WO2014148585A1 - Thermal switch, temperature adjustment structure, and battery pack - Google Patents

Thermal switch, temperature adjustment structure, and battery pack Download PDF

Info

Publication number
WO2014148585A1
WO2014148585A1 PCT/JP2014/057627 JP2014057627W WO2014148585A1 WO 2014148585 A1 WO2014148585 A1 WO 2014148585A1 JP 2014057627 W JP2014057627 W JP 2014057627W WO 2014148585 A1 WO2014148585 A1 WO 2014148585A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat
thermal switch
protective layer
layer
Prior art date
Application number
PCT/JP2014/057627
Other languages
French (fr)
Japanese (ja)
Inventor
拓 西垣
崇弘 冨田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2015506841A priority Critical patent/JPWO2014148585A1/en
Publication of WO2014148585A1 publication Critical patent/WO2014148585A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to a thermal switch whose heat transfer performance changes depending on the temperature, a temperature adjustment structure provided with the switch, and a battery pack.
  • Heat may or may not be needed.
  • a battery battery pack mounted on an EV has high resistance when the temperature of the battery is low, heat insulation is required when the temperature is low, and there is concern about ignition due to decomposition of the electrolyte when the temperature is too high. Therefore, heat dissipation is required when the temperature is high. Therefore, it is thought that if there is a technology for controlling the flow of heat, it will lead to effective use of heat.
  • Patent Document 1 an element that switches thermal conductivity by applying energy (magnetic field, electric field, light, etc.) to a transition body sandwiched between electrodes, a substrate 1 and a carbon nanotube layer
  • the switch which switches the connection state which the base material 2 which it has contacts, and the non-connection state which does not contact is disclosed.
  • Patent Document 1 an electrode, wiring, and the like are necessary to switch by applying energy. Moreover, in patent document 2, components other than what itself changes in thermal conductivity are required, and an actuator is provided to change the contact state. Therefore, the switch becomes large and the mounting location is limited from the viewpoint of heat resistance. Moreover, it is difficult to manufacture a complicated shape.
  • An object of the present invention is to provide a heat switch having a simple structure capable of changing the heat transfer performance depending on the temperature, a temperature adjustment structure including the heat switch, and a battery pack.
  • the present inventors have found that the above problem can be solved by providing a thermal switch having a radiation layer whose emissivity changes when the temperature changes. That is, according to the present invention, the following thermal switch, a temperature adjustment structure including the same, and a battery pack are provided.
  • the radiation layer is formed of any one of an emissivity variable element, a Mott insulator, a metal-semiconductor phase transition material, and a metal-insulator phase transition material.
  • the thermal switch according to any one of [1] to [7] is provided around a heat generation source that generates heat, and heat is dissipated between a first temperature and a second temperature that is higher or lower than the first temperature.
  • the temperature adjustment structure which adjusts the temperature by the said heat from the said heat generation source by changing.
  • the thermal switch of the present invention operates as a thermal switch having low heat transfer performance at low temperatures and a heat insulation effect, and high heat transfer performance at high temperatures and a heat dissipation effect. Or, conversely, it operates as a heat switch having a high heat transfer performance at a low temperature and a heat dissipation effect, and having a low heat transfer performance and a heat insulation effect at a high temperature.
  • the heat transfer performance changes due to changes in ambient temperature, it becomes a self-supporting thermal switch where the heat transfer performance is switched on (high heat transfer performance) or OFF (low heat transfer performance).
  • the mountability is high and the degree of freedom in shape is high.
  • a battery pack having a temperature control structure equipped with this thermal switch, for example, a battery pack, can effectively use internal heat and improve its function.
  • FIG. 1 shows an embodiment of a cross section of the thermal switch 1.
  • the left diagram of FIG. 1 schematically shows the emissivity when the temperature is low, and the right diagram schematically shows the emissivity when the temperature is high.
  • the thermal switch 1 is bonded to the first protective layer 2 for receiving heat, the radiation layer 4 whose emissivity changes when the temperature changes, and the radiation switch 4 and the gap 5.
  • the second protective layer 3 is disposed opposite to the radiation layer 4 and receives heat from the radiation layer 4. Since the emissivity of the radiating layer 4 changes as the temperature changes, the heat switch 1 that increases the emissivity when the temperature rises. When the temperature is low, the heat from the first protective layer 2 is reduced.
  • the thermal switch 1 Since the thermal switch 1 does not require parts such as a drive unit, it can be miniaturized. Therefore, it is highly mountable and has a high degree of freedom in shape.
  • Fig. 2 shows the temperature dependence of the emissivity of the radiation layer 4.
  • the emissivity of the radiation layer 4 changes with temperature, the heat transfer performance of the entire thermal switch 1 changes suddenly and reversibly, and the operation of the thermal switch 1 is switched according to temperature. Functions as a switch. It is preferable that the emissivity of the radiation layer 4 changes stepwise depending on the temperature.
  • the emissivity of the radiation layer 4 is preferably changed by 0.2 or more when the temperature rises (or falls) from the first temperature to the second temperature.
  • the difference between the emissivity at the first temperature immediately before the emissivity increases (or decreases) and the emissivity at the second temperature immediately after the increase (or decreases) is 0.2 or more, more preferably 0.3 or more, Preferably, it varies by 0.4 or more.
  • 1st temperature and 2nd temperature are not specifically limited, In what has a temperature adjustment structure provided with the thermal switch 1, it has a temperature adjustment structure by changing a heat dissipation state and adjusting temperature. Preferably, the emissivity changes abruptly between the first temperature and the second temperature so that the function of the object can be improved.
  • the temperature difference between the first temperature and the second temperature is preferably small, and the temperature difference is preferably 0.1 to 100 ° C., and preferably 0.1 to 50 ° C. Is more preferable.
  • the heat transfer performance of the entire thermal switch 1 is low because the emissivity is low below the first temperature, and it can be said to be in an OFF state.
  • the second temperature or higher since the emissivity is high, the heat transfer performance of the entire thermal switch 1 is high, and it can be said to be in an ON state.
  • the radiation layer 4 having a first temperature of ⁇ 10 to 20 ° C. and a second temperature of 30 to 60 ° C.
  • the radiation layer 4 is made of a variable emissivity element, a Mott insulator, a metal-semiconductor phase transition material, a metal-insulator phase transition material, or the like. Those composed mainly of oxides of transition metals and having a perovskite structure are particularly desirable.
  • ReNiO 3 Re is a rare earth element
  • M1 (1- (x + y)) M2 x M3 y MnO 3 M1 is La, Pr, Sc, In, Nd or Sm, and M2 is alkaline earth
  • M3 is an alkaline earth metal that is not the same as M2, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), La 1-xy Sr x Ca y MnO 3 (0 ⁇ x ⁇ 1, 0 ⁇ y) ⁇ 1), Ca 2 Ru 1-x M x O 4 (M is Mn or Fe, 0 ⁇ x ⁇ 1), VO 2 and the like.
  • Transition metal oxides are materials whose emissivity changes at a specific temperature range. Although it is necessary to select the temperature in the temperature region and its temperature range depending on the application, the temperature range is preferably 100 ° C. or less. For example, when used for a battery pack member, the temperature range is preferably 0 ° C. to 50 ° C. Further, it is necessary to select an appropriate change width of the emissivity depending on the application, but the change width of the emissivity is preferably 0.2 or more. For example, when used for a battery pack, it is preferable that the emissivity changes from 0.3 to 0.7, and the change in emissivity is 0.4.
  • the thickness of the radiation layer 4 is not particularly limited, but is preferably in the range of 10 nm to 10 mm from the viewpoint of ease of manufacture, durability, and cost.
  • the first protective layer 2 or the second protective layer 3 has a function of protecting the radiation layer 4 from physical damage and chemical damage.
  • Physical damage refers to thermal shock when used where an unsteady thermal history is applied, damage due to sliding when used in an operating part, and the like.
  • Chemical damage refers to corrosion or deterioration when used in the presence of an oxidizing atmosphere or corrosive gas.
  • the first protective layer 2 and the radiation layer 4 are joined, and the radiation layer 4 and the second protection layer 3 are provided with a gap 5.
  • the second protective layer 3 has a role of receiving thermal energy radiated from the radiating layer 4 and releasing it from the opposite surface.
  • the first protective layer 2 or the second protective layer 3 can be formed of metal or ceramics (oxide, nitride, carbide, etc.).
  • the first protective layer 2 or the second protective layer 3 is preferably a material having high thermal conductivity. The higher the thermal conductivity, the greater the apparent change in thermal conductivity when the switch is OFF and ON.
  • the radiation layer 4, the second protective layer 3, and the gap 5 are preferably 1 nm or more and 1 mm or less. More preferably, they are 1 nm or more and 100 micrometers or less, More preferably, they are 1 nm or more and 50 micrometers or less. By setting this range, the function as a switch can be exhibited more effectively.
  • the gap 5 is preferably a vacuum, but may be filled with a gas such as air.
  • the method of providing the gap 5 is not particularly limited.
  • the layer can be fixed with a heat insulating material 8.
  • a transparent (particularly in the far-infrared to near-infrared region) porous insulating material can be present and fixed in the gap 5.
  • the temperature adjustment structure refers to a structure having a function of adjusting temperature while effectively using heat from a heat generation source.
  • the heat generation source that generates heat refers to the one that generates heat, and is not particularly limited.
  • the temperature adjustment structure of the present invention includes a temperature adjustment structure that adjusts the temperature due to the heat of the heat generation source by changing the heat radiation state between the first temperature and the second temperature that is higher or lower than the first temperature. Performance can be improved.
  • examples of the heat generation source include a battery pack, a motor, a CPU, a control circuit, an engine, a brake, and a gear box.
  • the structure provided with the thermal switch 1 around these is a temperature adjustment structure. In the case where sunlight is used as the heat generation source, an indoor temperature adjustment structure can be obtained by providing the building material, window, and sash with the thermal switch 1.
  • FIG. 4 shows an embodiment of the battery pack 30 provided with the thermal switch 1.
  • the battery pack 30 is a heat generation source.
  • the battery pack 30 includes a plurality of batteries, and these are electrically connected and accommodated in the case 31.
  • the thermal switch 1 is provided on the outer peripheral portion of the battery pack 30, that is, the case 31.
  • the battery pack 30 has a high battery resistance because it is at a low temperature when starting. Therefore, it is preferable not to dissipate the heat inside the battery pack 30 as much as possible.
  • the temperature inside the battery pack 30 is too high, there is a concern of ignition due to decomposition of the electrolyte. Therefore, it is preferable to actively dissipate the heat inside the battery pack 30.
  • FIG. 4 by providing the thermal switch 1 on the outer periphery of the battery pack 30, it is difficult to dissipate heat at the time of starting, and heat can be used effectively.
  • emissivity becomes high after completion of warm-up, the heat inside the battery pack 30 can be actively dissipated.
  • first protective layer 2 and the second protective layer 3 are made of metal, they can be made by casting, press molding, or the like. Next, the material for forming the radiation layer 4 is molded by tape molding, press molding, or the like and then fired to produce the radiation layer 4. Then, an adhesive layer having a low thermal resistance such as thermal grease is applied, the first protective layer 2 and the radiation layer 4 are pressure-bonded, and the second protective layer 3 is further provided as the thermal switch 1.
  • the protective layer can be produced by forming the material to be the protective layer by press molding, extrusion molding, or the like, followed by firing. Next, for example, a thick film is formed on the first protective layer 2 by coating, injection, or the like, and baked to produce the radiation layer 4. This is provided with a second protective layer 3 to form a thermal switch 1.
  • the manufacturing method of the thermal switch 1 is not limited to these methods.
  • Perovskite-type manganese oxide (La 0.7 Sr 0.2 Ca 0.1 MnO 3 ) was used as the radiation layer 4.
  • the emissivity was 0.4 at 0 ° C. and 0.6 at 50 ° C.
  • AD aerosol deposition
  • aluminum first protective layer 2
  • the radiation layer 4 having a thickness of 1 ⁇ m was formed by the method.
  • a thermal switch 1 was prepared in which aluminum (second protective layer 3) was placed with a gap 5 of 100 ⁇ m so as to face the radiation layer 4.
  • thermo switch 1 The way of heat transfer as a whole member (thermal switch 1) was evaluated using a heat flow meter. When one side of aluminum (first protective layer 2) is heated to 0 ° C and 50 ° C, the heat flow through the heat flow sensor attached to the other side aluminum (second protective layer 3) is measured. did.
  • the thermal switch of the present invention can be used as a switch whose heat transferability varies depending on the temperature. For example, by providing a thermal switch in a battery pack or the like, the internal heat can be used effectively.

Abstract

Provided are a thermal switch with a simple structure capable of changing the heat transfer performance thereof according to temperature, a temperature adjustment structure equipped with the thermal switch, and a battery pack. The thermal switch (1) comprises: a first protective layer (2) which receives heat; a radiation layer (4) which is joined onto the first protective layer (2) and changes emissivity when temperature changes; and a second protective layer (3) which is arranged opposite the radiation layer (4) with a gap (5) formed with the radiation layer (4) and receives heat from the radiation layer (4). The emissivity of the radiation layer (4) changes with change in temperature, so in a thermal switch (1) wherein emissivity increases with a rise in temperature, heat is not liable to be transferred from the first protective layer (2) to the second protective layer (3) when the temperature is low, but is liable to be transferred from the first protective layer (2) to the second protective layer (3) when the temperature is high.

Description

熱スイッチ、温度調整構造、およびバッテリーパックThermal switch, temperature control structure, and battery pack
 温度によって伝熱性能が変化する熱スイッチ、それを備えた温度調整構造、およびバッテリーパックに関する。 ∙ It relates to a thermal switch whose heat transfer performance changes depending on the temperature, a temperature adjustment structure provided with the switch, and a battery pack.
 近年COの排出規制、エネルギー問題などから熱エネルギーの有効利用が求められている。熱は必要とされる場合と不要とされる場合がある。例えば、EVに搭載される電池バッテリーパックは、電池の温度が低いと抵抗が高くなるため、温度が低い場合は断熱性が求められ、温度が高すぎると電解液の分解による発火が懸念されるため、温度が高い場合は放熱性が求められる。したがって熱の流れを制御する技術があれば熱の有効利用に繋がると考えられる。 In recent years, effective use of thermal energy has been demanded due to CO 2 emission regulations and energy problems. Heat may or may not be needed. For example, since a battery battery pack mounted on an EV has high resistance when the temperature of the battery is low, heat insulation is required when the temperature is low, and there is concern about ignition due to decomposition of the electrolyte when the temperature is too high. Therefore, heat dissipation is required when the temperature is high. Therefore, it is thought that if there is a technology for controlling the flow of heat, it will lead to effective use of heat.
 このような技術としては、電極に挟まれた転移体にエネルギー(磁場、電場、光など)を印加することにより熱伝導率をスイッチする素子(特許文献1)、基材1とカーボンナノチューブ層を有した基材2が接触する接続状態、接触しない非接続状態を切り替えるスイッチ(特許文献2)が開示されている。 As such a technique, an element (Patent Document 1) that switches thermal conductivity by applying energy (magnetic field, electric field, light, etc.) to a transition body sandwiched between electrodes, a substrate 1 and a carbon nanotube layer The switch (patent document 2) which switches the connection state which the base material 2 which it has contacts, and the non-connection state which does not contact is disclosed.
国際公開第2004/068604号International Publication No. 2004/068604 国際公開第2012/140927号International Publication No. 2012/140927
 しかしながら、特許文献1では、エネルギーを印加してスイッチを行うため電極や配線などが必要である。また、特許文献2では、熱伝導率が変化するもの自体の他に部品が必要であり、接触状態を変化させるためにアクチュエータを備える。したがってスイッチが大型化したり、耐熱性などの観点から搭載場所が制限されたりする。また複雑な形状のものを作製することは難しい。 However, in Patent Document 1, an electrode, wiring, and the like are necessary to switch by applying energy. Moreover, in patent document 2, components other than what itself changes in thermal conductivity are required, and an actuator is provided to change the contact state. Therefore, the switch becomes large and the mounting location is limited from the viewpoint of heat resistance. Moreover, it is difficult to manufacture a complicated shape.
 本発明の課題は、温度によって伝熱性能を変化させることができる簡易な構造の熱スイッチ、それを備えた温度調整構造、およびバッテリーパックを提供することにある。 An object of the present invention is to provide a heat switch having a simple structure capable of changing the heat transfer performance depending on the temperature, a temperature adjustment structure including the heat switch, and a battery pack.
 本発明者らは、温度が変化すると、放射率が変化する放射層を有する構造の熱スイッチとすることにより、上記課題を解決できることを見出した。すなわち、本発明によれば、以下の熱スイッチ、それを備えた温度調整構造、およびバッテリーパックが提供される。 The present inventors have found that the above problem can be solved by providing a thermal switch having a radiation layer whose emissivity changes when the temperature changes. That is, according to the present invention, the following thermal switch, a temperature adjustment structure including the same, and a battery pack are provided.
[1] 熱を受け取る第1保護層と、前記第1保護層上に接合され、温度が変化すると、放射率が変化する放射層と、前記放射層と間隙を有した状態で、前記放射層に対向して配置され、前記放射層から熱を受け取る第2保護層と、を備える熱スイッチ。 [1] A first protective layer that receives heat, a radiation layer that is bonded onto the first protective layer and changes its emissivity when the temperature changes, and the radiation layer includes a gap between the radiation layer and the radiation layer. And a second protective layer disposed opposite to and receiving heat from the radiation layer.
[2] 前記放射層は、温度が上昇するまたは下降すると放射率が0.2以上変化する前記[1]に記載の熱スイッチ。 [2] The thermal switch according to [1], wherein the emissivity of the radiation layer changes by 0.2 or more when the temperature rises or falls.
[3] 前記放射層は、段差状に放射率が変化する前記[1]または[2]に記載の熱スイッチ。 [3] The thermal switch according to [1] or [2], wherein the radiation layer has an emissivity that changes stepwise.
[4] 前記放射層は、放射率可変素子、Mott絶縁体、金属-半導体相転移材料、金属-絶縁体相転移材料のいずれかによって形成されている前記[1]~[3]のいずれかに記載の熱スイッチ。 [4] Any of the above [1] to [3], wherein the radiation layer is formed of any one of an emissivity variable element, a Mott insulator, a metal-semiconductor phase transition material, and a metal-insulator phase transition material. The thermal switch described in.
[5] 前記放射層は、ペロブスカイト型酸化物によって形成されている前記[4]に記載の熱スイッチ。 [5] The thermal switch according to [4], wherein the radiation layer is formed of a perovskite oxide.
[6] 前記第1保護層、または前記第2保護層は、酸化物、窒化物、炭化物からなるセラミックス、及び金属からなる群から選ばれるいずれかによって形成されている前記[1]~[5]のいずれかに記載の熱スイッチ。 [6] The [1] to [5], wherein the first protective layer or the second protective layer is formed of any one selected from the group consisting of oxides, nitrides, ceramics made of carbide, and metals. ] The thermal switch in any one of.
[7] 前記放射層と前記第2保護層と間隙は、1nm以上1mm以下である前記[1]~[6]のいずれかに記載の熱スイッチ。 [7] The thermal switch according to any one of [1] to [6], wherein a gap between the radiation layer and the second protective layer is 1 nm or more and 1 mm or less.
[8] 前記[1]~[7]のいずれかに記載の熱スイッチを、熱を発生する熱発生源の周囲に備え、第1温度とそれより高温または低温の第2温度とで放熱状態を変化させることにより、前記熱発生源からの前記熱による温度を調整する温度調整構造。 [8] The thermal switch according to any one of [1] to [7] is provided around a heat generation source that generates heat, and heat is dissipated between a first temperature and a second temperature that is higher or lower than the first temperature. The temperature adjustment structure which adjusts the temperature by the said heat from the said heat generation source by changing.
[9] 前記[8]に記載の温度調整構造を有するバッテリーパック。 [9] A battery pack having the temperature adjustment structure according to [8].
 本発明の熱スイッチは、低温時は伝熱性能が低く断熱効果を有し、高温時は伝熱性能が高くなり放熱効果を有する熱スイッチとして動作する。あるいは、その逆に、低温時は伝熱性能が高く放熱効果を有し、高温時は伝熱性能が低く断熱効果を有する熱スイッチとして動作する。 The thermal switch of the present invention operates as a thermal switch having low heat transfer performance at low temperatures and a heat insulation effect, and high heat transfer performance at high temperatures and a heat dissipation effect. Or, conversely, it operates as a heat switch having a high heat transfer performance at a low temperature and a heat dissipation effect, and having a low heat transfer performance and a heat insulation effect at a high temperature.
 また、周囲の温度変化により伝熱性能が変化するので、自ら伝熱性能のON(伝熱性能が高い)、OFF(伝熱性能が低い)が切り替わる自立的な熱スイッチとなる。このため駆動部などの部品が必要なく、小型化できる。また搭載性が高く、形状の自由度が高い。この熱スイッチを備えた温度調整構造を有するもの、例えば、バッテリーパックは、内部の熱を有効利用し、そのものの機能を向上させることができる。 Also, since the heat transfer performance changes due to changes in ambient temperature, it becomes a self-supporting thermal switch where the heat transfer performance is switched on (high heat transfer performance) or OFF (low heat transfer performance). This eliminates the need for components such as a drive unit, and can reduce the size. In addition, the mountability is high and the degree of freedom in shape is high. A battery pack having a temperature control structure equipped with this thermal switch, for example, a battery pack, can effectively use internal heat and improve its function.
熱スイッチの断面を示す模式図である。It is a schematic diagram which shows the cross section of a thermal switch. 放射層の放射率を示す図である。It is a figure which shows the emissivity of a radiation layer. 間隙の形成方法の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the formation method of a gap | interval. 間隙の形成方法の他の実施形態を示す模式図である。It is a schematic diagram which shows other embodiment of the formation method of a gap | interval. 熱スイッチを備えたバッテリーパックの一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the battery pack provided with the thermal switch.
 以下、図面を参照しつつ本発明の実施形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.
(熱スイッチ)
 図1に熱スイッチ1の断面の一実施形態を示す。図1の左側の図は、温度が低い場合、右側の図は、温度が高い場合の放射率を模式的に示す。熱スイッチ1は、熱を受け取る第1保護層2と、第1保護層2上に接合され、温度が変化すると、放射率が変化する放射層4と、放射層4と間隙5を有した状態で、放射層4に対向して配置され、放射層4から熱を受け取る第2保護層3と、を備える。放射層4は、温度が変化することにより、放射率が変化するため、温度が上昇した場合に放射率が高くなる熱スイッチ1では、温度が低い場合は、第1保護層2からの熱を第2保護層3へ伝えにくく、温度が高くなると、第1保護層2からの熱を第2保護層3へ伝えやすくなる。つまり、周囲の温度変化により可逆的に放射率が変化するため、熱スイッチ1は、温度によって熱の伝えやすさ、すなわち伝熱性能が変化する。熱スイッチ1は、駆動部などの部品が必要ないため、小型化できる。したがって搭載性が高く、形状の自由度も高い。
(Thermal switch)
FIG. 1 shows an embodiment of a cross section of the thermal switch 1. The left diagram of FIG. 1 schematically shows the emissivity when the temperature is low, and the right diagram schematically shows the emissivity when the temperature is high. The thermal switch 1 is bonded to the first protective layer 2 for receiving heat, the radiation layer 4 whose emissivity changes when the temperature changes, and the radiation switch 4 and the gap 5. The second protective layer 3 is disposed opposite to the radiation layer 4 and receives heat from the radiation layer 4. Since the emissivity of the radiating layer 4 changes as the temperature changes, the heat switch 1 that increases the emissivity when the temperature rises. When the temperature is low, the heat from the first protective layer 2 is reduced. It is difficult to transmit to the second protective layer 3, and when the temperature is high, heat from the first protective layer 2 is easily transferred to the second protective layer 3. That is, since the emissivity reversibly changes due to a change in ambient temperature, the heat switch 1 changes in heat transferability, that is, heat transfer performance, depending on the temperature. Since the thermal switch 1 does not require parts such as a drive unit, it can be miniaturized. Therefore, it is highly mountable and has a high degree of freedom in shape.
 図2に放射層4の放射率の温度依存性を示す。図2に示すように、放射層4の放射率が温度によって変化することにより、熱スイッチ1全体の伝熱性能が急激に、かつ可逆的に変化し、熱スイッチ1は、温度によって動作が切り替わるスイッチとして機能する。放射層4の放射率は、温度によって段差状に変化することが好ましい。放射層4は、第1温度から第2温度へ温度が上昇(または下降)すると、放射率が0.2以上変化することが好ましい。すなわち、放射率が上昇(または下降)する直前の第1温度における放射率と上昇(または下降)直後の第2温度における放射率の差が0.2以上、より好ましくは0.3以上、さらに好ましくは0.4以上変化することが好ましい。このように変化することにより、スイッチとしての機能を十分に発揮させることができる。 Fig. 2 shows the temperature dependence of the emissivity of the radiation layer 4. As shown in FIG. 2, when the emissivity of the radiation layer 4 changes with temperature, the heat transfer performance of the entire thermal switch 1 changes suddenly and reversibly, and the operation of the thermal switch 1 is switched according to temperature. Functions as a switch. It is preferable that the emissivity of the radiation layer 4 changes stepwise depending on the temperature. The emissivity of the radiation layer 4 is preferably changed by 0.2 or more when the temperature rises (or falls) from the first temperature to the second temperature. That is, the difference between the emissivity at the first temperature immediately before the emissivity increases (or decreases) and the emissivity at the second temperature immediately after the increase (or decreases) is 0.2 or more, more preferably 0.3 or more, Preferably, it varies by 0.4 or more. By changing in this way, the function as a switch can be fully exhibited.
 第1温度と第2温度は、特に限定されるものではないが、熱スイッチ1を備えた温度調整構造を有するものにおいて、放熱状態を変化させて温度を調整することにより、温度調整構造を有するものの機能を向上させることができるように第1温度と第2温度との間で放射率が急激に変化することが好ましい。スイッチとして機能させるためには、第1温度と第2温度との温度差が小さいことが好ましく、温度差は、0.1~100℃であることが好ましく、0.1~50℃であることがより好ましい。温度が上昇した場合に放射率が高くなる熱スイッチ1においては、第1温度以下では、放射率が低いため熱スイッチ1全体の伝熱性能は低く、OFFの状態と言える。一方、第2温度以上では、放射率が高いため熱スイッチ1全体の伝熱性能が高く、ONの状態と言える。例えば、後述するバッテリーパックの外周部に熱スイッチ1を備える場合は、第1温度が-10~20℃、第2温度が30~60℃であるような放射層4を有することが好ましい。 Although 1st temperature and 2nd temperature are not specifically limited, In what has a temperature adjustment structure provided with the thermal switch 1, it has a temperature adjustment structure by changing a heat dissipation state and adjusting temperature. Preferably, the emissivity changes abruptly between the first temperature and the second temperature so that the function of the object can be improved. In order to function as a switch, the temperature difference between the first temperature and the second temperature is preferably small, and the temperature difference is preferably 0.1 to 100 ° C., and preferably 0.1 to 50 ° C. Is more preferable. In the thermal switch 1 whose emissivity increases when the temperature rises, the heat transfer performance of the entire thermal switch 1 is low because the emissivity is low below the first temperature, and it can be said to be in an OFF state. On the other hand, at the second temperature or higher, since the emissivity is high, the heat transfer performance of the entire thermal switch 1 is high, and it can be said to be in an ON state. For example, when the thermal switch 1 is provided on the outer periphery of a battery pack, which will be described later, it is preferable to have the radiation layer 4 having a first temperature of −10 to 20 ° C. and a second temperature of 30 to 60 ° C.
 放射層4は、放射率可変素子、Mott絶縁体、金属-半導体相転移材料、金属-絶縁体相転移材料などが用いられる。これらは主として遷移金属の酸化物から構成され、ペロブスカイト構造を有するものが特に望ましい。 The radiation layer 4 is made of a variable emissivity element, a Mott insulator, a metal-semiconductor phase transition material, a metal-insulator phase transition material, or the like. Those composed mainly of oxides of transition metals and having a perovskite structure are particularly desirable.
 遷移金属の酸化物としては、ReNiO(Reは希土類元素)、M1(1-(x+y))M2M3MnO(M1はLa、Pr、Sc、In、NdまたはSm、M2はアルカリ土類金属、M3はM2と同一ではないアルカリ土類金属、0≦x≦1,0≦y≦1)、La1-x-ySrCaMnO(0≦x≦1,0≦y≦1)、CaRu1-x(MはMnまたはFe、0≦x≦1)、VO等が挙げられる。 As transition metal oxides, ReNiO 3 (Re is a rare earth element), M1 (1- (x + y)) M2 x M3 y MnO 3 (M1 is La, Pr, Sc, In, Nd or Sm, and M2 is alkaline earth) M3 is an alkaline earth metal that is not the same as M2, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1), La 1-xy Sr x Ca y MnO 3 (0 ≦ x ≦ 1, 0 ≦ y) ≦ 1), Ca 2 Ru 1-x M x O 4 (M is Mn or Fe, 0 ≦ x ≦ 1), VO 2 and the like.
 遷移金属の酸化物はある特定の温度領域を境に放射率が変化する材料である。温度領域の温度やその温度幅は用途によって適切なものを選択する必要があるが、温度の幅は100℃以下であることが好ましい。例えばバッテリーパック部材に用いる場合には、温度領域は0℃~50℃が好ましい。また、放射率の変化幅も用途によって適切なものを選択する必要があるが、放射率の変化の幅は0.2以上であることが好ましい。例えばバッテリーパックに用いる場合には、放射率が0.3から0.7に変化し、放射率の変化の幅が0.4であることが好ましい。 Transition metal oxides are materials whose emissivity changes at a specific temperature range. Although it is necessary to select the temperature in the temperature region and its temperature range depending on the application, the temperature range is preferably 100 ° C. or less. For example, when used for a battery pack member, the temperature range is preferably 0 ° C. to 50 ° C. Further, it is necessary to select an appropriate change width of the emissivity depending on the application, but the change width of the emissivity is preferably 0.2 or more. For example, when used for a battery pack, it is preferable that the emissivity changes from 0.3 to 0.7, and the change in emissivity is 0.4.
 放射層4の厚さは特に制限されないが、製造しやすさや耐久性、コストの観点から、10nm~10mmの範囲とすることが好ましい。 The thickness of the radiation layer 4 is not particularly limited, but is preferably in the range of 10 nm to 10 mm from the viewpoint of ease of manufacture, durability, and cost.
 第1保護層2、または第2保護層3は、物理的ダメージ、化学的ダメージから放射層4を保護する機能を有する。物理的ダメージとは、非定常な熱履歴がかかるところで使用する際の熱衝撃や、稼働部で使用する際の摺動によるダメージ等を指す。また、化学的なダメージとは、酸化性雰囲気や腐食性ガスの存在下で使用する際の腐食や劣化を指す。第1保護層2と放射層4とは接合され、放射層4と第2保護層3とは、間隙5が設けられている。第2保護層3は、放射層4から放射された熱エネルギーを受け取り、反対側の面から放出する役割を有する。第1保護層2、または第2保護層3は、金属、セラミックス(酸化物、窒化物、炭化物など)によって形成することができる。具体的には、例えば、Al,Ti,Mn,Fe,Ni,Cu,Mo,Ag,W,Au,Ptおよびこれらの合金など、ステンレス、Al、ZrO、SiO、Y、サイアロン、SiC、Si、AlNからなる群から選ばれるいずれかによって形成することができる。第1保護層2、または第2保護層3は、高熱伝導率な材料であることが好ましい。熱伝導率が高いほど、スイッチOFF時、ON時のみかけの熱伝導率の変化が大きくなる。 The first protective layer 2 or the second protective layer 3 has a function of protecting the radiation layer 4 from physical damage and chemical damage. Physical damage refers to thermal shock when used where an unsteady thermal history is applied, damage due to sliding when used in an operating part, and the like. Chemical damage refers to corrosion or deterioration when used in the presence of an oxidizing atmosphere or corrosive gas. The first protective layer 2 and the radiation layer 4 are joined, and the radiation layer 4 and the second protection layer 3 are provided with a gap 5. The second protective layer 3 has a role of receiving thermal energy radiated from the radiating layer 4 and releasing it from the opposite surface. The first protective layer 2 or the second protective layer 3 can be formed of metal or ceramics (oxide, nitride, carbide, etc.). Specifically, for example, Al, Ti, Mn, Fe, Ni, Cu, Mo, Ag, W, Au, Pt, and alloys thereof, such as stainless steel, Al 2 O 3 , ZrO 2 , SiO 2 , Y 2 O 3 , sialon, SiC, Si 3 N 4 , or AlN. The first protective layer 2 or the second protective layer 3 is preferably a material having high thermal conductivity. The higher the thermal conductivity, the greater the apparent change in thermal conductivity when the switch is OFF and ON.
 放射層4と第2保護層3と間隙5は、1nm以上1mm以下であることが好ましい。より好ましくは、1nm以上100μm以下、さらに好ましくは、1nm以上50μm以下である。この範囲にすることにより、より効果的にスイッチとしての機能を発揮させることができる。間隙5は真空が好ましいが、空気などの気体で満たされていてもよい。間隙5の設け方は、特に限定されないが、例えば、図3A、および図3Bに示すように、断熱材8で層を固定することもできる。あるいは、間隙5に透明(特に遠赤外~近赤外領域において)で多孔質な断熱材を存在させて固定することもできる。間隙5を設けることで、伝導伝熱の寄与を排除し、ふく射伝熱を支配的とし、放射率変化によるスイッチOFF/ON時の伝熱の変化を大きくすることができる。 The radiation layer 4, the second protective layer 3, and the gap 5 are preferably 1 nm or more and 1 mm or less. More preferably, they are 1 nm or more and 100 micrometers or less, More preferably, they are 1 nm or more and 50 micrometers or less. By setting this range, the function as a switch can be exhibited more effectively. The gap 5 is preferably a vacuum, but may be filled with a gas such as air. The method of providing the gap 5 is not particularly limited. For example, as shown in FIGS. 3A and 3B, the layer can be fixed with a heat insulating material 8. Alternatively, a transparent (particularly in the far-infrared to near-infrared region) porous insulating material can be present and fixed in the gap 5. By providing the gap 5, the contribution of conduction heat transfer can be eliminated, radiation heat transfer can be dominant, and the change in heat transfer at the time of switch OFF / ON due to emissivity change can be increased.
(温度調整構造)
 本発明の熱スイッチ1を、熱を発生する熱発生源の周囲に備えた温度調整構造について説明する。本明細書において、温度調整構造とは、熱発生源から熱を有効利用しつつ、温度を調整する機能を有する構造をいう。熱を発生する熱発生源とは、熱を発生するもののことをいい、特に限定されるものではない。本発明の温度調整構造は、第1温度とそれより高温または低温の第2温度とで放熱状態を変化させることにより、熱発生源の熱による温度を調整して、温度調整構造を備えたものの性能を向上させることができる。具体的には、熱発生源の例としては、バッテリーパック、モーター、CPU、制御回路、エンジン、ブレーキ、ギアボックスなどが挙げられる。これらの周囲に熱スイッチ1を備えた構造が、温度調整構造である。熱発生源を太陽光とした場合には、建材、窓、サッシに熱スイッチ1を備えることにより、室内の温度調整構造とすることができる。
(Temperature adjustment structure)
A temperature adjustment structure in which the thermal switch 1 of the present invention is provided around a heat generation source that generates heat will be described. In this specification, the temperature adjustment structure refers to a structure having a function of adjusting temperature while effectively using heat from a heat generation source. The heat generation source that generates heat refers to the one that generates heat, and is not particularly limited. The temperature adjustment structure of the present invention includes a temperature adjustment structure that adjusts the temperature due to the heat of the heat generation source by changing the heat radiation state between the first temperature and the second temperature that is higher or lower than the first temperature. Performance can be improved. Specifically, examples of the heat generation source include a battery pack, a motor, a CPU, a control circuit, an engine, a brake, and a gear box. The structure provided with the thermal switch 1 around these is a temperature adjustment structure. In the case where sunlight is used as the heat generation source, an indoor temperature adjustment structure can be obtained by providing the building material, window, and sash with the thermal switch 1.
 図4に熱スイッチ1を備えたバッテリーパック30の一実施形態を示す。バッテリーパック30は、熱発生源である。バッテリーパック30は、複数の電池を含み、それらを電気的に接続してケース31内に収容している。図4に示すように、バッテリーパック30の外周部、すなわちケース31に、熱スイッチ1が備えられている。 FIG. 4 shows an embodiment of the battery pack 30 provided with the thermal switch 1. The battery pack 30 is a heat generation source. The battery pack 30 includes a plurality of batteries, and these are electrically connected and accommodated in the case 31. As shown in FIG. 4, the thermal switch 1 is provided on the outer peripheral portion of the battery pack 30, that is, the case 31.
 バッテリーパック30は、始動時には、低温であるため電池抵抗が高い。したがって、できるだけバッテリーパック30の内部の熱を放熱しないことが好ましい。一方、暖気完了後は、バッテリーパック30の内部の温度が高すぎると電解液分解による発火の懸念がある。したがって、バッテリーパック30の内部の熱を積極的に放熱することが好ましい。図4に示すように、熱スイッチ1をバッテリーパック30の外周部に備えることにより、始動時には放熱しにくく、熱を有効に用いることができる。また、暖気完了後は、放射率が高くなるため、バッテリーパック30内部の熱を積極的に放熱することができる。 The battery pack 30 has a high battery resistance because it is at a low temperature when starting. Therefore, it is preferable not to dissipate the heat inside the battery pack 30 as much as possible. On the other hand, after the completion of warming up, if the temperature inside the battery pack 30 is too high, there is a concern of ignition due to decomposition of the electrolyte. Therefore, it is preferable to actively dissipate the heat inside the battery pack 30. As shown in FIG. 4, by providing the thermal switch 1 on the outer periphery of the battery pack 30, it is difficult to dissipate heat at the time of starting, and heat can be used effectively. Moreover, since emissivity becomes high after completion of warm-up, the heat inside the battery pack 30 can be actively dissipated.
(熱スイッチの製造方法)
 第1保護層2や第2保護層3を金属で作製する場合、鋳造、プレス成形などで作製することができる。次に、放射層4となる材料をテープ成形、プレス成形などによって成形後、焼成して放射層4を作製する。そして、サーマルグリースなど熱抵抗の小さい接着層を塗布し、第1保護層2、放射層4を圧着し、さらに第2保護層3を備えて熱スイッチ1とする。
(Method for manufacturing thermal switch)
When the first protective layer 2 and the second protective layer 3 are made of metal, they can be made by casting, press molding, or the like. Next, the material for forming the radiation layer 4 is molded by tape molding, press molding, or the like and then fired to produce the radiation layer 4. Then, an adhesive layer having a low thermal resistance such as thermal grease is applied, the first protective layer 2 and the radiation layer 4 are pressure-bonded, and the second protective layer 3 is further provided as the thermal switch 1.
 第1保護層2や第2保護層3をセラミックスで作製する場合、保護層となる材料をプレス成形、押出し成形などによる成形後、焼成して保護層を作製することができる。次に、塗布、射出等により、例えば、第1保護層2上に厚膜を形成し、焼成して放射層4を作製する。これに、第2保護層3を備えて、熱スイッチ1とする。なお、熱スイッチ1の製造方法は、これらの方法に限定されるものではない。 When the first protective layer 2 and the second protective layer 3 are made of ceramics, the protective layer can be produced by forming the material to be the protective layer by press molding, extrusion molding, or the like, followed by firing. Next, for example, a thick film is formed on the first protective layer 2 by coating, injection, or the like, and baked to produce the radiation layer 4. This is provided with a second protective layer 3 to form a thermal switch 1. In addition, the manufacturing method of the thermal switch 1 is not limited to these methods.
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
(実施例)
 放射層4としてペロブスカイト型マンガン酸化物(La0.7Sr0.2Ca0.1MnO)を用いた。この放射率は0℃で0.4、50℃で0.6であった。このペロブスカイト型マンガン酸化物(La0.7Sr0.2Ca0.1MnO)(放射層4)の粉末を用いて、アルミニウム(第1保護層2)を基板としてAD(エアロゾルデポジション)法により厚さ1μmの放射層4を形成した。放射層4に相対するようにアルミニウム(第2保護層3)を間隙5を100μm空けて設置した熱スイッチ1を用意した。部材(熱スイッチ1)全体としての熱の伝わり方を熱流計を用いて評価した。アルミニウム(第1保護層2)の片側を加熱し、0℃にした場合と50℃にした場合において、もう片側のアルミニウム(第2保護層3)に取り付けた熱流センサーを通過する熱流量を計測した。
(Example)
Perovskite-type manganese oxide (La 0.7 Sr 0.2 Ca 0.1 MnO 3 ) was used as the radiation layer 4. The emissivity was 0.4 at 0 ° C. and 0.6 at 50 ° C. Using this perovskite type manganese oxide (La 0.7 Sr 0.2 Ca 0.1 MnO 3 ) (radiation layer 4) powder, AD (aerosol deposition) using aluminum (first protective layer 2) as a substrate The radiation layer 4 having a thickness of 1 μm was formed by the method. A thermal switch 1 was prepared in which aluminum (second protective layer 3) was placed with a gap 5 of 100 μm so as to face the radiation layer 4. The way of heat transfer as a whole member (thermal switch 1) was evaluated using a heat flow meter. When one side of aluminum (first protective layer 2) is heated to 0 ° C and 50 ° C, the heat flow through the heat flow sensor attached to the other side aluminum (second protective layer 3) is measured. did.
 熱スイッチ1がOFFの状態すなわち0℃での熱流量を100とすると、熱スイッチ1がONの状態すなわち50℃での熱流量は125であり、スイッチとして機能することが確認できた。 When the heat flow rate in the state where the heat switch 1 is OFF, that is, 0 ° C. is 100, the heat flow rate in the state where the heat switch 1 is ON, ie, 50 ° C., is 125.
 本発明の熱スイッチは、温度によって熱の伝えやすさが変化するスイッチとして利用することができる。例えば、熱スイッチをバッテリーパック等に備えることにより、これらの内部の熱を有効に利用することができる。 The thermal switch of the present invention can be used as a switch whose heat transferability varies depending on the temperature. For example, by providing a thermal switch in a battery pack or the like, the internal heat can be used effectively.
1:熱スイッチ、2:第1保護層、3:第2保護層、4:放射層、5:間隙、8:断熱材、30:バッテリーパック、31:ケース。 1: thermal switch, 2: first protective layer, 3: second protective layer, 4: radiation layer, 5: gap, 8: heat insulating material, 30: battery pack, 31: case.

Claims (9)

  1.  熱を受け取る第1保護層と、
     前記第1保護層上に接合され、温度が変化すると、放射率が変化する放射層と、
     前記放射層と間隙を有した状態で、前記放射層に対向して配置され、前記放射層から熱を受け取る第2保護層と、
     を備える熱スイッチ。
    A first protective layer that receives heat;
    A radiation layer bonded onto the first protective layer and having an emissivity that changes as the temperature changes;
    A second protective layer disposed opposite to the radiation layer and having a gap with the radiation layer, and receiving heat from the radiation layer;
    With thermal switch.
  2.  前記放射層は、温度が上昇するまたは下降すると放射率が0.2以上変化する請求項1に記載の熱スイッチ。 The thermal switch according to claim 1, wherein the emissivity of the radiation layer changes by 0.2 or more when the temperature rises or falls.
  3.  前記放射層は、段差状に放射率が変化する請求項1または2に記載の熱スイッチ。 The thermal switch according to claim 1 or 2, wherein the emissivity of the radiation layer changes stepwise.
  4.  前記放射層は、放射率可変素子、Mott絶縁体、金属-半導体相転移材料、金属-絶縁体相転移材料のいずれかによって形成されている請求項1~3のいずれか1項に記載の熱スイッチ。 The heat radiation according to any one of claims 1 to 3, wherein the radiation layer is formed of any one of a variable emissivity element, a Mott insulator, a metal-semiconductor phase transition material, and a metal-insulator phase transition material. switch.
  5.  前記放射層は、ペロブスカイト型酸化物によって形成されている請求項4に記載の熱スイッチ。 The thermal switch according to claim 4, wherein the radiation layer is formed of a perovskite oxide.
  6.  前記第1保護層、または前記第2保護層は、酸化物、窒化物、炭化物からなるセラミックス、及び金属からなる群から選ばれるいずれかによって形成されている請求項1~5のいずれか1項に記載の熱スイッチ。 The first protective layer or the second protective layer is formed of any one selected from the group consisting of an oxide, a nitride, a ceramic made of carbide, and a metal. The thermal switch described in.
  7.  前記放射層と前記第2保護層と間隙は、1nm以上1mm以下である請求項1~6のいずれか1項に記載の熱スイッチ。 The thermal switch according to any one of claims 1 to 6, wherein a gap between the radiation layer and the second protective layer is 1 nm or more and 1 mm or less.
  8.  請求項1~7のいずれか1項に記載の熱スイッチを、熱を発生する熱発生源の周囲に備え、
     第1温度とそれより高温または低温の第2温度とで放熱状態を変化させることにより、前記熱発生源からの前記熱による温度を調整する温度調整構造。
    The thermal switch according to any one of claims 1 to 7 is provided around a heat generation source for generating heat,
    A temperature adjustment structure for adjusting a temperature due to the heat from the heat generation source by changing a heat dissipation state between a first temperature and a second temperature higher or lower than the first temperature.
  9.  請求項8に記載の温度調整構造を有するバッテリーパック。 A battery pack having the temperature adjustment structure according to claim 8.
PCT/JP2014/057627 2013-03-22 2014-03-19 Thermal switch, temperature adjustment structure, and battery pack WO2014148585A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015506841A JPWO2014148585A1 (en) 2013-03-22 2014-03-19 Thermal switch, temperature control structure, and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-061020 2013-03-22
JP2013061020 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148585A1 true WO2014148585A1 (en) 2014-09-25

Family

ID=51580257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057627 WO2014148585A1 (en) 2013-03-22 2014-03-19 Thermal switch, temperature adjustment structure, and battery pack

Country Status (2)

Country Link
JP (1) JPWO2014148585A1 (en)
WO (1) WO2014148585A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152688A1 (en) * 2015-03-23 2016-09-29 日本碍子株式会社 Heat dissipation adjustment structure, battery pack, and fluid flow device
JP2016216688A (en) * 2015-05-26 2016-12-22 国立大学法人名古屋大学 Device capable of changing thermal conductivity
JP2018193533A (en) * 2017-05-19 2018-12-06 トヨタ自動車株式会社 Thermal radiation structure
US20220244001A1 (en) * 2021-02-03 2022-08-04 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and Methods for Tunable Radiative Cooling
US11828498B2 (en) 2021-07-16 2023-11-28 Toyota Motor Engineering & Manufacturing North America, Inc. Multi mode heat transfer systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102288123B1 (en) 2018-10-05 2021-08-11 주식회사 엘지에너지솔루션 Electrode assembly, secondary battery and battery pack comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037313A1 (en) * 2005-09-28 2007-04-05 Nec Corporation Windowpane and window film
JP2008258199A (en) * 2007-03-30 2008-10-23 Sumitomo Bakelite Co Ltd Heat transfer sheet, and heat dissipation structure
US20090253369A1 (en) * 2006-09-08 2009-10-08 Mpb Communications Inc. Variable emittance thermochromic material and satellite system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037313A1 (en) * 2005-09-28 2007-04-05 Nec Corporation Windowpane and window film
US20090253369A1 (en) * 2006-09-08 2009-10-08 Mpb Communications Inc. Variable emittance thermochromic material and satellite system
JP2008258199A (en) * 2007-03-30 2008-10-23 Sumitomo Bakelite Co Ltd Heat transfer sheet, and heat dissipation structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152688A1 (en) * 2015-03-23 2016-09-29 日本碍子株式会社 Heat dissipation adjustment structure, battery pack, and fluid flow device
JP2016216688A (en) * 2015-05-26 2016-12-22 国立大学法人名古屋大学 Device capable of changing thermal conductivity
JP2018193533A (en) * 2017-05-19 2018-12-06 トヨタ自動車株式会社 Thermal radiation structure
US20220244001A1 (en) * 2021-02-03 2022-08-04 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and Methods for Tunable Radiative Cooling
US11852423B2 (en) * 2021-02-03 2023-12-26 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for tunable radiative cooling
US11828498B2 (en) 2021-07-16 2023-11-28 Toyota Motor Engineering & Manufacturing North America, Inc. Multi mode heat transfer systems

Also Published As

Publication number Publication date
JPWO2014148585A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2014148585A1 (en) Thermal switch, temperature adjustment structure, and battery pack
JP6312656B2 (en) Thermal switch, temperature control structure, and battery pack
CN108027548A (en) Camera model thin film heater and the camera model with the camera model thin film heater
EP2460182B1 (en) A coating for thermoelectric materials and a device containing the same
JP6632885B2 (en) Thermal switch element
JP6096918B2 (en) Temperature probe and method of manufacturing temperature probe
JP2012523110A5 (en)
WO2013031774A1 (en) Power generation system
JP2011247876A (en) Temperature sensor
WO2014033891A1 (en) Thermoelectric conversion device
JP6383013B2 (en) Electronic devices
WO2010140669A1 (en) Thermoelectric material
JP2004311317A (en) Battery
KR102144070B1 (en) Ti METALIZING STRUCTURE FOR SKUTTERUDITE THERMOELECTRIC MATERIALS WITH ITO INTERLAYER, Ti METALIZING METHOD, SKUTTERUDITE THERMOELECTRIC MATERIALS WITH Ti METALIZING AND MANUFACTURING METHOD FOR THE SAME
JP6870747B2 (en) Thermoelectric conversion element and manufacturing method of thermoelectric conversion element
JP2002368292A (en) Thermoelectric conversion module for high temperature
JP2012046372A (en) Ptc element and heat generating module
JP2002118296A (en) N-type thermoelectric conversion element for high temperature having high electric conductivity, and thermoelectric conversion module using it
JP6904847B2 (en) Laminated pyroelectric element
US20230137163A1 (en) Thermal radiation element, thermal radiation element module, and thermal radiation light source
JP2023066366A (en) Heat radiation element, heat radiation element module, and heat radiation source
KR20240047668A (en) Peltier device
JP3667099B2 (en) High temperature thermistor element, manufacturing method thereof, and temperature sensor for high temperature using the same
JP5061706B2 (en) Thermoelectric element, manufacturing method thereof, and thermoelectric conversion module
JP6784322B2 (en) Composite oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770580

Country of ref document: EP

Kind code of ref document: A1