JP2008121984A - Heat exchanger unit - Google Patents

Heat exchanger unit Download PDF

Info

Publication number
JP2008121984A
JP2008121984A JP2006306350A JP2006306350A JP2008121984A JP 2008121984 A JP2008121984 A JP 2008121984A JP 2006306350 A JP2006306350 A JP 2006306350A JP 2006306350 A JP2006306350 A JP 2006306350A JP 2008121984 A JP2008121984 A JP 2008121984A
Authority
JP
Japan
Prior art keywords
heat exchanger
balance
heat
heat transfer
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006306350A
Other languages
Japanese (ja)
Inventor
Masatoshi Takahashi
正敏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006306350A priority Critical patent/JP2008121984A/en
Publication of JP2008121984A publication Critical patent/JP2008121984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein an operation mode disabling maximum capacity exhibition of a heat exchanger exists due to a coolant flowing only to a specific line although the coolant is in an overaccumulated state in the heat exchanger because the amount of heat exchanger differs by the presence/absence of condensed water sticking to the surface of the heat exchanger. <P>SOLUTION: The coolant flows to either the balance tube 15a or balance tube 15b side by a branch unit 14 having an opening/closing device. The passage resistance of the balance tubes can thereby be changed according to each operating state to improve overaccumulation of the coolant in the heat exchanger and the flow of the coolant only to the specific line. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷媒と空気のような流体間で熱交換を行わせるフィン&チューブ型等の熱交換器に関するものである。   The present invention relates to a fin-and-tube type heat exchanger for exchanging heat between a refrigerant and a fluid such as air.

従来、この種の熱交換器はフィンを積層して伝熱管を貫通させ、伝熱管内を通過する冷媒の熱エネルギーをフィンを介してフィン近傍の空気と授受することにより熱交換を行っている。   Conventionally, this type of heat exchanger performs heat exchange by laminating fins and penetrating the heat transfer tube, and exchanging heat energy of the refrigerant passing through the heat transfer tube with air near the fins through the fins. .

図3は、従来の熱交換器ユニットを示すものである。図3において、熱交換器11、熱交換器11に送風する送風機12、熱交換器11を冷房運転の蒸発器とした場合に凝縮した凝縮水を受けるドレンパン13を備え、冷房運転時において減圧装置で減圧された冷媒を熱交換器11に分配する分岐ユニット14、分岐ユニット14から熱交換器11の各伝熱管11aに流入させるバランス管15が入口となる接続口11bに接続され、出口となる接続口11cにベッダ11dが接続されている。そして、熱交換性能を上げる手段として、送風機12の設置位置や熱交換器11通過風速に合わせて熱交換器11のフィンの密度や伝熱管11aの構成を変える(図示せず)ことで、熱交換器11での風速分布などを調整し、熱交換性能を上げている(例えば、特許文献1参照)。
特開平1−28494号公報
FIG. 3 shows a conventional heat exchanger unit. In FIG. 3, a heat exchanger 11, a blower 12 that blows air to the heat exchanger 11, a drain pan 13 that receives condensed water when the heat exchanger 11 is an evaporator for cooling operation, and a pressure reducing device during the cooling operation are provided. The branch unit 14 that distributes the refrigerant depressurized in step 1 to the heat exchanger 11, and the balance pipe 15 that flows from the branch unit 14 to each heat transfer tube 11 a of the heat exchanger 11 are connected to the connection port 11 b that serves as the inlet and serves as the outlet. A bed 11d is connected to the connection port 11c. And as a means to improve the heat exchange performance, the density of the fins of the heat exchanger 11 and the configuration of the heat transfer tube 11a are changed (not shown) in accordance with the installation position of the blower 12 and the passing air speed of the heat exchanger 11 (not shown). The wind speed distribution in the exchanger 11 is adjusted to improve the heat exchange performance (see, for example, Patent Document 1).
JP-A-1-28494

しかしながら、前記従来の構成では熱交換器ユニットを蒸発器として使用した場合、空気が熱交換器を通過する際に凝縮された凝縮水が熱交換器底部のフィンとフィンの間に溜まり易く、さらに、凝縮水を排出する排出口の設置位置によってドレンパンの水位が上昇し、熱交換器下部がドレン水に浸されることがある。そのような場合、フィンと空気との熱交換量が他の箇所に比べて少なくなり、底部の伝熱管とそれ以外の伝熱管では大きく蒸発能力が異なり、冷媒が底部に集中して流れる。このようなの熱交換器底部の伝熱管に流入する冷媒量を低減するためにバランス管の流路抵抗を大きくするか、もしくは、伝熱管のターン数を多くして、熱交換器内の抵抗を大きくし、蒸発能力減少を抑えているが、熱交換器ユニットを凝縮器として使用した場合、冷媒が調整した伝熱管内に溜まりすぎるために、凝縮器能力減少と消費電力が増大するという課題を有していた。   However, in the conventional configuration, when the heat exchanger unit is used as an evaporator, the condensed water condensed when air passes through the heat exchanger tends to accumulate between the fins at the bottom of the heat exchanger, The water level of the drain pan rises depending on the installation position of the outlet for discharging condensed water, and the lower part of the heat exchanger may be immersed in the drain water. In such a case, the amount of heat exchange between the fins and air is smaller than in other locations, and the evaporating ability is greatly different between the heat transfer tube at the bottom and the other heat transfer tubes, and the refrigerant flows in a concentrated manner at the bottom. In order to reduce the amount of refrigerant flowing into the heat transfer tube at the bottom of such a heat exchanger, the flow resistance of the balance tube is increased, or the number of turns of the heat transfer tube is increased to reduce the resistance in the heat exchanger. However, if the heat exchanger unit is used as a condenser, the refrigerant will accumulate too much in the adjusted heat transfer tube, resulting in the problem of reduced condenser capacity and increased power consumption. Had.

本発明は、前記従来の課題を解決するもので、蒸発器又は凝縮器として使い分ける熱交換器において、蒸発器として使用するときの、例えば、底部での凝縮水の影響などを考慮した構成の影響を、凝縮器として使用するときに受けず、凝縮器能力が低減したり消費電力が増大したりしてしまうことを抑制する熱交換ユニットを提供することを目的とする。   The present invention solves the above-described conventional problems, and in the heat exchanger that is selectively used as an evaporator or a condenser, when used as an evaporator, for example, the influence of the configuration in consideration of the influence of condensed water at the bottom, etc. It is an object of the present invention to provide a heat exchange unit that suppresses the reduction in condenser capacity or increase in power consumption without being received when used as a condenser.

前記従来の課題を解決するために、本発明の熱交換器ユニットは、熱交換器を凝縮器として使用する場合と蒸発器として使用した場合に応じて、バランス管を使い分けるために分岐ユニットに開閉装置を設けたものである。   In order to solve the above-mentioned conventional problems, the heat exchanger unit of the present invention opens and closes the branch unit to use a balance tube properly depending on whether the heat exchanger is used as a condenser or an evaporator. A device is provided.

これによって、熱交換器を蒸発器として使用した場合、熱交換器の最底部の伝熱管やバランス管の流路抵抗を大きくする必要がなくなるため、室内熱交換器ユニットを凝縮器として使用した場合に生じていた冷媒が熱交換器内に溜まりすぎることがなくなり、暖房能力向上と消費電力低減が可能となる。   As a result, when the heat exchanger is used as an evaporator, it is not necessary to increase the flow resistance of the heat transfer tube and the balance tube at the bottom of the heat exchanger, so the indoor heat exchanger unit is used as a condenser. Thus, the refrigerant that has been generated in the heat exchanger is not excessively accumulated in the heat exchanger, and heating capacity can be improved and power consumption can be reduced.

本発明の熱交換器ユニットは、運転状態によって生じる熱交換器底部の凝縮水の有無によって、熱交換器ユニットの能力が低下することを防止できるだけでなく、さらに消費電力の低減も可能となる。   The heat exchanger unit of the present invention can not only prevent the ability of the heat exchanger unit from being lowered due to the presence or absence of condensed water at the bottom of the heat exchanger caused by the operating state, but also can reduce power consumption.

第1の発明の熱交換器ユニットは、熱交換器と、熱交換器の各伝熱管経路に冷媒を分配する分岐ユニットと、分岐部と熱交換器に接続されているバランス管と、熱交換器の熱交換用送風機と、熱交換器で発生する凝縮水を貯溜するドレンパンを備え、冷暖房の運転状態に応じて、分岐ユニットに開閉装置を設けてバランス管を使い分けることで各伝熱管経路に流入する冷媒量を調整できるため、蒸発器として使用する際に生じる熱交換器底部での凝縮水の影響を受けずに、凝縮器として使用する際の能力の向上と消費電力低減を可能とする。   The heat exchanger unit of the first invention includes a heat exchanger, a branch unit that distributes the refrigerant to each heat transfer tube path of the heat exchanger, a balance pipe connected to the branch portion and the heat exchanger, and heat exchange A heat exchanger blower for the heat exchanger and a drain pan for storing condensate generated in the heat exchanger, and according to the operating condition of the air conditioning, install a switching device in the branch unit and use a balance tube separately for each heat transfer tube path Since the amount of refrigerant flowing in can be adjusted, it is possible to improve the capacity and reduce power consumption when used as a condenser without being affected by the condensed water at the bottom of the heat exchanger that occurs when used as an evaporator. .

第2の発明は、バランス管に開閉装置を設けてバランス管を使い分けることで各伝熱管経路に流入する冷媒量を調整できるため、熱交換器底部での凝縮水の影響を受けずに、凝縮器として使用する際の能力の向上と消費電力低減を可能とする。また、冷媒量を調整すべき経路が少ない場合には、材料費の削減ができる。さらに、バランス管や分岐ユニットの収容スペースが少くなるため、製品の小型化や設計自由度向上が可能となる。   According to the second aspect of the present invention, since the amount of refrigerant flowing into each heat transfer tube path can be adjusted by providing an opening / closing device in the balance tube and using the balance tube properly, the condensation is not affected by the condensed water at the bottom of the heat exchanger. Capability can be improved and power consumption can be reduced. In addition, when there are few routes for adjusting the amount of refrigerant, the material cost can be reduced. Further, since the accommodation space for the balance pipe and the branch unit is reduced, the product can be downsized and the design flexibility can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換器ユニットの模式図である。図1において、熱交換器11、熱交換器11に送風する送風機12、熱交換器11を冷房運転の蒸発器とした場合に凝縮した凝縮水を受けるドレンパン13を備えている。熱交換器11には伝熱管を接続して複数の伝熱管経路11aが構成され、冷房運転時にこれらの伝熱管経路11aに冷媒を分配する分岐ユニット14aがバランス管15aを介して入口となる接続口11bに接続されている。バランス管15aは、冷房の運転状態に応じて冷媒の流量が調整された構成となっており、伝熱管経路11aによってわずかづつ異なる。分岐ユニット14aには熱交換器11に流入する方向のみの逆止弁16aが設けられて、暖房運転時の冷媒の逆の流れを防止している。
(Embodiment 1)
FIG. 1 is a schematic diagram of a heat exchanger unit according to Embodiment 1 of the present invention. In FIG. 1, a heat exchanger 11, a blower 12 that blows air to the heat exchanger 11, and a drain pan 13 that receives condensed water condensed when the heat exchanger 11 is an evaporator for cooling operation are provided. A plurality of heat transfer tube paths 11a are configured by connecting heat transfer tubes to the heat exchanger 11, and a branch unit 14a that distributes the refrigerant to these heat transfer tube paths 11a during cooling operation serves as an inlet via the balance tube 15a It is connected to the mouth 11b. The balance tube 15a has a configuration in which the flow rate of the refrigerant is adjusted according to the cooling operation state, and varies slightly depending on the heat transfer tube path 11a. The branch unit 14a is provided with a check valve 16a only in the direction of flowing into the heat exchanger 11 to prevent the reverse flow of the refrigerant during the heating operation.

また、バランス管15aと並行して接続されたバランス管15bを介して分岐ユニット14bが接続されている。バランス管15bは、暖房運転時の冷媒の流れを集めるもので、特に流量を調整するものではなく、冷媒が各伝熱管経路11aに均等に流れるような構成となっている。そして、分岐ユニット14bには冷房運転時の冷媒の流れを防止する逆止弁16bが設けられている。   The branch unit 14b is connected via a balance pipe 15b connected in parallel with the balance pipe 15a. The balance pipe 15b collects the flow of the refrigerant during the heating operation, and does not particularly adjust the flow rate, and is configured such that the refrigerant flows evenly through the heat transfer pipe paths 11a. And the check valve 16b which prevents the flow of the refrigerant | coolant at the time of air_conditionaing | cooling operation is provided in the branch unit 14b.

分岐ユニット14aと分岐ユニット14bとは更に先では一つの配管に集合している。そして、熱交換器11の反対側では、伝熱管経路の冷房運転時に出口、暖房運転時に入口となる複数の接続口11cを集合するヘッダ11dが接続されている。   The branch unit 14a and the branch unit 14b are gathered together in one pipe. And on the opposite side of the heat exchanger 11, a header 11d is connected that collects a plurality of connection ports 11c serving as an outlet during cooling operation of the heat transfer tube path and an inlet during heating operation.

以上のように構成された熱交換器ユニットについて、その動作、作用を説明する。まず、熱交換器11を蒸発器として使用した場合、凝縮された冷媒は膨張装置(図示せず)で減圧膨張され、分岐ユニット14aとバランス管15aを介して室内熱交換器11の複数の伝熱管経路11aに流入される。流入した冷媒は伝熱管内を通過する際に、熱エネルギーをフィンを介してフィン近傍の空気とエネルギー授受を行うことで熱交換し、フィン表
面には空気中の水分が凝縮する。このフィンに付いた凝縮水は次第に流れ落ちるが、熱交換器11底部のフィンとフィンの間に溜まり易い。さらに、排水口の設置位置によってはドレンパンの水位が上昇し、熱交換器11下部がドレン水に浸されるために、フィンと空気との熱交換量が他の箇所に比べて少なくなる。
About the heat exchanger unit comprised as mentioned above, the operation | movement and an effect | action are demonstrated. First, when the heat exchanger 11 is used as an evaporator, the condensed refrigerant is decompressed and expanded by an expansion device (not shown), and a plurality of transmissions of the indoor heat exchanger 11 are transmitted via the branch unit 14a and the balance pipe 15a. It flows into the heat pipe path 11a. When the inflowing refrigerant passes through the heat transfer tubes, heat energy is exchanged with the air in the vicinity of the fins through the fins to exchange heat, and moisture in the air condenses on the fin surfaces. The condensed water attached to the fins gradually flows down, but tends to accumulate between the fins at the bottom of the heat exchanger 11. Furthermore, depending on the installation position of the drain outlet, the water level of the drain pan rises, and the lower part of the heat exchanger 11 is immersed in the drain water, so that the amount of heat exchange between the fins and air is smaller than in other locations.

そのため、熱交換量が他の箇所に比べて少なくなる底部の伝熱管経路eには流路抵抗を大きくしたバランス管15aを接続して流量を調整し、熱交換が大きい伝熱管経路11aに冷媒がより多く流れるようになっている。   For this reason, a balance pipe 15a having a larger flow resistance is connected to the bottom heat transfer pipe path e where the heat exchange amount is smaller than in other places, the flow rate is adjusted, and the refrigerant is transferred to the heat transfer pipe path 11a having a larger heat exchange. Is flowing more.

逆に、熱交換器11を凝縮器として使用した場合、熱交換器11の表面に凝縮水は発生しないため、底部の熱交換不足は発生しない。そのため、冷媒の流量調整は必要ない。そこで、冷媒はバランス管15bを通じて伝熱管経路11aに均等に流れるため、熱交換器11全体で効率よく熱交換を行うことができる。   On the other hand, when the heat exchanger 11 is used as a condenser, condensed water is not generated on the surface of the heat exchanger 11, so that there is no shortage of heat exchange at the bottom. Therefore, it is not necessary to adjust the flow rate of the refrigerant. Then, since a refrigerant | coolant flows equally into the heat exchanger tube path | route 11a through the balance pipe 15b, heat exchange can be performed efficiently in the heat exchanger 11 whole.

以上のように、本実施の形態においては蒸発器又は凝縮器、即ち冷房又は暖房の運転状態によって生じる熱交換器底部の凝縮水の有無によって変化する、熱交換器の伝熱管経路ごとの熱交換量のアンバランスに対応できるため、熱交換器ユニットの能力が低下することを防止できるだけでなく、さらに消費電力の低減も可能となる。   As described above, in the present embodiment, the heat exchange for each heat transfer tube path of the heat exchanger, which varies depending on the presence or absence of condensed water at the bottom of the heat exchanger caused by the operating state of the evaporator or condenser, that is, cooling or heating. Since it is possible to cope with an unbalanced amount, it is possible not only to prevent the capacity of the heat exchanger unit from being lowered, but also to reduce power consumption.

(実施の形態2)
図2は、本発明の実施の形態2における熱交換器ユニット図である。図2において、すべての伝熱管経路11aにはバランス管15cを設け、特定の伝熱管経路(底部の伝熱管経路e)だけには冷房運転時には冷媒の流れを止める逆止弁16cを設けている。そして、底部の伝熱管経路eには冷房運転時に冷媒の流量を調整するバランス管15dを設けたものである。
(Embodiment 2)
FIG. 2 is a heat exchanger unit diagram according to Embodiment 2 of the present invention. In FIG. 2, all the heat transfer pipe paths 11a are provided with balance pipes 15c, and only a specific heat transfer pipe path (bottom heat transfer pipe path e) is provided with a check valve 16c for stopping the refrigerant flow during the cooling operation. . The heat transfer tube path e at the bottom is provided with a balance tube 15d for adjusting the flow rate of the refrigerant during the cooling operation.

以上のように構成された熱交換器ユニットについて、その動作、作用を説明する。熱交換器11が、蒸発器として運転している場合には、開閉装置を装着していないバランス管15cと、底部の伝熱管経路eの逆止弁16冷媒流量を調整したバランス管15dに冷媒が流れる。これにより、凝縮水により熱交換量がアンバランスになった熱交換器11に対して、伝熱管経路ごとに対応できるため、熱交換器ユニットの能力が低下することを防止できる。   About the heat exchanger unit comprised as mentioned above, the operation | movement and an effect | action are demonstrated. When the heat exchanger 11 is operated as an evaporator, the refrigerant is supplied to the balance pipe 15c not equipped with the switchgear and the check pipe 16 in the bottom heat transfer pipe path e to the balance pipe 15d in which the refrigerant flow rate is adjusted. Flows. Thereby, since it can respond | correspond for every heat exchanger tube path | route with respect to the heat exchanger 11 in which the heat exchange amount became unbalanced with condensed water, it can prevent that the capability of a heat exchanger unit falls.

逆に、熱交換器11を凝縮器として使用した場合には、逆止弁16cを設けているバランス管15dと蒸発器流量調整用のバランス管15dの両方に冷媒が流れるが、バランス管15dは流路抵抗が大きいため影響はほとんどなく問題ない。もちろん、必要に応じてバランス管15dにもバランス管15cとは逆方向の逆止弁を設けてもよい。   Conversely, when the heat exchanger 11 is used as a condenser, the refrigerant flows through both the balance pipe 15d provided with the check valve 16c and the balance pipe 15d for adjusting the evaporator flow rate. Since the flow resistance is large, there is almost no effect and there is no problem. Of course, if necessary, the balance pipe 15d may be provided with a check valve in the opposite direction to the balance pipe 15c.

なお、本実施の形態では、一つの伝熱管経路に冷暖房に応じた2本のバランス管を設けるのは底部の伝熱管経路一つとしたが、これに限るものではなく、必要に応じて伝熱管経路ごとに調整した2本のバランス管を設ければよく、逆止弁も必要な循環量に応じて設ければよい。   In the present embodiment, the provision of the two balance pipes corresponding to the cooling and heating in one heat transfer pipe path is a single heat transfer pipe path at the bottom. However, the present invention is not limited to this. Two balance pipes adjusted for each path may be provided, and a check valve may be provided according to a necessary circulation amount.

以上のように、本実施の形態においては、運転状態によって生じる熱交換器底部の凝縮水の有無によって、変化する熱交換器量に対応できる装置をコンパクトにできるため、熱交換器ユニットの性能向上だけでなく、設計自由度の向上とコストダウンが可能となる。   As described above, in the present embodiment, since the apparatus capable of dealing with the amount of heat exchanger that changes depending on the presence or absence of condensed water at the bottom of the heat exchanger caused by the operating state can be made compact, only the performance improvement of the heat exchanger unit is achieved. In addition, the design flexibility can be improved and the cost can be reduced.

本発明の熱交換器ユニット運転状態に関わらず、熱交換器能力を最大限に発揮できるため、様々な冷凍サイクルに適用できる。   Regardless of the operation state of the heat exchanger unit of the present invention, the heat exchanger capacity can be maximized, so that it can be applied to various refrigeration cycles.

本発明の実施の形態1における熱交換器ユニットの模式図The schematic diagram of the heat exchanger unit in Embodiment 1 of this invention 本発明の実施の形態2における熱交換器ユニットの模式図The schematic diagram of the heat exchanger unit in Embodiment 2 of this invention 従来の熱交換器ユニットの模式図Schematic diagram of a conventional heat exchanger unit

符号の説明Explanation of symbols

11 熱交換器
11a 伝熱管経路
11b,11c 接続口
11d ヘッダ
11e 底部の伝熱管経路
12 送風機
13 ドレンパン
14,14a,14b 分岐ユニット
15,15a,15b,15c,15d バランス管
16a,16b 逆止弁
DESCRIPTION OF SYMBOLS 11 Heat exchanger 11a Heat transfer pipe path 11b, 11c Connection port 11d Header 11e Heat transfer pipe path 12 Blower 13 Drain pan 14, 14a, 14b Branch unit 15, 15a, 15b, 15c, 15d Balance pipe 16a, 16b Check valve

Claims (2)

冷房運転と暖房運転との切り換えが可能な冷凍サイクルユニットにおいて、熱交換器と、前記熱交換器の各伝熱管経路に冷媒を分配する分岐ユニットと、前記分岐ユニットと前記熱交換器とを接続するバランス管と、前記熱交換用の送風機と、前記熱交換器で発生する凝縮水を受けるドレンパンとを備え、前記バランス管は一つの伝熱管経路に冷房用と暖房用の二つのバランス管としてそれぞれに開閉装置を有する分岐ユニットを設け、冷暖房の運転状態に応じて、前記開閉装置により前記二つのバランス管を使い分けることで各伝熱管経路に流入する冷媒量を調整することを特徴とする熱交換器ユニット。 In a refrigeration cycle unit that can be switched between a cooling operation and a heating operation, a heat exchanger, a branch unit that distributes refrigerant to each heat transfer tube path of the heat exchanger, and the branch unit and the heat exchanger are connected. A balance pipe, a blower for heat exchange, and a drain pan that receives condensed water generated in the heat exchanger. The balance pipe is provided as two balance pipes for cooling and heating in one heat transfer pipe path. A branch unit having an opening / closing device for each is provided, and the amount of refrigerant flowing into each heat transfer tube path is adjusted by selectively using the two balance tubes by the opening / closing device according to the operating state of air conditioning. Exchange unit. 冷房運転と暖房運転との切り換えが可能な冷凍サイクルユニットにおいて、熱交換器と、前記熱交換器の各伝熱管経路に冷媒を分配する分岐ユニットと、前記分岐ユニットと前記熱交換器とを接続するバランス管と、前記熱交換用の送風機と、前記熱交換器で発生する凝縮水を受けるドレンパンとを備え、前記バランス管は必要に応じて一つの伝熱管経路に冷房用と暖房用の二つのバランス管とするとともに、必要に応じてバランス管に開閉装置を設け、冷暖房の運転状態に応じてバランス管を使い分けることで各伝熱管経路に流入する冷媒量を調整することを特徴とする熱交換器ユニット。 In a refrigeration cycle unit that can be switched between a cooling operation and a heating operation, a heat exchanger, a branch unit that distributes refrigerant to each heat transfer tube path of the heat exchanger, and the branch unit and the heat exchanger are connected. A balance pipe, a blower for heat exchange, and a drain pan that receives condensed water generated in the heat exchanger. The balance pipe is provided in one heat transfer pipe path for cooling and heating as needed. Heat is characterized by adjusting the amount of refrigerant flowing into each heat transfer tube path by providing an open / close device in the balance tube as needed, and using the balance tube appropriately according to the operating state of the air conditioning. Exchange unit.
JP2006306350A 2006-11-13 2006-11-13 Heat exchanger unit Pending JP2008121984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306350A JP2008121984A (en) 2006-11-13 2006-11-13 Heat exchanger unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306350A JP2008121984A (en) 2006-11-13 2006-11-13 Heat exchanger unit

Publications (1)

Publication Number Publication Date
JP2008121984A true JP2008121984A (en) 2008-05-29

Family

ID=39506928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306350A Pending JP2008121984A (en) 2006-11-13 2006-11-13 Heat exchanger unit

Country Status (1)

Country Link
JP (1) JP2008121984A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099256A1 (en) * 2010-02-15 2011-08-18 ダイキン工業株式会社 Heat exchanger for air conditioner
WO2014115240A1 (en) 2013-01-22 2014-07-31 三菱電機株式会社 Refrigerant distributor and heat pump device using refrigerant distributor
US10422566B2 (en) * 2013-06-13 2019-09-24 Mitsubishi Electric Corporation Air-Conditioning apparatus
WO2022089661A1 (en) * 2020-10-27 2022-05-05 青岛海尔空调器有限总公司 Heat exchanging device and air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099256A1 (en) * 2010-02-15 2011-08-18 ダイキン工業株式会社 Heat exchanger for air conditioner
JP2011163741A (en) * 2010-02-15 2011-08-25 Daikin Industries Ltd Heat exchanger for air conditioner
CN102753927A (en) * 2010-02-15 2012-10-24 大金工业株式会社 Heat exchanger for air conditioner
AU2011215523B2 (en) * 2010-02-15 2013-06-20 Daikin Industries, Ltd. Heat exchanger for air conditioner
CN102753927B (en) * 2010-02-15 2014-06-18 大金工业株式会社 Heat exchanger for air conditioner
US9618269B2 (en) 2010-02-15 2017-04-11 Daikin Industries, Ltd. Heat exchanger with tube arrangement for air conditioner
WO2014115240A1 (en) 2013-01-22 2014-07-31 三菱電機株式会社 Refrigerant distributor and heat pump device using refrigerant distributor
US10422566B2 (en) * 2013-06-13 2019-09-24 Mitsubishi Electric Corporation Air-Conditioning apparatus
WO2022089661A1 (en) * 2020-10-27 2022-05-05 青岛海尔空调器有限总公司 Heat exchanging device and air conditioner

Similar Documents

Publication Publication Date Title
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
JP6644154B2 (en) Air conditioner
JP5194517B2 (en) Air conditioner
KR20070111919A (en) Air conditioner using of the subterranean heat
JP2008185229A (en) Refrigerating device
WO2012077275A1 (en) Air-conditioner
JP4553761B2 (en) Air conditioner
JP2006071174A (en) Refrigerating device
JP2006071137A (en) Refrigeration unit
JP4058696B2 (en) Heat pump hot water supply system
JP2008121984A (en) Heat exchanger unit
JP2010216692A (en) Heat exchange device for outdoor unit of air conditioning system
JP2012136152A (en) Air conditioning system for ship
JP2006250438A (en) Engine driven heat pump
JP2007032857A (en) Refrigerating device
JPH11182953A (en) Refrigerator
JP2007218495A (en) Absorption water cooler-heater
JP4939799B2 (en) Air conditioner
JP2014109416A (en) Air conditioner
JP2011127785A (en) Refrigerating device
JP4495090B2 (en) Air conditioner
JP2008309362A (en) Air conditioner
JP2006038306A (en) Freezer
JP2007212108A (en) Air conditioner
JP5268136B2 (en) Heat pump air conditioner