WO2023152789A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2023152789A1
WO2023152789A1 PCT/JP2022/004859 JP2022004859W WO2023152789A1 WO 2023152789 A1 WO2023152789 A1 WO 2023152789A1 JP 2022004859 W JP2022004859 W JP 2022004859W WO 2023152789 A1 WO2023152789 A1 WO 2023152789A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
distributor
heat transfer
heat exchanger
transfer tubes
Prior art date
Application number
PCT/JP2022/004859
Other languages
French (fr)
Japanese (ja)
Inventor
伸 中村
悟 梁池
進一 内野
智広 飛田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/004859 priority Critical patent/WO2023152789A1/en
Publication of WO2023152789A1 publication Critical patent/WO2023152789A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies

Definitions

  • the present disclosure relates to heat exchangers with distributors.
  • the heat exchanger includes a distributor that distributes refrigerant to each refrigerant path.
  • a first distributor for example, a distributor
  • branches the flow of the refrigerant into a plurality of flows and a U-shaped pipe portion in order to reduce the number of branches of the distributor.
  • two distributors see, for example, Patent Document 1.
  • the present disclosure has been made in order to solve the above-described problems, and it is an object of the present disclosure to provide a heat exchanger having a second distributor with good workability during manufacture, assembly, and maintenance. aim.
  • a heat exchanger includes: a first distributor that distributes a refrigerant into a plurality of flows; One or more second distributors for distribution, and a plurality of stages of heat transfer tubes arranged in the direction of gravity and forming three or more refrigerant paths, wherein the second distributor includes the three or more refrigerant paths
  • some of the multiple stages of heat transfer tubes are connected to the first distributor via one or more second distributors, and among the multiple stages of heat transfer tubes, The remaining heat transfer tubes are connected to the first distributor without passing through the second distributor. Therefore, according to the present disclosure, a second distributor in the heat exchanger is provided compared to the conventional case where all refrigerant paths are connected to the first distributor via the second distributor. A space is created on the side, and the heat exchanger with the second distributor can be manufactured and assembled, and the workability during maintenance is improved.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device including a heat exchanger according to Embodiment 1.
  • FIG. 1 is a schematic diagram showing a configuration example of an outdoor unit equipped with a heat exchanger according to Embodiment 1;
  • FIG. FIG. 3 is an exploded perspective view of the outdoor unit of FIG. 2;
  • FIG. 2 is a schematic diagram schematically showing the configuration of the heat exchanger according to Embodiment 1 as seen from the windward side;
  • FIG. 5 is a schematic diagram of a configuration example of the second distributor of FIG. 4 as viewed from the leeward side;
  • Figure 6 is a schematic side view of the second distributor of Figure 5;
  • Figure 6 is a schematic view from above of the second distributor of Figure 5;
  • FIG. 5 is a schematic diagram showing one configuration example of a joint in the heat exchanger of FIG. 4;
  • FIG. 5 is a partial enlarged view of the heat exchanger of FIG. 4;
  • FIG. 10 is a side view of the heat exchanger of FIG. 9 viewed from the side where the second distributor is provided;
  • FIG. 5 is a schematic diagram schematically showing a refrigerant distribution structure in the heat exchanger of FIG. 4;
  • FIG. 4 is a schematic diagram of a first modification of the heat exchanger according to Embodiment 1;
  • FIG. 13 is a partially enlarged view including the upper end portion of the heat exchanger of FIG. 12;
  • FIG. 14 is a side view of the heat exchanger of FIG. 13 as seen from the side where the second distributor is provided;
  • FIG. 5 is a schematic diagram of a second modification of the heat exchanger according to Embodiment 1;
  • FIG. 16 is a side view of the heat exchanger of FIG. 15 viewed from the side where the second distributor is provided;
  • FIG. 8 is a schematic diagram of a third modification of the heat exchanger according to Embodiment 1;
  • FIG. 18 is a side view of the heat exchanger of FIG. 17 viewed from the side where the second distributor is provided;
  • FIG. 7 is a schematic diagram schematically showing a partial configuration of a heat exchanger according to Embodiment 2 as viewed from the windward side;
  • FIG. 20 is a side view of the heat exchanger of FIG. 19 viewed from the side where the second distributor is provided;
  • FIG. 20 is a schematic diagram showing a configuration example of the second distributor of FIG. 19 as viewed from the leeward side;
  • Figure 22 is a schematic side view of the second distributor of Figure 21;
  • Figure 22 is a schematic view from above of the second distributor of Figure 21;
  • FIG. 11 is a schematic diagram of a fourth modification of the heat exchanger according to Embodiment 2;
  • FIG. 25 is a side view of the heat exchanger of FIG. 24 as seen from the side where the second distributor is provided;
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device 1 including a heat exchanger 10 according to Embodiment 1.
  • the refrigeration cycle device 1 has a refrigerant circuit 1C that transfers heat using the latent heat of evaporation and condensation of the refrigerant.
  • the refrigerating cycle device 1 for example, there is an air conditioner that performs indoor heating and cooling.
  • the dotted arrows indicate the direction of refrigerant flow when the refrigeration cycle device 1 performs cooling operation and dehumidifying operation
  • the solid arrows indicate the direction of refrigerant flow when the refrigeration cycle device 1 performs heating operation. is shown.
  • the configuration of the refrigeration cycle device 1 will be described with reference to FIG.
  • the refrigeration cycle device 1 includes a compressor 2, an indoor heat exchanger 3, an indoor fan 4, an expansion device 5, a heat exchanger 10, an outdoor fan 6, and a four-way valve 7. and have.
  • the compressor 2 , the heat exchanger 10 , the expansion device 5 and the four-way valve 7 are provided in the outdoor unit 101
  • the indoor heat exchanger 3 is provided in the indoor unit 102 .
  • the compressor 2, the indoor heat exchanger 3, the throttle device 5, the heat exchanger 10, and the four-way valve 7 are connected by refrigerant piping to form a refrigerant circuit 1C in which the refrigerant circulates.
  • a refrigerating cycle is performed in which the refrigerant circulates in the refrigerant circuit 1C while changing its phase.
  • the compressor 2 sucks in low-pressure gas refrigerant, compresses it, converts it into high-pressure gas refrigerant, discharges it, and circulates it in the refrigerant circuit 1C.
  • the compressor 2 is, for example, a rotary compressor, a scroll compressor, a screw compressor, a reciprocating compressor, or the like.
  • the indoor heat exchanger 3 functions as a condenser during heating operation and as an evaporator during cooling operation.
  • the indoor heat exchanger 3 is, for example, a fin-and-tube heat exchanger, a microchannel heat exchanger, a finless heat exchanger, a shell-and-tube heat exchanger, a heat pipe heat exchanger, or a double-tube heat exchanger. or a plate heat exchanger.
  • the expansion device 5 expands and decompresses the refrigerant.
  • the expansion device 5 is, for example, an electric expansion valve or the like that can adjust the flow rate of the refrigerant.
  • the expansion device 5 may be not only an electric expansion valve, but also a mechanical expansion valve employing a diaphragm as a pressure receiving portion, or each connecting pipe or the like.
  • the heat exchanger 10 functions as an evaporator during heating operation and as a condenser during cooling operation.
  • the heat exchanger 10 is composed of, for example, a fin-and-tube heat exchanger. Details of the heat exchanger 10 will be described later.
  • the four-way valve 7 switches the refrigerant flow path in the refrigeration cycle device 1 .
  • the four-way valve 7 is switched to connect the discharge port of the compressor 2 and the indoor heat exchanger 3 and connect the suction port of the compressor 2 and the heat exchanger 10 during the heating operation. Further, the four-way valve 7 is switched to connect the discharge port of the compressor 2 and the heat exchanger 10 and connect the suction port of the compressor 2 and the indoor heat exchanger 3 during the cooling operation and the dehumidifying operation. .
  • a configuration may be adopted in which a plurality of valves are used to switch the flow path of the refrigerant.
  • the configuration of the refrigerant circuit 1C is not limited to the above configuration.
  • the four-way valve 7 may be omitted from the refrigerant circuit 1C, and the refrigeration cycle device 1 may be configured to perform only the heating operation.
  • the indoor fan 4 is attached to the indoor heat exchanger 3, and supplies the room air as a heat exchange fluid to the indoor heat exchanger 3.
  • the outdoor fan 6 is attached to the heat exchanger 10 and supplies outdoor air to the heat exchanger 10 .
  • FIG. A four-way valve 7 switches between heating and cooling.
  • heating operation the refrigerant discharged from the compressor 2 flows through the indoor heat exchanger 3, the expansion device 5, and the heat exchanger 10 in this order, and returns to the compressor 2.
  • cooling operation the refrigerant discharged from the compressor 2 flows through the heat exchanger 10 , the expansion device 5 and the indoor heat exchanger 3 in this order, and returns to the compressor 2 .
  • the condenser radiates the heat of the high-temperature and high-pressure gas refrigerant to the outside air and condenses it into liquid refrigerant.
  • the evaporator causes the liquid refrigerant contained in the low-temperature, low-pressure refrigerant to absorb heat from the outside air and evaporate it.
  • FIG. 2 is a schematic diagram showing a configuration example of the outdoor unit 101 equipped with the heat exchanger according to the first embodiment.
  • the white arrows in FIG. 2 indicate the direction of air flow during operation.
  • 3 is an exploded perspective view of the outdoor unit of FIG. 2.
  • FIG. The outdoor unit 101 according to Embodiment 1 will be described with reference to FIGS. 2 and 3.
  • the outdoor unit 101 has, for example, a cuboid shape.
  • the outdoor unit 101 includes, for example, a top panel 111, a side panel 112, a front panel 113, a fan grill 114, a bottom panel 115 and side covers .
  • the top panel 111 constitutes the top surface of the outdoor unit 101
  • the side panel 112 constitutes the right side of the outdoor unit 101 in FIG.
  • the bottom panel 115 constitutes the bottom of the outdoor unit 101 .
  • An air outlet is formed in the front surface of the front panel 113, and a grid-like fan grill 114 is provided to cover the outlet.
  • a side cover 116 is attached to the outside of the side panel 112 . As shown in FIG.
  • these structures and the heat exchanger 10 surround the refrigerant circuit components (for example, the compressor 2, the expansion device 5 and the four-way valve 7) arranged on the outdoor unit 101 side. ing.
  • the outdoor fan 6 is also arranged inside the outdoor unit 101 .
  • the outdoor fan 6 is composed of, for example, a propeller fan or the like.
  • the airflow flowing into the heat exchanger 10 is directed from the back side to the front side of the heat exchanger 10, that is, from the upper right direction of FIG. flow. Airflow drawn by the outdoor fan 6 (see FIG. 3) passes through the heat exchanger 10 (see FIG. 3).
  • the heat exchanger 10 has an L-shape in a plan view, and is arranged on the side rear side and the rear side of the housing 9 . Note that the configuration of the outdoor unit 101 is not limited to the configuration described above.
  • FIG. 4 is a schematic diagram schematically showing the configuration of the heat exchanger 10 according to Embodiment 1 as seen from the windward side.
  • the dotted line arrows indicate the direction of refrigerant flow when the refrigeration cycle device 1 performs the cooling operation and the dehumidifying operation using the heat exchanger 10 (see FIG. 1) as a condenser. It shows the direction in which the refrigerant flows when the refrigerating cycle device 1 performs the heating operation using the exchanger 10 (see FIG. 1) as an evaporator.
  • FIG. 5 is a schematic diagram showing a configuration example of the second distributor 30 of FIG. 4 as viewed from the leeward side.
  • FIG. 6 is a schematic side view of the second distributor 30 of FIG. FIG.
  • FIG. 7 is a schematic top view of the second distributor 30 of FIG.
  • FIG. 8 is a schematic diagram showing one configuration example of a joint in the heat exchanger 10 of FIG. 9 is a partially enlarged view of the heat exchanger 10 of FIG. 4.
  • FIG. FIG. 10 is a side view of the heat exchanger 10 of FIG. 9 viewed from the side where the second distributor 30 is provided.
  • white arrows indicate the direction of air flow.
  • a virtual line X3 in FIG. 6 is a virtual line in the direction of gravity, that is, in the vertical direction (direction of arrow Z).
  • FIG. 3 the heat exchanger 10 has a curved portion and is provided from the side rear side to the back side of the outdoor unit 101, but in the following description, for ease of understanding, the heat exchanger 10 It is defined as having a rectangular parallelepiped shape along the back of the machine 101 .
  • directional terms e.g., “up”, “down”, “right”, “left”, “front”, “back”, etc.
  • these terms are not intended to limit this disclosure. Unless otherwise specified, these directional terms mean the directions when the heat exchanger 10 is viewed from the windward side (the rear side of the outdoor unit 101 shown in FIG. 2) as shown in FIG. there is
  • the heat exchanger 10 includes a plurality of plate-like fins 11 stacked with a space therebetween, and a plurality of heat transfer tubes that penetrate the plate-like fins 11 in the stacking direction and have a refrigerant flowing therein. 12 and.
  • the heat transfer tubes 12 are, for example, circular tubes or flat tubes made of copper or aluminum.
  • the heat exchanger 10 includes a distribution structure that distributes the refrigerant when the heat exchanger 10 functions as an evaporator, and a header 50 that joins the refrigerant after heat exchange in the plurality of heat transfer tubes 12.
  • heat exchanger 10 includes a first distributor 20 that distributes the refrigerant into multiple streams when heat exchanger 10 functions as an evaporator, and a first distributor 20 that distributes the refrigerant into multiple streams when heat exchanger 10 functions as an evaporator. and one or more second distributors 30 for further distributing the refrigerant distributed by the first distributor 20 into two streams.
  • the heat exchanger 10 includes a header 50 that joins the refrigerant evaporated in the plurality of heat transfer tubes 12 . Header 50 has a plurality of header branch pipes 51 .
  • the stacking direction of the plate-like fins 11 and the longitudinal direction of the heat transfer tubes 12 are the lateral direction (direction of arrow X) of the heat exchanger 10.
  • the longitudinal direction of the plate-like fins 11 is defined as the vertical direction (direction of arrow Z) of the heat exchanger 10, that is, the direction of gravity.
  • the plurality of heat transfer tubes 12 are arranged in the longitudinal direction of the plate-like fins 11, that is, in the gravitational direction.
  • the plurality of heat transfer tubes 12 are arranged in two rows in the direction of air flow (indicated by white arrows in FIG. 2), as shown in the side view of FIG. are arranged so that That is, as shown in FIGS. 9 and 10, some of the plurality of heat transfer tubes 12 are arranged on the windward side in the air circulation direction (arrow Y direction) and spaced apart from each other.
  • the heat transfer tubes 12 are arranged in the vertical direction (direction of arrow Z), and the remaining heat transfer tubes of the plurality of heat transfer tubes 12 are arranged on the leeward side and arranged in the vertical direction (direction of arrow Z) with a space therebetween.
  • the heat transfer tubes 12 belonging to the windward row may be referred to as windward heat transfer tubes 12a, and the heat transfer tubes 12 belonging to the leeward row may be referred to as leeward heat transfer tubes 12b.
  • the arrangement of the heat transfer tubes 12 or refrigerant paths in the gravitational direction may be referred to as a stage.
  • the multistage heat transfer tubes 12 may be provided in three or more rows, or may be provided in one row.
  • the heat exchanger 10 shown in FIGS. 4, 9 and 10 includes an interstage connection pipe 13 connecting two vertically adjacent heat transfer tubes 12 belonging to the same row, and a heat transfer pipe belonging to the windward row. 12 and an inter-row connection pipe 14 that connects the heat transfer tubes 12 belonging to the row on the leeward side.
  • the inter-stage connection pipe 13 connects the right ends of two vertically adjacent heat transfer tubes 12, and the row-to-row connection pipe 14 connects the left ends of the upwind heat transfer tubes 12a and the downwind side. It is connected to the left end of the heat transfer tube 12b.
  • FIG. 1 As shown in FIG.
  • a plurality of heat transfer tubes 12 are connected to interstage connection pipes 13 and interrow connection pipes 14 so that a flow path, that is, a refrigerant path is formed inside the plurality of heat transfer tubes 12 connected in series. is formed.
  • one refrigerant path is configured by a total of four heat transfer tubes 12, two windward heat transfer tubes 12a and two leeward heat transfer tubes 12b.
  • each refrigerant path is formed by four heat transfer tubes 12 , two inter-stage connection pipes 13 , and one inter-row connection pipe 14 .
  • the configuration of the refrigerant path is not limited to the configuration described above.
  • the heat exchanger 10 may have a configuration in which a plurality of stages of heat transfer tubes 12 arranged in the vertical direction are arranged in one row, and three or more rows of heat transfer tubes 12 are provided in the air circulation direction.
  • each of the refrigerant paths includes, for example, two stages of heat transfer tubes 12 connected to each other in each row and a plurality of interrow connection pipes 14.
  • the inter-row connection pipe 14 connects one of the two-stage heat transfer tubes 12 in one of the multiple rows and one of the two-stage heat transfer tubes in a row different from any of the rows.
  • each refrigerant path is divided into two An inter-row connecting pipe 14 is included.
  • one inter-row connecting pipe 14 connects, for example, the heat transfer tubes 12 of the first row and the heat transfer tubes 12 of the second row.
  • the other inter-row connecting pipe 14 connects the heat transfer tubes 12 in the second row, which are different from the heat transfer tubes 12 connected to the heat transfer tubes 12 in the first row, to the heat transfer tubes 12 in the third row.
  • each of the inter-stage connection pipes 13 and the inter-row connection pipes 14 is composed of a member different from the heat transfer pipes 12, and is connected to the heat transfer pipes 12 by, for example, brazing. .
  • each of the inter-stage connection pipe 13 and the inter-row connection pipe 14 may be formed integrally with the heat transfer pipe 12 penetrating through the plate-like fins 11 .
  • One end sides of some of the three or more refrigerant paths of the heat exchanger 10 are each connected to a second distributor 30 , and the second distributor 30 is connected to the first refrigerant path via a connecting pipe 40 . is connected to the distributor 20 of . Moreover, one end sides of the remaining refrigerant paths among the three or more refrigerant paths of the heat exchanger 10 are connected to the first distributor 20 via connection pipes 40 respectively.
  • the connection pipe 40 is, for example, a capillary tube. Further, the other end sides of the three or more refrigerant paths of the heat exchanger 10 are connected to the header main pipe 52 via the header branch pipes 51 respectively.
  • the two refrigerant paths connected to the first distributor 20 via the second distributor 30 are referred to as the first refrigerant paths 61a and 61 b , and the two first refrigerant paths 61 a and 61 b may be collectively referred to as a first refrigerant path group 61 .
  • the refrigerant path that is directly connected to the first distributor 20 via the connecting pipe 40 without passing through the second distributor 30 is referred to as the second refrigerant.
  • path 62 the multiple stages of refrigerant paths arranged in the direction of gravity include a first refrigerant path group 61 and a second refrigerant path 62 .
  • the first distributor 20 is, for example, a distributor, and as the flow of the refrigerant is indicated by solid arrows in FIG. is divided into the total number of the second distributors 30 and the number of the second refrigerant paths 62 , that is, the number of connection pipes 40 .
  • the second distributor 30 is, for example, a three-way pipe distributor, and when the heat exchanger 10 is used as an evaporator, the refrigerant that has been divided by the first distributor 20 and has flowed through the first connecting pipe is Further split into two.
  • FIG. 1 The gas-liquid two-phase refrigerant flow that has flowed out of the expansion device 5 shown in FIG. 1 first flows into the first distributor 20 shown in FIG. 4, is divided, and is sprayed down.
  • the diverted and atomized refrigerant flows into each connecting pipe 40 .
  • the refrigerant that has flowed into the connection pipe 40 connected to the second distributor 30 passes through this connection pipe, flows into the second distributor 30, and in the second distributor 30 Further, the refrigerant branches out and flows into the heat transfer tubes 12 of the two first refrigerant paths 61a and 62b.
  • the refrigerant that has flowed into the connection pipe 40 that is directly connected to the heat transfer pipe 12 among the plurality of connection pipes 40 passes through the connection pipe 40 and then directly flows into one second refrigerant path 62 without being branched. .
  • the refrigerant that has flowed into each refrigerant path exchanges heat with air while passing through the plurality of heat transfer tubes 12 that make up the refrigerant path, becomes a gaseous state, and flows out of the refrigerant path.
  • the gaseous refrigerant flowing out from each refrigerant path passes through the header branch pipe 51 and merges in the header main pipe 52 .
  • the gaseous refrigerant that joins at the header 50 flows out of the heat exchanger 10 through a refrigerant port (not shown) provided in the header main pipe 52 .
  • the gaseous refrigerant that has flowed out of the heat exchanger 10 then passes through the four-way valve 7 and is sucked into the compressor 2 as shown in FIG.
  • the heat exchanger 10 includes one or more second distributors 30 in addition to the first distributor 20, so that the refrigerant flowing into the heat exchanger 10 is Compared to the configuration where only the first distributor 20 branches, the refrigerant can be distributed to many refrigerant paths.
  • the heat exchanger 10 is configured such that only some of the three or more refrigerant paths are connected to the first distributor 20 via the second distributor 30, the conventional As compared with the configuration in which all refrigerant paths are connected to the distributor through the second distributor, it is easier to secure a working space. As shown in FIGS.
  • the second distributor 30 has a U-shaped tube portion 31 formed by bending a circular tube into a U-shape, and an inflow portion 35 .
  • the U-shaped tube portion 31 connects the two first refrigerant paths 61a and 61b.
  • the U-shaped tube portion 31 has a U-shaped connecting portion 32 and two arm portions 33 and 34 extending parallel to each other from both ends of the connecting portion 32 .
  • Both ends of the U-shaped tube portion 31 in the second distributor 30, that is, the tips of the two arm portions 33 and 34 are connected to the heat transfer tubes 12 of the two first refrigerant paths 61a and 61b.
  • the connection between the arm portion 33 and the first refrigerant path 61a and the connection between the arm portion 34 and the first refrigerant path 61b are directly connected if the heat transfer tube 12 is a circular tube, and the heat transfer tube 12 is a flat tube. If so, they are connected via a joint 15 (see FIG. 8).
  • an opening C is formed in the wall of the U-shaped pipe portion 31 , and an inflow portion 35 is provided in the opening C of the U-shaped pipe portion 31 .
  • the inflow part 35 is provided so as to extend upward from the opening C, and the opening C is connected to the first distributor (see FIG. 4) via the inflow part 35 .
  • the shape of the inflow portion 35 is a straight tube shape, that is, an annular shape along the edge of the opening portion C.
  • the inflow portion 35 is provided so as to be substantially perpendicular to the tube axis of the U-shaped tube portion 31 .
  • the inflow portion 35 is formed, for example, by bulging the pipe wall of the upper arm portion 33 of the U-shaped pipe portion 31 .
  • Bulge forming is a process in which a pipe-shaped material is first set in a mold inside a press, then the mold is clamped, and then while filling the material with high-pressure liquid, both ends of the material are compressed in the axial direction so that they approach each other. It is a processing method that stretches the material into the shape carved in the mold and performs hollow molding.
  • Refrigerant flows from the inflow portion 35 into the U-shaped tube portion 31 through the opening C, and the inflowed refrigerant collides with the inner surface of the tube wall of the U-shaped tube portion 31 and is divided into two flows to form two arms.
  • Distributed from openings A and B at the tips of 33 and 34 are two first coolant paths 61a and 61b (FIG. 4).
  • FIG. 4 Distributed from openings A and B at the tips of 33 and 34 are two first coolant paths 61a and 61b (FIG. 4).
  • FIG. 4 Distributed from openings A and B at the tips of 33 and 34 are two first coolant paths 61a and 61b
  • the second distributor 30 shown in FIG. 5 has an inflow piping 36 extending linearly longer than the inflow 35 .
  • One end of the inlet pipe 36 is attached to the inlet 35, and the other end of the inlet pipe 36 is connected to the connection pipe 40 (see FIG. 4).
  • One end of the inflow pipe 36 is attached to the inflow portion 35 by, for example, being inserted into the inflow portion 35 and brazed.
  • the U-shaped pipe portion 31, the inflow portion 35, and the inflow pipe 36 are configured separately. good.
  • the inflow pipe 36 and the connection pipe are configured separately, but the end of the connection pipe may be linear to constitute the inflow pipe 36 .
  • the second distributor 30 is arranged such that the two arms 33 and 34 extend in the horizontal direction, and the refrigerant flowing into the arm 33 from the inflow portion 35 flows in the horizontal direction. It is configured to branch and flow.
  • the angle ⁇ 1 between the pipe axis X1 of the inflow portion 35 formed in the upper arm portion 33 and the pipe axis X2 of the upper arm portion 33 is approximately 90°.
  • An inflow portion 35 is formed in the .
  • the angle ⁇ 1 does not have to be strictly 90°, for example, if the angle ⁇ 1 deviates from 90° by more than 15°, the refrigerant flowing from the inflow portion 35 into the arm portion 33 will flow into the arm portion 33 . It collides obliquely with the inner surface of the pipe wall and drifts. In this case, the refrigerant cannot be evenly distributed to the two first refrigerant paths 61 a and 61 b connected to the U-shaped tube portion 31 . In the heat exchanger 10 (see FIG. 4), the two first refrigerant paths 61a and 61b (FIG. 4) connected by the U-shaped tube portion 31 are arranged vertically, and the difference in wind speed between them is not so great. None.
  • the design heat exchange amount between the two is almost the same. Therefore, if the refrigerant flowing into the two first refrigerant paths 61a and 61b (see FIG. 4) is unbalanced, the state of the refrigerant flowing out of each refrigerant path after heat exchange will vary, resulting in deterioration of heat exchange efficiency. Resulting in. Therefore, the angle ⁇ 1 at which the inflow portion 35 is provided in the U-shaped pipe portion 31 is preferably 75° or more and 105° or less.
  • the refrigerant flowing into the heat exchanger 10 is a two-phase flow when the heat exchanger 10 is used as an evaporator as indicated by solid arrows in FIG. For this reason, when the refrigerant flows into the second distributor 30, the liquid portion of the refrigerant becomes uneven. Therefore, when the refrigerant flowing into the second distributor 30 collides with the inner surface of the pipe wall of the arm portion 33 of the U-shaped pipe portion 31 and branches off, if the run-up section is not sufficient, the two first refrigerant paths 61a and The amount and state of the refrigerant that divides into 61b and flows in is uneven.
  • the length of the straight pipe through which the refrigerant is branched in the second distributor 30, that is, the length of the inlet pipe 36 is set to 10 times the inner diameter. That's it.
  • the inflow pipe 36 can be extended and provided in the space created by not providing the second distributor 30, and the length of the linear run-up section can be secured. Therefore, it is possible to further suppress the drift of the refrigerant.
  • the inlet section is arranged such that the angle ⁇ 2 between the imaginary line X3 in the direction of gravity in the side view and the tube axis X1 of the inlet section 35 is ⁇ 90° ⁇ angle ⁇ 2 ⁇ 90°. 35 are molded.
  • the angle ⁇ 2 is 0° when the pipe axis X1 of the inflow portion 35 extends straight upward in the direction of gravity from the U-shaped pipe portion 31, and the pipe axis X1 of the inflow portion 35 is inclined to the leeward side.
  • a negative angle is defined as a positive angle
  • a positive angle is defined as a windward inclination. That is, the inflow part 35 is provided upward in a side view.
  • the tube axis of the inlet pipe 36 coincides with the tube axis X1 of the inlet 35 .
  • the inflow portion 35 is provided on the upper arm portion 33 so that the angle ⁇ 2 of the inflow portion 35 in side view is ⁇ 30°, and the inflow portion 35 is inclined to the leeward side. It is installed facing upwards.
  • the second distributor 30 has an inflow portion 35 provided upward at the opening C of the U-shaped pipe portion 31, interference with the header branch pipe 51 (see FIG. 10) is suppressed. Further, in the case where the U-shaped tube portion 31 provided with the inflow portion 35 and the inflow portion piping 36 are configured separately, the U-shaped tube portion 31 is brazed to the heat transfer tube 12 (see FIG. 4). In the configuration in which the inflow pipe 36 is brazed to the inflow portion 35 after that, the inflow portion 35 is provided facing upward, thereby improving the brazeability. If the inflow part 35 is provided downward, the inflow part pipe 36 is likely to fall off due to its own weight when the inflow part pipe 36 is inserted into the inflow part 35 and brazed.
  • the brazing work can be easily performed. Further, when the inflow portion 35 is provided upward, when the inflow portion pipe 36 is inserted into the inflow portion 35 and brazed, the solder is likely to enter the gap between the inflow portion 35 and the inflow portion pipe 36. The joint strength with the inlet pipe 36 can be ensured.
  • the configuration of the second distributor 30 is not limited to the configuration described above.
  • the second distributor 30 may be configured to distribute the refrigerant to two or more first refrigerant paths. part.
  • An opening C connected to the first distributor 20 is formed in the connecting portion.
  • the connecting portion may be configured such that the internal space is partitioned into a plurality of coolant channels.
  • FIG. 11 is a schematic diagram schematically showing the refrigerant distribution structure in the heat exchanger 10 of FIG.
  • the configurations of the first distributor 20 and the connecting pipe 40 will be described in detail with reference to FIGS. 4 and 11.
  • FIG. In the following description, among the plurality of connection pipes 40, the one that connects the first distributor 20 and the second distributor 30 is referred to as the first connection pipe 41, and the first connection pipe 41 and the second distributor 20 , which connects the refrigerant path 62 with the heat transfer tube 12 may be referred to as a second connection pipe 42 .
  • the first distributor 20 evenly distributes the refrigerant that has flowed into the first distributor 20 in a gas-liquid two-phase state to each heat transfer tube 12 of the heat exchanger 10. It is required to branch to In particular, it is required to allow the refrigerant to flow into a plurality of refrigerant paths in a similar refrigerant state. For this reason, a distributor is used as the first distributor 20 in the example shown in FIG. Although not shown, a throttle mechanism such as an orifice is provided inside the distributor, and by allowing the inflowing two-phase flow to pass through the orifice, it is turned into a spray flow state, making it easy to distribute evenly.
  • a throttle mechanism such as an orifice is provided inside the distributor, and by allowing the inflowing two-phase flow to pass through the orifice, it is turned into a spray flow state, making it easy to distribute evenly.
  • the atomized refrigerant is evenly distributed to each connecting pipe 40 .
  • Distributors are made of copper, aluminum, brass, or the like. It should be noted that the distributor may be of a specification that does not have a throttle mechanism such as an orifice therein.
  • the first distributor 20 may be any device as long as it can evenly distribute the refrigerant.
  • Each connecting pipe 40 can adjust the pressure loss in the pipe according to the specifications such as the inner diameter and length, and can adjust the division ratio from the first distributor 20 to each heat transfer pipe 12 or the second distributor 30 .
  • the friction loss ⁇ P f [Pa] in a pipe through which a gas single-phase refrigerant flows that is, the pressure loss is represented by the following equation (1).
  • the friction loss coefficient f of a pipe is generally expressed by the following formula in the case of turbulent flow (Reynolds number of 3000 or more).
  • the refrigerant circulation amount Gr can be calculated by the following formula (4).
  • the friction loss ⁇ P f [Pa] in the pipe is proportional to the 1.75th power of the refrigerant circulation amount, the 1st power of the pipe length, and the ⁇ 4.75th power of the hydraulic diameter in the pipe.
  • the pressure loss increases. However, since attention is paid to the fact that it is shown from the dimensional relationship here, this increase is ignored.
  • each first connecting pipe 41 is connected to two first refrigerant paths 61a and 61b via a second distributor 30, and each second connecting pipe 42 is connected to one It is directly connected with two second refrigerant paths 62 .
  • Refrigerant distribution in the heat exchanger 10 is such that the refrigerant circulation amount Gr is basically distributed such that the pressure loss is the same.
  • the heat exchanger 10 has the same number of heat transfer tubes 12 in each row (see FIG. 10), two vertically adjacent refrigerant paths (for example, the first refrigerant path 61a and the second refrigerant path 61a shown in FIG. 11) 62 and ), the heat load applied to each refrigerant path is assumed to be similar.
  • the refrigerant circulation amount Gr is evenly passed through the refrigerant paths (for example, the first refrigerant path 61a, the first refrigerant path 61b, and the second refrigerant path 62 in FIG. 11) to which the same heat load is applied. is desirable.
  • the first connection It is conceivable to flow through the pipe 41 twice the amount of refrigerant that flows through the second connection pipe 42 .
  • the pressure loss is proportional to the 1.75th power of the refrigerant circulation amount Gr.
  • the circulation amount of the refrigerant flowing through the first connection pipe 41 is It is less than twice the amount of circulation flowing through the pipe 42 . Therefore, the refrigerant circulation amount per path of the first refrigerant path group 61 becomes smaller than the refrigerant circulation amount of the second refrigerant path 62, and the refrigerant distribution with respect to the heat load becomes uneven.
  • the first refrigerant path 61a and the first refrigerant path Refrigerant circulation amount Gr can be evenly flowed through 61 b and second refrigerant path 62 .
  • the first connection pipe 41 and the second connection pipe 42 are used such that the pressure loss in the first connection pipe 41 is smaller than the pressure loss in the second connection pipe 42.
  • the length of the second connection pipe 42 is made longer than the length of the first connection pipe 41, or the inner diameter D2 of the second connection pipe 42 is set to the length of the first connection pipe 41. It should be smaller than the inner diameter D1.
  • the wind speed from the outdoor fan 6 (see FIG. 1) that blows air to the heat exchanger 10 is not necessarily uniform over the entire surface of the heat exchanger 10 shown in FIG. 4, and there may be a wind speed distribution.
  • the heat exchanger 10 is used as an evaporator, the refrigerant passing through the portion of the heat exchanger 10 where the wind speed is fast gasifies and dries more easily than the refrigerant passing through the portion of the heat exchanger 10 where the wind speed is slow.
  • the refrigerant that has passed through the portion where the wind speed is fast has a higher degree of dryness than the refrigerant that has passed through the portion where the wind speed is slow, and the refrigerant state varies at the outlet of the heat exchanger. occurs.
  • the heat exchange efficiency deteriorates significantly. Therefore, if the wind speed varies depending on the part of the heat exchanger 10, a large amount of the refrigerant flows into the heat transfer tube 12 located in the part where the wind speed is high.
  • the state of the refrigerant at the outlet of the refrigerant path is made to be the same among the refrigerant paths. In this way, even when it is required to adjust the flow division ratio due to the existence of the wind speed distribution, it is possible to adjust the flow division ratio by adjusting the specifications of each connecting pipe 40 .
  • the heat exchanger 10 of Embodiment 1 includes the first distributor 20 that distributes the refrigerant into a plurality of flows, and one of the plurality of flows of the refrigerant distributed by the first distributor 20. and one or more second distributors 30 for further distributing one into a plurality of streams.
  • the heat exchanger 10 also includes multiple stages of heat transfer tubes 12 that are arranged in the direction of gravity and form three or more refrigerant paths.
  • the second distributor 30 is a connection portion (for example, , a U-shaped tube portion 31), and an opening portion C connected to the first distributor 20 is formed in the connecting portion.
  • Some of the heat transfer tubes 12 of the multiple stages of heat transfer tubes 12 are connected to the first distributor 20 via one or more second distributors 30, and are connected to one or more second distributors.
  • the remaining heat transfer tubes 12 of the multi-stage heat transfer tubes 12 are connected to the first distributor 20 without passing through one or more second distributors 30, and the refrigerant distributed by the first distributor 20 constitutes one or more second refrigerant paths 62 directly into which one of the plurality of flows of .
  • the second distributor 30 is provided in the heat exchanger 10 compared to the conventional case where the second distributor 30 is provided in all of the plurality of refrigerant paths. Creates space on the sides. As a result, in the heat exchanger 10 having the second distributor 30, workability such as pipe assembly and brazing is improved.
  • the heat exchanger 10 includes a first connection pipe 41 that connects the first distributor 20 and the second distributor 30, and heat transfer pipes 12 between the first distributor 20 and the second refrigerant path 62. and a second connection pipe 42 that connects the .
  • the first connection pipe 41 and the second connection pipe 42 are configured such that the pressure loss in the first connection pipe 41 is smaller than the pressure loss in the second connection pipe 42 .
  • the refrigerant flows more easily through the first connection pipe 41, which is connected to the larger number of refrigerant paths. can be done. Therefore, the distribution ratio for the heat load of the heat exchanger 10 can be brought close to an appropriate value.
  • FIG. 12 is a schematic diagram of a first modification of the heat exchanger 10 according to Embodiment 1.
  • FIG. 12 the dotted line arrows indicate the direction of refrigerant flow when the refrigeration cycle device 1 (see FIG. 1) performs the cooling operation and the dehumidifying operation using the heat exchanger 10 as a condenser, and the solid line arrows indicate the direction of heat exchange.
  • 1 shows the direction in which the refrigerant flows when the refrigerating cycle device 1 (see FIG. 1) performs heating operation using the evaporator 10 as an evaporator.
  • FIG. 13 is a partially enlarged view including the upper end of the heat exchanger 10 of FIG. 12.
  • FIG. 14 is a side view of the heat exchanger of FIG. 13 viewed from the side where the second distributor is provided.
  • white arrows indicate the direction of air flow.
  • the second refrigerant path 61a or the first refrigerant path 61b is the refrigerant path of the second stage or lower. That is, in the heat exchanger 10 of the first modified example, the uppermost refrigerant path is directly connected to the first distributor 20 by the connection pipe 40 without the second distributor 30 interposed therebetween.
  • the second refrigerant paths 62 may be used as the second refrigerant paths 62 .
  • the second refrigerant path 62 is arranged at the uppermost position in the gravitational direction of the three or more refrigerant paths that the heat exchanger 10 has.
  • the second distributor 30 is provided so as to be connected to the second stage or lower refrigerant paths among the three or more refrigerant paths that the heat exchanger 10 has. , the inflow part 35 and the inflow part pipe 36 of the second distributor 30 can be prevented from protruding above the heat exchanger 10 .
  • the height of the outdoor unit 101 can be lowered, or the inlet piping 36 of the second distributor 30 located at the uppermost side can be lengthened.
  • connection pipe 40 extending from the position furthest from the plurality of heat transfer tubes 12 is connected to the uppermost refrigerant path.
  • FIG. 15 is a schematic diagram of a second modification of the heat exchanger 10 according to Embodiment 1.
  • white arrows indicate the direction of air flow.
  • FIG. 16 is a side view of the heat exchanger 10 of FIG. 15 viewed from the side where the second distributor 30 is provided. The configuration of the heat exchanger 10 of the second modification will be described with reference to FIGS. 15 and 16.
  • FIG. 15 is a schematic diagram of a second modification of the heat exchanger 10 according to Embodiment 1.
  • white arrows indicate the direction of air flow.
  • FIG. 16 is a side view of the heat exchanger 10 of FIG. 15 viewed from the side where the second distributor 30 is provided. The configuration of the heat exchanger 10 of the second modification will be described with reference to FIGS. 15 and 16.
  • the refrigerant path located in the uppermost stage is the second refrigerant path 62 and is directly connected to the connecting pipe 40 .
  • the inter-row connecting pipes 14a of the refrigerant paths positioned at the topmost stage are the heat transfer tubes 12 arranged at the topmost stage of the windward row and the heat transfer tubes 12 arranged at the topmost stage of the leeward row. 12 and are connected.
  • the heat exchanger 10 of the second modification among the row-to-row connection pipes 14 (see FIG.
  • the row-to-row connection pipe 14a constituting the uppermost refrigerant path is It is provided so as to protrude most in the lateral direction (direction of arrow X) of the heat exchanger 10 . That is, the horizontal length La of the row-to-row connection pipe 14a constituting the second refrigerant path 62 arranged on the uppermost stage as viewed from the windward side is the width of the row-to-row connection pipe 14 constituting the other refrigerant paths. It is configured to be longer than the length Lo in the direction.
  • the inter-row connection pipe 14a which is located at the uppermost position among the plurality of inter-row connection pipes 14 and has the longest horizontal length, is composed of, for example, a thermistor.
  • a temperature detector 71 is installed.
  • the row-to-row connection pipe 14 of the second refrigerant path 62 located at the uppermost stage is provided on the upper side of the second refrigerant path 62, It protrudes in the lateral direction of the heat exchanger 10 more than the connecting pipe 14 . Therefore, it becomes easy to install the temperature detector 71 in the inter-row connection pipe 14a while avoiding interference with other pipes.
  • the second Only one of the two or more inter-row connection pipes 14 included in the refrigerant path 62 may be configured to protrude in the lateral direction of the heat exchanger 10 .
  • the plurality of windward heat transfer tubes 12a and the plurality of leeward heat transfer tubes 12b are arranged to be shifted in the direction of gravity.
  • All of the second distributors 30 are connected to two heat transfer tubes 12 in a row (in the example shown in FIG. 15, the row on the windward side) that is displaced downward in the direction of gravity.
  • All of the header branch pipes 51 are connected to the heat transfer tubes 12 in other rows (the row on the lee side in the example shown in FIG. 15).
  • the inflow portion 35 and the inflow portion piping 36 of the second distributor 30 are provided to extend upward as shown in FIG. Interference between the header branch pipe 51 and the inlet pipe 36 can be suppressed by providing the pipe 30 .
  • the inlet pipe 36 in the second distributor 30 connected to the second refrigerant path from the top (the first refrigerant path 61a shown in FIG. 16) is connected to the second distributor 30 Since the row on the windward side where is provided is shifted downward from the row on the leeward side, it is connected to the uppermost refrigerant path (second refrigerant path 62 shown in FIG. 16) provided in the row on the leeward side.
  • the distance from the header branch pipes 51 is greater than when the two rows are provided at the same height, and interference can be suppressed.
  • FIG. 17 is a schematic diagram of a third modification of the heat exchanger 10 according to Embodiment 1.
  • FIG. FIG. 18 is a side view of the heat exchanger 10 of FIG. 17 viewed from the side where the second distributor 30 is provided.
  • white arrows indicate the direction of air flow.
  • the configuration of the heat exchanger 10 of the third modification will be described with reference to FIGS. 17 and 18.
  • FIG. 18 is a schematic diagram of a third modification of the heat exchanger 10 according to Embodiment 1.
  • FIG. FIG. 18 is a side view of the heat exchanger 10 of FIG. 17 viewed from the side where the second distributor 30 is provided.
  • white arrows indicate the direction of air flow.
  • first refrigerant paths for example, two first refrigerant paths 61a and 61b
  • second refrigerant path 62 are arranged alternately.
  • the first refrigerant path group 61 and the second refrigerant path are provided alternately in the gravitational direction, so as shown in FIG. Compared to the case where they are arranged continuously in the direction of the arrow Z, there is more space between the second distributors 30 and 30 . Therefore, the workability of assembling and joining (for example, brazing) pipes is improved.
  • FIG. 19 is a schematic diagram schematically showing a partial configuration of the heat exchanger 10 according to Embodiment 2 as viewed from the windward side.
  • FIG. 20 is a side view of the heat exchanger 10 of FIG. 19 viewed from the side where the second distributor 30 is provided.
  • FIG. 21 is a schematic diagram showing one configuration example of the second distributor 30 of FIG. 19 as viewed from the leeward side.
  • FIG. 22 is a schematic side view of the second distributor 30 of FIG.
  • FIG. 23 is a schematic top view of the second distributor 30 of FIG.
  • white arrows indicate the direction of air flow.
  • the inflow part 35 in the second distributor 30 is provided so as to extend upward from the opening C of the U-shaped tube part 31, which is the connecting part.
  • the portion 35 is provided so as to extend horizontally from the opening portion C of the U-shaped pipe portion 31, which is a connecting portion.
  • the second distributor 30 has an inflow portion 35 provided laterally in the U-shaped tube portion 31 in side view. That is, the inflow portion 35 and the opening portion C are arranged on the leeward side of the U-shaped pipe portion 31 so that the angle ⁇ 2 between the imaginary line X3 in the direction of gravity and the tube axis X1 of the inflow portion 35 is ⁇ 90° in a side view. is provided. Further, as shown in FIG. 23, the inflow portion 35 is provided so that the angle ⁇ 1 between the upper arm portion 33 and the tube axis X2 is approximately 90°. That is, in the examples shown in FIGS. 20 to 23, the linear inlet pipe 36 is provided to extend downwind along the air circulation direction.
  • a plurality of heat transfer tubes provided in the windward row that is, the windward heat transfer tubes 12a shown in FIG. 19
  • a plurality of heat transfer tubes 12 provided in the leeward row that is, FIG. 19 12b
  • the leeward heat transfer tubes 12b are arranged with a deviation in the direction of gravity.
  • the second distributor 30 is connected to the two heat transfer tubes 12 belonging to the windward row (that is, the windward heat transfer tubes 12a shown in FIG. 19) and extends downstream from the U-shaped tube portion 31.
  • the internal pipe 36 is arranged between two header branch pipes 51 .
  • the portion where the inflow portion 35 is provided is not limited to the upper arm portion 33 , and may be provided in the connecting portion 32 or the lower arm portion 34 .
  • the inflow part 35 and the inflow part pipe 36 may be provided in the horizontal direction, and may be provided upstream of the U-shaped pipe part 31 so that the angle ⁇ 2 is 90°, or may be provided as shown in FIG. It may be provided in the lateral direction (the direction of the arrow X) when viewed from the windward side.
  • the opening C, the inflow part 35 and the inflow part pipe 36 are provided in the connection part 32 of the U-shaped pipe part 31.
  • the angle ⁇ 1 does not have to be strictly 90°, but is preferably 75° or more and 105° or less.
  • the second distributor 30 has an inflow portion 35 extending horizontally from the opening C of the connecting portion (for example, the U-shaped pipe portion 31), and the opening Section C is connected via inlet section 35 to the first distributor.
  • the inflow portion 35 can be provided without changing the vertical width of the second distributor 30. Therefore, even if the interval, that is, the pitch, between the heat transfer tubes 12 arranged in the vertical direction (the arrow Z direction) is narrow, A run-up section for the refrigerant before branching can be provided while avoiding interference between the second distributor 30 and other pipes.
  • FIG. 24 is a schematic diagram of a fourth modification of the heat exchanger 10 according to Embodiment 2.
  • FIG. FIG. 25 is a side view of the heat exchanger 10 of FIG. 24 viewed from the side where the second distributor 30 is provided.
  • white arrows indicate the direction of air flow.
  • the configuration of the heat exchanger of the fourth modification will be described with reference to FIGS. 24 and 25.
  • FIG. 25
  • the inflow part 35 of the second distributor 30 is provided horizontally in the U-shaped tube part 31, as in the cases shown in FIGS.
  • the inflow portion 35 is provided so as to face the side opposite to the side where the plurality of header branch pipes 51 are arranged in the air circulation direction.
  • each of the plurality of header branch pipes 51 is connected to the windward row of heat transfer tubes 12 (that is, the windward heat transfer tubes 12a shown in FIG. 24) to form the second distribution
  • the vessel 30 is connected to the leeward row of heat transfer tubes 12 (ie, the leeward heat transfer tubes 12b shown in FIG. 24).
  • the inflow portion 35 of the second distributor 30 is provided on the leeward side of the U-shaped pipe portion 31 in the air circulation direction, and an inflow pipe 36 extends from the inflow portion 35 along the air circulation direction.
  • the heat exchanger 10 of the fourth modification has a plurality of header branch pipes 51 and includes the header 50 in which refrigerant from three or more refrigerant paths of the heat exchanger 10 join together.
  • a plurality of stages of heat transfer tubes 12 are provided in the direction of air flow.
  • Each of the plurality of header branch pipes 51 is connected to the heat transfer tubes 12 arranged in one row among the plurality of rows, and the second distributor 30 connects two heat transfer tubes arranged in one row among the plurality of rows. It is connected to the heat tube 12 .
  • the inflow portion 35 extends to the side opposite to the side on which the plurality of header branch pipes 51 are arranged in the air circulation direction.
  • the inflow portion 35 is provided in the U-shaped pipe portion 31 in the horizontal direction, and the plurality of header branch pipes 51 are arranged in the air circulation direction. It is provided so as to face the side opposite to the side. Therefore, even in the heat exchanger 10 having a narrow pitch between the upper and lower heat transfer tubes 12 and having a two-row structure, the second distributor 30 and the second distributor 30, and the second distributor 30 and the header branch pipe 51 interference can be suppressed, and workability is good.

Abstract

This heat exchanger comprises: a first divider for dividing refrigerant into a plurality of flows; one or more second dividers for furthermore dividing one of the plurality of flows of refrigerant divided by the first divider into a plurality of flows; and a plurality of heat transfer pipes arranged in the center-of-gravity direction, the plurality of heat transfer pipes constituting three or more refrigerant paths. The second dividers each have a connection part that is part of the three or more refrigerant paths and that connects together the heat transfer pipes constituting the plurality of refrigerant paths, the connection parts each having a plurality of refrigerant flow channels formed in the interior thereof, and an opening connected to the first divider being formed in each of the connection parts. One heat transfer pipe among the plurality of heat transfer pipes is connected to the first divider via the one or more second dividers and constitutes one or more groups of a plurality of first refrigerant paths into which the plurality of flows of refrigerant divided by any of the one or more second dividers flow. The remaining heat transfer pipes among the plurality of heat transfer pipes are connected to the first divider directly without interposition of the one or more second dividers and constitute one or more second refrigerant paths into which one of the plurality of flows of refrigerant divided by the first divider directly flows.

Description

熱交換器Heat exchanger
 本開示は、分配器を備えた熱交換器に関する。 The present disclosure relates to heat exchangers with distributors.
 熱交換器において、伝熱管の細径化あるいは扁平管の穴数の増加に伴った伝熱管内での圧力損失を低減するためには、熱交換器の流路分岐数すなわち冷媒パス数を増やすことが一般的である。熱交換器は、それぞれの冷媒パスに冷媒を分配する分配器を備えている。このような熱交換器において、冷媒の流れを複数の流れに分岐させる第1の分配器(例えば、ディストリビュータ)を備え、ディストリビュータの分岐数を削減するために、U字状の配管部を有する第2の分配器をさらに備えたものがある(例えば、特許文献1参照)。 In a heat exchanger, in order to reduce the pressure loss in the heat transfer tube due to the reduction in the diameter of the heat transfer tube or the increase in the number of holes in the flat tube, the number of flow path branches in the heat exchanger, that is, the number of refrigerant paths is increased. is common. The heat exchanger includes a distributor that distributes refrigerant to each refrigerant path. Such a heat exchanger includes a first distributor (for example, a distributor) that branches the flow of the refrigerant into a plurality of flows, and a U-shaped pipe portion in order to reduce the number of branches of the distributor. There is one that further includes two distributors (see, for example, Patent Document 1).
特許第6278904号公報Japanese Patent No. 6278904
 特許文献1の熱交換器では、重力方向に複数段設けられた全ての冷媒パスが第2の分配器を介してディストリビュータと接続されている。したがって、特許文献1の熱交換器では、全ての冷媒パスに設けられた第2の分配器によって、熱交換器における第2の分配器が設けられる側では空間の空きが少なく、熱交換器の製造時又は設置時にロウ付け等の作業が行いにくかった。 In the heat exchanger of Patent Document 1, all refrigerant paths provided in multiple stages in the direction of gravity are connected to the distributor via the second distributor. Therefore, in the heat exchanger of Patent Document 1, due to the second distributors provided in all the refrigerant paths, there is little space on the side of the heat exchanger where the second distributors are provided, and the heat exchanger It was difficult to perform work such as brazing during manufacturing or installation.
 本開示は、上記のような課題を解決するためになされたもので、第2の分配器を備えた熱交換器において製造組み立て及びメンテナンスの際の作業性のよい熱交換器を提供することを目的とする。 The present disclosure has been made in order to solve the above-described problems, and it is an object of the present disclosure to provide a heat exchanger having a second distributor with good workability during manufacture, assembly, and maintenance. aim.
 本開示に係る熱交換器は、冷媒を複数の流れに分配する第1の分配器と、前記第1の分配器で分配された前記冷媒の複数の流れのうち一つを更に複数の流れに分配する1つ以上の第2の分配器と、重力方向に配列され、3つ以上の冷媒パスを構成する複数段の伝熱管と、を備え、前記第2の分配器は、前記3つ以上の冷媒パスの一部であって複数の冷媒パスを構成する前記伝熱管同士を接続する、内部に複数の冷媒流路が形成された接続部を有し、前記接続部には、前記第1の分配器と接続される開口部が形成されており、前記複数段の伝熱管のうち一部の伝熱管は、前記1つ以上の第2の分配器を介して前記第1の分配器と接続され、前記1つ以上の第2の分配器のいずれかで分配された前記冷媒の前記複数の流れが流入する複数の第1の冷媒パスを1群以上構成し、前記複数段の伝熱管のうち残りの伝熱管は、前記1つ以上の第2の分配器を介さずに前記第1の分配器と接続され、前記第1の分配器で分配された前記冷媒の前記複数の流れの一つが直接流入する第2の冷媒パスを1つ以上構成する。 A heat exchanger according to the present disclosure includes: a first distributor that distributes a refrigerant into a plurality of flows; One or more second distributors for distribution, and a plurality of stages of heat transfer tubes arranged in the direction of gravity and forming three or more refrigerant paths, wherein the second distributor includes the three or more refrigerant paths A connection portion having a plurality of refrigerant flow paths formed therein, which is a part of the refrigerant path and connects the heat transfer tubes constituting a plurality of refrigerant paths, and the connection portion includes the first and an opening connected to the distributor is formed, and some of the heat transfer tubes of the plurality of stages are connected to the first distributor via the one or more second distributors one or more groups of a plurality of first refrigerant paths into which the plurality of flows of the refrigerant distributed by any one of the one or more second distributors are connected, and the plurality of stages of heat transfer tubes The remaining heat transfer tubes are connected to the first distributor without passing through the one or more second distributors, and are connected to the plurality of flows of the refrigerant distributed by the first distributor Configure one or more secondary refrigerant paths, one of which flows directly into.
 本開示の熱交換器では、複数段の伝熱管のうち一部の伝熱管は、1つ以上の第2の分配器を介して第1の分配器と接続され、複数段の伝熱管のうち残りの伝熱管は、第2の分配器を介さずに第1の分配器と接続される。したがって、本開示によれば、従来のように全ての冷媒パスが第2の分配器を介して第1の分配器と接続される場合と比べ、熱交換器における第2の分配器が設けられる側に空間の余裕が生まれ、第2の分配器を備えた熱交換器において製造組み立て及びメンテナンスの際の作業性が良くなる。 In the heat exchanger of the present disclosure, some of the multiple stages of heat transfer tubes are connected to the first distributor via one or more second distributors, and among the multiple stages of heat transfer tubes, The remaining heat transfer tubes are connected to the first distributor without passing through the second distributor. Therefore, according to the present disclosure, a second distributor in the heat exchanger is provided compared to the conventional case where all refrigerant paths are connected to the first distributor via the second distributor. A space is created on the side, and the heat exchanger with the second distributor can be manufactured and assembled, and the workability during maintenance is improved.
実施の形態1に係る熱交換器を備えた冷凍サイクル装置の冷媒回路図である。1 is a refrigerant circuit diagram of a refrigeration cycle device including a heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る熱交換器を搭載した室外機の一構成例を示す概略図である。1 is a schematic diagram showing a configuration example of an outdoor unit equipped with a heat exchanger according to Embodiment 1; FIG. 図2の室外機の分解斜視図である。FIG. 3 is an exploded perspective view of the outdoor unit of FIG. 2; 実施の形態1に係る熱交換器を風上側から見た構成を模式的に示す模式図である。FIG. 2 is a schematic diagram schematically showing the configuration of the heat exchanger according to Embodiment 1 as seen from the windward side; 図4の第2の分配器の一構成例を示す風下側から見た概略図であり。FIG. 5 is a schematic diagram of a configuration example of the second distributor of FIG. 4 as viewed from the leeward side; 図5の第2の分配器を側面から見た概略図である。Figure 6 is a schematic side view of the second distributor of Figure 5; 図5の第2の分配器を上方から見た概略図である。Figure 6 is a schematic view from above of the second distributor of Figure 5; 図4の熱交換器におけるジョイントの一構成例を示す概略図である。FIG. 5 is a schematic diagram showing one configuration example of a joint in the heat exchanger of FIG. 4; 図4の熱交換器の部分拡大図である。FIG. 5 is a partial enlarged view of the heat exchanger of FIG. 4; 図9の熱交換器を第2の分配器が設けられた側から見た側面図である。FIG. 10 is a side view of the heat exchanger of FIG. 9 viewed from the side where the second distributor is provided; 図4の熱交換器における冷媒の分配構造を模式的に示す模式図である。FIG. 5 is a schematic diagram schematically showing a refrigerant distribution structure in the heat exchanger of FIG. 4; 実施の形態1に係る熱交換器の第1変形例の模式図である。FIG. 4 is a schematic diagram of a first modification of the heat exchanger according to Embodiment 1; 図12の熱交換器の上端部を含む部分拡大図である。FIG. 13 is a partially enlarged view including the upper end portion of the heat exchanger of FIG. 12; 図13の熱交換器を第2の分配器が設けられた側から見た側面図である。FIG. 14 is a side view of the heat exchanger of FIG. 13 as seen from the side where the second distributor is provided; 実施の形態1に係る熱交換器の第2変形例の模式図である。FIG. 5 is a schematic diagram of a second modification of the heat exchanger according to Embodiment 1; 図15の熱交換器を第2の分配器が設けられた側から見た側面図である。FIG. 16 is a side view of the heat exchanger of FIG. 15 viewed from the side where the second distributor is provided; 実施の形態1に係る熱交換器の第3変形例の模式図である。FIG. 8 is a schematic diagram of a third modification of the heat exchanger according to Embodiment 1; 図17の熱交換器を第2の分配器が設けられた側から見た側面図である。FIG. 18 is a side view of the heat exchanger of FIG. 17 viewed from the side where the second distributor is provided; 実施の形態2に係る熱交換器を風上側から見た一部の構成を模式的に示す模式図である。FIG. 7 is a schematic diagram schematically showing a partial configuration of a heat exchanger according to Embodiment 2 as viewed from the windward side; 図19の熱交換器を第2の分配器が設けられた側から見た側面図である。FIG. 20 is a side view of the heat exchanger of FIG. 19 viewed from the side where the second distributor is provided; 図19の第2の分配器の一構成例を示す風下側から見た概略図である。FIG. 20 is a schematic diagram showing a configuration example of the second distributor of FIG. 19 as viewed from the leeward side; 図21の第2の分配器を側面から見た概略図である。Figure 22 is a schematic side view of the second distributor of Figure 21; 図21の第2の分配器を上方から見た概略図である。Figure 22 is a schematic view from above of the second distributor of Figure 21; 実施の形態2に係る熱交換器の第4変形例の模式図である。FIG. 11 is a schematic diagram of a fourth modification of the heat exchanger according to Embodiment 2; 図24の熱交換器を第2の分配器が設けられた側から見た側面図である。FIG. 25 is a side view of the heat exchanger of FIG. 24 as seen from the side where the second distributor is provided;
実施の形態1.
 図1は、実施の形態1に係る熱交換器10を備えた冷凍サイクル装置1の冷媒回路図である。冷凍サイクル装置1は、冷媒の蒸発と凝縮の潜熱を利用して熱を移動させる冷媒回路1Cを有している。冷凍サイクル装置1としては、例えば、室内の暖房及び冷房を行う空気調和装置がある。図1において、点線矢印は、冷凍サイクル装置1が冷房運転及び除湿運転を行う場合の冷媒が流れる向きを示しており、実線矢印は、冷凍サイクル装置1が暖房運転を行う場合の冷媒が流れる向きを示している。まず、図1を参照して、冷凍サイクル装置1の構成について説明する。
Embodiment 1.
FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device 1 including a heat exchanger 10 according to Embodiment 1. FIG. The refrigeration cycle device 1 has a refrigerant circuit 1C that transfers heat using the latent heat of evaporation and condensation of the refrigerant. As the refrigerating cycle device 1, for example, there is an air conditioner that performs indoor heating and cooling. In FIG. 1 , the dotted arrows indicate the direction of refrigerant flow when the refrigeration cycle device 1 performs cooling operation and dehumidifying operation, and the solid arrows indicate the direction of refrigerant flow when the refrigeration cycle device 1 performs heating operation. is shown. First, the configuration of the refrigeration cycle device 1 will be described with reference to FIG.
 図1に示されるように、冷凍サイクル装置1は、圧縮機2と、室内熱交換器3と、室内ファン4と、絞り装置5と、熱交換器10と、室外ファン6と、四方弁7と、を備えている。例えば、圧縮機2、熱交換器10、絞り装置5及び四方弁7が室外機101に、室内熱交換器3が室内機102に設けられている。 As shown in FIG. 1, the refrigeration cycle device 1 includes a compressor 2, an indoor heat exchanger 3, an indoor fan 4, an expansion device 5, a heat exchanger 10, an outdoor fan 6, and a four-way valve 7. and have. For example, the compressor 2 , the heat exchanger 10 , the expansion device 5 and the four-way valve 7 are provided in the outdoor unit 101 , and the indoor heat exchanger 3 is provided in the indoor unit 102 .
 圧縮機2、室内熱交換器3、絞り装置5、熱交換器10及び四方弁7は、冷媒配管により接続されて冷媒が循環する冷媒回路1Cを構成している。冷凍サイクル装置1では、冷媒回路1C中を冷媒が相変化しながら循環する冷凍サイクルが行われる。 The compressor 2, the indoor heat exchanger 3, the throttle device 5, the heat exchanger 10, and the four-way valve 7 are connected by refrigerant piping to form a refrigerant circuit 1C in which the refrigerant circulates. In the refrigerating cycle device 1, a refrigerating cycle is performed in which the refrigerant circulates in the refrigerant circuit 1C while changing its phase.
 圧縮機2は、低圧のガス冷媒を吸入し、圧縮し、高圧のガス冷媒にして吐出し、冷媒回路1Cに循環させる。圧縮機2は、例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、又は往復圧縮機等である。 The compressor 2 sucks in low-pressure gas refrigerant, compresses it, converts it into high-pressure gas refrigerant, discharges it, and circulates it in the refrigerant circuit 1C. The compressor 2 is, for example, a rotary compressor, a scroll compressor, a screw compressor, a reciprocating compressor, or the like.
 室内熱交換器3は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。室内熱交換器3は、例えば、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器、フィンレス型熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、又はプレート熱交換器等である。 The indoor heat exchanger 3 functions as a condenser during heating operation and as an evaporator during cooling operation. The indoor heat exchanger 3 is, for example, a fin-and-tube heat exchanger, a microchannel heat exchanger, a finless heat exchanger, a shell-and-tube heat exchanger, a heat pipe heat exchanger, or a double-tube heat exchanger. or a plate heat exchanger.
 絞り装置5は、冷媒を膨張させて減圧させる。絞り装置5は、例えば冷媒の流量を調整できる電動膨張弁等である。なお、絞り装置5としては、電動膨張弁だけでなく、受圧部にダイアフラムを採用した機械式膨張弁、又は各接続配管等であってもよい。 The expansion device 5 expands and decompresses the refrigerant. The expansion device 5 is, for example, an electric expansion valve or the like that can adjust the flow rate of the refrigerant. The expansion device 5 may be not only an electric expansion valve, but also a mechanical expansion valve employing a diaphragm as a pressure receiving portion, or each connecting pipe or the like.
 熱交換器10は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。熱交換器10は、例えばフィンアンドチューブ型熱交換器から構成される。熱交換器10の詳細は、後述する。 The heat exchanger 10 functions as an evaporator during heating operation and as a condenser during cooling operation. The heat exchanger 10 is composed of, for example, a fin-and-tube heat exchanger. Details of the heat exchanger 10 will be described later.
 四方弁7は、冷凍サイクル装置1における冷媒の流路を切り替える。四方弁7は、暖房運転時、圧縮機2の吐出口と室内熱交換器3とを接続し、圧縮機2の吸入口と熱交換器10とを接続するように切り替えられる。また、四方弁7は、冷房運転および除湿運転時、圧縮機2の吐出口と熱交換器10とを接続し、圧縮機2の吸入口と室内熱交換器3とを接続するように切り替えられる。なお、四方弁7を用いる代わりに、複数の弁により冷媒の流路を切り替える構成としてもよい。 The four-way valve 7 switches the refrigerant flow path in the refrigeration cycle device 1 . The four-way valve 7 is switched to connect the discharge port of the compressor 2 and the indoor heat exchanger 3 and connect the suction port of the compressor 2 and the heat exchanger 10 during the heating operation. Further, the four-way valve 7 is switched to connect the discharge port of the compressor 2 and the heat exchanger 10 and connect the suction port of the compressor 2 and the indoor heat exchanger 3 during the cooling operation and the dehumidifying operation. . Instead of using the four-way valve 7, a configuration may be adopted in which a plurality of valves are used to switch the flow path of the refrigerant.
 なお、冷媒回路1Cの構成は上記の構成に限定されない。例えば、冷媒回路1Cにおいて四方弁7は省略することができ、冷凍サイクル装置1が暖房運転だけを行う構成であってもよい。 The configuration of the refrigerant circuit 1C is not limited to the above configuration. For example, the four-way valve 7 may be omitted from the refrigerant circuit 1C, and the refrigeration cycle device 1 may be configured to perform only the heating operation.
 室内ファン4は、室内熱交換器3に付設されており、室内熱交換器3に対して熱交換流体としての居室内の空気を供給する。室外ファン6は、熱交換器10に付設されており、熱交換器10に対して室外の空気を供給する。 The indoor fan 4 is attached to the indoor heat exchanger 3, and supplies the room air as a heat exchange fluid to the indoor heat exchanger 3. The outdoor fan 6 is attached to the heat exchanger 10 and supplies outdoor air to the heat exchanger 10 .
 図1を参照して、冷凍サイクル装置1の動作について説明する。四方弁7により暖房と冷房とが切り替えられる。暖房運転では、圧縮機2から吐出された冷媒は、室内熱交換器3、絞り装置5及び熱交換器10の順に流れて圧縮機2に戻る。一方、冷房運転では、圧縮機2から吐出された冷媒は、熱交換器10、絞り装置5及び室内熱交換器3の順に流れて圧縮機2に戻る。室内熱交換器3及び熱交換器10のうち凝縮器は、高温高圧のガス冷媒の熱を外気に放熱させ、凝縮させて液冷媒にする。室内熱交換器3及び熱交換器10のうち蒸発器は、低温低圧の冷媒に含まれる液冷媒に外気から吸熱させ、蒸発させる。 The operation of the refrigeration cycle device 1 will be described with reference to FIG. A four-way valve 7 switches between heating and cooling. In heating operation, the refrigerant discharged from the compressor 2 flows through the indoor heat exchanger 3, the expansion device 5, and the heat exchanger 10 in this order, and returns to the compressor 2. FIG. On the other hand, in cooling operation, the refrigerant discharged from the compressor 2 flows through the heat exchanger 10 , the expansion device 5 and the indoor heat exchanger 3 in this order, and returns to the compressor 2 . Among the indoor heat exchanger 3 and the heat exchanger 10, the condenser radiates the heat of the high-temperature and high-pressure gas refrigerant to the outside air and condenses it into liquid refrigerant. Among the indoor heat exchanger 3 and the heat exchanger 10, the evaporator causes the liquid refrigerant contained in the low-temperature, low-pressure refrigerant to absorb heat from the outside air and evaporate it.
 図2は、実施の形態1に係る熱交換器を搭載した室外機101の一構成例を示す概略図である。図2において白抜き矢印は、運転時の空気の流通方向を示す。図3は、図2の室外機の分解斜視図である。図2および図3を参照して、実施の形態1に係る室外機101について説明する。 FIG. 2 is a schematic diagram showing a configuration example of the outdoor unit 101 equipped with the heat exchanger according to the first embodiment. The white arrows in FIG. 2 indicate the direction of air flow during operation. 3 is an exploded perspective view of the outdoor unit of FIG. 2. FIG. The outdoor unit 101 according to Embodiment 1 will be described with reference to FIGS. 2 and 3. FIG.
 図2および図3に示されるように、室外機101は、例えば直方体形状を有する。室外機101は、例えば、上面パネル111、側面パネル112、正面パネル113、ファングリル114、底面パネル115及び側面カバー116を備えている。上面パネル111は室外機101の上面を構成し、側面パネル112は室外機101の図3右側の側面を構成し、正面パネル113は室外機101の前面と図3左側の側面の前側部分とを構成し、底面パネル115は室外機101の底面を構成する。正面パネル113の前面には空気の吹出口が形成されており、吹出口を覆うように格子状のファングリル114が設けられる。側面カバー116は、側面パネル112の外側に取り付けられる。図3に示されるように、これらの構造と熱交換器10とによって、室外機101側に配置される冷媒回路部品(例えば、圧縮機2、絞り装置5及び四方弁7)を取り囲む構成とされている。また、図3に示される例では、室外ファン6も、室外機101の内部に配置されている。室外ファン6は、例えばプロペラファン等で構成される。 As shown in FIGS. 2 and 3, the outdoor unit 101 has, for example, a cuboid shape. The outdoor unit 101 includes, for example, a top panel 111, a side panel 112, a front panel 113, a fan grill 114, a bottom panel 115 and side covers . The top panel 111 constitutes the top surface of the outdoor unit 101, the side panel 112 constitutes the right side of the outdoor unit 101 in FIG. The bottom panel 115 constitutes the bottom of the outdoor unit 101 . An air outlet is formed in the front surface of the front panel 113, and a grid-like fan grill 114 is provided to cover the outlet. A side cover 116 is attached to the outside of the side panel 112 . As shown in FIG. 3, these structures and the heat exchanger 10 surround the refrigerant circuit components (for example, the compressor 2, the expansion device 5 and the four-way valve 7) arranged on the outdoor unit 101 side. ing. Moreover, in the example shown in FIG. 3, the outdoor fan 6 is also arranged inside the outdoor unit 101 . The outdoor fan 6 is composed of, for example, a propeller fan or the like.
 図2に白抜き矢印で示されるように、熱交換器10に流入する気流は、熱交換器10の背面側から前面側に向かって、すなわち図2の紙面右上方向から紙面左下方向に向かって流動する。室外ファン6(図3参照)が引き込む気流が、熱交換器10(図3参照)を通過する。また、図3に示される例では、熱交換器10は、平面視でL字形状を有し、筐体9の側面後方側と背面とに配置されている。なお、室外機101の構成は、上記の構成に限定されない。 As indicated by the white arrows in FIG. 2, the airflow flowing into the heat exchanger 10 is directed from the back side to the front side of the heat exchanger 10, that is, from the upper right direction of FIG. flow. Airflow drawn by the outdoor fan 6 (see FIG. 3) passes through the heat exchanger 10 (see FIG. 3). Moreover, in the example shown in FIG. 3, the heat exchanger 10 has an L-shape in a plan view, and is arranged on the side rear side and the rear side of the housing 9 . Note that the configuration of the outdoor unit 101 is not limited to the configuration described above.
 図4は、実施の形態1に係る熱交換器10を風上側から見た構成を模式的に示す模式図である。図4において、点線矢印は、熱交換器10(図1参照)を凝縮器として、冷凍サイクル装置1が冷房運転及び除湿運転を行う場合の冷媒が流れる向きを示しており、実線矢印は、熱交換器10(図1参照)を蒸発器として、冷凍サイクル装置1が暖房運転を行う場合の冷媒が流れる向きを示している。図5は、図4の第2の分配器30の一構成例を示す風下側から見た概略図であり。図6は、図5の第2の分配器30を側面から見た概略図である。図7は、図5の第2の分配器30を上方から見た概略図である。図8は、図4の熱交換器10におけるジョイントの一構成例を示す概略図である。図9は、図4の熱交換器10の部分拡大図である。図10は、図9の熱交換器10を第2の分配器30が設けられた側から見た側面図である。図6、図7及び図10において、白抜き矢印は、空気の流通方向を示している。また、図6の仮想線X3は、重力方向すなわち上下方向(矢印Z方向)の仮想線である。 FIG. 4 is a schematic diagram schematically showing the configuration of the heat exchanger 10 according to Embodiment 1 as seen from the windward side. In FIG. 4, the dotted line arrows indicate the direction of refrigerant flow when the refrigeration cycle device 1 performs the cooling operation and the dehumidifying operation using the heat exchanger 10 (see FIG. 1) as a condenser. It shows the direction in which the refrigerant flows when the refrigerating cycle device 1 performs the heating operation using the exchanger 10 (see FIG. 1) as an evaporator. FIG. 5 is a schematic diagram showing a configuration example of the second distributor 30 of FIG. 4 as viewed from the leeward side. FIG. 6 is a schematic side view of the second distributor 30 of FIG. FIG. 7 is a schematic top view of the second distributor 30 of FIG. FIG. 8 is a schematic diagram showing one configuration example of a joint in the heat exchanger 10 of FIG. 9 is a partially enlarged view of the heat exchanger 10 of FIG. 4. FIG. FIG. 10 is a side view of the heat exchanger 10 of FIG. 9 viewed from the side where the second distributor 30 is provided. In FIGS. 6, 7 and 10, white arrows indicate the direction of air flow. A virtual line X3 in FIG. 6 is a virtual line in the direction of gravity, that is, in the vertical direction (direction of arrow Z).
 図4~図10に基づき、熱交換器10の構成について説明する。なお、図3では熱交換器10が湾曲部を有し、室外機101の側面後方側から背面にわたり設けられたが、以下の説明では、理解を容易にするために、熱交換器10が室外機101の背面に沿うように直方体形状を有するものと定義する。 The configuration of the heat exchanger 10 will be described based on FIGS. 4 to 10. FIG. In FIG. 3, the heat exchanger 10 has a curved portion and is provided from the side rear side to the back side of the outdoor unit 101, but in the following description, for ease of understanding, the heat exchanger 10 It is defined as having a rectangular parallelepiped shape along the back of the machine 101 .
 以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、これは説明のためのものであって、これらの用語は本開示を限定するものではない。これらの方向を示す用語は、特に明示しない限り、熱交換器10を図4に示されるように風上側(図2に示される室外機101の背面側)から見た場合の方向を意味している。 In the following description, directional terms (e.g., "up", "down", "right", "left", "front", "back", etc.) are used as appropriate for ease of understanding. For the purpose of description, these terms are not intended to limit this disclosure. Unless otherwise specified, these directional terms mean the directions when the heat exchanger 10 is viewed from the windward side (the rear side of the outdoor unit 101 shown in FIG. 2) as shown in FIG. there is
 図4に示されるように、熱交換器10は、互いに間隔をあけて積層された複数の板状フィン11と、板状フィン11を積層方向に貫通し、内部に冷媒が流れる複数の伝熱管12と、を備えている。伝熱管12は、例えば、銅又はアルミニウム製の円管又は扁平管等である。また、熱交換器10は、熱交換器10が蒸発器として機能する場合に冷媒を分配する分配構造と、複数の伝熱管12において熱交換した後の冷媒を合流させるヘッダ50と、を備えている。具体的には、熱交換器10は、熱交換器10が蒸発器として機能する場合に冷媒を複数の流れに分配する第1の分配器20と、熱交換器10が蒸発器として機能する場合に第1の分配器20で分配された冷媒を更に2つの流れに分配する1つ以上の第2の分配器30と、を備えている。熱交換器10は、複数の伝熱管12で蒸発した冷媒を合流させるヘッダ50を備えている。ヘッダ50は、複数のヘッダ枝管51を有している。 As shown in FIG. 4, the heat exchanger 10 includes a plurality of plate-like fins 11 stacked with a space therebetween, and a plurality of heat transfer tubes that penetrate the plate-like fins 11 in the stacking direction and have a refrigerant flowing therein. 12 and. The heat transfer tubes 12 are, for example, circular tubes or flat tubes made of copper or aluminum. In addition, the heat exchanger 10 includes a distribution structure that distributes the refrigerant when the heat exchanger 10 functions as an evaporator, and a header 50 that joins the refrigerant after heat exchange in the plurality of heat transfer tubes 12. there is Specifically, heat exchanger 10 includes a first distributor 20 that distributes the refrigerant into multiple streams when heat exchanger 10 functions as an evaporator, and a first distributor 20 that distributes the refrigerant into multiple streams when heat exchanger 10 functions as an evaporator. and one or more second distributors 30 for further distributing the refrigerant distributed by the first distributor 20 into two streams. The heat exchanger 10 includes a header 50 that joins the refrigerant evaporated in the plurality of heat transfer tubes 12 . Header 50 has a plurality of header branch pipes 51 .
 以下の説明では、理解を容易にするために、図4に示されるように、板状フィン11の積層方向及び伝熱管12の長手方向が熱交換器10の横方向(矢印X方向)であり、板状フィン11の長手方向が熱交換器10の上下方向(矢印Z方向)すなわち重力方向であるものと定義する。複数の伝熱管12は、板状フィン11の長手方向すなわち重力方向に配列されている。 In the following description, for ease of understanding, as shown in FIG. 4, the stacking direction of the plate-like fins 11 and the longitudinal direction of the heat transfer tubes 12 are the lateral direction (direction of arrow X) of the heat exchanger 10. , the longitudinal direction of the plate-like fins 11 is defined as the vertical direction (direction of arrow Z) of the heat exchanger 10, that is, the direction of gravity. The plurality of heat transfer tubes 12 are arranged in the longitudinal direction of the plate-like fins 11, that is, in the gravitational direction.
 図4、図9及び図10に示される例では、複数の伝熱管12は、図10の側面図に示されるように、空気の流通方向(図2に白抜き矢印で示される)で2列となるように配置されている。すなわち、図9及び図10に示されるように、複数の伝熱管12のうち一部の複数の伝熱管は、空気の流通方向(矢印Y方向)において風上側に配置され、互いに間隔をあけて上下方向(矢印Z方向)に配列され、複数の伝熱管12のうち残りの複数の伝熱管は、風下側に配置され、互いに間隔をあけて上下方向(矢印Z方向)に配列されている。風上側の列に属する伝熱管12を風上側伝熱管12aと称し、風下側の列に属する伝熱管12を風下側伝熱管12bと称する場合がある。以降の説明では、伝熱管12あるいは冷媒パスの重力方向の配列を段という場合がある。なお、熱交換器10において、複数段の伝熱管12は3列以上設けられてもよく、あるいは1列のみ設けられてもよい。 In the examples shown in FIGS. 4, 9 and 10, the plurality of heat transfer tubes 12 are arranged in two rows in the direction of air flow (indicated by white arrows in FIG. 2), as shown in the side view of FIG. are arranged so that That is, as shown in FIGS. 9 and 10, some of the plurality of heat transfer tubes 12 are arranged on the windward side in the air circulation direction (arrow Y direction) and spaced apart from each other. The heat transfer tubes 12 are arranged in the vertical direction (direction of arrow Z), and the remaining heat transfer tubes of the plurality of heat transfer tubes 12 are arranged on the leeward side and arranged in the vertical direction (direction of arrow Z) with a space therebetween. The heat transfer tubes 12 belonging to the windward row may be referred to as windward heat transfer tubes 12a, and the heat transfer tubes 12 belonging to the leeward row may be referred to as leeward heat transfer tubes 12b. In the following description, the arrangement of the heat transfer tubes 12 or refrigerant paths in the gravitational direction may be referred to as a stage. In the heat exchanger 10, the multistage heat transfer tubes 12 may be provided in three or more rows, or may be provided in one row.
 また、図4、図9及び図10に示される熱交換器10は、同じ列に属する上下に隣接した2つの伝熱管12を接続する段間接続配管13と、風上側の列に属する伝熱管12と風下側の列に属する伝熱管12とを接続する列間接続配管14と、を有している。図4に示される例では、段間接続配管13は、上下に隣接した2つの伝熱管12の右端部同士を接続し、列間接続配管14は、風上側伝熱管12aの左端部と風下側伝熱管12bの左端部とを接続している。図4に示されるように、複数の伝熱管12が、段間接続配管13及び列間接続配管14と接続されることで、複数の伝熱管12を直列に接続した内部に流路すなわち冷媒パスが形成される。図4、図9及び図10に示される例では、2つの風上側伝熱管12a及び2つの風下側伝熱管12bの合計4つの伝熱管12により、1つの冷媒パスが構成されている。詳しくは、各冷媒パスは、4つの伝熱管12と、2つの段間接続配管13と、1つの列間接続配管14と、により形成されている。 The heat exchanger 10 shown in FIGS. 4, 9 and 10 includes an interstage connection pipe 13 connecting two vertically adjacent heat transfer tubes 12 belonging to the same row, and a heat transfer pipe belonging to the windward row. 12 and an inter-row connection pipe 14 that connects the heat transfer tubes 12 belonging to the row on the leeward side. In the example shown in FIG. 4, the inter-stage connection pipe 13 connects the right ends of two vertically adjacent heat transfer tubes 12, and the row-to-row connection pipe 14 connects the left ends of the upwind heat transfer tubes 12a and the downwind side. It is connected to the left end of the heat transfer tube 12b. As shown in FIG. 4 , a plurality of heat transfer tubes 12 are connected to interstage connection pipes 13 and interrow connection pipes 14 so that a flow path, that is, a refrigerant path is formed inside the plurality of heat transfer tubes 12 connected in series. is formed. In the examples shown in FIGS. 4, 9 and 10, one refrigerant path is configured by a total of four heat transfer tubes 12, two windward heat transfer tubes 12a and two leeward heat transfer tubes 12b. Specifically, each refrigerant path is formed by four heat transfer tubes 12 , two inter-stage connection pipes 13 , and one inter-row connection pipe 14 .
 なお、冷媒パスの構成は、上記の構成に限定されない。例えば、熱交換器10は、上下方向に配列された複数段の伝熱管12を1列として、空気の流通方向に3列以上の伝熱管12を有した構成としてもよい。熱交換器10が、複数段の伝熱管12を3列以上有する場合、冷媒パスのそれぞれは、例えば、各列において互いに接続された2段の伝熱管12と、複数の列間接続配管14と、により構成することができる。列間接続配管14は、複数列のいずれかの列の2段の伝熱管12の一つと、いずれかの列とは異なる列の2段の伝熱管の一つとを接続する。例えば、熱交換器10において複数段の伝熱管12が、空気の流通方向の風上側から順に第1列と第2列と第3列とに配置される場合において、各冷媒パスは、2つの列間接続配管14を含む。この場合において、一方の列間接続配管14は、例えば、第1列の伝熱管12と第2列の伝熱管12とを接続する。そして、他方の列間接続配管14は、第2列において第1列の伝熱管12と接続された伝熱管12とは別の伝熱管12と、第3列の伝熱管12とを接続する。 It should be noted that the configuration of the refrigerant path is not limited to the configuration described above. For example, the heat exchanger 10 may have a configuration in which a plurality of stages of heat transfer tubes 12 arranged in the vertical direction are arranged in one row, and three or more rows of heat transfer tubes 12 are provided in the air circulation direction. When the heat exchanger 10 has three or more rows of multistage heat transfer tubes 12, each of the refrigerant paths includes, for example, two stages of heat transfer tubes 12 connected to each other in each row and a plurality of interrow connection pipes 14. , can be configured by The inter-row connection pipe 14 connects one of the two-stage heat transfer tubes 12 in one of the multiple rows and one of the two-stage heat transfer tubes in a row different from any of the rows. For example, in the case where the heat exchanger 10 has a plurality of stages of heat transfer tubes 12 arranged in the first row, the second row, and the third row in order from the windward side in the air flow direction, each refrigerant path is divided into two An inter-row connecting pipe 14 is included. In this case, one inter-row connecting pipe 14 connects, for example, the heat transfer tubes 12 of the first row and the heat transfer tubes 12 of the second row. The other inter-row connecting pipe 14 connects the heat transfer tubes 12 in the second row, which are different from the heat transfer tubes 12 connected to the heat transfer tubes 12 in the first row, to the heat transfer tubes 12 in the third row.
 図4に示されるように、段間接続配管13及び列間接続配管14のぞれぞれは、伝熱管12とは別の部材で構成され、例えばロウ付けにより伝熱管12と接続されている。なお、段間接続配管13及び列間接続配管14のぞれぞれは、板状フィン11を貫通する伝熱管12と一体に形成されていてもよい。 As shown in FIG. 4, each of the inter-stage connection pipes 13 and the inter-row connection pipes 14 is composed of a member different from the heat transfer pipes 12, and is connected to the heat transfer pipes 12 by, for example, brazing. . Note that each of the inter-stage connection pipe 13 and the inter-row connection pipe 14 may be formed integrally with the heat transfer pipe 12 penetrating through the plate-like fins 11 .
 熱交換器10が有する3つ以上の冷媒パスのうち一部の冷媒パスの一端側は、それぞれ第2の分配器30と接続され、第2の分配器30は接続配管40を介して第1の分配器20と接続されている。また、熱交換器10が有する3つ以上の冷媒パスのうち残りの冷媒パスの一端側は、それぞれ接続配管40を介して第1の分配器20と接続されている。接続配管40は、例えばキャピラリチューブである。また、熱交換器10が有する3つ以上の冷媒パスの他端側は、それぞれヘッダ枝管51を介してヘッダ主管52と接続されている。 One end sides of some of the three or more refrigerant paths of the heat exchanger 10 are each connected to a second distributor 30 , and the second distributor 30 is connected to the first refrigerant path via a connecting pipe 40 . is connected to the distributor 20 of . Moreover, one end sides of the remaining refrigerant paths among the three or more refrigerant paths of the heat exchanger 10 are connected to the first distributor 20 via connection pipes 40 respectively. The connection pipe 40 is, for example, a capillary tube. Further, the other end sides of the three or more refrigerant paths of the heat exchanger 10 are connected to the header main pipe 52 via the header branch pipes 51 respectively.
 以下、熱交換器10が有する3つ以上の冷媒パスのうち、第2の分配器30を介して第1の分配器20と接続された2つの冷媒パスのそれぞれを第1の冷媒パス61a及び61bと称し、2つの第1の冷媒パス61a及び61bを総称して第1の冷媒パス群61と称する場合がある。また、熱交換器10が有する3つ以上冷媒パスのうち、第2の分配器30を介さずに接続配管40を介して直接第1の分配器20と接続された冷媒パスを第2の冷媒パス62と称する場合がある。図4に示されるように、本開示の熱交換器10において重力方向に配列された複数段の冷媒パスには、第1の冷媒パス群61と第2の冷媒パス62とが含まれる構成となっている。 Hereinafter, among the three or more refrigerant paths of the heat exchanger 10, the two refrigerant paths connected to the first distributor 20 via the second distributor 30 are referred to as the first refrigerant paths 61a and 61 b , and the two first refrigerant paths 61 a and 61 b may be collectively referred to as a first refrigerant path group 61 . In addition, among the three or more refrigerant paths that the heat exchanger 10 has, the refrigerant path that is directly connected to the first distributor 20 via the connecting pipe 40 without passing through the second distributor 30 is referred to as the second refrigerant. Sometimes referred to as path 62 . As shown in FIG. 4 , in the heat exchanger 10 of the present disclosure, the multiple stages of refrigerant paths arranged in the direction of gravity include a first refrigerant path group 61 and a second refrigerant path 62 . It's becoming
 第1の分配器20は、例えばディストリビュータであり、図4に冷媒の流れが実線矢印で示されるように、熱交換器10が蒸発器として用いられる場合において第1の分配器20に流入した冷媒を、第2の分配器30の数と第2の冷媒パス62の数とを足し合わせた数、すなわち接続配管40の数に分流させる。第2の分配器30は、例えば三方管分配器であり、熱交換器10が蒸発器として用いられる場合において、第1の分配器20で分流されて第1の接続配管を流れた冷媒を、更に2つに分流させる。 The first distributor 20 is, for example, a distributor, and as the flow of the refrigerant is indicated by solid arrows in FIG. is divided into the total number of the second distributors 30 and the number of the second refrigerant paths 62 , that is, the number of connection pipes 40 . The second distributor 30 is, for example, a three-way pipe distributor, and when the heat exchanger 10 is used as an evaporator, the refrigerant that has been divided by the first distributor 20 and has flowed through the first connecting pipe is Further split into two.
 ここで、図1及び図4を参照しつつ、熱交換器10が蒸発器として用いられる場合の動作について説明する。図1に示される絞り装置5から流出した気液二相冷媒流は、まず、図4に示される第1の分配器20に流入して分流され、噴霧流下される。分流され噴霧流化された冷媒は、各接続配管40に流入する。複数の接続配管40のうち、第2の分配器30とつながる接続配管40に流入した冷媒は、この接続配管を通過した後、第2の分配器30に流入し、第2の分配器30においてさらに分岐して流出し、2つの第1の冷媒パス61a及び62bの伝熱管12に流入する。また、複数の接続配管40のうち、伝熱管12と直接つながる接続配管40に流入した冷媒は、この接続配管40を通過した後、分岐されずに直接1つの第2の冷媒パス62に流入する。各冷媒パスに流入した冷媒は、その冷媒パスを構成する複数の伝熱管12内の通過する際に空気と熱交換してガス状態となり、冷媒パスから流出する。各冷媒パスから流出したガス状態の冷媒は、ヘッダ枝管51内を通過し、ヘッダ主管52で合流する。ヘッダ50で合流したガス状態の冷媒は、ヘッダ主管52に設けられた不図示の冷媒口を介して熱交換器10から流出する。熱交換器10から流出したガス状態の冷媒は、その後、図1に示されるように、四方弁7を通過し、圧縮機2に吸入される。 Here, the operation when the heat exchanger 10 is used as an evaporator will be described with reference to FIGS. 1 and 4. FIG. The gas-liquid two-phase refrigerant flow that has flowed out of the expansion device 5 shown in FIG. 1 first flows into the first distributor 20 shown in FIG. 4, is divided, and is sprayed down. The diverted and atomized refrigerant flows into each connecting pipe 40 . Among the plurality of connection pipes 40, the refrigerant that has flowed into the connection pipe 40 connected to the second distributor 30 passes through this connection pipe, flows into the second distributor 30, and in the second distributor 30 Further, the refrigerant branches out and flows into the heat transfer tubes 12 of the two first refrigerant paths 61a and 62b. In addition, the refrigerant that has flowed into the connection pipe 40 that is directly connected to the heat transfer pipe 12 among the plurality of connection pipes 40 passes through the connection pipe 40 and then directly flows into one second refrigerant path 62 without being branched. . The refrigerant that has flowed into each refrigerant path exchanges heat with air while passing through the plurality of heat transfer tubes 12 that make up the refrigerant path, becomes a gaseous state, and flows out of the refrigerant path. The gaseous refrigerant flowing out from each refrigerant path passes through the header branch pipe 51 and merges in the header main pipe 52 . The gaseous refrigerant that joins at the header 50 flows out of the heat exchanger 10 through a refrigerant port (not shown) provided in the header main pipe 52 . The gaseous refrigerant that has flowed out of the heat exchanger 10 then passes through the four-way valve 7 and is sucked into the compressor 2 as shown in FIG.
 図4を参照して説明したように、熱交換器10は、第1の分配器20に加えて、1つ以上の第2の分配器30を備えるので、熱交換器10に流入した冷媒を第1の分配器20のみによって分岐する構成と比べ、多くの冷媒パスに冷媒を分配することができる。また、熱交換器10は、3つ以上の冷媒パスのうち一部の冷媒パスのみが第2の分配器30を介して第1の分配器20と接続する構成とされているので、従来のように全ての冷媒パスが第2の分配器を介してディストリビュータと接続される構成と比べ、作業スペースが確保し易い。図4及び図10に示されるように熱交換器10において第2の分配器30が設けられる側(図4では左側)に列間接続配管14及びヘッダ枝管51が設けられる場合には特に、構造が複雑化する。しかし、本開示の熱交換器10では、第2の冷媒パス62の伝熱管12は、三方管分配器等で構成された第2の分配器30が接続されず、直接接続配管40とつなげられるので、構造が簡易化され、作業スペースが確保される。したがって、例えば、第2の分配器30を伝熱管12へロウ付けする際に他の構造との干渉が従来よりも生じにくい。また、例えば、第2の分配器30に接続配管を接続する際に、接続配管と、他の構造との干渉が従来よりも抑制される。よって、本開示の熱交換器10では、従来よりも作業性がよくなる。 As described with reference to FIG. 4, the heat exchanger 10 includes one or more second distributors 30 in addition to the first distributor 20, so that the refrigerant flowing into the heat exchanger 10 is Compared to the configuration where only the first distributor 20 branches, the refrigerant can be distributed to many refrigerant paths. In addition, since the heat exchanger 10 is configured such that only some of the three or more refrigerant paths are connected to the first distributor 20 via the second distributor 30, the conventional As compared with the configuration in which all refrigerant paths are connected to the distributor through the second distributor, it is easier to secure a working space. As shown in FIGS. 4 and 10, especially when the inter-row connection pipe 14 and the header branch pipe 51 are provided on the side of the heat exchanger 10 where the second distributor 30 is provided (on the left side in FIG. 4), Structure becomes complicated. However, in the heat exchanger 10 of the present disclosure, the heat transfer tubes 12 of the second refrigerant path 62 are not connected to the second distributor 30 configured by a three-way pipe distributor or the like, and are connected to the direct connection pipe 40. Therefore, the structure is simplified and the working space is secured. Therefore, for example, when the second distributor 30 is brazed to the heat transfer tubes 12, interference with other structures is less likely to occur than in the conventional art. Further, for example, when connecting the connecting pipe to the second distributor 30, interference between the connecting pipe and other structures is suppressed more than in the conventional case. Therefore, the workability of the heat exchanger 10 of the present disclosure is better than that of the conventional one.
 図5~図7に基づき、図4、図8及び図10を参照しつつ、第2の分配器30の構造について詳しく説明する。図5に示されるように、第2の分配器30は、円管をU字状に折り曲げて形成されたU字管部31と、流入部35と、を有している。U字管部31は、2つの第1の冷媒パス61a及び61bを接続する。U字管部31は、U字に湾曲した連結部32と、連結部32の両端から互いに並行に延びる2つの腕部33及び34と、を有している。第2の分配器30におけるU字管部31の両端すなわち2つの腕部33及び34の先端が、2つの第1の冷媒パス61a及び61bの伝熱管12と接続される。腕部33と第1の冷媒パス61aとの接続、及び腕部34と第1の冷媒パス61bとの接続はそれぞれ、伝熱管12が円管であれば直接接続され、伝熱管12が扁平管であればジョイント15(図8参照)を介して接続される。 The structure of the second distributor 30 will be described in detail based on FIGS. 5 to 7 and with reference to FIGS. 4, 8 and 10. FIG. As shown in FIG. 5 , the second distributor 30 has a U-shaped tube portion 31 formed by bending a circular tube into a U-shape, and an inflow portion 35 . The U-shaped tube portion 31 connects the two first refrigerant paths 61a and 61b. The U-shaped tube portion 31 has a U-shaped connecting portion 32 and two arm portions 33 and 34 extending parallel to each other from both ends of the connecting portion 32 . Both ends of the U-shaped tube portion 31 in the second distributor 30, that is, the tips of the two arm portions 33 and 34 are connected to the heat transfer tubes 12 of the two first refrigerant paths 61a and 61b. The connection between the arm portion 33 and the first refrigerant path 61a and the connection between the arm portion 34 and the first refrigerant path 61b are directly connected if the heat transfer tube 12 is a circular tube, and the heat transfer tube 12 is a flat tube. If so, they are connected via a joint 15 (see FIG. 8).
 図5に示されるように、U字管部31の管壁には開口部Cが形成されており、U字管部31の開口部Cに、流入部35が設けられている。流入部35は、開口部Cから上側へ延びるように設けられ、開口部Cは、流入部35を介して第1の分配器(図4参照)と接続される。流入部35の形状は、直管形状、すなわち開口部Cの縁に沿った環状とされている。流入部35はU字管部31の管軸と略直角となるように設けられている。流入部35は、例えば、U字管部31における上側の腕部33の管壁をバルジ成形加工して形成されている。バルジ成形加工とは、まずプレス内の金型にパイプ形状の素材をセットした後、型締めし、そして、素材内に高圧の液体を充填しながら素材の両端を互いに近づくように軸方向に圧縮する事で、金型に彫られた形状に素材を伸ばして中空成形を行う加工法のことである。 As shown in FIG. 5 , an opening C is formed in the wall of the U-shaped pipe portion 31 , and an inflow portion 35 is provided in the opening C of the U-shaped pipe portion 31 . The inflow part 35 is provided so as to extend upward from the opening C, and the opening C is connected to the first distributor (see FIG. 4) via the inflow part 35 . The shape of the inflow portion 35 is a straight tube shape, that is, an annular shape along the edge of the opening portion C. As shown in FIG. The inflow portion 35 is provided so as to be substantially perpendicular to the tube axis of the U-shaped tube portion 31 . The inflow portion 35 is formed, for example, by bulging the pipe wall of the upper arm portion 33 of the U-shaped pipe portion 31 . Bulge forming is a process in which a pipe-shaped material is first set in a mold inside a press, then the mold is clamped, and then while filling the material with high-pressure liquid, both ends of the material are compressed in the axial direction so that they approach each other. It is a processing method that stretches the material into the shape carved in the mold and performs hollow molding.
 流入部35からU字管部31に、開口部Cを介して冷媒が流入し、流入した冷媒は、U字管部31の管壁内面に衝突して2つに分流され、2つの腕部33及び34の先端の開口部A及びBから2つの第1の冷媒パス61a及び61b(図4)へ分配される。ここでは、上側の腕部33に流入部35を設けた例を示しているが、U字管部31において流入部35を設ける部位は特にこれに限定されない。ただし、直線状の腕部33又は34に流入部35を設けることが好ましい。 Refrigerant flows from the inflow portion 35 into the U-shaped tube portion 31 through the opening C, and the inflowed refrigerant collides with the inner surface of the tube wall of the U-shaped tube portion 31 and is divided into two flows to form two arms. Distributed from openings A and B at the tips of 33 and 34 are two first coolant paths 61a and 61b (FIG. 4). Here, an example in which the inflow portion 35 is provided in the upper arm portion 33 is shown, but the portion in which the inflow portion 35 is provided in the U-shaped tube portion 31 is not particularly limited to this. However, it is preferable to provide the inflow portion 35 in the linear arm portion 33 or 34 .
 図5に示される第2の分配器30は、流入部35よりも長い直線状に延びる流入部配管36を有している。流入部配管36の一端は流入部35に取り付けられ、流入部配管36の他端は、接続配管40(図4参照)に接続される。流入部配管36の一端は、例えば、流入部35に差し込まれてロウ付けされることで流入部35に取り付けられる。なお、実施の形態1では、U字管部31及び流入部35と流入部配管36とが別体構成だが、U字管部31、流入部35及び流入部配管36は一体構成とされてもよい。また、実施の形態1では、流入部配管36と接続配管とは別体構成だが、接続配管の端部が直線状とされ、流入部配管36を構成するものとしてもよい。 The second distributor 30 shown in FIG. 5 has an inflow piping 36 extending linearly longer than the inflow 35 . One end of the inlet pipe 36 is attached to the inlet 35, and the other end of the inlet pipe 36 is connected to the connection pipe 40 (see FIG. 4). One end of the inflow pipe 36 is attached to the inflow portion 35 by, for example, being inserted into the inflow portion 35 and brazed. In Embodiment 1, the U-shaped pipe portion 31, the inflow portion 35, and the inflow pipe 36 are configured separately. good. In Embodiment 1, the inflow pipe 36 and the connection pipe are configured separately, but the end of the connection pipe may be linear to constitute the inflow pipe 36 .
 熱交換器10(図4参照)において第2の分配器30は、2つの腕部33及び34が水平方向に沿うように配置され、流入部35から腕部33に流入した冷媒が水平方向に分岐して流れるように構成されている。換言すると、第2の分配器30において上側の腕部33にバルジ成形された流入部35の管軸X1と、上側の腕部33の管軸X2との角度θが略90°となるように流入部35が成形されている。なお、角度θは厳密に90°でなくともよいが、例えば、角度θが90°から15°より大きくずれた場合、流入部35から腕部33内に流入する冷媒が腕部33の管壁内面に斜めに衝突して偏流してしまう。この場合、U字管部31に接続された2つの第1の冷媒パス61a及び61bに均等に冷媒を分配することができない。熱交換器10(図4参照)においてU字管部31が接続する2つの第1の冷媒パス61a及び61b(図4)は上下に並んで配置されており、両者間で風速の差がそれほど無い。つまり、両者間での設計上の熱交換量はほぼ同じである。したがって、2つの第1の冷媒パス61a及び61b(図4参照)に流入する冷媒に偏りが生じると、熱交換後に各冷媒パスから流出する冷媒の状態にバラつきが生じるので、熱交換効率が悪化してしまう。よって、U字管部31に流入部35を設ける角度θは、75°以上且つ105°以下であることが好ましい。 In the heat exchanger 10 (see FIG. 4), the second distributor 30 is arranged such that the two arms 33 and 34 extend in the horizontal direction, and the refrigerant flowing into the arm 33 from the inflow portion 35 flows in the horizontal direction. It is configured to branch and flow. In other words, in the second distributor 30, the angle θ1 between the pipe axis X1 of the inflow portion 35 formed in the upper arm portion 33 and the pipe axis X2 of the upper arm portion 33 is approximately 90°. An inflow portion 35 is formed in the . Although the angle θ 1 does not have to be strictly 90°, for example, if the angle θ 1 deviates from 90° by more than 15°, the refrigerant flowing from the inflow portion 35 into the arm portion 33 will flow into the arm portion 33 . It collides obliquely with the inner surface of the pipe wall and drifts. In this case, the refrigerant cannot be evenly distributed to the two first refrigerant paths 61 a and 61 b connected to the U-shaped tube portion 31 . In the heat exchanger 10 (see FIG. 4), the two first refrigerant paths 61a and 61b (FIG. 4) connected by the U-shaped tube portion 31 are arranged vertically, and the difference in wind speed between them is not so great. None. That is, the design heat exchange amount between the two is almost the same. Therefore, if the refrigerant flowing into the two first refrigerant paths 61a and 61b (see FIG. 4) is unbalanced, the state of the refrigerant flowing out of each refrigerant path after heat exchange will vary, resulting in deterioration of heat exchange efficiency. Resulting in. Therefore, the angle θ 1 at which the inflow portion 35 is provided in the U-shaped pipe portion 31 is preferably 75° or more and 105° or less.
 また、冷媒が流れる方向が図4に実線矢印で示されるように熱交換器10が蒸発器として用いられる場合に熱交換器10に流入する冷媒は二相流であるので、接続配管40の曲がり等により、第2の分配器30に流入する際には冷媒の液部が偏った状態となる。したがって、第2の分配器30に流入した冷媒がU字管部31の腕部33の管壁内面に衝突して分岐するまでの助走区間が十分でないと、2つの第1の冷媒パス61a及び61bに分かれて流入する冷媒の量及び状態に偏りが生じる。そこで、実施の形態1の熱交換器10では、第2の分配器30において冷媒が分岐するまでに通過する直線状の配管の長さ、すなわち流入部配管36の長さを、内径の10倍以上としている。これにより、助走区間の長さを十分に確保することで冷媒の流れを偏りなく十分に安定した流れとでき、冷媒の均等な分配に効果的である。また、本開示の熱交換器10では、第2の分配器30を設けないことでできた空間に、流入部配管36を延長して設けることができ、直線状の助走区間の長さを確保できるので、冷媒の偏流をさらに抑制することができる。 In addition, since the refrigerant flowing into the heat exchanger 10 is a two-phase flow when the heat exchanger 10 is used as an evaporator as indicated by solid arrows in FIG. For this reason, when the refrigerant flows into the second distributor 30, the liquid portion of the refrigerant becomes uneven. Therefore, when the refrigerant flowing into the second distributor 30 collides with the inner surface of the pipe wall of the arm portion 33 of the U-shaped pipe portion 31 and branches off, if the run-up section is not sufficient, the two first refrigerant paths 61a and The amount and state of the refrigerant that divides into 61b and flows in is uneven. Therefore, in the heat exchanger 10 of the first embodiment, the length of the straight pipe through which the refrigerant is branched in the second distributor 30, that is, the length of the inlet pipe 36 is set to 10 times the inner diameter. That's it. As a result, by ensuring a sufficient length of the run-up section, the flow of the refrigerant can be sufficiently stabilized without bias, which is effective for uniform distribution of the refrigerant. In addition, in the heat exchanger 10 of the present disclosure, the inflow pipe 36 can be extended and provided in the space created by not providing the second distributor 30, and the length of the linear run-up section can be secured. Therefore, it is possible to further suppress the drift of the refrigerant.
 また、図6に示されるように、側面視における重力方向の仮想線X3と流入部35の管軸X1との角度θが、-90°<角度θ<90°となるように流入部35が成形される。ここで、流入部35の管軸X1がU字管部31から重力方向真上に延びる場合を角度θが0°であると定義し、流入部35の管軸X1が風下側へ傾斜する場合をマイナスの角度、風上側へ傾斜する場合をプラスの角度と定義している。すなわち、側面視において流入部35は、上向きに設けられている。流入部配管36の管軸は、流入部35の管軸X1と一致している。図6及び図10に示される例では、側面視における流入部35の角度θが-30°となるように流入部35が上側の腕部33に設けられ、流入部35は風下側へ傾斜した上向きに設けられている。 In addition, as shown in FIG. 6, the inlet section is arranged such that the angle θ 2 between the imaginary line X3 in the direction of gravity in the side view and the tube axis X1 of the inlet section 35 is −90°<angle θ 2 <90°. 35 are molded. Here, it is defined that the angle θ2 is 0° when the pipe axis X1 of the inflow portion 35 extends straight upward in the direction of gravity from the U-shaped pipe portion 31, and the pipe axis X1 of the inflow portion 35 is inclined to the leeward side. A negative angle is defined as a positive angle, and a positive angle is defined as a windward inclination. That is, the inflow part 35 is provided upward in a side view. The tube axis of the inlet pipe 36 coincides with the tube axis X1 of the inlet 35 . In the example shown in FIGS. 6 and 10, the inflow portion 35 is provided on the upper arm portion 33 so that the angle θ2 of the inflow portion 35 in side view is −30°, and the inflow portion 35 is inclined to the leeward side. It is installed facing upwards.
 図6に示されるように、第2の分配器30が、U字管部31の開口部Cに上向きに設けられた流入部35を有する場合、ヘッダ枝管51(図10参照)との干渉が抑制される。また、流入部35が設けられたU字管部31と流入部配管36とが別体構成とされる場合であって、U字管部31が伝熱管12(図4参照)にロウ付けされた後に、流入部35に流入部配管36がロウ付けされる構成では、流入部35が上向きに設けられることにより、ロウ付け性が良好となる。仮に流入部35が下向きに設けられると、流入部35に流入部配管36を差してロウ付けする際に流入部配管36が自重により抜け落ち易いが、流入部35が上向きに設けられると、流入部配管36が抜け落ち難いのでロウ付け作業が行い易い。また、流入部35が上向きに設けられると、流入部35に流入部配管36を差してロウ付けする際に流入部35と流入部配管36との隙間にロウが入り込み易いので、流入部35と流入部配管36との接合強度が確保できる。 As shown in FIG. 6, when the second distributor 30 has an inflow portion 35 provided upward at the opening C of the U-shaped pipe portion 31, interference with the header branch pipe 51 (see FIG. 10) is suppressed. Further, in the case where the U-shaped tube portion 31 provided with the inflow portion 35 and the inflow portion piping 36 are configured separately, the U-shaped tube portion 31 is brazed to the heat transfer tube 12 (see FIG. 4). In the configuration in which the inflow pipe 36 is brazed to the inflow portion 35 after that, the inflow portion 35 is provided facing upward, thereby improving the brazeability. If the inflow part 35 is provided downward, the inflow part pipe 36 is likely to fall off due to its own weight when the inflow part pipe 36 is inserted into the inflow part 35 and brazed. Since the pipe 36 is difficult to fall off, the brazing work can be easily performed. Further, when the inflow portion 35 is provided upward, when the inflow portion pipe 36 is inserted into the inflow portion 35 and brazed, the solder is likely to enter the gap between the inflow portion 35 and the inflow portion pipe 36. The joint strength with the inlet pipe 36 can be ensured.
 なお、第2の分配器30の構成は、上記の構成に限定されない。例えば、第2の分配器30は、2つ以上の第1の冷媒パスに冷媒を分配する構成であればよく、2つ以上の第1の冷媒パスを構成する伝熱管12同士を接続する接続部を有していればよい。接続部には、第1の分配器20と接続される開口部Cが形成されている。3つ以上の第1の冷媒パスに冷媒を分配する場合、接続部として、U字管部31の代わりに、接続される第1の冷媒パスの数に応じた分岐数の分岐管を用いることができる。あるいは、接続部は、内部空間が複数の冷媒流路に仕切られた構成とされてもよい。 The configuration of the second distributor 30 is not limited to the configuration described above. For example, the second distributor 30 may be configured to distribute the refrigerant to two or more first refrigerant paths. part. An opening C connected to the first distributor 20 is formed in the connecting portion. When distributing the refrigerant to three or more first refrigerant paths, instead of the U-shaped pipe portion 31, the number of branch pipes corresponding to the number of connected first refrigerant paths may be used as the connecting portion. can be done. Alternatively, the connecting portion may be configured such that the internal space is partitioned into a plurality of coolant channels.
 図11は、図4の熱交換器10における冷媒の分配構造を模式的に示す模式図である。図4及び図11に基づき、第1の分配器20及び接続配管40の構成について詳しく説明する。以降の説明では、複数の接続配管40のうち、第1の分配器20と第2の分配器30とを接続するものを第1の接続配管41と称し、第1の分配器20と第2の冷媒パス62の伝熱管12とを接続するものを第2の接続配管42と称する場合がある。 FIG. 11 is a schematic diagram schematically showing the refrigerant distribution structure in the heat exchanger 10 of FIG. The configurations of the first distributor 20 and the connecting pipe 40 will be described in detail with reference to FIGS. 4 and 11. FIG. In the following description, among the plurality of connection pipes 40, the one that connects the first distributor 20 and the second distributor 30 is referred to as the first connection pipe 41, and the first connection pipe 41 and the second distributor 20 , which connects the refrigerant path 62 with the heat transfer tube 12 may be referred to as a second connection pipe 42 .
 熱交換器10が蒸発器として用いられる場合、第1の分配器20には、気液二相状態で第1の分配器20に流入した冷媒を均等に、熱交換器10の各伝熱管12に分岐することが求められる。特に、複数の冷媒パスに同様の冷媒状態で冷媒を流入させることが求められる。このため、図4に示される例では、第1の分配器20としてディストリビュータが用いられている。図示していないが、ディストリビュータの内部にはオリフィス等の絞り機構が設けられており、流入した二相流をオリフィスに通過させることで噴霧流状態とし、均等分配し易い状態にする。噴霧流化された冷媒は、各接続配管40に均等に分配される。ディストリビュータの材質は、銅製、アルミ製、黄銅製などである。なお、ディストリビュータには、その内部にオリフィス等の絞り機構が設けられていない仕様のものを用いてもよい。第1の分配器20は、冷媒を均等に分配できるものであればよい。 When the heat exchanger 10 is used as an evaporator, the first distributor 20 evenly distributes the refrigerant that has flowed into the first distributor 20 in a gas-liquid two-phase state to each heat transfer tube 12 of the heat exchanger 10. It is required to branch to In particular, it is required to allow the refrigerant to flow into a plurality of refrigerant paths in a similar refrigerant state. For this reason, a distributor is used as the first distributor 20 in the example shown in FIG. Although not shown, a throttle mechanism such as an orifice is provided inside the distributor, and by allowing the inflowing two-phase flow to pass through the orifice, it is turned into a spray flow state, making it easy to distribute evenly. The atomized refrigerant is evenly distributed to each connecting pipe 40 . Distributors are made of copper, aluminum, brass, or the like. It should be noted that the distributor may be of a specification that does not have a throttle mechanism such as an orifice therein. The first distributor 20 may be any device as long as it can evenly distribute the refrigerant.
 各接続配管40は、内径及び長さといった仕様によって管内の圧力損失を調整でき、第1の分配器20から各伝熱管12あるいは第2の分配器30への分流比を調整することができる。一般に、ガス単相の冷媒が流れる管内の摩擦損失ΔP[Pa]すなわち圧力損失は、以下の式(1)で表されることが知られている。 Each connecting pipe 40 can adjust the pressure loss in the pipe according to the specifications such as the inner diameter and length, and can adjust the division ratio from the first distributor 20 to each heat transfer pipe 12 or the second distributor 30 . In general, it is known that the friction loss ΔP f [Pa] in a pipe through which a gas single-phase refrigerant flows, that is, the pressure loss is represented by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 f:管の摩擦損失係数
 L:流路の長さ[m]
 De:管の水力直径[m]
 ρ:ガス単相の冷媒の密度[kg/m
 u:管内を流れる流体の流速[m/s]
f: Friction loss coefficient of pipe L: Length of flow path [m]
De: Hydraulic diameter of pipe [m]
ρ v : Density of gas single-phase refrigerant [kg/m 3 ]
u: flow velocity of fluid flowing in pipe [m/s]
 管の摩擦損失係数fは、一般に乱流の場合(レイノルズ数が3000以上)、以下の式で表される。  The friction loss coefficient f of a pipe is generally expressed by the following formula in the case of turbulent flow (Reynolds number of 3000 or more).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 Re:レイノルズ数
 μ:ガス単相の粘度[Pa・s]
Re: Reynolds number μ v : Viscosity of gas single phase [Pa s]
 また、冷媒循環量Grは、以下の式(4)で算出できる。 Also, the refrigerant circulation amount Gr can be calculated by the following formula (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記の式(1)~(4)より、管内の摩擦損失ΔP[Pa]に寄与する状態量を算出すると以下のようになる。 From the above equations (1) to (4), the state quantities that contribute to the friction loss ΔP f [Pa] in the pipe are calculated as follows.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 すなわち、管内の摩擦損失ΔP[Pa]は、冷媒循環量の1.75乗、管長さの1乗、管内の水力直径の-4.75乗に比例する。なお、冷媒が液及びガスの二相状態で流動する場合には、圧力損失が増加するが、ここでは寸法関係から示されることに着目するため、この増加分については無視する。 That is, the friction loss ΔP f [Pa] in the pipe is proportional to the 1.75th power of the refrigerant circulation amount, the 1st power of the pipe length, and the −4.75th power of the hydraulic diameter in the pipe. When the refrigerant flows in a two-phase state of liquid and gas, the pressure loss increases. However, since attention is paid to the fact that it is shown from the dimensional relationship here, this increase is ignored.
 図4に示されるように、各第1の接続配管41は、第2の分配器30を介して2つの第1の冷媒パス61a及び61bと接続され、各第2の接続配管42は、1つの第2の冷媒パス62と直接接続されている。熱交換器10において冷媒の分配は、基本的に圧力損失が同様となるように冷媒循環量Grが分配される。熱交換器10において各列(図10参照)に存在する伝熱管12の本数が同じ場合、上下に隣り合う2つの冷媒パス(例えば、図11に示される第1の冷媒パス61aと第2の冷媒パス62と)で、各冷媒パスに与えられる熱負荷は同様と考えられる。その場合、上下に隣り合う2つの冷媒パスに冷媒循環量Grを均等に流すことで、一方の冷媒パスで冷媒が先立ってガス化して性能が低下する、といったことが抑制できる。すなわち、同様の熱負荷が与えられた冷媒パス(例えば、図11における第1の冷媒パス61a、第1の冷媒パス61b及び第2の冷媒パス62)には、冷媒循環量Grを均等に流すことが望ましい。 As shown in FIG. 4, each first connecting pipe 41 is connected to two first refrigerant paths 61a and 61b via a second distributor 30, and each second connecting pipe 42 is connected to one It is directly connected with two second refrigerant paths 62 . Refrigerant distribution in the heat exchanger 10 is such that the refrigerant circulation amount Gr is basically distributed such that the pressure loss is the same. When the heat exchanger 10 has the same number of heat transfer tubes 12 in each row (see FIG. 10), two vertically adjacent refrigerant paths (for example, the first refrigerant path 61a and the second refrigerant path 61a shown in FIG. 11) 62 and ), the heat load applied to each refrigerant path is assumed to be similar. In this case, by evenly flowing the refrigerant circulation amount Gr through the two vertically adjacent refrigerant paths, it is possible to prevent the refrigerant from gasifying first in one of the refrigerant paths and degrading the performance. That is, the refrigerant circulation amount Gr is evenly passed through the refrigerant paths (for example, the first refrigerant path 61a, the first refrigerant path 61b, and the second refrigerant path 62 in FIG. 11) to which the same heat load is applied. is desirable.
 ここで、同様の熱負荷が与えられた第1の冷媒パス61aと第1の冷媒パス61bと第2の冷媒パス62とに、冷媒循環量Grを均等に流すためには、第1の接続配管41に、第2の接続配管42に流れる循環量の2倍の量の冷媒を流すことが考えられる。しかしながら、第1の接続配管41と第2の接続配管42の仕様を同一とした場合、式(5)に示されるように、圧力損失は冷媒循環量Grの1.75乗に比例するので、第1の接続配管41と第2の接続配管42とにおける圧力損失(すなわち摩擦損失ΔP)を同等とするためには、第1の接続配管41に流れる冷媒の循環量は、第2の接続配管42に流れる循環量の2倍未満となる。したがって、第1の冷媒パス群61の1パス当たりの冷媒循環量は、第2の冷媒パス62の冷媒循環量よりも小さくなり、熱負荷に対する冷媒分配が不均一となる。 Here, in order to evenly flow the refrigerant circulation amount Gr through the first refrigerant path 61a, the first refrigerant path 61b, and the second refrigerant path 62 to which the same heat load is applied, the first connection It is conceivable to flow through the pipe 41 twice the amount of refrigerant that flows through the second connection pipe 42 . However, when the specifications of the first connecting pipe 41 and the second connecting pipe 42 are the same, as shown in the equation (5), the pressure loss is proportional to the 1.75th power of the refrigerant circulation amount Gr. In order to equalize the pressure loss (that is, the friction loss ΔP f ) in the first connection pipe 41 and the second connection pipe 42, the circulation amount of the refrigerant flowing through the first connection pipe 41 is It is less than twice the amount of circulation flowing through the pipe 42 . Therefore, the refrigerant circulation amount per path of the first refrigerant path group 61 becomes smaller than the refrigerant circulation amount of the second refrigerant path 62, and the refrigerant distribution with respect to the heat load becomes uneven.
 そこで、本開示の熱交換器10では、第1の接続配管41と第2の接続配管42の寸法関係により管内の圧力損失を調整することで、第1の冷媒パス61aと第1の冷媒パス61bと第2の冷媒パス62とに、冷媒循環量Grを均等に流すことができる。具体的には、第1の接続配管41の管内圧力損失が第2の接続配管42の管内圧力損失よりも小さくなるような、第1の接続配管41と第2の接続配管42とが用いられる。より具体的には、第2の接続配管42の長さを、第1の接続配管41の長さよりも長くする、あるいは、第2の接続配管42の内径D2を、第1の接続配管41の内径D1よりも小さくすればよい。 Therefore, in the heat exchanger 10 of the present disclosure, by adjusting the pressure loss in the pipes according to the dimensional relationship between the first connecting pipe 41 and the second connecting pipe 42, the first refrigerant path 61a and the first refrigerant path Refrigerant circulation amount Gr can be evenly flowed through 61 b and second refrigerant path 62 . Specifically, the first connection pipe 41 and the second connection pipe 42 are used such that the pressure loss in the first connection pipe 41 is smaller than the pressure loss in the second connection pipe 42. . More specifically, the length of the second connection pipe 42 is made longer than the length of the first connection pipe 41, or the inner diameter D2 of the second connection pipe 42 is set to the length of the first connection pipe 41. It should be smaller than the inner diameter D1.
 ところで、熱交換器10に空気を送風する室外ファン6(図1参照)からの風速は、図4に示される熱交換器10の全面において均一とは限らず、風速分布が存在する場合がある。熱交換器10が蒸発器として用いる場合において、熱交換器10における風速が速い部分を通過する冷媒は、風速が遅い部分を通過する冷媒に比べてガス化が進み、乾きやすくなる。よって、各伝熱管12に流入する冷媒量が同じ場合、風速が速い部分を通過した冷媒は、風速が遅い部分を通過した冷媒よりも乾き度が高くなり、熱交換器出口において冷媒状態にばらつきが生じてしまう。一般に冷媒がガス化すると熱交換効率は著しく悪化してしまうので、熱交換器10の部位によって風速にバラつきがある場合には、風速が速い部分に位置する伝熱管12に冷媒が多く流入するように分流させることで、冷媒パス出口での冷媒状態が冷媒パス間で同じになるようにしている。このように、風速分布の存在に起因して分流比を調整することが求められる場合においても、各接続配管40の仕様を調整することで分流比を調整することができる。 By the way, the wind speed from the outdoor fan 6 (see FIG. 1) that blows air to the heat exchanger 10 is not necessarily uniform over the entire surface of the heat exchanger 10 shown in FIG. 4, and there may be a wind speed distribution. . When the heat exchanger 10 is used as an evaporator, the refrigerant passing through the portion of the heat exchanger 10 where the wind speed is fast gasifies and dries more easily than the refrigerant passing through the portion of the heat exchanger 10 where the wind speed is slow. Therefore, when the amount of refrigerant flowing into each heat transfer tube 12 is the same, the refrigerant that has passed through the portion where the wind speed is fast has a higher degree of dryness than the refrigerant that has passed through the portion where the wind speed is slow, and the refrigerant state varies at the outlet of the heat exchanger. occurs. In general, when the refrigerant gasifies, the heat exchange efficiency deteriorates significantly. Therefore, if the wind speed varies depending on the part of the heat exchanger 10, a large amount of the refrigerant flows into the heat transfer tube 12 located in the part where the wind speed is high. By dividing the flow into two, the state of the refrigerant at the outlet of the refrigerant path is made to be the same among the refrigerant paths. In this way, even when it is required to adjust the flow division ratio due to the existence of the wind speed distribution, it is possible to adjust the flow division ratio by adjusting the specifications of each connecting pipe 40 .
 以上のように、実施の形態1の熱交換器10は、冷媒を複数の流れに分配する第1の分配器20と、第1の分配器20で分配された冷媒の複数の流れのうち一つを更に複数の流れに分配する1つ以上の第2の分配器30と、を備える。また、熱交換器10は、重力方向に配列され、3つ以上の冷媒パスを構成する複数段の伝熱管12と、を備える。第2の分配器30は、3つ以上の冷媒パスの一部であって複数の冷媒パスを構成する伝熱管12同士を接続する、内部に複数の冷媒流路が形成された接続部(例えば、U字管部31)を有し、接続部には、第1の分配器20と接続される開口部Cが形成されている。そして、複数段の伝熱管12のうち一部の伝熱管12は、1つ以上の第2の分配器30を介して第1の分配器20と接続され、1つ以上の第2の分配器30のいずれかで分配された冷媒の複数の流れが流入する複数の第1の冷媒パス61a及び61bを1群以上構成する。複数段の伝熱管12のうち残りの伝熱管12は、1つ以上の第2の分配器30を介さずに第1の分配器20と接続され、第1の分配器20で分配された冷媒の複数の流れの一つが直接流入する第2の冷媒パス62を1つ以上構成する。 As described above, the heat exchanger 10 of Embodiment 1 includes the first distributor 20 that distributes the refrigerant into a plurality of flows, and one of the plurality of flows of the refrigerant distributed by the first distributor 20. and one or more second distributors 30 for further distributing one into a plurality of streams. The heat exchanger 10 also includes multiple stages of heat transfer tubes 12 that are arranged in the direction of gravity and form three or more refrigerant paths. The second distributor 30 is a connection portion (for example, , a U-shaped tube portion 31), and an opening portion C connected to the first distributor 20 is formed in the connecting portion. Some of the heat transfer tubes 12 of the multiple stages of heat transfer tubes 12 are connected to the first distributor 20 via one or more second distributors 30, and are connected to one or more second distributors. One or more groups of a plurality of first refrigerant paths 61a and 61b into which a plurality of flows of refrigerant distributed by any of 30 flow. The remaining heat transfer tubes 12 of the multi-stage heat transfer tubes 12 are connected to the first distributor 20 without passing through one or more second distributors 30, and the refrigerant distributed by the first distributor 20 constitutes one or more second refrigerant paths 62 directly into which one of the plurality of flows of .
 実施の形態1の熱交換器10では、複数段の伝熱管12のうち一部の伝熱管12(第1の冷媒パス61a及び61bを構成する複数の伝熱管12)のみ、第2の分配器30が設けられる。よって、従来のように複数の冷媒パスの全てに第2の分配器30が設けられる場合と比べて、本開示の熱交換器10では、熱交換器10における第2の分配器30が設けられる側に空間の余裕が生まれる。結果、第2の分配器30を備えた熱交換器10において配管の組付け及びロウ付け等の作業性が良くなる。 In the heat exchanger 10 of Embodiment 1, only some of the heat transfer tubes 12 (the plurality of heat transfer tubes 12 forming the first refrigerant paths 61a and 61b) of the multiple stages of heat transfer tubes 12 are connected to the second distributor. 30 is provided. Therefore, in the heat exchanger 10 of the present disclosure, the second distributor 30 is provided in the heat exchanger 10 compared to the conventional case where the second distributor 30 is provided in all of the plurality of refrigerant paths. Creates space on the sides. As a result, in the heat exchanger 10 having the second distributor 30, workability such as pipe assembly and brazing is improved.
 また、熱交換器10は、第1の分配器20と第2の分配器30とを接続する第1の接続配管41と、第1の分配器20と第2の冷媒パス62の伝熱管12とを接続する第2の接続配管42と、を備えている。そして、第1の接続配管41と第2の接続配管42とは、第1の接続配管41の管内圧力損失が第2の接続配管42の管内圧力損失よりも小さくなるように構成されている。 In addition, the heat exchanger 10 includes a first connection pipe 41 that connects the first distributor 20 and the second distributor 30, and heat transfer pipes 12 between the first distributor 20 and the second refrigerant path 62. and a second connection pipe 42 that connects the . The first connection pipe 41 and the second connection pipe 42 are configured such that the pressure loss in the first connection pipe 41 is smaller than the pressure loss in the second connection pipe 42 .
 これにより、第1の接続配管41及び第2の接続配管42のうち、接続される冷媒パス数がより多い第1の接続配管41で冷媒が流れ易くなるので、冷媒パス間で循環量を均等にできる。よって、熱交換器10の熱負荷に対する分配比率を適正に近づけることができる。 As a result, of the first connection pipe 41 and the second connection pipe 42, the refrigerant flows more easily through the first connection pipe 41, which is connected to the larger number of refrigerant paths. can be done. Therefore, the distribution ratio for the heat load of the heat exchanger 10 can be brought close to an appropriate value.
 以下、実施の形態1に係る熱交換器10の変形例を挙げる。図12は、実施の形態1に係る熱交換器10の第1変形例の模式図である。図12において、点線矢印は、熱交換器10を凝縮器として冷凍サイクル装置1(図1参照)が冷房運転及び除湿運転を行う場合の冷媒が流れる向きを示しており、実線矢印は、熱交換器10を蒸発器として冷凍サイクル装置1(図1参照)が暖房運転を行う場合の冷媒が流れる向きを示している。図13は、図12の熱交換器10の上端部を含む部分拡大図である。図14は、図13の熱交換器を第2分配器が設けられた側から見た側面図である。図14において、白抜き矢印は、空気の流通方向を示している。図12~図14に基づき、第1変形例の熱交換器10の構成について説明する。 Modified examples of the heat exchanger 10 according to Embodiment 1 are given below. FIG. 12 is a schematic diagram of a first modification of the heat exchanger 10 according to Embodiment 1. FIG. In FIG. 12, the dotted line arrows indicate the direction of refrigerant flow when the refrigeration cycle device 1 (see FIG. 1) performs the cooling operation and the dehumidifying operation using the heat exchanger 10 as a condenser, and the solid line arrows indicate the direction of heat exchange. 1 shows the direction in which the refrigerant flows when the refrigerating cycle device 1 (see FIG. 1) performs heating operation using the evaporator 10 as an evaporator. FIG. 13 is a partially enlarged view including the upper end of the heat exchanger 10 of FIG. 12. FIG. 14 is a side view of the heat exchanger of FIG. 13 viewed from the side where the second distributor is provided. In FIG. 14, white arrows indicate the direction of air flow. The configuration of the heat exchanger 10 of the first modified example will be described with reference to FIGS. 12 to 14. FIG.
 図12に示されるように、第1変形例の熱交換器10では、熱交換器10が有する3つ以上の冷媒パスのうち重力方向の最上段に位置する冷媒パスのみが、第2の冷媒パス62であり、2段目以下の冷媒パスは第1の冷媒パス61a又は第1の冷媒パス61bである。つまり、第1変形例の熱交換器10では、最上段の冷媒パスは、第2の分配器30を介さずに、接続配管40によって第1の分配器20と直接接続される。なお、熱交換器10が有する3つ以上の冷媒パスのうち最上段に位置する冷媒パスのみでなく、2段目以下の一部の冷媒パスも、第2の冷媒パス62としてよい。 As shown in FIG. 12 , in the heat exchanger 10 of the first modification, only the refrigerant path positioned at the uppermost stage in the gravitational direction among the three or more refrigerant paths of the heat exchanger 10 is the second refrigerant. The first refrigerant path 61a or the first refrigerant path 61b is the refrigerant path of the second stage or lower. That is, in the heat exchanger 10 of the first modified example, the uppermost refrigerant path is directly connected to the first distributor 20 by the connection pipe 40 without the second distributor 30 interposed therebetween. In addition, not only the uppermost refrigerant path among the three or more refrigerant paths that the heat exchanger 10 has, but also some of the second and lower refrigerant paths may be used as the second refrigerant paths 62 .
 このように、第1変形例では、熱交換器10が有する3つ以上の冷媒パスの重力方向で最も上側には、第2の冷媒パス62が配置されていることにより、熱交換器10の上部には第2の分配器30を設けないことで空間に余裕が生まれる。よって、最も上側の第2の分配器30を伝熱管12にロウ付けするための作業スペースが確保できる。また、図13及び図14に示されるように、第2の分配器30は、熱交換器10が有する3つ以上の冷媒パスのうち2段目以下の冷媒パスと接続するように設けられるので、熱交換器10の上部において第2の分配器30の流入部35及び流入部配管36が突出することが回避できる。よって、従来のように複数の冷媒パスの最上段に第2の分配器30を設ける場合と比べ、第1変形例の熱交換器10では、第2の分配器30と室外機101(図2参照)の上面パネル111とが干渉し難いので、室外機101の高さを低くする、あるいは、最も上側に位置する第2の分配器30の流入部配管36を長くすることができる。 Thus, in the first modification, the second refrigerant path 62 is arranged at the uppermost position in the gravitational direction of the three or more refrigerant paths that the heat exchanger 10 has. By not providing the second distributor 30 in the upper part, a space is created. Therefore, a work space for brazing the uppermost second distributor 30 to the heat transfer tubes 12 can be secured. Further, as shown in FIGS. 13 and 14, the second distributor 30 is provided so as to be connected to the second stage or lower refrigerant paths among the three or more refrigerant paths that the heat exchanger 10 has. , the inflow part 35 and the inflow part pipe 36 of the second distributor 30 can be prevented from protruding above the heat exchanger 10 . Therefore, compared to the conventional case where the second distributor 30 is provided at the uppermost stage of a plurality of refrigerant paths, in the heat exchanger 10 of the first modification, the second distributor 30 and the outdoor unit 101 (Fig. 2 ), the height of the outdoor unit 101 can be lowered, or the inlet piping 36 of the second distributor 30 located at the uppermost side can be lengthened.
 また、図12に示されるように、第1の分配器20から延びる複数の接続配管40のうち複数の伝熱管12から最も離れた位置から延びた接続配管40を、最上段の冷媒パスとつなぐようにすれば、他の接続配管40との干渉を回避でき、取り回しが容易となる。よって、熱交換器10の製造性が良くなる。 Further, as shown in FIG. 12, among the plurality of connection pipes 40 extending from the first distributor 20, the connection pipe 40 extending from the position furthest from the plurality of heat transfer tubes 12 is connected to the uppermost refrigerant path. By doing so, it is possible to avoid interference with other connecting pipes 40 and facilitate handling. Therefore, the manufacturability of the heat exchanger 10 is improved.
 図15は、実施の形態1に係る熱交換器10の第2変形例の模式図である。図15において、白抜き矢印は、空気の流通方向を示している。図16は、図15の熱交換器10を第2の分配器30が設けられた側から見た側面図である。図15及び図16に基づき、第2変形例の熱交換器10の構成について説明する。 FIG. 15 is a schematic diagram of a second modification of the heat exchanger 10 according to Embodiment 1. FIG. In FIG. 15, white arrows indicate the direction of air flow. FIG. 16 is a side view of the heat exchanger 10 of FIG. 15 viewed from the side where the second distributor 30 is provided. The configuration of the heat exchanger 10 of the second modification will be described with reference to FIGS. 15 and 16. FIG.
 図16に示されるように、第2変形例の熱交換器10においても、第1変形例の場合と同様、熱交換器10が有する3つ以上の冷媒パスのうち最上段に位置する冷媒パスは第2の冷媒パス62であり、接続配管40と直接つながっている。第2変形例では、最上段に位置する冷媒パスの列間接続配管14aは、風上側の列の最上段に配置された伝熱管12と、風下側の列の最上段に配置された伝熱管12と、を接続している。そして、第2変形例の熱交換器10では、3つ以上の冷媒パスにおける列間接続配管14(図15参照)のうち、最上段に位置する冷媒パスを構成する列間接続配管14aが、熱交換器10の横方向(矢印X方向)で最も突出するように設けられている。すなわち、最上段に配置された第2の冷媒パス62を構成する列間接続配管14aを風上側から見た横方向の長さLaは、その他の冷媒パスを構成する列間接続配管14の横方向の長さLoよりも長い構成とされている。そして、第2変形例の熱交換器10では、複数の列間接続配管14のうち最も上方に位置し、且つ最も横方向の長さが長いこの列間接続配管14aに、例えばサーミスタで構成された温度検出器71が設置される。 As shown in FIG. 16, in the heat exchanger 10 of the second modification, as in the case of the first modification, among the three or more refrigerant paths that the heat exchanger 10 has, the refrigerant path located in the uppermost stage is the second refrigerant path 62 and is directly connected to the connecting pipe 40 . In the second modification, the inter-row connecting pipes 14a of the refrigerant paths positioned at the topmost stage are the heat transfer tubes 12 arranged at the topmost stage of the windward row and the heat transfer tubes 12 arranged at the topmost stage of the leeward row. 12 and are connected. In the heat exchanger 10 of the second modification, among the row-to-row connection pipes 14 (see FIG. 15) in three or more refrigerant paths, the row-to-row connection pipe 14a constituting the uppermost refrigerant path is It is provided so as to protrude most in the lateral direction (direction of arrow X) of the heat exchanger 10 . That is, the horizontal length La of the row-to-row connection pipe 14a constituting the second refrigerant path 62 arranged on the uppermost stage as viewed from the windward side is the width of the row-to-row connection pipe 14 constituting the other refrigerant paths. It is configured to be longer than the length Lo in the direction. In the heat exchanger 10 of the second modification, the inter-row connection pipe 14a, which is located at the uppermost position among the plurality of inter-row connection pipes 14 and has the longest horizontal length, is composed of, for example, a thermistor. A temperature detector 71 is installed.
 このように、第2変形例では、最上段に位置する第2の冷媒パス62の列間接続配管14は、この第2の冷媒パス62において上側に設けられ、且つ、他の冷媒パスの列間接続配管14よりも熱交換器10の横方向に突出している。したがって、他の配管との干渉を回避しつつ、列間接続配管14aへの温度検出器71の設置が容易となる。 Thus, in the second modification, the row-to-row connection pipe 14 of the second refrigerant path 62 located at the uppermost stage is provided on the upper side of the second refrigerant path 62, It protrudes in the lateral direction of the heat exchanger 10 more than the connecting pipe 14 . Therefore, it becomes easy to install the temperature detector 71 in the inter-row connection pipe 14a while avoiding interference with other pipes.
 なお、熱交換器10が複数段の伝熱管12を3列以上有する場合等のように冷媒パスのそれぞれが2以上の列間接続配管14を備える場合には、最上段に位置する第2の冷媒パス62に含まれる2以上の列間接続配管14の1つのみが、熱交換器10の横方向に突出する構成とされてもよい。 In addition, when each of the refrigerant paths is provided with two or more inter-row connection pipes 14, such as when the heat exchanger 10 has three or more rows of heat transfer tubes 12 in multiple stages, the second Only one of the two or more inter-row connection pipes 14 included in the refrigerant path 62 may be configured to protrude in the lateral direction of the heat exchanger 10 .
 また、図15及び図16に示される例では、複数の風上側伝熱管12aと複数の風下側伝熱管12bとが重力方向においてずれて配置される。そして、第2の分配器30は全て、重力方向の下方側にずれて配置されている列(図15に示される例では、風上側の列)の2つの伝熱管12とつながっている。そして、ヘッダ枝管51は全て、他の列(図15に示される例では、風下側の列)の伝熱管12とつながっている。 Also, in the example shown in FIGS. 15 and 16, the plurality of windward heat transfer tubes 12a and the plurality of leeward heat transfer tubes 12b are arranged to be shifted in the direction of gravity. All of the second distributors 30 are connected to two heat transfer tubes 12 in a row (in the example shown in FIG. 15, the row on the windward side) that is displaced downward in the direction of gravity. All of the header branch pipes 51 are connected to the heat transfer tubes 12 in other rows (the row on the lee side in the example shown in FIG. 15).
 図15に示されるように第2の分配器30の流入部35及び流入部配管36が上側へ延びるように設けられる場合において、列間で高さを違え、上記のように第2の分配器30を設けることで、ヘッダ枝管51と流入部配管36との干渉を抑制することができる。詳しくは、図15において、上から2段目の冷媒パス(図16に示される第1の冷媒パス61a)とつながった第2の分配器30における流入部配管36は、第2の分配器30が設けられる風上側の列が風下側の列よりも下方側にずれているので、風下側の列に設けられた最上段の冷媒パス(図16に示される第2の冷媒パス62)とつながったヘッダ枝管51との距離が、2列が同じ高さに設けられる場合と比べて離れ、干渉が抑制できる。 In the case where the inflow portion 35 and the inflow portion piping 36 of the second distributor 30 are provided to extend upward as shown in FIG. Interference between the header branch pipe 51 and the inlet pipe 36 can be suppressed by providing the pipe 30 . Specifically, in FIG. 15, the inlet pipe 36 in the second distributor 30 connected to the second refrigerant path from the top (the first refrigerant path 61a shown in FIG. 16) is connected to the second distributor 30 Since the row on the windward side where is provided is shifted downward from the row on the leeward side, it is connected to the uppermost refrigerant path (second refrigerant path 62 shown in FIG. 16) provided in the row on the leeward side. The distance from the header branch pipes 51 is greater than when the two rows are provided at the same height, and interference can be suppressed.
 図17は、実施の形態1に係る熱交換器10の第3変形例の模式図である。図18は、図17の熱交換器10を第2の分配器30が設けられた側から見た側面図である。図18において、白抜き矢印は、空気の流通方向を示している。図17及び図18に基づき、第3変形例の熱交換器10の構成について説明する。 FIG. 17 is a schematic diagram of a third modification of the heat exchanger 10 according to Embodiment 1. FIG. FIG. 18 is a side view of the heat exchanger 10 of FIG. 17 viewed from the side where the second distributor 30 is provided. In FIG. 18, white arrows indicate the direction of air flow. The configuration of the heat exchanger 10 of the third modification will be described with reference to FIGS. 17 and 18. FIG.
 図17に示されるように、第3変形例の熱交換器10では、重力方向において複数の第1の冷媒パス(例えば、2つの第1の冷媒パス61a及び61b)と第2の冷媒パス62とが、交互に配置された構成とされている。第3変形例では、重力方向において第1の冷媒パス群61と第2の冷媒パスとが交互に設けられるので、図18に示されるように、第2の分配器30が段方向すなわち上下方向(矢印Z方向)に連続して配置される場合に比べて、第2の分配器30と第2の分配器30との間の空間の余裕が生まれる。よって、配管の組み付け及び接合(例えば、ロウ付け)の作業性が向上する。 As shown in FIG. 17, in the heat exchanger 10 of the third modification, a plurality of first refrigerant paths (for example, two first refrigerant paths 61a and 61b) and a second refrigerant path 62 are arranged alternately. In the third modification, the first refrigerant path group 61 and the second refrigerant path are provided alternately in the gravitational direction, so as shown in FIG. Compared to the case where they are arranged continuously in the direction of the arrow Z, there is more space between the second distributors 30 and 30 . Therefore, the workability of assembling and joining (for example, brazing) pipes is improved.
実施の形態2.
 図19は、実施の形態2に係る熱交換器10を風上側から見た一部の構成を模式的に示す模式図である。図20は、図19の熱交換器10を第2の分配器30が設けられた側から見た側面図である。図21は、図19の第2の分配器30の一構成例を示す風下側から見た概略図である。図22は、図21の第2の分配器30を側面から見た概略図である。図23は、図21の第2の分配器30を上方から見た概略図である。図20、図22及び図23において、白抜き矢印は、空気の流通方向を示している。
Embodiment 2.
FIG. 19 is a schematic diagram schematically showing a partial configuration of the heat exchanger 10 according to Embodiment 2 as viewed from the windward side. FIG. 20 is a side view of the heat exchanger 10 of FIG. 19 viewed from the side where the second distributor 30 is provided. FIG. 21 is a schematic diagram showing one configuration example of the second distributor 30 of FIG. 19 as viewed from the leeward side. FIG. 22 is a schematic side view of the second distributor 30 of FIG. FIG. 23 is a schematic top view of the second distributor 30 of FIG. In FIGS. 20, 22 and 23, white arrows indicate the direction of air flow.
 実施の形態1では、第2の分配器30において流入部35は、接続部であるU字管部31の開口部Cから上側へ延びるように設けられていたが、実施の形態2では、流入部35は、接続部であるU字管部31の開口部Cから水平方向に延びるように設けられる。以下、実施の形態2において、実施の形態1の場合と異なる構成について説明する。 In the first embodiment, the inflow part 35 in the second distributor 30 is provided so as to extend upward from the opening C of the U-shaped tube part 31, which is the connecting part. The portion 35 is provided so as to extend horizontally from the opening portion C of the U-shaped pipe portion 31, which is a connecting portion. In the second embodiment, the configuration different from that of the first embodiment will be described below.
 図20及び図22に示されるように、実施の形態2の熱交換器10において、第2の分配器30は、側面視でU字管部31に横向きに設けられた流入部35を有する。すなわち、側面視で重力方向の仮想線X3と流入部35の管軸X1との角度θが-90°となるように、流入部35及び開口部CはU字管部31の風下側に設けられている。また、図23に示されるように、流入部35は、上側の腕部33の管軸X2との角度θが略90°となるように設けられている。つまり、図20~図23に示される例では、直線状の流入部配管36が、空気の流通方向に沿って風下側へ延びるように設けられる。 As shown in FIGS. 20 and 22, in the heat exchanger 10 of the second embodiment, the second distributor 30 has an inflow portion 35 provided laterally in the U-shaped tube portion 31 in side view. That is, the inflow portion 35 and the opening portion C are arranged on the leeward side of the U-shaped pipe portion 31 so that the angle θ2 between the imaginary line X3 in the direction of gravity and the tube axis X1 of the inflow portion 35 is −90° in a side view. is provided. Further, as shown in FIG. 23, the inflow portion 35 is provided so that the angle θ1 between the upper arm portion 33 and the tube axis X2 is approximately 90°. That is, in the examples shown in FIGS. 20 to 23, the linear inlet pipe 36 is provided to extend downwind along the air circulation direction.
 図20に示されるように、風上側の列に設けられる複数の伝熱管(すなわち図19に示される風上側伝熱管12a)と、風下側の列に設けられる複数の伝熱管12(すなわち図19に示される風下側伝熱管12b)と、が重力方向においてずれて配置されている。そして、第2の分配器30は、風上側の列に属する2つの伝熱管12(すなわち図19に示される風上側伝熱管12a)と接続され、U字管部31から下流側に延びた流入部配管36は、2つのヘッダ枝管51の間に配置される。 As shown in FIG. 20, a plurality of heat transfer tubes provided in the windward row (that is, the windward heat transfer tubes 12a shown in FIG. 19) and a plurality of heat transfer tubes 12 provided in the leeward row (that is, FIG. 19 12b) and the leeward heat transfer tubes 12b) are arranged with a deviation in the direction of gravity. The second distributor 30 is connected to the two heat transfer tubes 12 belonging to the windward row (that is, the windward heat transfer tubes 12a shown in FIG. 19) and extends downstream from the U-shaped tube portion 31. The internal pipe 36 is arranged between two header branch pipes 51 .
 なお、図21に示されるU字管部31において、流入部35を設ける部位は上側の腕部33に限定されず、連結部32又は下側の腕部34に設けられてもよい。また、流入部35及び流入部配管36は、水平方向に設けられればよく、角度θが90°となるようにU字管部31の上流側に設けられるか、あるいは、図19に示されるように風上側から見て横方向(矢印X方向)に設けられてもよい。流入部35及び流入部配管36が風上側から見て横方向(矢印X方向)に設けられる場合、開口部C、流入部35及び流入部配管36はU字管部31の連結部32に設けられる。また、角度θは、厳密に90°でなくともよいが、75°以上且つ105°以下であることが好ましい。 In addition, in the U-shaped tube portion 31 shown in FIG. 21 , the portion where the inflow portion 35 is provided is not limited to the upper arm portion 33 , and may be provided in the connecting portion 32 or the lower arm portion 34 . In addition, the inflow part 35 and the inflow part pipe 36 may be provided in the horizontal direction, and may be provided upstream of the U-shaped pipe part 31 so that the angle θ2 is 90°, or may be provided as shown in FIG. It may be provided in the lateral direction (the direction of the arrow X) when viewed from the windward side. When the inflow part 35 and the inflow part pipe 36 are provided in the lateral direction (the direction of the arrow X) when viewed from the windward side, the opening C, the inflow part 35 and the inflow part pipe 36 are provided in the connection part 32 of the U-shaped pipe part 31. be done. Also, the angle θ 1 does not have to be strictly 90°, but is preferably 75° or more and 105° or less.
 図19に示されるように、実施の形態2の熱交換器10においても、熱交換器10が有する3つ以上の複数の冷媒パスは、第2の分配器30を介して第1の分配器20と接続された2つの第1の冷媒パス61a及び61bと、第2の分配器30を介さずに直接第1の分配器20と接続された第2の冷媒パス62と、を含むものである。したがって、熱交換器10が有する3つ以上の冷媒パスのうち一部の冷媒パスにのみ、第2の分配器30が設けられるので、熱交換器10における第2の分配器30が設けられる側に空間の余裕が生まれ、配管の組付け及びロウ付け等の作業性が良くなる。 As shown in FIG. 19 , also in the heat exchanger 10 of the second embodiment, three or more refrigerant paths of the heat exchanger 10 are routed through the first distributor 30 via the second distributor 30 . 20, and a second refrigerant path 62 directly connected to the first distributor 20 without going through the second distributor 30. Therefore, since the second distributor 30 is provided only in some of the three or more refrigerant paths of the heat exchanger 10, the side of the heat exchanger 10 on which the second distributor 30 is provided A space is created in the space, and workability such as piping assembly and brazing is improved.
 また、実施の形態2の熱交換器10では、第2の分配器30は、接続部(例えば、U字管部31)の開口部Cから水平方向に延びた流入部35を有し、開口部Cは、流入部35を介して第1の分配器と接続される。これにより、第2の分配器30の上下幅を変えずに流入部35を設けることができるので、上下方向(矢印Z方向)に配列された伝熱管12同士の間隔すなわちピッチが狭い場合でも、第2の分配器30と他の配管との干渉を回避しつつ、分岐前の冷媒の助走区間を設けることができる。 Further, in the heat exchanger 10 of Embodiment 2, the second distributor 30 has an inflow portion 35 extending horizontally from the opening C of the connecting portion (for example, the U-shaped pipe portion 31), and the opening Section C is connected via inlet section 35 to the first distributor. As a result, the inflow portion 35 can be provided without changing the vertical width of the second distributor 30. Therefore, even if the interval, that is, the pitch, between the heat transfer tubes 12 arranged in the vertical direction (the arrow Z direction) is narrow, A run-up section for the refrigerant before branching can be provided while avoiding interference between the second distributor 30 and other pipes.
 図24は、実施の形態2に係る熱交換器10の第4変形例の模式図である。図25は、図24の熱交換器10を第2の分配器30が設けられた側から見た側面図である。図25において、白抜き矢印は、空気の流通方向を示している。図24及び図25に基づき、第4変形例の熱交換器の構成について説明する。 FIG. 24 is a schematic diagram of a fourth modification of the heat exchanger 10 according to Embodiment 2. FIG. FIG. 25 is a side view of the heat exchanger 10 of FIG. 24 viewed from the side where the second distributor 30 is provided. In FIG. 25, white arrows indicate the direction of air flow. The configuration of the heat exchanger of the fourth modification will be described with reference to FIGS. 24 and 25. FIG.
 第4変形例の熱交換器10においても、図20~図23に示される場合と同様、第2の分配器30の流入部35はU字管部31に水平方向に設けられている。ただし、第4変形例の熱交換器10では、流入部35は、空気の流通方向において複数のヘッダ枝管51が配置されている側とは反対側を向くように設けられる。図24及び図25に示される例では、複数のヘッダ枝管51のそれぞれは、風上側の列の伝熱管12(すなわち図24に示される風上側伝熱管12a)と接続され、第2の分配器30は、風下側の列の伝熱管12(すなわち図24に示される風下側伝熱管12b)と接続されている。そして、第2の分配器30の流入部35は、空気の流通方向においてU字管部31の風下側に設けられ、流入部35から空気の流通方向に沿うように流入部配管36が延びている。 Also in the heat exchanger 10 of the fourth modification, the inflow part 35 of the second distributor 30 is provided horizontally in the U-shaped tube part 31, as in the cases shown in FIGS. However, in the heat exchanger 10 of the fourth modification, the inflow portion 35 is provided so as to face the side opposite to the side where the plurality of header branch pipes 51 are arranged in the air circulation direction. In the example shown in FIGS. 24 and 25, each of the plurality of header branch pipes 51 is connected to the windward row of heat transfer tubes 12 (that is, the windward heat transfer tubes 12a shown in FIG. 24) to form the second distribution The vessel 30 is connected to the leeward row of heat transfer tubes 12 (ie, the leeward heat transfer tubes 12b shown in FIG. 24). The inflow portion 35 of the second distributor 30 is provided on the leeward side of the U-shaped pipe portion 31 in the air circulation direction, and an inflow pipe 36 extends from the inflow portion 35 along the air circulation direction. there is
 以上のように、第4変形例の熱交換器10は、複数のヘッダ枝管51を有し、熱交換器10が有する3つ以上の冷媒パスからの冷媒が合流するヘッダ50を備え、複数段の伝熱管12を空気の流通方向に複数列備える。そして、複数のヘッダ枝管51のそれぞれは、複数列のうちの一列に配置された伝熱管12に接続され、第2の分配器30は、複数列のうち一列とは異なる列の2つの伝熱管12に接続される。流入部35は、空気の流通方向において複数のヘッダ枝管51が配置されている側とは反対側に延びている。 As described above, the heat exchanger 10 of the fourth modification has a plurality of header branch pipes 51 and includes the header 50 in which refrigerant from three or more refrigerant paths of the heat exchanger 10 join together. A plurality of stages of heat transfer tubes 12 are provided in the direction of air flow. Each of the plurality of header branch pipes 51 is connected to the heat transfer tubes 12 arranged in one row among the plurality of rows, and the second distributor 30 connects two heat transfer tubes arranged in one row among the plurality of rows. It is connected to the heat tube 12 . The inflow portion 35 extends to the side opposite to the side on which the plurality of header branch pipes 51 are arranged in the air circulation direction.
 このように、第4変形例の熱交換器10では、流入部35は、U字管部31に水平方向に設けられ、且つ、空気の流通方向において複数のヘッダ枝管51が配置されている側とは反対側を向くように設けられる。したがって、上下の伝熱管12のピッチが狭く且つ二列構成の熱交換器10においても、第2の分配器30と第2の分配器30、及び第2の分配器30とヘッダ枝管51との干渉を抑制でき、作業性がよい。 Thus, in the heat exchanger 10 of the fourth modification, the inflow portion 35 is provided in the U-shaped pipe portion 31 in the horizontal direction, and the plurality of header branch pipes 51 are arranged in the air circulation direction. It is provided so as to face the side opposite to the side. Therefore, even in the heat exchanger 10 having a narrow pitch between the upper and lower heat transfer tubes 12 and having a two-row structure, the second distributor 30 and the second distributor 30, and the second distributor 30 and the header branch pipe 51 interference can be suppressed, and workability is good.
 なお、各実施の形態を組み合わせること、あるいは、各実施の形態を適宜、変形若しくは省略することができる。 It should be noted that each embodiment can be combined, or each embodiment can be modified or omitted as appropriate.
 1 冷凍サイクル装置、1C 冷媒回路、2 圧縮機、3 室内熱交換器、4 室内ファン、5 絞り装置、6 室外ファン、7 四方弁、9 筐体、10 熱交換器、11 板状フィン、12 伝熱管、12a 風上側伝熱管、12b 風下側伝熱管、13 段間接続配管、14 列間接続配管、14a 列間接続配管、15 ジョイント、20 第1の分配器、30 第2の分配器、31 U字管部、32 連結部、33 腕部、34 腕部、35 流入部、36 流入部配管、40 接続配管、41 第1の接続配管、42 第2の接続配管、50 ヘッダ、51 ヘッダ枝管、52 ヘッダ主管、61 第1の冷媒パス群、61a 第1の冷媒パス、61b 第1の冷媒パス、62 第2の冷媒パス、71 温度検出器、101 室外機、102 室内機、111 上面パネル、112 側面パネル、113 正面パネル、114 ファングリル、115 底面パネル、116 側面カバー、A 開口部、C 開口部、D1 内径、D2 内径、Gr 冷媒循環量、X1 管軸、X2 管軸、X3 仮想線、f 摩擦損失係数、ΔP 摩擦損失、θ 角度、θ 角度。 REFERENCE SIGNS LIST 1 Refrigeration cycle device 1C Refrigerant circuit 2 Compressor 3 Indoor heat exchanger 4 Indoor fan 5 Expansion device 6 Outdoor fan 7 Four-way valve 9 Case 10 Heat exchanger 11 Plate fin 12 heat transfer tube 12a windward heat transfer tube 12b leeward heat transfer tube 13 inter-stage connection pipe 14 inter-row connection pipe 14a inter-row connection pipe 15 joint 20 first distributor 30 second distributor, 31 U-shaped tube portion, 32 connection portion, 33 arm portion, 34 arm portion, 35 inflow portion, 36 inflow portion pipe, 40 connection pipe, 41 first connection pipe, 42 second connection pipe, 50 header, 51 header branch pipe 52 header main pipe 61 first refrigerant path group 61a first refrigerant path 61b first refrigerant path 62 second refrigerant path 71 temperature detector 101 outdoor unit 102 indoor unit 111 Top panel 112 Side panel 113 Front panel 114 Fan grill 115 Bottom panel 116 Side cover A Opening C Opening D1 Inside diameter D2 Inside diameter Gr Refrigerant circulation amount X1 Tube axis X2 Tube axis X3 virtual line, f friction loss coefficient, ΔP f friction loss, θ 1 angle, θ 2 angle.

Claims (9)

  1.  冷媒を複数の流れに分配する第1の分配器と、
     前記第1の分配器で分配された前記冷媒の複数の流れのうち一つを更に複数の流れに分配する1つ以上の第2の分配器と、
     重力方向に配列され、3つ以上の冷媒パスを構成する複数段の伝熱管と、を備え、
     前記第2の分配器は、前記3つ以上の冷媒パスの一部であって複数の冷媒パスを構成する前記伝熱管同士を接続する、内部に複数の冷媒流路が形成された接続部を有し、前記接続部には、前記第1の分配器と接続される開口部が形成されており、
     前記複数段の伝熱管のうち一部の伝熱管は、前記1つ以上の第2の分配器を介して前記第1の分配器と接続され、前記1つ以上の第2の分配器のいずれかで分配された前記冷媒の前記複数の流れが流入する複数の第1の冷媒パスを1群以上構成し、
     前記複数段の伝熱管のうち残りの伝熱管は、前記1つ以上の第2の分配器を介さずに前記第1の分配器と接続され、前記第1の分配器で分配された前記冷媒の前記複数の流れの一つが直接流入する第2の冷媒パスを1つ以上構成する
     熱交換器。
    a first distributor for distributing the refrigerant into multiple streams;
    one or more second distributors for further distributing one of the plurality of flows of the refrigerant distributed by the first distributor into a plurality of flows;
    A multi-stage heat transfer tube arranged in the direction of gravity and constituting three or more refrigerant paths,
    The second distributor has a connecting portion formed therein with a plurality of refrigerant flow paths, which is a part of the three or more refrigerant paths and connects the heat transfer tubes constituting the plurality of refrigerant paths. and the connecting portion is formed with an opening connected to the first distributor,
    Some of the heat transfer tubes in the plurality of stages are connected to the first distributor via the one or more second distributors, and any one of the one or more second distributors configuring one or more groups of a plurality of first refrigerant paths into which the plurality of flows of the refrigerant distributed by
    The remaining heat transfer tubes of the plurality of stages of heat transfer tubes are connected to the first distributor without passing through the one or more second distributors, and the refrigerant distributed by the first distributor comprising one or more second refrigerant paths into which one of said plurality of streams of the heat exchanger directly enters.
  2.  前記3つ以上の冷媒パスの前記重力方向で最も上側には、前記第2の冷媒パスが配置されている
     請求項1に記載の熱交換器。
    The heat exchanger according to claim 1, wherein the second refrigerant path is arranged on the uppermost side of the three or more refrigerant paths in the gravitational direction.
  3.  前記複数段の伝熱管を空気の流通方向に複数列備え、
     前記3つ以上の冷媒パスのそれぞれは、
     各列において互いに接続された2段の伝熱管と、
     前記複数列のいずれかの列の前記2段の伝熱管の一つと、前記いずれかの列とは異なる列の前記2段の伝熱管の一つとを接続する列間接続配管と、により構成され、
     前記重力方向で最も上側に配置された前記第2の冷媒パスを構成する前記列間接続配管は、前記いずれかの列の最上段に配置された前記伝熱管と前記いずれかの列とは異なる列の最上段に配置された前記伝熱管とを接続し、
     最も上側に配置された前記第2の冷媒パスを構成する前記列間接続配管を風上側から見た横方向の長さは、その他の冷媒パスを構成する前記列間接続配管の前記横方向の長さよりも長い
     請求項2に記載の熱交換器。
    A plurality of rows of the heat transfer tubes of the plurality of stages are provided in the direction of air flow,
    each of the three or more refrigerant paths,
    two stages of heat transfer tubes connected to each other in each row;
    An inter-row connection pipe connecting one of the two stages of heat transfer tubes in one of the plurality of rows and one of the two stages of heat transfer tubes in a row different from any of the rows ,
    The row-to-row connection pipe constituting the second refrigerant path arranged on the uppermost side in the gravitational direction is different from the heat transfer pipe arranged on the uppermost stage in any of the rows. connecting the heat transfer tubes arranged at the top of the row,
    The horizontal length of the row-to-row connection pipe that constitutes the second refrigerant path arranged on the uppermost side when viewed from the windward side is the horizontal length of the row-to-row connection pipe that constitutes the other refrigerant paths. 3. The heat exchanger of claim 2, longer than the length.
  4.  前記重力方向において前記複数の第1の冷媒パスと前記第2の冷媒パスとは、交互に配置されている
     請求項1~3のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 3, wherein the plurality of first refrigerant paths and the plurality of second refrigerant paths are alternately arranged in the gravitational direction.
  5.  前記第2の分配器は、前記接続部の前記開口部から上側へ延びた流入部を有し、
     前記開口部は、前記流入部を介して前記第1の分配器と接続される
     請求項1~4のいずれか一項に記載の熱交換器。
    the second distributor has an inflow portion extending upward from the opening of the connecting portion;
    The heat exchanger according to any one of claims 1 to 4, wherein the opening is connected to the first distributor via the inlet.
  6.  前記複数段の伝熱管を空気の流通方向に2列備え、
     風上側の列の前記複数段の伝熱管と風下側の列の前記複数段の伝熱管とは、前記重力方向においてずれて配置されており、
     前記第2の分配器は、前記重力方向の下方側にずれて配置されている列の2つの伝熱管とつながっている
     請求項5に記載の熱交換器。
    Two rows of the multi-stage heat transfer tubes are provided in the direction of air flow,
    The plurality of stages of heat transfer tubes in the windward row and the plurality of stages of heat transfer tubes in the leeward row are arranged with a shift in the direction of gravity,
    6. The heat exchanger according to claim 5, wherein the second distributor is connected to two rows of heat transfer tubes that are displaced downward in the gravitational direction.
  7.  前記第2の分配器は、前記接続部の前記開口部から水平方向に延びた流入部を有し、
     前記開口部は、前記流入部を介して前記第1の分配器と接続される
     請求項1~6のいずれか一項に記載の熱交換器。
    the second distributor has an inlet extending horizontally from the opening of the connection;
    The heat exchanger according to any one of claims 1 to 6, wherein the opening is connected to the first distributor via the inlet.
  8.  複数のヘッダ枝管を有し、前記3つ以上の冷媒パスからの前記冷媒が合流するヘッダを備え、
     前記複数段の伝熱管を空気の流通方向に複数列備え、
     前記複数のヘッダ枝管のそれぞれは、前記複数列のうちの一列に配置された伝熱管に接続され、
     前記第2の分配器は、前記複数列のうちの前記一列とは異なる列に配置された2つの伝熱管に接続され、
     前記流入部は、空気の流通方向において前記複数のヘッダ枝管が配置されている側とは反対側に延びている
     請求項7に記載の熱交換器。
    a header having a plurality of header branch pipes, where the refrigerant from the three or more refrigerant paths joins;
    A plurality of rows of the heat transfer tubes of the plurality of stages are provided in the direction of air flow,
    each of the plurality of header branch pipes is connected to a heat transfer tube arranged in one of the plurality of rows,
    The second distributor is connected to two heat transfer tubes arranged in a row different from the one row of the plurality of rows,
    8. The heat exchanger according to claim 7, wherein the inflow portion extends in a direction opposite to the side where the plurality of header branch pipes are arranged in the air circulation direction.
  9.  前記第1の分配器と前記第2の分配器とを接続する第1の接続配管と、
     前記第1の分配器と前記第2の冷媒パスを構成する前記伝熱管とを接続する第2の接続配管と、を備え、
     前記第1の接続配管と前記第2の接続配管とは、前記第1の接続配管の管内圧力損失が前記第2の接続配管の管内圧力損失よりも小さくなるように構成されている
     請求項1~8のいずれか一項に記載の熱交換器。
    a first connection pipe that connects the first distributor and the second distributor;
    a second connection pipe that connects the first distributor and the heat transfer pipe that constitutes the second refrigerant path,
    2. The first connecting pipe and the second connecting pipe are configured such that pressure loss in the first connecting pipe is smaller than pressure loss in the second connecting pipe. 9. The heat exchanger according to any one of -8.
PCT/JP2022/004859 2022-02-08 2022-02-08 Heat exchanger WO2023152789A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/004859 WO2023152789A1 (en) 2022-02-08 2022-02-08 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/004859 WO2023152789A1 (en) 2022-02-08 2022-02-08 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2023152789A1 true WO2023152789A1 (en) 2023-08-17

Family

ID=87563800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004859 WO2023152789A1 (en) 2022-02-08 2022-02-08 Heat exchanger

Country Status (1)

Country Link
WO (1) WO2023152789A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140260389A1 (en) * 2013-03-15 2014-09-18 Ramana Venkato Rao Sistla Refrigerant Flow Control for an Evaporative Atmospheric Water Condenser
JP2016014504A (en) * 2014-07-02 2016-01-28 三菱電機株式会社 Heat exchanger, and refrigeration cycle device with the same
JP6278904B2 (en) * 2013-01-22 2018-02-14 三菱電機株式会社 Refrigerant distributor and heat pump device using the refrigerant distributor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278904B2 (en) * 2013-01-22 2018-02-14 三菱電機株式会社 Refrigerant distributor and heat pump device using the refrigerant distributor
US20140260389A1 (en) * 2013-03-15 2014-09-18 Ramana Venkato Rao Sistla Refrigerant Flow Control for an Evaporative Atmospheric Water Condenser
JP2016014504A (en) * 2014-07-02 2016-01-28 三菱電機株式会社 Heat exchanger, and refrigeration cycle device with the same

Similar Documents

Publication Publication Date Title
US10309701B2 (en) Heat exchanger and air conditioner
US9651317B2 (en) Heat exchanger and air conditioner
JP6207624B2 (en) Heat exchanger and air conditioner
US10041710B2 (en) Heat exchanger and air conditioner
US20140102131A1 (en) Outdoor unit of refrigeration system
WO2019004139A1 (en) Heat exchanger
WO2019239445A1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JP6793831B2 (en) Heat exchanger and refrigeration cycle equipment
JP6766723B2 (en) Heat exchanger or refrigeration equipment
JP2018162965A (en) Heat exchanger
WO2023152789A1 (en) Heat exchanger
JP3632248B2 (en) Refrigerant evaporator
CN111448423B (en) Air conditioner
EP3789697B1 (en) Heat exchanger and refrigeration cycle device
WO2019155571A1 (en) Heat exchanger and refrigeration cycle device
WO2023199466A1 (en) Heat exchanger, and air conditioning device including same
JP7146139B1 (en) heat exchangers and air conditioners
CN116724209B (en) Heat exchanger
WO2023233572A1 (en) Heat exchanger, and refrigeration cycle device
US20240060659A1 (en) Air conditioner
WO2023281656A1 (en) Heat exchanger and refrigeration cycle device
CN110402365B (en) Heat exchanger or refrigerating apparatus
JP6698196B2 (en) Air conditioner
WO2021192902A1 (en) Heat exchanger
EP4166858A1 (en) Outdoor unit for air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925811

Country of ref document: EP

Kind code of ref document: A1