it has a function as a coil, and so-called high-frequency heating is possible. Therefore, a small amount of bonding metal such as solder is contained in the core wire, and after adhering to the electrode, when the metal for bonding in the core wire is melted by high frequency heating, it exudes from its own weight and spiral heat exchange fin, It can be expected to be joined to the electrode. Using this method, a heat exchange space in which a spiral conductive member is arranged can be produced by repeating the heating and joining one by one on the substrate. In addition to this, various heat bonding methods such as resistance heating can be applied.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

p、n熱電半導体の作製と表面処理
アルゴン中で双ロール急冷法で作製した数mm角で厚みが約500μmのp型熱電半導体((BiTe0.25(SbTe0.75)薄片の両面に、各々イオンプレーティング法で1μm厚のNi膜を形成した。
Preparation and surface treatment of p and n thermoelectric semiconductors A p-type thermoelectric semiconductor ((Bi 2 Te 3 ) 0.25 (Sb 2 Te 3 ) 0 having a thickness of about 500 μm and a thickness of several mm square produced by a twin roll quenching method in argon. .75 ) A Ni film having a thickness of 1 μm was formed on both sides of the thin piece by an ion plating method.

同様に、双ロール法で作製した、数mm角の矩形で厚みが約500μmのn型熱電半導体((BiTe2.7(BiSe0.3)薄片の両面に、各々イオンプレーティング法で1μm厚のNi膜を形成した。 Similarly, an n-type thermoelectric semiconductor ((Bi 2 Te 3 ) 2.7 (Bi 2 Se 3 ) 0.3 ) having a thickness of about 500 μm and a rectangle of several mm square produced by a twin roll method is provided on both sides of a thin piece. Ni films each having a thickness of 1 μm were formed by ion plating.

ともに、表面に0.1mm以下の微小な凹凸を有し、厚みに同程度のばらつきのある表面処理済みの半導体片であった。   Both were surface-treated semiconductor pieces having minute irregularities of 0.1 mm or less on the surface and having the same variation in thickness.

熱電変換素子1の作製
〔らせん状の熱交換用フィンの作製〕
1)コイルバネ:太さ0.1mmのCu−Be線を用いて、巻き外径(直径)0.5mm、巻きピッチ0.12mmとなるようにCu−Be線を巻いたものを所定の長さで裁断し、コイルバネ1(銅線らせん状の熱交換用フィン)を得た。
Production of thermoelectric conversion element 1 [Production of helical heat exchange fin]
1) Coil spring: Cu-Be wire with a thickness of 0.1 mm and a wound length of 0.5 mm and a winding pitch of 0.12 mm are wound with a predetermined length. The coil spring 1 (copper wire spiral heat exchange fin) was obtained.

コイルバネ1の作製と同様の方法で、巻き外径を0.75mm、1mmにしたものをそれぞれコイルバネ2、コイルバネ3とした(巻きピッチは0.12mmとした。)。   A coil spring 2 and a coil spring 3 having a winding outer diameter of 0.75 mm and 1 mm in the same manner as the production of the coil spring 1 were respectively used (the winding pitch was 0.12 mm).

2)箔線らせん状の熱交換用フィン:太さ0.08mmの強力テトロン線を縒り合せたものを芯線として、幅0.22mm、厚み0.023mmの銅箔を巻きつけ、巻き外径(直径)0.19mm、巻きピッチ0.12mmに巻いたものを所定の長さで裁断し、箔線らせん状の熱交換用フィン1を得た。   2) Foil wire spiral heat exchange fin: a core wire made of twisted 0.08mm thick tetron wire, wound with copper foil of width 0.22mm and thickness 0.023mm, and wound outer diameter ( What was wound at a diameter of 0.19 mm and a winding pitch of 0.12 mm was cut to a predetermined length to obtain a foil wire spiral heat exchange fin 1.

箔線らせん状の熱交換用フィン1作製と同様の方法で、巻き外径を0.40mm、0.60mmにしたものをそれぞれ箔線らせん状の熱交換用フィン2、箔線らせん状の熱交換用フィン3とした(巻きピッチは0.12mmとした。)。   The foil wire spiral heat exchange fins 1 and foil wire spiral heat exchange fins 2 and 0.40 mm and 0.60 mm, respectively, were prepared in the same manner as the production of the foil wire spiral heat exchange fins 1. The replacement fin 3 was used (the winding pitch was 0.12 mm).

ジルコニアコイルバネ:上記1)で作製したコイルバネ1を石膏で型取りし、コイルバネ1を作製した。次に分散剤と消泡剤を加えたジルコニア粉末(平均粒径10μm)の水分散物(ジルコニア90質量%含有)をコイルバネ1の型に加圧注入し、静置・乾燥させた。その後、1000度で仮焼成し、1600度の真空炉内で3時間焼成した。十分に冷やした後、石膏内から取り出したジルコニアコイルバネを洗浄・乾燥し、ジルコニアコイルバネを得た。   Zirconia coil spring: The coil spring 1 produced in the above 1) was cast with plaster to produce the coil spring 1. Next, an aqueous dispersion (containing 90% by mass of zirconia) of zirconia powder (average particle size 10 μm) to which a dispersant and an antifoaming agent were added was injected into the mold of the coil spring 1 and allowed to stand and dried. Then, it was temporarily fired at 1000 degrees and fired in a vacuum furnace at 1600 degrees for 3 hours. After sufficiently cooling, the zirconia coil spring taken out from the gypsum was washed and dried to obtain a zirconia coil spring.

ポリエステルコイルバネ:上記1)で作製したコイルバネ1を石膏で型取りし、コイルバネ1の型を作製した。この型に熱溶融させたポリエチレンテレフタラート樹脂を加圧注入し、十分に冷却した後、石膏型から取り出したポリエステルコイルバネを洗浄・乾燥し、ポリエステルコイルバネを得た。   Polyester coil spring: The coil spring 1 produced in the above 1) was molded with plaster to produce a mold of the coil spring 1. A polyethylene terephthalate resin melted by heat in this mold was injected under pressure, and after sufficiently cooling, the polyester coil spring taken out from the gypsum mold was washed and dried to obtain a polyester coil spring.

〔熱電変換素子1の作製〕
(1)低温側(空冷)基板の作製
アルミナ絶縁皮膜を表面に有するステンレス基板(大きさ7cm×3cm、厚み約50μm)の片面に、熱可塑性銀ペースト(STAY STICK 191、テクノアルファ株式会社製)を塗布、静置後、上記1)で作製したコイルバネ1(長さ/直径比:3)を個々にコイルバネスプリングフィーダーを用いて、ステンレス基板に供給した。この時、全てのコイルバネ1は横になった状態で基板上に配置し、コイルバネ1の投影面積がステンレス基板面積の40%となるように設けた。その後、1Torr(1Torrは133.322Paである)に減圧した真空チャンバー中でIRヒーターを用いて基板温度が約150度になるように加熱し、コイルバネを接合した。裏面にはステンレス基板の中央部にステンレスからなるマスクを取り付けた後、アセチレンガスの燃焼炎(2800℃)を用いたガスフレーム溶射で、皮膜状のアルミ電極基板(約50μm)を設け、低温側基板を作製した。
[Production of Thermoelectric Conversion Element 1]
(1) Production of low-temperature side (air-cooled) substrate Thermoplastic silver paste (STAY STICK 191 manufactured by Techno Alpha Co., Ltd.) on one side of a stainless steel substrate (size 7 cm × 3 cm, thickness about 50 μm) having an alumina insulating film on the surface After coating and standing, the coil spring 1 (length / diameter ratio: 3) prepared in 1) above was individually supplied to the stainless steel substrate using a coil spring spring feeder. At this time, all the coil springs 1 were placed on the substrate in a lying state, and provided so that the projected area of the coil spring 1 was 40% of the stainless steel substrate area. Thereafter, the substrate was heated using an IR heater in a vacuum chamber depressurized to 1 Torr (1 Torr is 133.322 Pa) using an IR heater, and a coil spring was joined. On the back side, a stainless steel mask is attached to the center of the stainless steel substrate, and then a film-like aluminum electrode substrate (about 50 μm) is provided by gas flame spraying using an acetylene gas combustion flame (2800 ° C). A substrate was produced.

(2)高温側基板の作製
アルミナ絶縁皮膜を有するステンレス基板にアセチレンガスの燃焼炎を用いたガスフレーム溶射で、厚み約50μmの皮膜状のアルミ電極基板を設け、高温側基板を作製した。
(2) Production of High-Temperature Side Substrate A high-temperature side substrate was produced by providing a film-like aluminum electrode substrate having a thickness of about 50 μm by gas flame spraying using a combustion flame of acetylene gas on a stainless steel substrate having an alumina insulating coating.

作製した高温側基板の皮膜状のアルミ電極基板を設けた面に、メタルマスク(開口率約0.57)を用いて、平均直径が30〜40μmの鉛フリー球状クリームハンダを塗布した。   A lead-free spherical cream solder having an average diameter of 30 to 40 μm was applied to the surface of the manufactured high temperature side substrate provided with a film-like aluminum electrode substrate using a metal mask (aperture ratio of about 0.57).

その後クリームハンダ上にp型、n型半導体片をピンセットを用いて配置した。低温側基板のアルミ電極皮膜を設けた面にも、メタルマスク(開口率約0.57)を用いて、平均直径が30〜40μmの鉛フリー球状クリームハンダを塗布した。高温側基板のp型、n型半導体片配置面に低温側電極を載せ、半導体片を挟むようにして錘で固定したまま、260度のリフロー炉で30秒リフローを行い、電極と半導体を半田付けした後、シールを施し、熱電変換素子1を作製した。   Thereafter, p-type and n-type semiconductor pieces were placed on the cream solder using tweezers. Lead free spherical cream solder having an average diameter of 30 to 40 μm was also applied to the surface of the low temperature side substrate provided with the aluminum electrode film using a metal mask (aperture ratio of about 0.57). The low-temperature side electrode is placed on the p-type and n-type semiconductor piece arrangement surface of the high-temperature side substrate, and the semiconductor piece is fixed with a weight so as to sandwich the semiconductor piece. Then, the thermoelectric conversion element 1 was produced by sealing.

シールには、電気絶縁性のシリコーンシーラント(セメダイン8000)を使用し、両端にアルミ溶射電極が各1cm幅で出るようにしてシールした。シーラントの硬化はタックフリーになるまで乾燥した後、注射針を差して内部のガスの抜け道を確保できるようにして減圧し、内部がほぼ真空になるようにしてから加熱することで行った。   For the sealing, an electrically insulating silicone sealant (Cemedine 8000) was used, and sealing was performed so that the aluminum sprayed electrodes protruded at both ends at a width of 1 cm. The sealant was hardened by drying until tack-free, and then reducing the pressure by inserting an injection needle so as to ensure the escape path of the gas inside, and then heating after the inside was almost evacuated.

〔熱電変換素子2〜21の作製〕
熱電変換素子2〜21は下記の方法によって作製した。
[Production of thermoelectric conversion elements 2 to 21]
Thermoelectric conversion elements 2 to 21 were produced by the following method.

長さ/直径比が3のコイルバネ1を低温側電極にランダムに配置した以外は、熱電変換素子1と同様の方法で、熱電変換素子2を作製した。   A thermoelectric conversion element 2 was produced in the same manner as the thermoelectric conversion element 1 except that the coil spring 1 having a length / diameter ratio of 3 was randomly arranged on the low temperature side electrode.

長さ/直径比が10のコイルバネ1を低温側電極に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子3を作製した。熱電変換素子3は全てのコイルバネを並行に並べておらず、一部平行でない無いまま固定させたコイルバネを有している。   A thermoelectric conversion element 3 was produced in the same manner as the thermoelectric conversion element 1 except that the coil spring 1 having a length / diameter ratio of 10 was provided on the low temperature side electrode. The thermoelectric conversion element 3 does not have all the coil springs arranged in parallel, and has a coil spring that is fixed without being partially parallel.

長さ/直径比が30のコイルバネ1をコイルバネ同士が平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子4を作製した。   A thermoelectric conversion element 4 was produced in the same manner as the thermoelectric conversion element 1 except that the coil spring 1 having a length / diameter ratio of 30 was provided outside the low temperature side electrode substrate so that the coil springs were parallel to each other.

長さ/直径比が3のコイルバネ2をコイルバネ同士が平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子5を作製した。   A thermoelectric conversion element 5 was produced in the same manner as the thermoelectric conversion element 1 except that the coil spring 2 having a length / diameter ratio of 3 was provided outside the low temperature side electrode substrate so that the coil springs were parallel to each other.

長さ/直径比が10のコイルバネ2をコイルバネ同士が平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子6を作製した。   A thermoelectric conversion element 6 was produced in the same manner as the thermoelectric conversion element 1 except that the coil spring 2 having a length / diameter ratio of 10 was provided outside the low temperature side electrode substrate so that the coil springs were parallel to each other.

長さ/直径比が3のコイルバネ3をコイルバネ同士が平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子7を作製した。   A thermoelectric conversion element 7 was produced in the same manner as the thermoelectric conversion element 1 except that the coil spring 3 having a length / diameter ratio of 3 was provided outside the low temperature side electrode substrate so that the coil springs were parallel to each other.

長さ/直径比が10のコイルバネ3をコイルバネ同士が平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子8を作製した。   A thermoelectric conversion element 8 was produced in the same manner as the thermoelectric conversion element 1 except that the coil spring 3 having a length / diameter ratio of 10 was provided outside the low temperature side electrode substrate so that the coil springs were parallel to each other.

長さ/直径比が3のジルコニアコイルバネをコイルバネ同士が平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子9を作製した。   A thermoelectric conversion element 9 was produced in the same manner as the thermoelectric conversion element 1 except that a zirconia coil spring having a length / diameter ratio of 3 was provided outside the low temperature side electrode substrate so that the coil springs were parallel to each other.

長さ/直径比が3のジルコニアコイルバネを低温側電極基板外側にランダムに配置した以外は、熱電変換素子1と同様の方法で、熱電変換素子10を作製した。   A thermoelectric conversion element 10 was produced in the same manner as the thermoelectric conversion element 1 except that zirconia coil springs having a length / diameter ratio of 3 were randomly arranged outside the low temperature side electrode substrate.

長さ/直径比が3のポリエステルコイルバネをコイルバネ同士が平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子11を作製した。   A thermoelectric conversion element 11 was produced in the same manner as the thermoelectric conversion element 1 except that a polyester coil spring having a length / diameter ratio of 3 was provided outside the low temperature side electrode substrate so that the coil springs were parallel to each other.

長さ/直径比が3のポリエステルコイルバネを低温側電極基板外側にランダムに配置した以外は、熱電変換素子1と同様の方法で、熱電変換素子12を作製した。   A thermoelectric conversion element 12 was produced in the same manner as the thermoelectric conversion element 1 except that polyester coil springs having a length / diameter ratio of 3 were randomly arranged outside the low temperature side electrode substrate.

長さ/直径比が50の箔線らせん状の熱交換用フィン1を箔線らせん状の熱交換用フィンが平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子13を作製した。   The thermoelectric conversion element 1 except that the foil wire spiral heat exchange fin 1 having a length / diameter ratio of 50 is provided outside the low temperature side electrode substrate so that the foil wire spiral heat exchange fins are parallel to each other. The thermoelectric conversion element 13 was produced by the same method.

長さ/直径比が100の箔線らせん状の熱交換用フィン1を箔線らせん状の熱交換用フィンが平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子14を作製した。   The thermoelectric conversion element 1 except that the foil wire spiral heat exchange fin 1 having a length / diameter ratio of 100 is provided outside the low temperature side electrode substrate so that the foil wire spiral heat exchange fins are parallel to each other. The thermoelectric conversion element 14 was produced by the same method.

長さ/直径比が150の箔線らせん状の熱交換用フィン1を箔線らせん状の熱交換用フィンが平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子15を作製した。   The thermoelectric conversion element 1 except that the foil wire spiral heat exchange fin 1 having a length / diameter ratio of 150 is provided outside the low temperature side electrode substrate so that the foil wire spiral heat exchange fins are parallel to each other. The thermoelectric conversion element 15 was produced by the same method.

長さ/直径比が100の箔線らせん状の熱交換用フィン2を箔線らせん状の熱交換用フィンが平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子16を作製した。   The thermoelectric conversion element 1 except that the foil wire spiral heat exchange fin 2 having a length / diameter ratio of 100 is provided outside the low temperature side electrode substrate so that the foil wire spiral heat exchange fins are parallel to each other. The thermoelectric conversion element 16 was produced by the same method.

長さ/直径比が150の箔線らせん状の熱交換用フィン2を箔線らせん状の熱交換用フィンが平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子17を作製した。   The thermoelectric conversion element 1 except that the foil wire spiral heat exchange fin 2 having a length / diameter ratio of 150 is provided outside the low temperature side electrode substrate so that the foil wire spiral heat exchange fins are parallel to each other. The thermoelectric conversion element 17 was produced by the same method.

長さ/直径比が100の箔線らせん状の熱交換用フィン3を箔線らせん状の熱交換用フィンが平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子18を作製した。   The thermoelectric conversion element 1 except that the foil wire spiral heat exchange fin 3 having a length / diameter ratio of 100 is provided outside the low temperature side electrode substrate so that the foil wire spiral heat exchange fins are parallel to each other. The thermoelectric conversion element 18 was produced by the same method.

長さ/直径比が150の箔線らせん状の熱交換用フィン3を箔線らせん状の熱交換用フィンが平行になるように低温側電極基板外側に設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子19を作製した。   The thermoelectric conversion element 1 except that the foil wire spiral heat exchange fin 3 having a length / diameter ratio of 150 is provided outside the low temperature side electrode substrate so that the foil wire spiral heat exchange fins are parallel to each other. The thermoelectric conversion element 19 was produced by the same method.

(比較例)
高さ4.6mm、フィンピッチ2.1mmの市販のコルゲートフィン型ヒートシンク1を投影面積比で、ステンレス基板面積の40%を覆うように設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子20を作製した。
(Comparative example)
Except for providing a commercially available corrugated fin-type heat sink 1 having a height of 4.6 mm and a fin pitch of 2.1 mm so as to cover 40% of the stainless steel substrate area in the projected area ratio, the same method as the thermoelectric conversion element 1, The thermoelectric conversion element 20 was produced.

特開2008−78578の図2に記載された形状を参考とし、高さ0.2mm、フィンピッチ0.5mmとなるように加工したコルゲートフィン型ヒートシンク2をステンレス基板面積の40%を覆うように設けた以外は、熱電変換素子1と同様の方法で、熱電変換素子21を作製した。   With reference to the shape described in FIG. 2 of Japanese Patent Application Laid-Open No. 2008-78578, the corrugated fin heat sink 2 processed to have a height of 0.2 mm and a fin pitch of 0.5 mm so as to cover 40% of the area of the stainless steel substrate. A thermoelectric conversion element 21 was produced in the same manner as the thermoelectric conversion element 1 except that it was provided.

《熱電変換効率の測定》
得られた各熱電変換素子を高温電極基板外側は120℃の平板ホットプレートと接するように設置し、低温電極基板外側は、20℃の空気を熱交換用フィンの主軸に対して平行な方向に3m/sで流した状態での低温側電極から得られた起電力値を測定し、熱電変換効率を測定した。
<Measurement of thermoelectric conversion efficiency>
Each obtained thermoelectric conversion element was placed so that the outside of the high temperature electrode substrate was in contact with a 120 ° C flat plate hot plate, and the outside of the low temperature electrode substrate was placed in a direction parallel to the main axis of the heat exchange fin with 20 ° C air. The electromotive force value obtained from the low temperature side electrode in a state of flowing at 3 m / s was measured, and the thermoelectric conversion efficiency was measured.

低温電極基板外側に流す空気を熱交換用フィンの主軸に対して垂直な方向に流した以外は同様の条件で、低温側電極から得られた起電力値を測定し、熱電変換効率を測定した。   The electromotive force value obtained from the low temperature side electrode was measured under the same conditions except that the air flowing outside the low temperature electrode substrate was flowed in a direction perpendicular to the main axis of the heat exchange fin, and the thermoelectric conversion efficiency was measured. .

熱電変換効率は、熱電変換素子1において、らせん状の熱交換用フィンの主軸に対して平行な方向に空気を流した場合の起電力値を100として、相対値を求めた。得られる相対電力値が大きいほど、熱電変換能の高い素子と考えられる。表1に各熱電変換素子の起電力値を示す。   The thermoelectric conversion efficiency was determined as a relative value in the thermoelectric conversion element 1, with the electromotive force value when air was passed in the direction parallel to the main axis of the helical heat exchange fin as 100. The larger the relative power value obtained, the higher the thermoelectric conversion capability. Table 1 shows an electromotive force value of each thermoelectric conversion element.

《耐久性の評価》
熱交換空間が有する応力緩和能は次のようにして評価した。
<< Durability Evaluation >>
The stress relaxation ability of the heat exchange space was evaluated as follows.

各熱電変換素子を−40℃の冷凍庫内に30秒静置した後、120℃のホットプレートに30秒静置するというサイクルを1000サイクル繰り返し、上記の熱電変換効率評価を行った。尚、冷却風は冷却面に対して平行に流して測定し、その値は熱電変換素子1の値を100とした相対値で示してある。   Each thermoelectric conversion element was allowed to stand in a freezer at −40 ° C. for 30 seconds and then left on a hot plate at 120 ° C. for 30 seconds, and the above-described thermoelectric conversion efficiency evaluation was performed. The cooling air was measured by flowing parallel to the cooling surface, and the value is shown as a relative value with the value of the thermoelectric conversion element 1 being 100.

Figure 2010278191
Figure 2010278191

表1から明らかな様に、本発明の熱交換用のフィンを有する熱電変換素子は、コルゲートフィン型ヒートシンクを設けた熱電変換素子に較べて、冷却風の通りがよいので変換効率が優れていることが判る。特に、コルゲートフィン型ヒートシンクを設けた熱電変換素子は、冷却風がフィンの主軸に対して垂直の場合、風上側のフィンが冷却風を遮るので極めて効率が悪い。更に、コイルバネを熱交換用のフィンにした、熱交換素子1〜12は、冷却風がフィンの主軸に対して垂直の場合、冷却風はコイルの間隙を通過するので、冷却風の方向に殆ど左右されないことが判る。   As is apparent from Table 1, the thermoelectric conversion element having the fins for heat exchange according to the present invention is superior in conversion efficiency because the cooling air is better than the thermoelectric conversion element provided with the corrugated fin heat sink. I understand that. In particular, a thermoelectric conversion element provided with a corrugated fin heat sink is extremely inefficient when the cooling air is perpendicular to the main axis of the fin, since the fin on the windward side blocks the cooling air. Furthermore, in the heat exchange elements 1 to 12 in which the coil spring is a heat exchange fin, when the cooling air is perpendicular to the main axis of the fin, the cooling air passes through the gap of the coil, so that it is almost in the direction of the cooling air. It turns out that it is not influenced.

〔熱電変換素子22〜39の作製〕
低温側電極基板外側にらせん状の熱交換用フィンを設けず、低温側電極基板外側にらせん状の熱交換用フィンを設けた方法と同様の方法で、高温側電極基板外側に長さ/直径比が10のコイルバネ1を設けた以外は熱電変換素子1と同様の方法で熱電変換素子22を作製した。
[Production of Thermoelectric Conversion Elements 22 to 39]
The length / diameter outside the high temperature side electrode substrate is the same as the method where the helical heat exchange fins are not provided outside the low temperature side electrode substrate and the helical heat exchange fins are provided outside the low temperature side electrode substrate. A thermoelectric conversion element 22 was produced in the same manner as the thermoelectric conversion element 1 except that the coil spring 1 having a ratio of 10 was provided.

高温側電極基板外側に長さ/直径比が50の箔線らせん状の熱交換用フィン1を設けた以外は熱電変換素子22と同様の方法で熱電変換素子23を作製した。   A thermoelectric conversion element 23 was produced in the same manner as the thermoelectric conversion element 22 except that the foil wire spiral heat exchange fin 1 having a length / diameter ratio of 50 was provided outside the high temperature side electrode substrate.

高温側電極基板外側に長さ/直径比が100の箔線らせん状の熱交換用フィン1を設けた以外は熱電変換素子22と同様の方法で熱電変換素子24を作製した。   A thermoelectric conversion element 24 was produced in the same manner as the thermoelectric conversion element 22 except that the foil wire spiral heat exchange fin 1 having a length / diameter ratio of 100 was provided outside the high temperature side electrode substrate.

高温側電極基板外側に長さ/直径比が150の箔線らせん状の熱交換用フィン1を設けた以外は熱電変換素子22と同様の方法で熱電変換素子25を作製した。   A thermoelectric conversion element 25 was produced in the same manner as the thermoelectric conversion element 22 except that the foil wire spiral heat exchange fin 1 having a length / diameter ratio of 150 was provided outside the high temperature side electrode substrate.

高温側電極基板外側に長さ/直径比が100の箔線らせん状の熱交換用フィン2を設けた以外は熱電変換素子22と同様の方法で熱電変換素子26を作製した。   A thermoelectric conversion element 26 was produced in the same manner as the thermoelectric conversion element 22 except that the foil wire spiral heat exchange fin 2 having a length / diameter ratio of 100 was provided outside the high temperature side electrode substrate.

高温側電極基板外側に長さ/直径比が150の箔線らせん状の熱交換用フィン2を設けた以外は熱電変換素子22と同様の方法で熱電変換素子27を作製した。   A thermoelectric conversion element 27 was produced in the same manner as the thermoelectric conversion element 22 except that the foil wire spiral heat exchange fin 2 having a length / diameter ratio of 150 was provided outside the high temperature side electrode substrate.

高温側電極基板外側に長さ/直径比が100の箔線らせん状の熱交換用フィン3を設けた以外は熱電変換素子22と同様の方法で熱電変換素子28を作製した。   A thermoelectric conversion element 28 was produced in the same manner as the thermoelectric conversion element 22 except that the foil wire spiral heat exchange fin 3 having a length / diameter ratio of 100 was provided outside the high temperature side electrode substrate.

高温側電極基板外側に長さ/直径比が150の箔線らせん状の熱交換用フィン3を設けた以外は熱電変換素子22と同様の方法で熱電変換素子29を作製した。   A thermoelectric conversion element 29 was produced in the same manner as the thermoelectric conversion element 22 except that the foil wire spiral heat exchange fin 3 having a length / diameter ratio of 150 was provided outside the high temperature side electrode substrate.

高温側電極基板外側にコルゲートフィン型ヒートシンク1を設けた以外は熱電変換素子22と同様の方法で熱電変換素子30を作製した。   A thermoelectric conversion element 30 was produced in the same manner as the thermoelectric conversion element 22 except that the corrugated fin heat sink 1 was provided outside the high temperature side electrode substrate.

高温側電極基板外側にコルゲートフィン型ヒートシンク2を設けた以外は熱電変換素子22と同様の方法で熱電変換素子31を作製した。   A thermoelectric conversion element 31 was produced in the same manner as the thermoelectric conversion element 22 except that the corrugated fin heat sink 2 was provided outside the high temperature side electrode substrate.

低温側電極基板外側に長さ/直径比が10のコイルバネ1を設け、高温側電極基板外側に長さ/直径比が100の箔線らせん状の熱交換用フィン1を設けた以外は熱電変換素子1と同様の方法で熱電変換素子32を作製した。   Thermoelectric conversion except that a coil spring 1 having a length / diameter ratio of 10 is provided outside the low temperature side electrode substrate and a foil wire spiral heat exchange fin 1 having a length / diameter ratio of 100 is provided outside the high temperature side electrode substrate. A thermoelectric conversion element 32 was produced by the same method as for the element 1.

低温側電極基板外側に長さ/直径比が10のコイルバネ2を設け、高温側電極基板外側に長さ/直径比が150の箔線らせん状の熱交換用フィン1を設けた以外は熱電変換素子32と同様の方法で熱電変換素子33を作製した。   Thermoelectric conversion except that a coil spring 2 having a length / diameter ratio of 10 is provided outside the low temperature side electrode substrate, and a foil wire spiral heat exchange fin 1 having a length / diameter ratio of 150 is provided outside the high temperature side electrode substrate. A thermoelectric conversion element 33 was produced in the same manner as the element 32.

低温側電極基板外側に長さ/直径比が50の箔線らせん状の熱交換用フィン1を設け、高温側電極基板外側に長さ/直径比が100の箔線らせん状の熱交換用フィン1を設けた以外は熱電変換素子32と同様の方法で熱電変換素子34を作製した。   The foil wire helical heat exchange fin 1 having a length / diameter ratio of 50 is provided outside the low temperature side electrode substrate, and the foil wire helical heat exchange fin having a length / diameter ratio of 100 outside the high temperature side electrode substrate. A thermoelectric conversion element 34 was produced in the same manner as the thermoelectric conversion element 32 except that 1 was provided.

低温側電極基板外側に長さ/直径比が100の箔線らせん状の熱交換用フィン1を設け、高温側電極基板外側に長さ/直径比が150の箔線らせん状の熱交換用フィン1を設けた以外は熱電変換素子32と同様の方法で熱電変換素子35を作製した。   The foil wire helical heat exchange fin 1 having a length / diameter ratio of 100 is provided outside the low temperature side electrode substrate, and the foil wire helical heat exchange fin having a length / diameter ratio of 150 is provided outside the high temperature side electrode substrate. A thermoelectric conversion element 35 was produced in the same manner as the thermoelectric conversion element 32 except that 1 was provided.

低温側電極基板外側に長さ/直径比が150の箔線らせん状の熱交換用フィン1を設け、高温側電極基板外側に長さ/直径比が100の箔線らせん状の熱交換用フィン1を設けた以外は熱電変換素子32と同様の方法で熱電変換素子36を作製した。   A foil wire spiral heat exchange fin 1 having a length / diameter ratio of 150 is provided outside the low temperature side electrode substrate, and a foil wire spiral heat exchange fin having a length / diameter ratio of 100 is provided outside the high temperature side electrode substrate. A thermoelectric conversion element 36 was produced in the same manner as the thermoelectric conversion element 32 except that 1 was provided.

低温側電極基板外側に長さ/直径比が100の箔線らせん状の熱交換用フィン2を設け、高温側電極に長さ/直径比が150の箔線らせん状の熱交換用フィン1を設けた以外は熱電変換素子32と同様の方法で熱電変換素子37を作製した。   A foil wire helical heat exchange fin 2 having a length / diameter ratio of 100 is provided outside the low temperature side electrode substrate, and a foil wire helical heat exchange fin 1 having a length / diameter ratio of 150 is provided on the high temperature side electrode. A thermoelectric conversion element 37 was produced in the same manner as the thermoelectric conversion element 32 except that it was provided.

低温側電極基板外側にコルゲートフィン型ヒートシンク1を設け、高温側電極基板外側にもコルゲートフィン型ヒートシンク1を設けた以外は熱電変換素子32と同様の方法で熱電変換素子38を作製した。   A thermoelectric conversion element 38 was produced in the same manner as the thermoelectric conversion element 32 except that the corrugated fin type heat sink 1 was provided outside the low temperature side electrode substrate and the corrugated fin type heat sink 1 was provided outside the high temperature side electrode substrate.

低温側電極基板外側にコルゲートフィン型ヒートシンク2を設け、高温側電極基板外側にもコルゲートフィン型ヒートシンク2を設けた以外は熱電変換素子32と同様の方法で熱電変換素子39を作製した。   A thermoelectric conversion element 39 was produced in the same manner as the thermoelectric conversion element 32 except that the corrugated fin type heat sink 2 was provided outside the low temperature side electrode substrate and the corrugated fin type heat sink 2 was provided outside the high temperature side electrode substrate.

尚、熱電変換素子32〜39において、低温電極側基板外側らせん状の熱交換用フィンの主軸と高温電極側基板外側らせん状の熱交換用フィンの主軸は平行になるように設けた。   In addition, in the thermoelectric conversion elements 32 to 39, the low-temperature electrode side substrate outer spiral heat exchange fin main axis and the high-temperature electrode side substrate outer spiral heat exchange fin main axis were provided in parallel.

《熱電変換効率の測定》
得られた各熱電変換素子を表面が梨地加工されている直径500mmの鉄製のパイプに、パイプの主軸と熱交換用フィンの主軸が平行になるように熱電変換素子を貼り付け、パイプを120℃に加熱し、他面を20℃の空気をパイプの主軸と平行な方向に3m/sで流しながら冷却した。その状態で低温側電極から得られた起電力値を測定した。
<Measurement of thermoelectric conversion efficiency>
Each obtained thermoelectric conversion element is attached to a 500 mm diameter steel pipe whose surface is satin-finished so that the main axis of the pipe and the main axis of the heat exchanging fin are parallel to each other. The other surface was cooled while flowing air at 20 ° C. in a direction parallel to the main axis of the pipe at 3 m / s. In this state, the electromotive force value obtained from the low temperature side electrode was measured.

熱電変換素子をパイプの主軸と熱交換用フィンの主軸が垂直になるように貼り付けた場合以外は同様の条件で起電力を測定した。起電力の値は熱電変換素子22を、パイプの主軸とらせん状の熱交換用フィンの主軸が平行になるように熱電変換素子を貼り付けた場合の起電力値を100とした相対値を求めた。得られる相対電力値が大きいほど、熱電変換能の高い素子と考えられる。表2に各熱電変換素子の起電力値を相対値で示す。   The electromotive force was measured under the same conditions except that the thermoelectric conversion element was attached so that the main axis of the pipe and the main axis of the heat exchange fin were perpendicular to each other. The value of the electromotive force is obtained by calculating the relative value of the thermoelectric conversion element 22 when the thermoelectric conversion element 22 is attached so that the main axis of the pipe and the main axis of the spiral heat exchange fin are parallel to each other. It was. The larger the relative power value obtained, the higher the thermoelectric conversion capability. Table 2 shows the electromotive force value of each thermoelectric conversion element as a relative value.

《耐久性の評価》
熱交換空間が有する応力緩和能は次のようにして評価した。
<< Durability Evaluation >>
The stress relaxation ability of the heat exchange space was evaluated as follows.

各熱電変換素子を−40℃の冷凍庫内に30秒静置した後、120℃のホットプレートに30秒静置するというサイクルを1000サイクル繰り返し、上記の熱電変換効率評価を行った。尚、冷却風は冷却面に対して平行に流して測定し、その値は熱電変換素子22の値を100とした相対値で示してある。   Each thermoelectric conversion element was allowed to stand in a freezer at −40 ° C. for 30 seconds and then left on a hot plate at 120 ° C. for 30 seconds, and the above-described thermoelectric conversion efficiency evaluation was performed. The cooling air was measured while flowing parallel to the cooling surface, and the value is shown as a relative value with the value of the thermoelectric conversion element 22 being 100.

Figure 2010278191
Figure 2010278191

表2から明らかな通り、本発明の熱電変換素子は、熱交換用フィンの主軸をパイプの主軸と平行に貼り付けても、垂直に貼り付けてもパイプと密着するので、変換効率に殆ど差がない。一方、コルゲートフィン型ヒートシンクを設けた熱電変換素子は、熱交換用フィンの主軸をパイプの主軸と垂直に貼り付けた場合、熱交換用フィンの剛性と互いの干渉が障害になり、パイプと密着しにくくなり、変換効率に差を生ずる。場所によっては剥がれることもある。本発明の熱電変換素子は、垂直に貼り付けた時でも、コイルが伸縮するので障害はない。   As is apparent from Table 2, the thermoelectric conversion element of the present invention has almost no difference in conversion efficiency because the main shaft of the heat exchange fin adheres to the pipe whether it is attached in parallel or perpendicularly to the main shaft of the pipe. There is no. On the other hand, thermoelectric conversion elements with corrugated fin-type heat sinks are in close contact with the pipe because the heat exchange fin's rigidity and mutual interference become obstacles when the heat exchange fin's main axis is attached perpendicular to the pipe's main axis. And the difference in conversion efficiency occurs. It may be peeled off depending on the location. Even when the thermoelectric conversion element of the present invention is attached vertically, there is no obstacle because the coil expands and contracts.

上述したように、本発明の熱電変換素子は熱電変換効率、耐久性のいずれにおいても優れ、かつ熱電変換効率が加熱媒体又は冷却媒体の流れる方向に影響を受けないことがわかる。また、本発明の熱電変換素子は熱源、又は冷却源の形状による影響を受けにくく、表面が平滑でない場合や、複雑な形状をしている場合においても効率よく熱電変換を行うことが出来ることが分かる。   As described above, it can be seen that the thermoelectric conversion element of the present invention is excellent in both thermoelectric conversion efficiency and durability, and the thermoelectric conversion efficiency is not affected by the flowing direction of the heating medium or the cooling medium. Further, the thermoelectric conversion element of the present invention is not easily influenced by the shape of the heat source or the cooling source, and can efficiently perform thermoelectric conversion even when the surface is not smooth or has a complicated shape. I understand.

1 熱電変換素子
10、10′ 絶縁性基板
11 高温側電極基板
12 低温側電極基板
13 接合空間
14 p型熱電半導体
15 n型熱電半導体
16、16′ らせん状の熱交換フィン
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion element 10, 10 'Insulating board | substrate 11 High temperature side electrode board | substrate 12 Low temperature side electrode board | substrate 13 Junction space 14 P-type thermoelectric semiconductor 15 N-type thermoelectric semiconductor 16, 16' Spiral heat exchange fin

Claims (5)

対向して配置された一対の電極基板と、前記電極基板の対向する内面側に複数の熱電半導体が電気的に連結された熱電変換モジュールと、前記一対の電極基板のうち、少なくとも一方の電極基板の外面側に熱交換用のフィンを有する熱電変換素子において、前記熱交換用のフィンがらせん状の熱交換フィンであることを特徴とする熱電変換素子。   A pair of electrode substrates disposed opposite to each other, a thermoelectric conversion module in which a plurality of thermoelectric semiconductors are electrically connected to opposite inner surfaces of the electrode substrate, and at least one of the pair of electrode substrates A thermoelectric conversion element having heat exchange fins on the outer surface side thereof, wherein the heat exchange fins are helical heat exchange fins. 前記らせん状の熱交換フィンが、各々平行になるように配置されていることを特徴とする請求項1記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the helical heat exchange fins are arranged so as to be parallel to each other. 前記らせん状の熱交換フィンが、金属箔からなることを特徴とする前記請求項1又は2に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1 or 2, wherein the helical heat exchange fin is made of a metal foil. 前記らせん状の熱交換フィンが両方の前記電極基板に配置されていることを特徴とする請求項1〜3のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 3, wherein the spiral heat exchange fins are arranged on both of the electrode substrates. 前記らせん状の熱交換フィンの直径に対する長さの比が2以上であることを特徴とする請求項1〜4のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 4, wherein a ratio of a length of the helical heat exchange fin to a diameter is 2 or more.
JP2009128621A 2009-05-28 2009-05-28 Thermoelectric conversion element Pending JP2010278191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009128621A JP2010278191A (en) 2009-05-28 2009-05-28 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009128621A JP2010278191A (en) 2009-05-28 2009-05-28 Thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2010278191A true JP2010278191A (en) 2010-12-09

Family

ID=43424892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009128621A Pending JP2010278191A (en) 2009-05-28 2009-05-28 Thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2010278191A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033810A (en) * 2011-08-01 2013-02-14 Fujitsu Ltd Thermoelectric conversion module
JP2015012261A (en) * 2013-07-02 2015-01-19 富士フイルム株式会社 Thermoelectric conversion element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033810A (en) * 2011-08-01 2013-02-14 Fujitsu Ltd Thermoelectric conversion module
JP2015012261A (en) * 2013-07-02 2015-01-19 富士フイルム株式会社 Thermoelectric conversion element

Similar Documents

Publication Publication Date Title
JP3828924B2 (en) Thermoelectric conversion element, method for manufacturing the same, and thermoelectric conversion apparatus using the element
JP2636119B2 (en) Thermoelectric element sheet and manufacturing method thereof
JP5377753B2 (en) Thermoelectric element and thermoelectric module
TWI301333B (en) Thermoelectric device and method of manufacturing the same
JP5956608B2 (en) Thermoelectric module
CA2768902A1 (en) Thermoelectric module
JP2004104041A (en) Thermoelectric converting device and method for manufacturing the same
RU124840U1 (en) RADIAL-RING THERMOELECTRIC GENERATOR BATTERY
WO2008150006A1 (en) Thermoelectric conversion module, thermoelectric conversion device, and their manufacturing method
JP5068503B2 (en) Thermoelectric conversion element and thermoelectric conversion device
JP2013236057A (en) Thermoelectric conversion module
JPH0555640A (en) Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same
TWI620354B (en) Thermoelectric conversion device having insulating diamond-like film, method for making the same and thermoelectric conversion module
US20130139866A1 (en) Ceramic Plate
JP2006253341A (en) Thermoelectric power generation element susceptible to temperature difference
JP2010278191A (en) Thermoelectric conversion element
JP6152262B2 (en) Thermoelectric conversion device and manufacturing method thereof
US20200203592A1 (en) Electric power generation from a thin-film based thermoelectric module placed between each hot plate and cold plate of a number of hot plates and cold plates
KR101260609B1 (en) Thermoelectric generator installed in the flue tube of domestic boiler
JP3501394B2 (en) Thermoelectric conversion module
JP2003174204A (en) Thermoelectric conversion device
EP3435431B1 (en) Thermoelectric conversion module
JPH07106641A (en) Integral ring type thermoelectric conversion element and device employing same
KR20100003494A (en) Thermoelectric cooling device with flexible copper band wire
JP5375950B2 (en) Thermoelectric conversion element