JPWO2014115240A1 - Refrigerant distributor and heat pump device using the refrigerant distributor - Google Patents

Refrigerant distributor and heat pump device using the refrigerant distributor Download PDF

Info

Publication number
JPWO2014115240A1
JPWO2014115240A1 JP2014558310A JP2014558310A JPWO2014115240A1 JP WO2014115240 A1 JPWO2014115240 A1 JP WO2014115240A1 JP 2014558310 A JP2014558310 A JP 2014558310A JP 2014558310 A JP2014558310 A JP 2014558310A JP WO2014115240 A1 JPWO2014115240 A1 JP WO2014115240A1
Authority
JP
Japan
Prior art keywords
refrigerant
distributor
branch pipe
tube
way branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014558310A
Other languages
Japanese (ja)
Other versions
JP6278904B2 (en
Inventor
拓也 松田
拓也 松田
外囿 圭介
圭介 外囿
宏樹 岡澤
宏樹 岡澤
渉 鈴木
渉 鈴木
崇志 中島
崇志 中島
厚志 望月
厚志 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2014115240A1 publication Critical patent/JPWO2014115240A1/en
Application granted granted Critical
Publication of JP6278904B2 publication Critical patent/JP6278904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Abstract

熱交換器1を構成する複数の伝熱管3に冷媒を分配するための冷媒分配器10であって、冷媒を複数に分配する第1の分配器20と、第1の分配器20で分配された冷媒を2つに分岐して2つの伝熱管3に流入させる複数の2方分岐管30とを備えた。A refrigerant distributor 10 for distributing a refrigerant to a plurality of heat transfer tubes 3 constituting the heat exchanger 1, wherein the refrigerant is distributed by a first distributor 20 that distributes the refrigerant into a plurality of parts, and the first distributor 20. And a plurality of two-way branch pipes 30 for branching the refrigerant into two and flowing into the two heat transfer pipes 3.

Description

本発明は、冷媒分配器に関する。   The present invention relates to a refrigerant distributor.

空気調和機又は冷凍装置などのヒートポンプ装置において凝縮器又は蒸発器として作用する熱交換器では、冷媒流路が複数パスとなる場合、その冷媒入口側に各パスへ冷媒を分配する冷媒分配器が必要である。   In a heat exchanger that acts as a condenser or an evaporator in a heat pump apparatus such as an air conditioner or a refrigeration apparatus, when the refrigerant flow path has a plurality of paths, a refrigerant distributor that distributes the refrigerant to each path is provided on the refrigerant inlet side. is necessary.

冷媒分配器として従来よりディストリビュータが用いられており、ディストリビュータで分配した各冷媒を、キャピラリーチューブで熱交換器の各伝熱管に流入させるようにしている(例えば、特許文献1参照)。   A distributor is conventionally used as a refrigerant distributor, and each refrigerant distributed by the distributor is caused to flow into each heat transfer tube of the heat exchanger through a capillary tube (see, for example, Patent Document 1).

特開2008−121984号公報(第4頁、図1)JP 2008-121984 (page 4, FIG. 1)

熱交換器における熱交換効率の高効率化手法として、伝熱管に管径を小さくした円管を用いたり、複数の冷媒流路が形成された扁平管を用いたりすることが知られている。このように伝熱管の細径化、扁平管化を行うと、一つの熱交換器に用いられる伝熱管数も増える。   As a method for increasing the efficiency of heat exchange in a heat exchanger, it is known to use a circular tube with a reduced diameter as a heat transfer tube or a flat tube in which a plurality of refrigerant channels are formed. If the diameter of the heat transfer tube is reduced and the tube is flattened in this way, the number of heat transfer tubes used in one heat exchanger also increases.

特許文献1では、複数の伝熱管において外部からの冷媒流入口となる端部を個々にキャピラリーチューブを介してディストリビュータに接続する方式であり、熱交換器のパス数とキャピラリーチューブの数とが同数である。このため、伝熱管数が増えてパス数が増えると、それに伴いキャピラリーチューブの数も増える。   In Patent Document 1, a plurality of heat transfer tubes are connected to distributors through the capillary tubes, and the end portions serving as refrigerant inlets from the outside are individually connected, and the number of heat exchanger passes and the number of capillary tubes are the same. It is. For this reason, when the number of heat transfer tubes increases and the number of passes increases, the number of capillary tubes also increases accordingly.

キャピラリーチューブの数が増えると、キャピラリーチューブの取り回しが困難になり、また、キャピラリーチューブを実機に搭載する際の配置スペースが大きくなるという問題があった。また、キャピラリーチューブの数が増えると、その分、コスト高となるため、伝熱管の細径化、扁平管化に伴うコスト増を低減することが求められている。   When the number of capillary tubes is increased, it is difficult to handle the capillary tubes, and there is a problem that an arrangement space for mounting the capillary tubes on an actual machine increases. Further, since the cost increases as the number of capillary tubes increases, it is required to reduce the cost increase associated with the diameter reduction and flattening of the heat transfer tubes.

本発明はこのような点を鑑みなされたもので、キャピラリーチューブの接続本数を削減でき、キャピラリーチューブを実機に搭載する際の設置スペースのコンパクト化、コストダウンを可能とする冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置を提供する。   The present invention has been made in view of the above points, a refrigerant distributor capable of reducing the number of connections of capillary tubes, reducing the installation space when mounting the capillary tubes on an actual machine, and reducing the cost, and the refrigerant. Provided is a heat pump device using a distributor.

本発明に係る冷媒分配器は、熱交換器を構成する複数の伝熱管に冷媒を分配するための冷媒分配器であって、冷媒を複数に分配する第1の分配器と、第1の分配器で分配された冷媒を2つに分岐して2つの伝熱管に流入させる複数の第2の分配器とを備えたものである。   A refrigerant distributor according to the present invention is a refrigerant distributor for distributing refrigerant to a plurality of heat transfer tubes constituting a heat exchanger, the first distributor for distributing the refrigerant into a plurality of parts, and the first distributor And a plurality of second distributors for branching the refrigerant distributed by the distributor into two and allowing the refrigerant to flow into the two heat transfer tubes.

本発明によれば、キャピラリーチューブの接続本数を削減でき、キャピラリーチューブを実機に搭載する際の設置スペースのコンパクト化、コストダウンが可能となる。   According to the present invention, the number of connected capillary tubes can be reduced, and the installation space for mounting the capillary tubes on an actual machine can be made compact and the cost can be reduced.

本発明の実施の形態1に係る冷媒分配器を熱交換器に接続した状態を示した概略構成図である。It is the schematic block diagram which showed the state which connected the refrigerant distributor which concerns on Embodiment 1 of this invention to the heat exchanger. 図1の2方分岐管の斜視図である。It is a perspective view of the two-way branch pipe of FIG. 円管−扁平管ジョイントの斜視図である。It is a perspective view of a circular tube-flat tube joint. 本発明の実施の形態1に係る冷媒分配器の2方分岐管の構造説明図である。It is structure explanatory drawing of the two-way branch pipe of the refrigerant distributor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷媒分配器が用いられるヒートポンプ装置の冷媒回路を示す図である。It is a figure which shows the refrigerant circuit of the heat pump apparatus with which the refrigerant distributor which concerns on Embodiment 1 of this invention is used. 本発明の実施の形態1に係る冷媒分配器を、伝熱管に扁平管を用いた空調機の室外機用の熱交換器に接続した構成例を示す図である。It is a figure which shows the structural example which connected the refrigerant distributor which concerns on Embodiment 1 of this invention to the heat exchanger for the outdoor units of the air conditioner which used the flat tube for the heat exchanger tube. 図5の熱交換器の冷媒分配器との接続部分を背面側から見た拡大斜視図である。It is the expansion perspective view which looked at the connection part with the refrigerant distributor of the heat exchanger of FIG. 5 from the back side. 図6の扁平管の斜視図である。It is a perspective view of the flat tube of FIG. 3列構成の熱交換器において2方分岐管を用いない従来例を示した図である。It is the figure which showed the prior art example which does not use a two-way branch pipe in the heat exchanger of 3 rows structure. 本発明の実施の形態2に係る冷媒分配器の構成図である。It is a block diagram of the refrigerant distributor which concerns on Embodiment 2 of this invention. 図10の冷媒分配器における第3の分配器を示す図である。It is a figure which shows the 3rd distributor in the refrigerant distributor of FIG. 本発明の実施の形態3に係る冷媒分配器における第2の分配器の構成図である。It is a block diagram of the 2nd divider | distributor in the refrigerant distributor which concerns on Embodiment 3 of this invention. 本発明の実施の形態4における冷媒分配器における第2の分配器の構成図である。It is a block diagram of the 2nd distributor in the refrigerant distributor in Embodiment 4 of this invention. 図13(A)の要部拡大図である。It is a principal part enlarged view of FIG. 13 (A). 第1の分配器にヘッダを用いた構成例を示す図である。It is a figure which shows the structural example which used the header for the 1st divider | distributor.

実施の形態1.
図1は、本発明の実施の形態1に係る冷媒分配器を熱交換器に接続した状態を示した概略構成図である。図1及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram illustrating a state in which the refrigerant distributor according to Embodiment 1 of the present invention is connected to a heat exchanger. In FIG. 1 and the drawings to be described later, the same reference numerals denote the same or corresponding parts, which are common throughout the entire specification. Furthermore, the forms of the constituent elements appearing in the entire specification are merely examples and are not limited to these descriptions.

熱交換器1は、互いに間隔をあけて積層された複数の板状フィン2と、板状フィン2を積層方向に貫通し、内部に冷媒が流れる複数の伝熱管3とを備えたフィンアンドチューブ熱交換器である。伝熱管3は、銅又はアルミ製の円管、扁平管などである。複数の伝熱管3の一端側には冷媒分配器10が接続され、他端側にはガスヘッダ6が接続されている。   The heat exchanger 1 includes a plurality of plate-like fins 2 stacked at intervals, and a fin-and-tube provided with a plurality of heat transfer tubes 3 that penetrate the plate-like fins 2 in the stacking direction and in which refrigerant flows. It is a heat exchanger. The heat transfer tube 3 is a copper or aluminum circular tube, a flat tube, or the like. A refrigerant distributor 10 is connected to one end side of the plurality of heat transfer tubes 3, and a gas header 6 is connected to the other end side.

次に、この熱交換器1に接続された冷媒分配器10について説明する。
冷媒分配器10は、第1の分配器20と第2の分配器としての複数の2方分岐管30とを備えている。第1の分配器20には、気液二相状態で第1の分配器20に流入した冷媒を均等に熱交換器1の各伝熱管3に分岐することが求められる。このため、第1の分配器20として、図1ではディストリビュータを用いている。
Next, the refrigerant distributor 10 connected to the heat exchanger 1 will be described.
The refrigerant distributor 10 includes a first distributor 20 and a plurality of two-way branch pipes 30 as second distributors. The first distributor 20 is required to evenly branch the refrigerant that has flowed into the first distributor 20 in the gas-liquid two-phase state to the heat transfer tubes 3 of the heat exchanger 1. For this reason, a distributor is used as the first distributor 20 in FIG.

ディストリビュータの内部にはオリフィスなどの絞り機構が挿入されており、流入した二相流をオリフィスに通過させることで噴霧流状態とし、均等分配し易い状態にする。噴霧流化された冷媒は、各キャピラリーチューブ40に均等に分配される。また、ディストリビュータには、その内部にオリフィス等の絞り機構が挿入されていない仕様のものを用いても良く、要は、第1の分配器20には均等に分配できる分配器を用いればよい。ディストリビュータの材質は、銅製、アルミ製、黄銅製などである。   A throttling mechanism such as an orifice is inserted inside the distributor, and the two-phase flow that has flowed in is passed through the orifice to form a spray flow state, which facilitates uniform distribution. The sprayed refrigerant is evenly distributed to each capillary tube 40. In addition, the distributor may have a specification that does not have a restriction mechanism such as an orifice inserted therein. In short, the first distributor 20 may be a distributor capable of even distribution. The material of the distributor is made of copper, aluminum, brass or the like.

キャピラリーチューブ40には、ここでは内径が約3.5mm、長さが約1000mmのキャピラリーチューブ40が用いられる。キャピラリーチューブ40の上記の寸法はあくまで1つの例である。キャピラリーチューブ40は、その長さと設置スペースとの関係から、円状に曲げられる場合もある。   Here, a capillary tube 40 having an inner diameter of about 3.5 mm and a length of about 1000 mm is used as the capillary tube 40. The above dimensions of the capillary tube 40 are just an example. The capillary tube 40 may be bent in a circular shape due to the relationship between the length and the installation space.

また、キャピラリーチューブ40は、その仕様(内径、長さ)で管内圧損を調整でき、第1の分配器20から各2方分岐管30への分流比を調整することができる。熱交換器1に空気を送風する送風ファン(図示せず)からの風速は、熱交換器1の全面において均一とは限らず、風速分布が存在する場合がある。例えば、熱交換器1の上部に送風ファンが設置される場合、熱交換器1の上部の方が下部に比べて風速が速くなる。   In addition, the capillary tube 40 can adjust the pressure loss in the tube according to the specifications (inner diameter, length), and can adjust the diversion ratio from the first distributor 20 to each of the two-way branch tubes 30. The wind speed from a blower fan (not shown) that blows air to the heat exchanger 1 is not necessarily uniform over the entire surface of the heat exchanger 1, and a wind speed distribution may exist. For example, when a blower fan is installed in the upper part of the heat exchanger 1, the wind speed is faster in the upper part of the heat exchanger 1 than in the lower part.

熱交換器1を蒸発器として用いる場合において、風速が速い部分を通過する冷媒は、風速が遅い部分を通過する冷媒に比べてガス化が進み、乾きやすくなる。よって、各伝熱管3に流入する冷媒量が同じ場合、風速が速い部分を通過した冷媒は、風速が遅い部分を通過した冷媒よりも乾き度が高くなり、熱交換器出口において冷媒状態にばらつきが生じ、冷媒状態が安定しなくなる。よって、風速が速い部分に位置する伝熱管には冷媒が多く流入するように分流することが求められる。このように、分流比を調整することが求められる場合に、キャピラリーチューブ40の仕様を調整することで、分流比を調整することができる。   In the case where the heat exchanger 1 is used as an evaporator, the refrigerant that passes through the portion where the wind speed is fast is more easily gasified and easily dried than the refrigerant that passes through the portion where the wind speed is slow. Therefore, when the amount of refrigerant flowing into each heat transfer tube 3 is the same, the refrigerant that has passed through the portion with the high wind speed has a higher dryness than the refrigerant that has passed through the portion with the low wind speed, and the refrigerant state varies at the outlet of the heat exchanger. Occurs, and the refrigerant state becomes unstable. Therefore, it is required to divert so that a large amount of refrigerant flows into the heat transfer tube located in the portion where the wind speed is high. Thus, when it is required to adjust the flow dividing ratio, the flow dividing ratio can be adjusted by adjusting the specifications of the capillary tube 40.

キャピラリーチューブ40の第1の分配器20と反対側の端部には2方分岐管30が接続される。2方分岐管30を用いることで、第1分配器20の分岐数及びキャピラリーチューブ40の本数をAとすると、2×Aの分岐数(パス数)に冷媒を分配することが可能となる。以下、2方分岐管30の構造について説明する。   A two-way branch pipe 30 is connected to the end of the capillary tube 40 opposite to the first distributor 20. By using the two-way branch pipe 30, it is possible to distribute the refrigerant to a 2 × A branch number (pass number), where A is the number of branches of the first distributor 20 and the number of capillary tubes 40. Hereinafter, the structure of the two-way branch pipe 30 will be described.

図2は、図1の2方分岐管の斜視図である。
2方分岐管30は、円管をU字状に折り曲げて形成されたUベンド部31と、直線状流入部35とを有している。Uベンド部31は、連結部32と、連結部32の両端から互いに並行に延びる2つの腕部33、34とを有している。直線状流入部35は、Uベンド部31の2つの腕部33、34のうちの一方(ここでは腕部34)をバルジ成形加工して形成されている。ここでは、腕部34側に直線状流入部35を設けた例を示している。バルジ成形加工とは、まずプレス内の金型にパイプ形状の素材をセット後、型締めする。そして、素材内に高圧の液体を充填しながら素材の両端を互いに近づくように軸方向に圧縮する事で、金型に彫られた形状に素材を伸ばして中空成形を行う加工法のことである。
FIG. 2 is a perspective view of the two-way branch pipe of FIG.
The two-way branch pipe 30 has a U-bend part 31 formed by bending a circular pipe into a U shape, and a straight inflow part 35. The U-bend portion 31 includes a connecting portion 32 and two arm portions 33 and 34 that extend in parallel from both ends of the connecting portion 32. The straight inflow portion 35 is formed by bulging one of the two arm portions 33, 34 of the U bend portion 31 (here, the arm portion 34). Here, the example which provided the linear inflow part 35 in the arm part 34 side is shown. In the bulge forming process, a pipe-shaped material is first set in a mold in a press and then clamped. And it is a processing method that stretches the material to the shape carved in the mold and compresses it by compressing in the axial direction so that both ends of the material approach each other while filling the material with high pressure liquid .

このように構成された2方分岐管30の直線状流入部35には、L字状に曲げられたL字管36の一端が取り付けられ、L字管36の他端はキャピラリーチューブ40に接続される。そして、2方分岐管30の2つの腕部33、34の開口部A、Bは、熱交換器1の伝熱管3に接続される。なお、2つの腕部33、34と伝熱管3との接続は、伝熱管3が円管であれば直接接続され、伝熱管3が扁平管であれば図3に示す円管−扁平管ジョイント4を介して接続される。また、2方分岐管30は、2つの腕部33、34が水平方向に沿うように熱交換器1に接続され、直線状流入部35から腕部34に流入後の冷媒が水平方向に分岐して流れるようにしている。その理由については後述する。   One end of an L-shaped tube 36 bent in an L-shape is attached to the linear inflow portion 35 of the two-way branch tube 30 thus configured, and the other end of the L-shaped tube 36 is connected to the capillary tube 40. Is done. The openings A and B of the two arm portions 33 and 34 of the two-way branch tube 30 are connected to the heat transfer tube 3 of the heat exchanger 1. The connection between the two arm portions 33 and 34 and the heat transfer tube 3 is directly connected if the heat transfer tube 3 is a circular tube, and the circular tube-flat tube joint shown in FIG. 3 if the heat transfer tube 3 is a flat tube. 4 is connected. In addition, the two-way branch pipe 30 is connected to the heat exchanger 1 so that the two arm portions 33 and 34 are along the horizontal direction, and the refrigerant flowing into the arm portion 34 from the linear inflow portion 35 branches in the horizontal direction. And make it flow. The reason will be described later.

図2の右図において点線矢印は、熱交換器1を蒸発器として用いる場合の冷媒の流れを示しており、2方分岐管30には、キャピラリーチューブ40から流入した冷媒がL字管36を介して直線状流入部35に流入する。直線状流入部35に流入した冷媒は、腕部33側と腕部34側との2つに分岐し、それぞれが各伝熱管3に流入する。   In the right diagram of FIG. 2, the dotted arrows indicate the flow of refrigerant when the heat exchanger 1 is used as an evaporator, and the refrigerant flowing from the capillary tube 40 passes through the L-shaped pipe 36 in the two-way branch pipe 30. It flows into the linear inflow part 35 via. The refrigerant that has flowed into the straight inflow portion 35 is branched into two, that is, the arm portion 33 side and the arm portion 34 side, and each flows into each heat transfer tube 3.

このように、2方分岐管30は、流入した冷媒を2つに分岐させて各伝熱管3に流入させるため、各伝熱管3のそれぞれに直接、キャピラリーチューブ40を接続する構成に比べて、キャピラリーチューブ40の数を半分に減らすことができる。よって、本実施の形態1の冷媒分配器10を用いることで、キャピラリーチューブ40の設置性を向上することできる。   Thus, since the two-way branch pipe 30 branches the refrigerant that has flowed into two and flows into each heat transfer pipe 3, compared to the configuration in which the capillary tube 40 is directly connected to each heat transfer pipe 3, The number of capillary tubes 40 can be reduced to half. Therefore, the installation property of the capillary tube 40 can be improved by using the refrigerant distributor 10 of the first embodiment.

2方分岐管30には、キャピラリーチューブ40の設置性の向上の他、キャピラリーチューブ40から流入した冷媒を均等に分配して各伝熱管3に流入させる機能も求められる。冷媒分配器10では、第1の分配器20において各キャピラリーチューブ40に冷媒を均等に分配させることができるが、その均等分配状態を保ったまま最終的に熱交換器1の各伝熱管に流入させる必要があり、2方分岐管30部分でも均等に分配することが求められる。   In addition to improving the ease of installation of the capillary tube 40, the two-way branch tube 30 is also required to have a function of evenly distributing the refrigerant flowing from the capillary tube 40 and flowing it into each heat transfer tube 3. In the refrigerant distributor 10, the refrigerant can be evenly distributed to the capillary tubes 40 in the first distributor 20, but finally flows into the heat transfer tubes of the heat exchanger 1 while maintaining the equal distribution state. It is necessary to distribute evenly even in the two-way branch pipe 30 portion.

一般にヒートポンプ装置の膨張弁を通過した冷媒及び蒸発器入口の冷媒は、ガス冷媒と液冷媒との気液二相の状態となっており、配管内を流れる冷媒の断面において密度分布が生じている。例えば配管に曲がりがある場合、遠心力の影響により液冷媒が一方の管内面に偏って流れる偏流現象が生じてしまう。つまり、二相冷媒が気液分離してしまう。   In general, the refrigerant that has passed through the expansion valve of the heat pump device and the refrigerant at the inlet of the evaporator are in a gas-liquid two-phase state of a gas refrigerant and a liquid refrigerant, and a density distribution occurs in the cross section of the refrigerant flowing in the pipe. . For example, when the pipe is bent, a drift phenomenon occurs in which the liquid refrigerant is biased toward the inner surface of one of the pipes due to the centrifugal force. That is, the two-phase refrigerant is gas-liquid separated.

従って熱交換器を蒸発器として使用する際には、その流入側に位置する冷媒分配器に対し、上記のような偏流現象が生じず、気液が分離するのを防止できる機能が要求される。そして、冷媒分配器には、冷媒が均質に混合されて冷媒分配器入口での気液質量流量比と冷媒分配器出口での気液質量流量比とが均等の状態で冷媒を分配する機能が要求される。また、上述したように円管の細径化、扁平管化によりパス数が増加すると、その各パスに均一の冷媒流量を分岐することが、より一層、重要な課題となってくる。   Therefore, when the heat exchanger is used as an evaporator, the refrigerant distributor located on the inflow side is required to have a function that prevents the above-described drift phenomenon and prevents the gas and liquid from separating. . The refrigerant distributor has a function of distributing the refrigerant in a state where the refrigerant is homogeneously mixed and the gas-liquid mass flow ratio at the refrigerant distributor inlet and the gas-liquid mass flow ratio at the refrigerant distributor outlet are equal. Required. Further, as described above, when the number of passes increases due to the diameter reduction and flattening of the circular tube, it becomes an even more important issue to branch a uniform refrigerant flow rate into each pass.

そこで、2方分岐管30において冷媒を均等に分岐するために採用した構成について以下に説明する。   Therefore, the configuration adopted for equally branching the refrigerant in the two-way branch pipe 30 will be described below.

図4は、本発明の実施の形態1に係る冷媒分配器の2方分岐管の構造説明図である。図4において(a)は2方分岐管30の正面図、(b)は(a)の側面図である。
2方分岐管30においてバルジ成形された直線状流入部35は、その管軸X1と腕部34の管軸X2との角度θが90度になるように成形される。
FIG. 4 is an explanatory diagram of the structure of the two-way branch pipe of the refrigerant distributor according to Embodiment 1 of the present invention. In FIG. 4, (a) is a front view of the two-way branch pipe 30, and (b) is a side view of (a).
The straight inflow portion 35 bulged in the two-way branch pipe 30 is shaped such that the angle θ 1 between the pipe axis X1 and the pipe axis X2 of the arm portion 34 is 90 degrees.

角度θが90度より10度以上ずれる場合、直線状流入部35から流入した冷媒が、腕部34の直線状流入部35に対向する部分に斜めに衝突して偏流してしまい、熱交換効率が悪化してしまう。このため、角度θを90度とする。なお、完全な90度に限定されるものではなく、僅かに前後するものも含むものとする。When the angle θ 1 deviates from 90 degrees by 10 degrees or more, the refrigerant flowing in from the linear inflow portion 35 obliquely collides with the portion of the arm portion 34 facing the linear inflow portion 35 and drifts, thereby heat exchange. Efficiency will deteriorate. Therefore, the angle theta 1 is 90 degrees. In addition, it is not limited to perfect 90 degree | times, The thing slightly back and forth shall be included.

また、直線状流入部35の長さを5mm以上とすると、均等分配に更に効果的である。この点について説明する。冷媒二相流はキャピラリーチューブ40により冷媒の液部が片側端部に偏った状態となる。そのため、2分岐に分岐する衝突するまでの助走区間を内径の20倍以上とすることで、十分に安定した流れとなる。しかし、本実施の形態1では20倍以上を確保することが構造的に難しい。そこで、本実施の形態1の場合、直線状流入部35の長さを5mm以上確保し、キャピラリーチューブ40、又は、L字管36の水平部の距離を合わせて15mm以上(内径の2倍以上)確保する。   If the length of the linear inflow portion 35 is 5 mm or more, it is more effective for uniform distribution. This point will be described. The refrigerant two-phase flow is in a state where the liquid portion of the refrigerant is biased to one end by the capillary tube 40. Therefore, a sufficiently stable flow can be obtained by setting the running section until the collision that branches into two branches to 20 times or more of the inner diameter. However, in Embodiment 1, it is structurally difficult to ensure 20 times or more. Therefore, in the case of the first embodiment, the length of the linear inflow portion 35 is ensured to be 5 mm or more, and the distance between the capillary tube 40 or the horizontal portion of the L-shaped tube 36 is 15 mm or more (more than twice the inner diameter). ) Secure.

この寸法を確保すれば、直線状流入部35に流入した冷媒二相流は、液膜が管内に均等となり安定した環状流となることを実験的に確認した。この環状流は、直線状流入部35に対向する衝突壁34aに垂直に衝突し、かつ、衝突後の分岐方向は水平方向であるため重力の影響を受けず、循環量に依らず均等に分配することが可能となる。   If this dimension is secured, it has been experimentally confirmed that the refrigerant two-phase flow flowing into the linear inflow portion 35 has a liquid film that is uniform in the pipe and becomes a stable annular flow. This annular flow collides perpendicularly with the collision wall 34a facing the linear inflow portion 35, and since the branching direction after the collision is horizontal, it is not affected by gravity and is evenly distributed regardless of the circulation amount. It becomes possible to do.

なお、直線状流入部35が5mm未満となる場合は、気液二相流はキャピラリーチューブ40の曲がりの影響を受け、直線状流入部35の管内の液面が偏った状態となる。この場合、直線状流入部35に流入した気液二相流は液面の偏りの影響を受けて偏流してしまい、2方分岐管30で均等分配できず、熱交換効率が悪化してしまう。   When the linear inflow portion 35 is less than 5 mm, the gas-liquid two-phase flow is affected by the bending of the capillary tube 40, and the liquid level in the tube of the linear inflow portion 35 is biased. In this case, the gas-liquid two-phase flow that has flowed into the straight inflow portion 35 drifts due to the influence of the unevenness of the liquid level, cannot be evenly distributed by the two-way branch pipe 30, and the heat exchange efficiency deteriorates. .

以上のことから、2方分岐管30は、直線状流入部35の腕部34との角度θを90度とすると共に、直線状流入部35の長さを5mm以上とすることが好ましい。From the above, 2-way branch pipe 30, the angle theta 1 of the arm portion 34 of the straight inlet section 35 with a 90 °, it is preferably not less than 5mm in length of the linear inlet portion 35.

2方分岐管30の直線状流入部35をバルジ成形する点については上述したが、バルジ成形加工を用いることで、角度θが90度の形状を安定して加工することができ、かつ、直線状流入部35を5mm以上の長めに確保することができる。バルジ成形加工では直線ではなく曲げたパイプにも適用でき、また、減肉を抑制しながら、直線状流入部35の長さを長く成形が可能である。Although a straight inlet section 35 of the 2-way branch pipe 30 have been described above points to bulge forming, by using the bulge forming process, the angle theta 1 is able to stably processing a 90 degree geometry, and, The straight inflow portion 35 can be secured longer than 5 mm. The bulge forming process can be applied to a bent pipe instead of a straight line, and the linear inflow portion 35 can be formed long while suppressing the thinning.

2方分岐管30とキャピラリーチューブ40との接合は、バルジ成形加工された直線状流入部35の流入口に、この流入口の内径より外径を小さく形成したL字管36又はキャピラリーチューブ40を挿入し、ロウ付け接合すればよい。このように製造することで、不良無く安定して製造することが可能である。一方、バルジ成形を用いず直線状流入部35を形成した場合、直線状流入部35の長さが短くなり、また、直線状流入部35の肉厚が薄くなる。そうすると、L字管36又はキャピラリーチューブ40を直線状流入部35に接合する時に、角度θが90度より大きくずれる。また、ロウ付け接合時には直線状流入部35がロウ付け域となるため、減肉、接合部の長さが短い影響で安定したロウ付けができない。For joining the two-way branch pipe 30 and the capillary tube 40, an L-shaped pipe 36 or a capillary tube 40 having an outer diameter smaller than the inner diameter of the inlet is formed at the inlet of the straight inlet 35 that has been bulged. Insert and braze. By manufacturing in this way, it is possible to manufacture stably without defects. On the other hand, when the linear inflow portion 35 is formed without using bulge forming, the length of the linear inflow portion 35 is shortened and the thickness of the linear inflow portion 35 is reduced. Then, when joining the L-shaped tube 36 or the capillary tube 40 in a straight line inlet portion 35, the angle theta 1 is shifted more than 90 degrees. In addition, since the straight inflow portion 35 becomes a brazing region during brazing joining, stable brazing cannot be performed due to thinning and the short joint length.

また、腕部34の管軸X2を中心とした直線状流入部35の角度θは何度であっても構わないが、ここでは、図4に示したようにθを90度としている。その理由について説明する。伝熱管3の細径化、扁平管化を行うと、空気の通風抵抗が小さくなるため、伝熱管3の配列ピッチを狭くする設計となり、伝熱管3の実装密度が高くなる。2方分岐管30を用いることで、上述したようにキャピラリーチューブ40の設置性の向上が図れるが、2方分岐管30の直線状流入部35の角度θ(図4に記載)を90度とすることで、更にキャピラリーチューブ40の接続性を向上できる。Further, the angle θ 2 of the linear inflow portion 35 around the tube axis X2 of the arm portion 34 may be any number, but here, θ 2 is set to 90 degrees as shown in FIG. . The reason will be described. When the diameter and flattening of the heat transfer tube 3 are reduced, the air ventilation resistance is reduced, so that the arrangement pitch of the heat transfer tubes 3 is narrowed, and the mounting density of the heat transfer tubes 3 is increased. By using the two-way branch pipe 30, the installation property of the capillary tube 40 can be improved as described above, but the angle θ 2 (described in FIG. 4) of the linear inflow portion 35 of the two-way branch pipe 30 is 90 degrees. By doing so, the connectivity of the capillary tube 40 can be further improved.

配管を変形、しわがでないように曲げるには、内径の2〜3倍以上の曲げRを確保する必要があり、角度θが0度の場合では、L字管36、又は、キャピラリーチューブ40が2方分岐管30に干渉してしまう。よって、角度θが0度の場合では、伝熱管3の実装密度が高くなった場合、キャピラリーチューブ40、又は、L字管36を直線状流入部35に接続し難い。角度θを90度にすることで、キャピラリーチューブ40、又は、L字管36との接続部が空気流入方向となり、2方分岐管30と干渉することなく、接続性が向上できる。In order to bend the pipe so as not to be deformed or wrinkled, it is necessary to secure a bending R that is 2 to 3 times the inner diameter. When the angle θ 2 is 0 degree, the L-shaped tube 36 or the capillary tube 40 is used. Will interfere with the two-way branch pipe 30. Therefore, when the angle θ 2 is 0 degree, it is difficult to connect the capillary tube 40 or the L-shaped tube 36 to the linear inflow portion 35 when the mounting density of the heat transfer tubes 3 is increased. By setting the angle θ 2 to 90 degrees, the connection portion with the capillary tube 40 or the L-shaped tube 36 becomes the air inflow direction, and the connectivity can be improved without interfering with the two-way branch tube 30.

ここで、L字管36の有益性について説明する。予めL字管36と2方分岐管30の直線状流入部35とをロウ付け接合し、次に、開口部A、Bをそれぞれ円管―扁平管ジョイント4とロウ付け接合し、最後にL字管36とキャピラリーチューブ40とをロウ付け接合するという手順とすることで、不良率が少ない安定した製造工程となる。これは以下の理由による。すなわち、ここでのロウ付けはバーナーロウ付けを前提としており、最後にL字管36とキャピラリーチューブとをロウ付け接合することで、バーナーの火が他の配管に当たり難くなるためである。   Here, the usefulness of the L-shaped tube 36 will be described. The L-shaped pipe 36 and the straight inflow part 35 of the two-way branch pipe 30 are brazed in advance, and then the openings A and B are brazed to the circular pipe-flat pipe joint 4 respectively. By adopting the procedure of brazing and joining the tube 36 and the capillary tube 40, a stable manufacturing process with a low defect rate is achieved. This is due to the following reason. That is, the brazing here is based on the premise of the burner brazing, and finally the L-shaped tube 36 and the capillary tube are brazed and joined, so that the fire of the burner hardly hits other piping.

更に、L字管36を用いることで、2方分岐管に流入する角度θを90度にし、2方分岐管に流入する助走距離を長くすることが容易となるため、均等分配性が向上する。L字管36を用いない場合では、キャピラリーチューブ40を2方分岐管30の直線状流入部35に直接接続するため、キャピラリーチューブ40が長く、安定性が悪く、取り回しが悪く、2方分岐管30に流入する角度θのバラつきが大きくなりやすい。Furthermore, the use of the L-shaped tube 36, the angle theta 1 which flows into the 2-way branch pipe to 90 degrees, since is possible to lengthen the run-up distance flowing into 2-way branch pipe becomes easy, improved even distribution of To do. When the L-shaped tube 36 is not used, the capillary tube 40 is directly connected to the straight inflow portion 35 of the two-way branch tube 30, so that the capillary tube 40 is long, has poor stability, and is not easily handled. The variation in the angle θ 1 flowing into the lens 30 tends to increase.

なお、上記では、2方分岐管30の直線状流入部35を5mm以上としたが、要は、10mm以上の直線状の流路を有すれば良いため、L字管36と直線状流入部35との合計で10mm以上としてもよい。   In the above description, the straight inflow portion 35 of the two-way branch pipe 30 is set to 5 mm or more. However, the L-shaped pipe 36 and the straight inflow portion are only required to have a straight flow path of 10 mm or more. It is good also as 10 mm or more in total with 35.

図5は、本発明の実施の形態1に係る冷媒分配器が用いられるヒートポンプ装置の冷媒回路を示す図である。
ヒートポンプ装置60は、圧縮機61と、凝縮器62(熱交換器1)と、減圧装置としての膨張弁63と、蒸発器64(熱交換器1)とを備えている。圧縮機61から吐出されたガス冷媒は凝縮器62に流入し、凝縮器62を通過する空気と熱交換して高圧液冷媒となって流出する。凝縮器62を流出した高圧液冷媒は膨張弁63で減圧されて低圧の気液二相冷媒となり、蒸発器64に流入する。蒸発器64に流入した低圧の気液二相冷媒は、蒸発器64を通過する空気と熱交換して低圧ガス冷媒となり、再び圧縮機61に吸入される。
FIG. 5 is a diagram showing a refrigerant circuit of the heat pump device in which the refrigerant distributor according to Embodiment 1 of the present invention is used.
The heat pump device 60 includes a compressor 61, a condenser 62 (heat exchanger 1), an expansion valve 63 as a decompression device, and an evaporator 64 (heat exchanger 1). The gas refrigerant discharged from the compressor 61 flows into the condenser 62, exchanges heat with the air passing through the condenser 62, and flows out as high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the condenser 62 is decompressed by the expansion valve 63 to become a low-pressure gas-liquid two-phase refrigerant and flows into the evaporator 64. The low-pressure gas-liquid two-phase refrigerant flowing into the evaporator 64 exchanges heat with the air passing through the evaporator 64 to become a low-pressure gas refrigerant, and is sucked into the compressor 61 again.

以下、図1及び図5を参照して熱交換器1を蒸発器として用いる場合の動作について説明する。図1において実線矢印は熱交換器1を蒸発器として用いる場合の冷媒の流れを示している。
膨張弁63から流出した気液二相冷媒流は、まず第1の分配器20に流入して噴霧流化される。噴霧流化された冷媒は、各キャピラリーチューブ40に均等に分配されて流入する。各キャピラリーチューブ40を通過した各冷媒は2方分岐管30に流入し、上述したように均等に2つに分岐されて流出し、伝熱管3に流入する。各伝熱管3内に流入した冷媒は空気と熱交換してガス状態となり、ガスヘッダ6で合流する。ガスヘッダ6で合流した冷媒は、圧縮機61に吸入される。
Hereinafter, an operation when the heat exchanger 1 is used as an evaporator will be described with reference to FIGS. 1 and 5. In FIG. 1, the solid line arrows indicate the flow of the refrigerant when the heat exchanger 1 is used as an evaporator.
The gas-liquid two-phase refrigerant flow flowing out from the expansion valve 63 first flows into the first distributor 20 and is sprayed. The sprayed refrigerant flows evenly into each capillary tube 40 and flows. Each refrigerant that has passed through each capillary tube 40 flows into the two-way branch tube 30, is equally branched into two as described above, flows out, and flows into the heat transfer tube 3. The refrigerant that has flowed into each heat transfer tube 3 exchanges heat with air to become a gas state, and merges at the gas header 6. The refrigerant merged in the gas header 6 is sucked into the compressor 61.

以下、図3及び図5を参照して熱交換器1を凝縮器として用いる場合の動作について説明する。図1において点線矢印は熱交換器1を凝縮器として用いる場合の冷媒の流れを示している。
凝縮器の場合は、蒸発器の場合と逆の冷媒流れ方向となり、圧縮機61から流出したガス冷媒流はガスヘッダ6内に流入する。ガスヘッダ6に流入した冷媒は、ガスヘッダ6で均等分配されて各伝熱管3に流入する。冷媒がガス状態の場合は均等分配が容易であるため、ディストリビュータ等は不要であり、円筒状の中空管で構成されたガスヘッダ6を用いるようにしている。
Hereinafter, the operation when the heat exchanger 1 is used as a condenser will be described with reference to FIGS. 3 and 5. In FIG. 1, dotted arrows indicate the flow of refrigerant when the heat exchanger 1 is used as a condenser.
In the case of the condenser, the refrigerant flow direction is opposite to that in the case of the evaporator, and the gas refrigerant flow flowing out of the compressor 61 flows into the gas header 6. The refrigerant flowing into the gas header 6 is equally distributed by the gas header 6 and flows into each heat transfer tube 3. When the refrigerant is in a gas state, equal distribution is easy, so a distributor or the like is unnecessary, and the gas header 6 formed of a cylindrical hollow tube is used.

各伝熱管3内に流入した冷媒は空気と熱交換した後、2方分岐管30、キャピラリーチューブ40、第1の分配器20の順番に流れる。そして、第1の分配器20で合流し、膨張弁63に流入する。   The refrigerant flowing into each heat transfer tube 3 exchanges heat with air, and then flows in the order of the two-way branch tube 30, the capillary tube 40, and the first distributor 20. Then, they merge at the first distributor 20 and flow into the expansion valve 63.

次に、本実施の形態1の冷媒分配器10を用いた具体的な配管接続例について説明する。   Next, a specific pipe connection example using the refrigerant distributor 10 of the first embodiment will be described.

図6は、本発明の実施の形態1に係る冷媒分配器を、伝熱管に扁平管を用いた空調機の室外機用の熱交換器に接続した構成例を示す図である。図7は、図5の熱交換器の冷媒分配器との接続部分を背面側から見た拡大斜視図である。図7においてベタ塗りした部分が2方分岐管30である。図8は、図6の扁平管の斜視図である。   FIG. 6 is a diagram illustrating a configuration example in which the refrigerant distributor according to Embodiment 1 of the present invention is connected to a heat exchanger for an outdoor unit of an air conditioner using a flat tube as a heat transfer tube. FIG. 7 is an enlarged perspective view of the connection portion of the heat exchanger of FIG. 5 with the refrigerant distributor as viewed from the back side. In FIG. 7, the solid-coated portion is the two-way branch pipe 30. FIG. 8 is a perspective view of the flat tube of FIG.

熱交換器100は、互いに間隔をあけて積層された複数の板状フィン2と、板状フィン2を積層方向に貫通し、内部に冷媒が流れる複数の扁平管3とを有する熱交換部が、空気通過方向である列方向に3列設けられた構成を有している。複数の扁平管3の端部には、2方分岐管30の他、ヘアピン曲げされたベンド5及びガスヘッダ6が接続されている。また、この熱交換器100では、伝熱管として扁平管3を用いているため、扁平管3は円管−扁平管ジョイント4を介して2方分岐管30及びベンド5に接続されている。   The heat exchanger 100 includes a plurality of plate-like fins 2 stacked at intervals and a plurality of flat tubes 3 that penetrate the plate-like fins 2 in the stacking direction and through which refrigerant flows. In addition, it has a configuration in which three rows are provided in the row direction which is the air passage direction. In addition to the two-way branch pipe 30, the hairpin bent bend 5 and gas header 6 are connected to the ends of the plurality of flat tubes 3. Moreover, in this heat exchanger 100, since the flat tube 3 is used as a heat transfer tube, the flat tube 3 is connected to the two-way branch tube 30 and the bend 5 via a circular tube-flat tube joint 4.

また、熱交換器100は、熱交換器100を蒸発器として用いる場合に、冷媒流れが空気流れ方向に対して上流側から下流側に折り返すようにして冷媒を流す、いわゆる並行流になるようにパス組みされている。逆に熱交換器100を凝縮器として用いる場合は、空気の流れ方向に対して下流側から上流側に折り返すようにして冷媒を流す、いわゆる対向流となるようにパス組みされる。凝縮器では冷媒がサブクール化するので、冷媒温度が低くなる。このため、空気流れに対して冷媒が対向流になるようにパス組みすることで、熱交換器100を凝縮器として使用した際の熱交換効率を向上できる。   Further, when the heat exchanger 100 is used as an evaporator, the heat exchanger 100 is a so-called parallel flow in which the refrigerant flows so that the refrigerant flow is folded from the upstream side to the downstream side with respect to the air flow direction. The path is assembled. On the other hand, when the heat exchanger 100 is used as a condenser, a path is assembled so as to form a so-called counter flow in which the refrigerant flows in a manner that turns back from the downstream side to the upstream side with respect to the air flow direction. Since the refrigerant is subcooled in the condenser, the refrigerant temperature is lowered. For this reason, the heat exchange efficiency at the time of using the heat exchanger 100 as a condenser can be improved by carrying out path | pass assembly so that a refrigerant | coolant may become a counterflow with respect to an air flow.

板状フィン2はアルミ製であり、扁平管3と板状フィン2とは炉中ロウ付けにより接合される。伝熱管が円管である熱交換器の、伝熱管と板状フィンとの接合方法は機械拡管方式であり、伝熱管と板状フィンの間には空気層があるため、熱交換効率を悪化させる課題があった。しかし、扁平管3と板状フィン2とは炉中ロウ付けにより接合されるため、扁平管3と板状フィン2間の熱抵抗がゼロとなり、熱交換効率を向上させることができる。   The plate-like fins 2 are made of aluminum, and the flat tubes 3 and the plate-like fins 2 are joined by brazing in the furnace. For heat exchangers with heat transfer tubes that are circular tubes, the heat transfer tubes and plate fins are joined by a mechanical expansion method, and there is an air layer between the heat transfer tubes and plate fins, so heat exchange efficiency deteriorates. There was a problem to make. However, since the flat tube 3 and the plate-like fin 2 are joined by brazing in the furnace, the thermal resistance between the flat tube 3 and the plate-like fin 2 becomes zero, and the heat exchange efficiency can be improved.

扁平管3はアルミ製であり、図8に示すように内部が仕切られて複数の通路31aが形成されており、この各通路31aに冷媒が流れる。扁平管3は、冷媒と接触伝熱面積が円管に比べて3倍以上に増大することが可能となる。   The flat tube 3 is made of aluminum, and as shown in FIG. 8, the inside is partitioned to form a plurality of passages 31a, and the refrigerant flows through the passages 31a. The flat tube 3 can increase the refrigerant and contact heat transfer area three times or more compared to the circular tube.

次に、3列構成の熱交換器において、本実施の形態1の冷媒分配器10を用いた場合と用いない場合とを、図7と図9とを用いて比較する。図9は、3列構成の熱交換器において2方分岐管を用いない従来例を示した図である。
図7と図9とを比較して明らかなように、2方分岐管30を用いることにより、キャピラリーチューブ40の本数を、従来に比べて半数に削減することができる。
Next, in the three-row heat exchanger, the case where the refrigerant distributor 10 of the first embodiment is used and the case where the refrigerant distributor 10 is not used are compared using FIG. 7 and FIG. FIG. 9 is a view showing a conventional example in which a two-way branch pipe is not used in a three-row heat exchanger.
As apparent from comparison between FIG. 7 and FIG. 9, the use of the two-way branch pipe 30 can reduce the number of capillary tubes 40 to half that of the conventional one.

以上説明したように本実施の形態1によれば、第1の分配器20の流出管であるキャピラリーチューブ40に2方分岐管30を組み合わせた冷媒分配器10としたことで、キャピラリーチューブ40の本数を削減できる。よって、実機にキャピラリーチューブ40を搭載するときのキャピラリーチューブ40の設置スペースがコンパクトになる。また、キャピラリーチューブ40の本数削減によるコストダウンが可能であり、実機を安価に構成できる。   As described above, according to the first embodiment, the refrigerant distributor 10 in which the two-way branch pipe 30 is combined with the capillary tube 40 that is the outflow pipe of the first distributor 20 is used. The number can be reduced. Therefore, the installation space of the capillary tube 40 when mounting the capillary tube 40 on an actual machine becomes compact. Further, the cost can be reduced by reducing the number of capillary tubes 40, and the actual machine can be configured at low cost.

直線状流入部35の腕部34との角度θが90度であるので、冷媒二相流は流入部に対向する衝突壁34aに垂直に衝突し、かつ、衝突後の分岐方向は水平方向であり、重力の影響を受けず、循環量に依らず均等分配が可能となる。なお、直線状流入部35はバルジ成形加工を用いて形成するため、角度θが90度の形状を安定して加工することができる。The angle theta 1 of the arm portion 34 of the straight inlet section 35 is 90 degrees, two-phase flow refrigerant vertically collide with the collision wall 34a opposed to the inlet portion, and the branch direction after collision horizontal Thus, it is not affected by gravity and can be distributed evenly regardless of the amount of circulation. Incidentally, the linear inlet portion 35 to form with a bulge forming process, the angle theta 1 can be stably processed 90 degrees shape.

また、直線状流入部35を10mm以上とすることにより、直線状流入部35に流入した冷媒二相流を安定した環状流として衝突壁34aに垂直に衝突させることができ、冷媒分配のばらつきを抑制でき、均等分配が可能となる。   Further, by setting the linear inflow portion 35 to 10 mm or more, the refrigerant two-phase flow that has flowed into the linear inflow portion 35 can collide with the collision wall 34a vertically as a stable annular flow, and variations in refrigerant distribution can be achieved. It can be suppressed and even distribution is possible.

以上のように、冷媒分配器10を用いることで気液二相流を均等分配できるため、熱交換器1において所定の熱交換性能を十分に発揮させることが可能となる。   As described above, since the gas-liquid two-phase flow can be evenly distributed by using the refrigerant distributor 10, the heat exchanger 1 can sufficiently exhibit the predetermined heat exchange performance.

実施の形態2.
実施の形態2は、キャピラリーチューブ40の本数の更なる低減を図ったものである。以下、実施の形態2が実施の形態1と異なる部分を中心に説明する。なお、実施の形態1と同様の構成部分について適用される変形例は、本実施の形態2についても同様に適用される。
Embodiment 2. FIG.
In the second embodiment, the number of capillary tubes 40 is further reduced. In the following, the second embodiment will be described focusing on the differences from the first embodiment. Note that the modification applied to the same components as those in the first embodiment is similarly applied to the second embodiment.

図10は、本発明の実施の形態2に係る冷媒分配器の構成図である。図10において(a)は正面図、(b)は(a)のA−A断面図である。図11は、図10の冷媒分配器における第3の分配器を示す図である。図11において(a)は冷媒分配器10Aの正面図、(b)は(a)の側面図、(c)は(a)の底面図である。   FIG. 10 is a configuration diagram of a refrigerant distributor according to Embodiment 2 of the present invention. 10A is a front view, and FIG. 10B is an AA cross-sectional view of FIG. FIG. 11 is a diagram showing a third distributor in the refrigerant distributor of FIG. In FIG. 11, (a) is a front view of the refrigerant distributor 10A, (b) is a side view of (a), and (c) is a bottom view of (a).

実施の形態2の冷媒分配器10Aは、実施の形態1の第1の分配器20及び第2の分配器としての2方分岐管30に加えて更に、第3の分配器としての2方分岐管50を複数備えた構成を有する。2方分岐管50は、実施の形態1の2方分岐管30と構造的な特徴は同じであり、円管をU字状に折り曲げて形成されたUベンド部51と、直線状流入部55とを有している。Uベンド部51は、連結部52と、連結部52の両端から互いに並行に延びる2つの腕部53、54とを有している。直線状流入部55は、Uベンド部51の2つの腕部53、54のうちの一方(ここでは腕部54)をバルジ成形加工して形成されている。   The refrigerant distributor 10A according to the second embodiment includes a two-way branch as a third distributor in addition to the first distributor 20 and the two-way branch pipe 30 as the second distributor in the first embodiment. The configuration includes a plurality of tubes 50. The two-way branch pipe 50 has the same structural features as the two-way branch pipe 30 of the first embodiment, and a U-bend portion 51 formed by bending a circular pipe into a U-shape, and a linear inflow portion 55. And have. The U-bend portion 51 includes a connecting portion 52 and two arm portions 53 and 54 that extend in parallel from both ends of the connecting portion 52. The straight inflow portion 55 is formed by bulging one of the two arm portions 53 and 54 of the U bend portion 51 (here, the arm portion 54).

そして、2方分岐管50の直線状流入部55はキャピラリーチューブ40に接続され、2つの腕部53、54は、互いに隣接する2方分岐管30の直線状流入部35に接続される。また、2方分岐管50も実施の形態1の2方分岐管30と同様、2つの腕部53、54が水平方向に沿うように設置される。   The straight inflow portion 55 of the two-way branch pipe 50 is connected to the capillary tube 40, and the two arm portions 53 and 54 are connected to the straight inflow portion 35 of the two-way branch pipe 30 adjacent to each other. Similarly to the two-way branch pipe 30 of the first embodiment, the two-way branch pipe 50 is also installed so that the two arm portions 53 and 54 are along the horizontal direction.

以上のように構成した実施の形態2の冷媒分配器10Aは、実施の形態1と同様の効果が得られると共に以下の効果が得られる。すなわち、第3の分配器として2方分岐管50を設けたので、第1の分配器20に接続されるキャピラリーチューブ40の本数を実施の形態1に比べて半数に減らすことができる。   The refrigerant distributor 10A of the second embodiment configured as described above can obtain the same effects as those of the first embodiment and the following effects. That is, since the two-way branch pipe 50 is provided as the third distributor, the number of capillary tubes 40 connected to the first distributor 20 can be reduced to half that of the first embodiment.

なお、2方分岐管50は、キャピラリーチューブ40から流出した冷媒の流入管となるため、実施の形態1の2方分岐管30と同様の機能が求められる。すなわち、キャピラリーチューブ40から流入した冷媒を均等に分配して各伝熱管3に流入させる機能が求められる。2方分岐管50は2方分岐管30と同様の構成であるため、2方分岐管50の直線状流入部35から流入した冷媒は、腕部54において直線状流入部55と対向する壁面である衝突壁に垂直に衝突する。そして、衝突後の分岐方向は水平方向であるため、重力の影響を受けず、循環量に依らず均等分配が可能となる。   Since the two-way branch pipe 50 serves as an inflow pipe for the refrigerant that has flowed out of the capillary tube 40, the same function as the two-way branch pipe 30 of the first embodiment is required. That is, the function of distributing the refrigerant flowing in from the capillary tubes 40 evenly and flowing into the heat transfer tubes 3 is required. Since the two-way branch pipe 50 has the same configuration as the two-way branch pipe 30, the refrigerant flowing from the straight inflow portion 35 of the two-way branch pipe 50 is on the wall surface facing the straight inflow portion 55 in the arm portion 54. Collides vertically with a collision wall. And since the branch direction after a collision is a horizontal direction, it is not influenced by gravity, and equal distribution is attained irrespective of the circulation amount.

実施の形態3.
実施の形態3は、冷媒の分配比を調整できる冷媒分配器に関する。以下、実施の形態3が実施の形態1と異なる部分を中心に説明する。なお、実施の形態3において実施の形態1と同様の構成部分について適用される変形例は、本実施の形態3についても同様に適用される。
Embodiment 3 FIG.
Embodiment 3 relates to a refrigerant distributor that can adjust the distribution ratio of the refrigerant. In the following, the third embodiment will be described focusing on the differences from the first embodiment. Note that the modification applied to the same components as those of the first embodiment in the third embodiment is similarly applied to the third embodiment.

図12は、本発明の実施の形態3に係る冷媒分配器における第2の分配器の構成図である。図12において(a)は第2の分配器の正面図、(b)は(a)の側面図である。
実施の形態3の冷媒分配器は、実施の形態1の2方分岐管30に代えて2方分岐管30Aを備えた構成を有し、それ以外の構成は実施の形態1と同様である。
FIG. 12 is a configuration diagram of a second distributor in the refrigerant distributor according to Embodiment 3 of the present invention. In FIG. 12, (a) is a front view of the second distributor, and (b) is a side view of (a).
The refrigerant distributor of the third embodiment has a configuration provided with a two-way branch pipe 30A instead of the two-way branch pipe 30 of the first embodiment, and the other configuration is the same as that of the first embodiment.

実施の形態1の2方分岐管30では、直線状流入部35の腕部34との角度θを90度としていた。これに対し、実施の形態3の2方分岐管30Aでは、角度θを所望の分配比に応じた角度に調整した構成としたものである。角度θを90度より小さい角度に設定した場合、開口部B側よりも開口部A側に流れる冷媒の流量が多くなり、角度θを90度より大きい角度に設定した場合、開口部A側よりも開口部B側に流れる冷媒の流量が多くなる。このように角度調整が必要な直線状流入部35は、実施の形態1と同様、バルジ成形加工で形成される。このようにバルジ成形加工で形成することにより、角度θのバラツキを小さくでき、決められた角度で精度良く成形することができる。また、角度θは、実施の形態1と同様に何度であっても構わないが、キャピラリーチューブ40の接続性を考慮すると、90度とすることが好ましい。In two-way branch pipe 30 of the first embodiment, the angle theta 1 of the arm portion 34 of the straight inlet section 35 was 90 degrees. In contrast, in the two-way branch pipe 30A of the third embodiment is the angle theta 1 which was adjusted configuration angle corresponding to a desired distribution ratio. When the angle θ 1 is set to an angle smaller than 90 degrees, the flow rate of the refrigerant flowing to the opening A side is larger than the opening B side, and when the angle θ 1 is set to an angle larger than 90 degrees, the opening A The flow rate of the refrigerant flowing to the opening B side is larger than the side. Thus, the linear inflow part 35 which requires angle adjustment is formed by a bulge forming process like the first embodiment. By forming the at bulge forming processing, can reduce variations in the angle theta 1, it can be accurately molded by the determined angle. Further, the angle θ 2 may be any number as in the first embodiment, but is preferably 90 degrees in consideration of the connectivity of the capillary tube 40.

2方分岐管30Aは、一端が第1の分配器20に接続され、他端がキャピラリーチューブ40の他端に接続される。   The two-way branch pipe 30 </ b> A has one end connected to the first distributor 20 and the other end connected to the other end of the capillary tube 40.

熱交換器1に空気を送風する送風ファンからの風速は、上述したように熱交換器1の全面において均一とは限らず、風速分布が存在する。このような風速分布又は熱1パス当たりの冷媒流路の長さの違いにより、各パスにおいて熱負荷が異なる場合がある。このため、開口部A及び開口部Bのそれぞれに接続されるパスのうち、例えば風速が速い方のパス、又は伝熱管本数が多く、流路長さが長い方のパスには、冷媒を多く流す必要がある。よって、熱交換器1における各パスの熱負荷分布に応じて開口部A側と開口部B側への冷媒の分配比を決定し、角度θを決定する。The wind speed from the blower fan that blows air to the heat exchanger 1 is not necessarily uniform over the entire surface of the heat exchanger 1 as described above, and there is a wind speed distribution. Due to the difference in the wind speed distribution or the length of the refrigerant flow path per one heat path, the heat load may be different in each path. For this reason, among the paths connected to each of the opening A and the opening B, for example, a path having a higher wind speed or a path having a larger number of heat transfer tubes and a longer flow path length has a larger amount of refrigerant. Need to flow. Therefore, to determine the distribution ratio of the refrigerant to the opening A side and the opening side B in accordance with the thermal load distribution of each path in the heat exchanger 1, for determining the angle theta 1.

このようにして角度θを決定することにより、直線状流入部35から流入した冷媒は、その角度θで直線状流入部35の対向面に衝突後、傾斜角θに応じて腕部33側と腕部34側とにそれぞれ流量が調整されて分配される。そして、各分配された流量の冷媒が開口部A及び開口部Bから熱交換器1の各パスの各伝熱管3に流入する。By determining the angle θ 1 in this way, the refrigerant flowing from the linear inflow portion 35 collides with the opposing surface of the linear inflow portion 35 at the angle θ 1 and then the arm portion 33 according to the inclination angle θ. The flow rate is adjusted and distributed to the side and the arm 34 side. And the refrigerant | coolant of each distributed flow volume flows in into each heat exchanger tube 3 of each path | pass of the heat exchanger 1 from the opening part A and the opening part B. FIG.

以上説明したように本実施の形態3によれば、実施の形態1と同様にキャピラリーチューブ40の本数の低減を可能とし、また、冷媒の分配比を調整できる冷媒分配器を得ることができる。   As described above, according to the third embodiment, the number of the capillary tubes 40 can be reduced as in the first embodiment, and a refrigerant distributor capable of adjusting the refrigerant distribution ratio can be obtained.

実施の形態4.
実施の形態4は、実施の形態3と同様、冷媒の分配比を調整できる冷媒分配器に関する。以下、実施の形態4が実施の形態1と異なる部分を中心に説明する。なお、実施の形態3において実施の形態1と同様の構成部分について適用される変形例は、本実施の形態4についても同様に適用される。
Embodiment 4 FIG.
The fourth embodiment relates to a refrigerant distributor that can adjust the distribution ratio of the refrigerant, as in the third embodiment. Hereinafter, the difference between the fourth embodiment and the first embodiment will be mainly described. Note that the modification applied to the same components in the third embodiment as those in the first embodiment is similarly applied to the fourth embodiment.

図13は、本発明の実施の形態4における冷媒分配器における第2の分配器の構成図である。図13において(A)は、開口部A側よりも開口部B側の分配比が大きい場合の2方分岐管30Bの構成例、(B)はその逆の場合の2方分岐管30Bの構成例を示している。また、図13の(A)、(B)のそれぞれにおいて(a)は2方分岐管30Bの正面図、(b)は(a)の側面図である。図14は、図13(A)の要部拡大図である。   FIG. 13 is a configuration diagram of a second distributor in the refrigerant distributor according to Embodiment 4 of the present invention. 13A shows a configuration example of the two-way branch pipe 30B when the distribution ratio on the opening B side is larger than that on the opening A side, and FIG. 13B shows a configuration of the two-way branch pipe 30B in the opposite case. An example is shown. 13A and 13B, (a) is a front view of the two-way branch pipe 30B, and (b) is a side view of (a). FIG. 14 is an enlarged view of a main part of FIG.

実施の形態4の冷媒分配器は、実施の形態1の2方分岐管30に代えて2方分岐管30Bを備えた構成を有し、それ以外の構成は実施の形態1と同様である。2方分岐管30Bは、衝突壁34aの並びに隣接して、内側に凹んだ窪み37を設けたものである。その他、直線状流入部35をバルジ成形で加工する点及び角度θ が何度であっても構わない点等は実施の形態1と同様である。The refrigerant distributor of the fourth embodiment has a configuration provided with a two-way branch pipe 30B instead of the two-way branch pipe 30 of the first embodiment, and the other configuration is the same as that of the first embodiment. The two-way branch pipe 30B is provided with a recess 37 recessed inwardly adjacent to the collision wall 34a. In addition, the point which processes the linear inflow part 35 by bulge shaping | molding, and the point which may have any angle (theta) 2 are the same as that of Embodiment 1. FIG.

窪み37の形成位置は、例えば、開口部B側の熱負荷が高い場合、つまり開口部A側よりも開口部B側の冷媒流量を多くしたい場合は、図13(A)に示すように窪み37を、Uベンド部31の管軸方向において衝突壁34aよりも開口部A側に設ける。逆に、開口部A側の熱負荷が高い場合、つまり開口部B側よりも開口部A側の冷媒流量を多くしたい場合は、図13(B)に示すようにUベンド部31の管軸方向において衝突壁34aよりも開口部B側に窪み37を設ける。   For example, when the heat load on the opening B side is high, that is, when it is desired to increase the refrigerant flow rate on the opening B side than on the opening A side, the depression 37 is formed as shown in FIG. 37 is provided closer to the opening A than the collision wall 34 a in the tube axis direction of the U-bend portion 31. On the other hand, when the heat load on the opening A side is high, that is, when it is desired to increase the refrigerant flow rate on the opening A side than on the opening B side, as shown in FIG. A recess 37 is provided on the opening B side of the collision wall 34a in the direction.

このように衝突壁34aの並びに隣接して窪み37を設けることで通過断面積が小さくなり、衝突壁34aに衝突後の冷媒が流れ難くなる。このため、図13(A)の場合であれば、開口部Aよりも開口部Bの分配比を大きくでき、図13(B)の場合であれば、開口部Bよりも開口部Aの分配比を大きくできる。   Thus, by providing the depression 37 adjacent to and adjacent to the collision wall 34a, the passing cross-sectional area becomes small, and the refrigerant after the collision hardly flows to the collision wall 34a. Therefore, in the case of FIG. 13A, the distribution ratio of the opening B can be made larger than the opening A, and in the case of FIG. 13B, the distribution of the opening A than the opening B can be achieved. The ratio can be increased.

なお、直線状流入部35に対向する衝突壁34aには窪み37は設けない。これは、窪み37はプレス又はポンチを用いて形成されるため、衝突壁34aに窪み37を設けると、その形成時に直線状流入部35が変形する可能性があるためである。このように、直線状流入部35に対向する衝突壁34aに窪み37を設けない構造とすることで、変形が生じる不都合を回避でき、安定して2方分岐管30Bを製造できる。   Note that the depression 37 is not provided in the collision wall 34 a facing the linear inflow portion 35. This is because the depression 37 is formed by using a press or a punch, and if the depression 37 is provided in the collision wall 34a, the linear inflow portion 35 may be deformed during the formation. In this way, by adopting a structure in which the depression 37 is not provided in the collision wall 34a facing the linear inflow portion 35, the inconvenience of deformation can be avoided, and the two-way branch pipe 30B can be manufactured stably.

以上説明したように本実施の形態4によれば、実施の形態1と同様にキャピラリーチューブ40の本数の低減を可能とし、また、冷媒の分配比を調整できる冷媒分配器を得ることができる。   As described above, according to the fourth embodiment, similarly to the first embodiment, the number of capillary tubes 40 can be reduced, and a refrigerant distributor capable of adjusting the refrigerant distribution ratio can be obtained.

なお、上記実施の形態1〜4において第1の分配器20をディストリビュータとして説明したが、これに限るものではなく、図15に示すようにヘッダ70としてもよい。この場合も上記と同様の効果を得ることができる。   In the first to fourth embodiments, the first distributor 20 has been described as a distributor. However, the present invention is not limited to this, and the header 70 may be used as shown in FIG. In this case, the same effect as described above can be obtained.

また、上述の実施の形態で述べた熱交換器及びそれを用いた空気調和機については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒と油が溶ける溶けないに拘わらず、どんな冷凍機油においても、その効果を達成することができる。   In addition, the heat exchanger described in the above embodiment and the air conditioner using the heat exchanger are soluble in the refrigerant and oil such as mineral oil, alkylbenzene oil, ester oil, ether oil, and fluorine oil. The effect can be achieved with any refrigeration oil, whether or not.

なお、上記実施の形態1〜4においてそれぞれ別の実施の形態として説明したが、組みあわせが可能な実施の形態については、適宜組み合わせた構成としてもよい。例えば、実施の形態2と実施の形態3とを組み合わせ、図10に示した実施の形態2の2方分岐管30を、実施の形態3の2方分岐管30Aに代えた構成としてもよい。   In addition, although it demonstrated as another embodiment in said Embodiment 1-4, about the embodiment which can be combined, it is good also as a structure combined suitably. For example, the second embodiment and the third embodiment may be combined to replace the two-way branch pipe 30 of the second embodiment shown in FIG. 10 with the two-way branch pipe 30A of the third embodiment.

本発明の活用例として、熱交換性能を向上し、性能を向上することが必要なヒートポンプ装置の熱交換器に使用することができる。   As an application example of the present invention, it can be used in a heat exchanger of a heat pump apparatus that requires improved heat exchange performance and improved performance.

1 熱交換器、2 板状フィン、3 伝熱管(扁平管)、4 円管−扁平管ジョイント、5 ベンド、6 ガスヘッダ、10 冷媒分配器、10A 冷媒分配器、20 第1の分配器、30 2方分岐管(第2の分配器)、30A 2方分岐管(第2の分配器)、30B 2方分岐管(第2の分配器)、31 Uベンド部、31a 通路、32 連結部、33 腕部、34 腕部、34a 衝突壁、35 直線状流入部、36 L字管、37 窪み、40 キャピラリーチューブ、50 2方分岐管(第3の分配器)、51 Uベンド部、52 連結部、53 腕部、54 腕部、55 直線状流入部、60 ヒートポンプ装置、61 圧縮機、62 凝縮器、63 膨張弁、64 蒸発器、70 ヘッダ、100 熱交換器。   DESCRIPTION OF SYMBOLS 1 Heat exchanger, 2 Plate-shaped fin, 3 Heat exchanger tube (flat tube), 4 circular tube-flat tube joint, 5 Bend, 6 Gas header, 10 Refrigerant distributor, 10A Refrigerant distributor, 20 1st distributor, 30 2-way branch pipe (second distributor), 30A 2-way branch pipe (second distributor), 30B 2-way branch pipe (second distributor), 31 U bend section, 31a passage, 32 connection section, 33 arm part, 34 arm part, 34a collision wall, 35 linear inflow part, 36 L-shaped pipe, 37 depression, 40 capillary tube, 50 two-way branch pipe (third distributor), 51 U bend part, 52 connection Part, 53 arm part, 54 arm part, 55 linear inflow part, 60 heat pump device, 61 compressor, 62 condenser, 63 expansion valve, 64 evaporator, 70 header, 100 heat exchanger.

本発明の実施の形態1に係る冷媒分配器を熱交換器に接続した状態を示した概略構成図である。It is the schematic block diagram which showed the state which connected the refrigerant distributor which concerns on Embodiment 1 of this invention to the heat exchanger. 図1の2方分岐管の斜視図である。It is a perspective view of the two-way branch pipe of FIG. 円管−扁平管ジョイントの斜視図である。It is a perspective view of a circular tube-flat tube joint. 本発明の実施の形態1に係る冷媒分配器の2方分岐管の構造説明図である。It is structure explanatory drawing of the two-way branch pipe of the refrigerant distributor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷媒分配器が用いられるヒートポンプ装置の冷媒回路を示す図である。It is a figure which shows the refrigerant circuit of the heat pump apparatus with which the refrigerant distributor which concerns on Embodiment 1 of this invention is used. 本発明の実施の形態1に係る冷媒分配器を、伝熱管に扁平管を用いた空調機の室外機用の熱交換器に接続した構成例を示す図である。It is a figure which shows the structural example which connected the refrigerant distributor which concerns on Embodiment 1 of this invention to the heat exchanger for the outdoor units of the air conditioner which used the flat tube for the heat exchanger tube. の熱交換器の冷媒分配器との接続部分を背面側から見た拡大斜視図である。It is the expansion perspective view which looked at the connection part with the refrigerant distributor of the heat exchanger of FIG. 6 from the back side. 図6の扁平管の斜視図である。It is a perspective view of the flat tube of FIG. 3列構成の熱交換器において2方分岐管を用いない従来例を示した図である。It is the figure which showed the prior art example which does not use a two-way branch pipe in the heat exchanger of 3 rows structure. 本発明の実施の形態2に係る冷媒分配器の構成図である。It is a block diagram of the refrigerant distributor which concerns on Embodiment 2 of this invention. 図10の冷媒分配器における第3の分配器を示す図である。It is a figure which shows the 3rd distributor in the refrigerant distributor of FIG. 本発明の実施の形態3に係る冷媒分配器における第2の分配器の構成図である。It is a block diagram of the 2nd divider | distributor in the refrigerant distributor which concerns on Embodiment 3 of this invention. 本発明の実施の形態4における冷媒分配器における第2の分配器の構成図である。It is a block diagram of the 2nd distributor in the refrigerant distributor in Embodiment 4 of this invention. 図13(A)の要部拡大図である。It is a principal part enlarged view of FIG. 13 (A). 第1の分配器にヘッダを用いた構成例を示す図である。It is a figure which shows the structural example which used the header for the 1st divider | distributor.

また、腕部34の管軸X2を中心とした直線状流入部35の角度θは何度であっても構わないが、ここでは、図に示したようにθを90度としている。その理由について説明する。伝熱管3の細径化、扁平管化を行うと、空気の通風抵抗が小さくなるため、伝熱管3の配列ピッチを狭くする設計となり、伝熱管3の実装密度が高くなる。2方分岐管30を用いることで、上述したようにキャピラリーチューブ40の設置性の向上が図れるが、2方分岐管30の直線状流入部35の角度θ(図4に記載)を90度とすることで、更にキャピラリーチューブ40の接続性を向上できる。 Further, the angle theta 2 of the linear inlet portion 35 around the tube axis X2 of the arm portion 34 may be many times, where is the theta 2 as shown in FIG. 2 and 90 degrees . The reason will be described. When the diameter and flattening of the heat transfer tube 3 are reduced, the air ventilation resistance is reduced, so that the arrangement pitch of the heat transfer tubes 3 is narrowed, and the mounting density of the heat transfer tubes 3 is increased. By using the two-way branch pipe 30, the installation property of the capillary tube 40 can be improved as described above, but the angle θ 2 (described in FIG. 4) of the linear inflow portion 35 of the two-way branch pipe 30 is 90 degrees. By doing so, the connectivity of the capillary tube 40 can be further improved.

ここで、L字管36の有益性について説明する。予めL字管36と2方分岐管30の直線状流入部35とをロウ付け接合し、次に、開口部A、Bをそれぞれ円管―扁平管ジョイント4とロウ付け接合し、最後にL字管36とキャピラリーチューブ40とをロウ付け接合するという手順とすることで、不良率が少ない安定した製造工程となる。これは以下の理由による。すなわち、ここでのロウ付けはバーナーロウ付けを前提としており、最後にL字管36とキャピラリーチューブ40とをロウ付け接合することで、バーナーの火が他の配管に当たり難くなるためである。 Here, the usefulness of the L-shaped tube 36 will be described. The L-shaped pipe 36 and the straight inflow part 35 of the two-way branch pipe 30 are brazed in advance, and then the openings A and B are brazed to the circular pipe-flat pipe joint 4 respectively. By adopting the procedure of brazing and joining the tube 36 and the capillary tube 40, a stable manufacturing process with a low defect rate is achieved. This is due to the following reason. That is, the brazing here is based on the premise of the burner brazing, and finally the L-shaped tube 36 and the capillary tube 40 are brazed and joined so that the burner does not easily hit other piping.

以下、図及び図5を参照して熱交換器1を凝縮器として用いる場合の動作について説明する。図1において点線矢印は熱交換器1を凝縮器として用いる場合の冷媒の流れを示している。
凝縮器の場合は、蒸発器の場合と逆の冷媒流れ方向となり、圧縮機61から流出したガス冷媒流はガスヘッダ6内に流入する。ガスヘッダ6に流入した冷媒は、ガスヘッダ6で均等分配されて各伝熱管3に流入する。冷媒がガス状態の場合は均等分配が容易であるため、ディストリビュータ等は不要であり、円筒状の中空管で構成されたガスヘッダ6を用いるようにしている。
Hereinafter, the operation when the heat exchanger 1 is used as a condenser will be described with reference to FIGS. 1 and 5. In FIG. 1, dotted arrows indicate the flow of refrigerant when the heat exchanger 1 is used as a condenser.
In the case of the condenser, the refrigerant flow direction is opposite to that in the case of the evaporator, and the gas refrigerant flow flowing out of the compressor 61 flows into the gas header 6. The refrigerant flowing into the gas header 6 is equally distributed by the gas header 6 and flows into each heat transfer tube 3. When the refrigerant is in a gas state, equal distribution is easy, so a distributor or the like is unnecessary, and the gas header 6 formed of a cylindrical hollow tube is used.

図6は、本発明の実施の形態1に係る冷媒分配器を、伝熱管に扁平管を用いた空調機の室外機用の熱交換器に接続した構成例を示す図である。図7は、図の熱交換器の冷媒分配器との接続部分を背面側から見た拡大斜視図である。図7においてベタ塗りした部分が2方分岐管30である。図8は、図6の扁平管の斜視図である。 FIG. 6 is a diagram illustrating a configuration example in which the refrigerant distributor according to Embodiment 1 of the present invention is connected to a heat exchanger for an outdoor unit of an air conditioner using a flat tube as a heat transfer tube. FIG. 7 is an enlarged perspective view of a connection portion of the heat exchanger of FIG. 6 with the refrigerant distributor as viewed from the back side. In FIG. 7, the solid-coated portion is the two-way branch pipe 30. FIG. 8 is a perspective view of the flat tube of FIG.

なお、2方分岐管50は、キャピラリーチューブ40から流出した冷媒の流入管となるため、実施の形態1の2方分岐管30と同様の機能が求められる。すなわち、キャピラリーチューブ40から流入した冷媒を均等に分配して各伝熱管3に流入させる機能が求められる。2方分岐管50は2方分岐管30と同様の構成であるため、2方分岐管50の直線状流入部55から流入した冷媒は、腕部54において直線状流入部55と対向する壁面である衝突壁に垂直に衝突する。そして、衝突後の分岐方向は水平方向であるため、重力の影響を受けず、循環量に依らず均等分配が可能となる。 Since the two-way branch pipe 50 serves as an inflow pipe for the refrigerant that has flowed out of the capillary tube 40, the same function as the two-way branch pipe 30 of the first embodiment is required. That is, the function of distributing the refrigerant flowing in from the capillary tubes 40 evenly and flowing into the heat transfer tubes 3 is required. Since the two-way branch pipe 50 has the same configuration as the two-way branch pipe 30, the refrigerant flowing from the straight inflow portion 55 of the two-way branch pipe 50 is on the wall surface facing the straight inflow portion 55 in the arm portion 54. Collides vertically with a collision wall. And since the branch direction after a collision is a horizontal direction, it is not influenced by gravity, and equal distribution is attained irrespective of the circulation amount.

2方分岐管30Aは、一端がキャピラリーチューブ40に接続され、他端が伝熱管3に接続される。 The two-way branch pipe 30 </ b> A has one end connected to the capillary tube 40 and the other end connected to the heat transfer pipe 3 .

このようにして角度θを決定することにより、直線状流入部35から流入した冷媒は、その角度θで直線状流入部35の対向面に衝突後、傾斜角θ に応じて腕部33側と腕部34側とにそれぞれ流量が調整されて分配される。そして、各分配された流量の冷媒が開口部A及び開口部Bから熱交換器1の各パスの各伝熱管3に流入する。 By determining the angle theta 1 In this manner, the refrigerant flowing from the straight inlet section 35, after colliding with the facing surface of the linear inlet portion 35 at the angle theta 1, according to the inclination angle theta 1 arm portion The flow rate is adjusted and distributed to the 33 side and the arm portion 34 side, respectively. And the refrigerant | coolant of each distributed flow volume flows in into each heat exchanger tube 3 of each path | pass of the heat exchanger 1 from the opening part A and the opening part B. FIG.

実施の形態4.
実施の形態4は、実施の形態3と同様、冷媒の分配比を調整できる冷媒分配器に関する。以下、実施の形態4が実施の形態1と異なる部分を中心に説明する。なお、実施の形態において実施の形態1と同様の構成部分について適用される変形例は、本実施の形態4についても同様に適用される。
Embodiment 4 FIG.
The fourth embodiment relates to a refrigerant distributor that can adjust the distribution ratio of the refrigerant, as in the third embodiment. Hereinafter, the difference between the fourth embodiment and the first embodiment will be mainly described. Note that the modification applied to the same components in the fourth embodiment as those in the first embodiment is similarly applied to the fourth embodiment.

本発明に係る冷媒分配器は、熱交換器を構成する複数の伝熱管に冷媒を分配するための冷媒分配器であって、冷媒を複数に分配する第1の分配器であって、内部に絞り機構を有し、流入した二相流を絞り機構に通過させることで噴霧流状態とするディストリビュータと、ディストリビュータとキャピラリーチューブで接続され、第1の分配器で分配された冷媒を2つに分岐して2つの伝熱管に流入させる複数の第2の分配器とを備えたものである。 Refrigerant distributor according to the present invention, there is provided a refrigerant distributor for distributing a refrigerant to a plurality of heat transfer tubes that constitute the heat exchanger, a first distributor for distributing a refrigerant to a plurality, in the interior Distributor that has a throttle mechanism and passes the two-phase flow that has flowed through the throttle mechanism to a spray flow state, and is connected to the distributor and the capillary tube, and the refrigerant distributed by the first distributor is branched into two And a plurality of second distributors that flow into the two heat transfer tubes.

Claims (10)

熱交換器を構成する複数の伝熱管に冷媒を分配するための冷媒分配器であって、
冷媒を複数に分配する第1の分配器と、
前記第1の分配器で分配された冷媒を2つに分岐して2つの前記伝熱管に流入させる複数の第2の分配器と
を備えたことを特徴とする冷媒分配器。
A refrigerant distributor for distributing refrigerant to a plurality of heat transfer tubes constituting a heat exchanger,
A first distributor for distributing a plurality of refrigerants;
A refrigerant distributor comprising: a plurality of second distributors that branch the refrigerant distributed by the first distributor into two and flow into the two heat transfer tubes.
前記第2の分配器は2方分岐管で構成され、
前記2方分岐管は、
連結部及び前記連結部の両端から互いに並行に延びる2つの腕部を有するU字状のUベンド部と、
前記Uベンド部の前記2つの腕部のうちの一方をバルジ成形加工して形成された直線状流入部とを有する
ことを特徴とする請求項1記載の冷媒分配器。
The second distributor is composed of a two-way branch pipe,
The two-way branch pipe is
A U-shaped U-bend portion having a connecting portion and two arm portions extending in parallel with each other from both ends of the connecting portion;
The refrigerant distributor according to claim 1, further comprising: a linear inflow portion formed by bulging one of the two arm portions of the U-bend portion.
熱交換器を構成する複数の伝熱管に冷媒を分配するための冷媒分配器であって、
冷媒を複数に分配する第1の分配器と、
冷媒を2つに分岐して2つの前記伝熱管に流入させる複数の第2の分配器と、
前記第1の分配器と前記第2の分配器との間に設けられ、前記第1の分配器で分配された冷媒を2つに分岐して、互いに隣接する2つの前記第2の分配器に流入させる複数の第3の分配器と
を有することを特徴とする冷媒分配器。
A refrigerant distributor for distributing refrigerant to a plurality of heat transfer tubes constituting a heat exchanger,
A first distributor for distributing a plurality of refrigerants;
A plurality of second distributors that branch the refrigerant into two and flow into the two heat transfer tubes;
The two second distributors that are provided between the first distributor and the second distributor, branch the refrigerant distributed by the first distributor into two, and are adjacent to each other. And a plurality of third distributors that flow into the refrigerant distributor.
前記第2の分配器及び第3の分配器のそれぞれは2方分岐管で構成され、
前記2方分岐管は、
連結部及び前記連結部の両端から互いに並行に延びる2つの腕部を有するU字状のUベンド部と、
前記Uベンド部の前記2つの腕部のうちの一方をバルジ成形加工して形成された直線状流入部とを有する
ことを特徴とする請求項3記載の冷媒分配器。
Each of the second distributor and the third distributor is composed of a two-way branch pipe,
The two-way branch pipe is
A U-shaped U-bend portion having a connecting portion and two arm portions extending in parallel with each other from both ends of the connecting portion;
The refrigerant distributor according to claim 3, further comprising: a linear inflow portion formed by bulging one of the two arm portions of the U bend portion.
前記2方分岐管は、
前記直線状流入部と、前記直線状流入部が形成された一方の前記腕部との角度が90度に形成されている
ことを特徴とする請求項2又は請求項4記載の冷媒分配器。
The two-way branch pipe is
5. The refrigerant distributor according to claim 2, wherein an angle between the linear inflow portion and the one arm portion on which the linear inflow portion is formed is 90 degrees.
前記第2の分配器は、
前記直線状流入部が前記一方の前記腕部に対して傾斜して形成されていることを特徴とする請求項2又は請求項4記載の冷媒分配器。
The second distributor is
The refrigerant distributor according to claim 2 or 4, wherein the linear inflow portion is formed to be inclined with respect to the one arm portion.
前記直線状流入部の、前記一方の前記腕部に対する傾斜角は、前記熱交換器における各パスの熱負荷分布に応じて決められた角度である
ことを特徴とする請求項6記載の冷媒分配器。
The refrigerant distribution according to claim 6, wherein an inclination angle of the linear inflow portion with respect to the one arm portion is an angle determined according to a heat load distribution of each path in the heat exchanger. vessel.
前記第2の分配器は、
前記一方の前記腕部において前記直線状流入部と対向する壁面である衝突壁の並びに、内側に凹んだ窪みを有する
ことを特徴とする請求項2、請求項4〜請求項7の何れか一項に記載の冷媒分配器。
The second distributor is
The said one arm part has the hollow recessed inward along with the collision wall which is a wall surface facing the said linear inflow part, The any one of Claims 2-8 characterized by the above-mentioned. The refrigerant distributor according to Item.
前記第1の分配器はディストリビュータ又はヘッダで構成されることを特徴とする請求項1〜請求項8の何れか一項に記載の冷媒分配器。   The refrigerant distributor according to any one of claims 1 to 8, wherein the first distributor includes a distributor or a header. 請求項1〜請求項9の何れか一項に記載の冷媒分配器を用いたヒートポンプ装置。   A heat pump device using the refrigerant distributor according to any one of claims 1 to 9.
JP2014558310A 2013-01-22 2013-01-22 Refrigerant distributor and heat pump device using the refrigerant distributor Active JP6278904B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051146 WO2014115240A1 (en) 2013-01-22 2013-01-22 Refrigerant distributor and heat pump device using refrigerant distributor

Publications (2)

Publication Number Publication Date
JPWO2014115240A1 true JPWO2014115240A1 (en) 2017-01-19
JP6278904B2 JP6278904B2 (en) 2018-02-14

Family

ID=51227057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014558310A Active JP6278904B2 (en) 2013-01-22 2013-01-22 Refrigerant distributor and heat pump device using the refrigerant distributor

Country Status (4)

Country Link
US (1) US20150362222A1 (en)
EP (1) EP2955464A4 (en)
JP (1) JP6278904B2 (en)
WO (1) WO2014115240A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095008A (en) * 2018-01-27 2019-08-06 浙江盾安热工科技有限公司 A kind of heat exchanger switching device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063858A1 (en) * 2013-10-29 2015-05-07 三菱電機株式会社 Pipe joint, heat exchanger, and air conditioner
CN105723167B (en) * 2013-11-14 2018-01-02 日本电气株式会社 Pipeline configuration, cooling device and refrigerant vapour carrying method using pipeline configuration
JP6329786B2 (en) * 2014-03-13 2018-05-23 新晃工業株式会社 Air conditioner heat exchanger
WO2015151289A1 (en) * 2014-04-04 2015-10-08 三菱電機株式会社 Air-conditioning device
JP2016014504A (en) * 2014-07-02 2016-01-28 三菱電機株式会社 Heat exchanger, and refrigeration cycle device with the same
US10156387B2 (en) * 2014-12-18 2018-12-18 Lg Electronics Inc. Outdoor device for an air conditioner
KR101694614B1 (en) * 2014-12-18 2017-01-09 엘지전자 주식회사 An air conditioner
US11105538B2 (en) * 2015-12-01 2021-08-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2018000662A1 (en) * 2016-06-28 2018-01-04 海信科龙电器股份有限公司 Refrigerant shunt and refrigeration equipment
WO2018047330A1 (en) * 2016-09-12 2018-03-15 三菱電機株式会社 Air conditioner
US10488089B2 (en) * 2016-10-05 2019-11-26 Johnson Controls Technology Company Parallel capillary expansion tube systems and methods
WO2018116413A1 (en) * 2016-12-21 2018-06-28 三菱電機株式会社 Distributor, heat exchanger, and refrigeration cycle device
CN110382978B (en) * 2017-03-09 2021-04-09 三菱电机株式会社 Heat exchanger and air conditioner
DE102017109065B4 (en) * 2017-04-27 2019-06-06 Miele & Cie. Kg Connection system for gas- and fluid-tight connection of a condenser of a heat pump with a heat pump evaporator
CN107279448B (en) * 2017-06-28 2022-12-27 中绅科技(广东)有限公司 Cold control device and method for double-throttling precooling fresh-keeping ice cream machine and ice cream machine
US11656013B2 (en) 2018-06-05 2023-05-23 Mitsubishi Electric Corporation Distributor and refrigeration cycle apparatus
CN113474600B (en) * 2019-03-05 2023-02-17 三菱电机株式会社 Heat exchanger and refrigeration cycle device
JP7137092B2 (en) * 2021-01-22 2022-09-14 ダイキン工業株式会社 Heat exchanger
JP6956297B1 (en) * 2021-08-03 2021-11-02 日立ジョンソンコントロールズ空調株式会社 Air conditioner and heat exchanger
CN113899119A (en) * 2021-09-19 2022-01-07 青岛海尔空调器有限总公司 Liquid separator, heat exchanger, refrigeration cycle system and air conditioner
WO2023152789A1 (en) * 2022-02-08 2023-08-17 三菱電機株式会社 Heat exchanger
WO2023188386A1 (en) * 2022-03-31 2023-10-05 三菱電機株式会社 Heat exchanger and air conditioner

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS45677Y1 (en) * 1963-07-12 1970-01-12
JPS5613692U (en) * 1979-07-06 1981-02-05
JPH03195874A (en) * 1989-12-26 1991-08-27 Matsushita Refrig Co Ltd Flow divider
JPH1172189A (en) * 1997-07-04 1999-03-16 Union Kucho Kogyo Kk Branch joint for refrigerant pipe
JPH11230637A (en) * 1998-02-16 1999-08-27 Mitsubishi Heavy Ind Ltd Air conditioner
JP2001263863A (en) * 2000-03-24 2001-09-26 Matsushita Electric Ind Co Ltd Air conditioner
JP2003148756A (en) * 2001-11-15 2003-05-21 Sanyo Electric Co Ltd Refrigerant flow divider of heat exchanger, and air conditioner using it
JP2003279290A (en) * 2002-03-20 2003-10-02 Toshiba Kyaria Kk Heat exchanger
JP2006097987A (en) * 2004-09-29 2006-04-13 Daikin Ind Ltd Three-way branch pipe and fin tube type heat exchanger using the same
JP2009186084A (en) * 2008-02-06 2009-08-20 Hitachi Appliances Inc Outdoor unit of air conditioner
JP2011144968A (en) * 2010-01-13 2011-07-28 Toshiba Carrier Corp Refrigerating cycle device
WO2011135946A1 (en) * 2010-04-28 2011-11-03 ダイキン工業株式会社 Heat exchanging device and connecting tube used therein
JP2012225531A (en) * 2011-04-15 2012-11-15 Mitsubishi Electric Corp Heat exchanger and refrigeration cycle device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350905A (en) * 1963-12-21 1967-11-07 Agency Ind Science Techn Liquid pressure bulge forming apparatus
US4089368A (en) * 1976-12-22 1978-05-16 Carrier Corporation Flow divider for evaporator coil
US4483156A (en) * 1984-04-27 1984-11-20 The Trane Company Bi-directional variable subcooler for heat pumps
JPH11159917A (en) * 1997-11-28 1999-06-15 Goh Shoji Co Inc Refrigerant flow divider and manufacture thereof
US7174919B2 (en) * 2003-10-20 2007-02-13 Metaldyne Company, Llc Flow redirection member and method of manufacture
JP2008121984A (en) 2006-11-13 2008-05-29 Matsushita Electric Ind Co Ltd Heat exchanger unit
US7597137B2 (en) * 2007-02-28 2009-10-06 Colmac Coil Manufacturing, Inc. Heat exchanger system
AU2010261177B2 (en) * 2009-06-19 2013-07-18 Daikin Industries, Ltd. Ceiling-mounted air conditioning unit
JP4715963B1 (en) * 2010-02-15 2011-07-06 ダイキン工業株式会社 Air conditioner heat exchanger
US20120145246A1 (en) * 2010-12-13 2012-06-14 Heatcraft Refrigeration Products Llc System and method for distribution of refrigerant to a plurality of heat exchanger evaporator coil circuits

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS45677Y1 (en) * 1963-07-12 1970-01-12
JPS5613692U (en) * 1979-07-06 1981-02-05
JPH03195874A (en) * 1989-12-26 1991-08-27 Matsushita Refrig Co Ltd Flow divider
JPH1172189A (en) * 1997-07-04 1999-03-16 Union Kucho Kogyo Kk Branch joint for refrigerant pipe
JPH11230637A (en) * 1998-02-16 1999-08-27 Mitsubishi Heavy Ind Ltd Air conditioner
JP2001263863A (en) * 2000-03-24 2001-09-26 Matsushita Electric Ind Co Ltd Air conditioner
JP2003148756A (en) * 2001-11-15 2003-05-21 Sanyo Electric Co Ltd Refrigerant flow divider of heat exchanger, and air conditioner using it
JP2003279290A (en) * 2002-03-20 2003-10-02 Toshiba Kyaria Kk Heat exchanger
JP2006097987A (en) * 2004-09-29 2006-04-13 Daikin Ind Ltd Three-way branch pipe and fin tube type heat exchanger using the same
JP2009186084A (en) * 2008-02-06 2009-08-20 Hitachi Appliances Inc Outdoor unit of air conditioner
JP2011144968A (en) * 2010-01-13 2011-07-28 Toshiba Carrier Corp Refrigerating cycle device
WO2011135946A1 (en) * 2010-04-28 2011-11-03 ダイキン工業株式会社 Heat exchanging device and connecting tube used therein
JP2012225531A (en) * 2011-04-15 2012-11-15 Mitsubishi Electric Corp Heat exchanger and refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095008A (en) * 2018-01-27 2019-08-06 浙江盾安热工科技有限公司 A kind of heat exchanger switching device

Also Published As

Publication number Publication date
JP6278904B2 (en) 2018-02-14
EP2955464A4 (en) 2016-11-09
WO2014115240A1 (en) 2014-07-31
US20150362222A1 (en) 2015-12-17
EP2955464A1 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP6278904B2 (en) Refrigerant distributor and heat pump device using the refrigerant distributor
US9651317B2 (en) Heat exchanger and air conditioner
JP6017047B2 (en) Heat exchanger, air conditioner, refrigeration cycle apparatus, and heat exchanger manufacturing method
JP6664558B1 (en) Heat exchanger, air conditioner with heat exchanger, and refrigerant circuit with heat exchanger
US20060237178A1 (en) Heat exchanger
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
WO2014181400A1 (en) Heat exchanger and refrigeration cycle device
US20160223231A1 (en) Heat exchanger and air conditioner
JP6576577B1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JP6214670B2 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
JP2015017738A (en) Heat exchanger
JP2018194251A (en) Heat exchanger
JP5627632B2 (en) Heat exchanger and heat pump device
JP2016148480A (en) Heat exchanger
JP2016050718A (en) Air conditioner
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
WO2017208419A1 (en) Fin-tube type heat exchanger, heat pump apparatus provided with fin-tube type heat exchanger, and method for manufacturing fin-tube type heat exchanger
WO2016121119A1 (en) Heat exchanger and refrigeration cycle device
JP5591285B2 (en) Heat exchanger and air conditioner
JP3632248B2 (en) Refrigerant evaporator
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
US10041712B2 (en) Refrigerant distributor and refrigeration cycle device equipped with the refrigerant distributor
JP2019128090A (en) Heat exchanger and refrigeration cycle device
JP2012067971A (en) Heat exchanger and apparatus
JP6582373B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180116

R150 Certificate of patent or registration of utility model

Ref document number: 6278904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250