WO2015063858A1 - Pipe joint, heat exchanger, and air conditioner - Google Patents

Pipe joint, heat exchanger, and air conditioner Download PDF

Info

Publication number
WO2015063858A1
WO2015063858A1 PCT/JP2013/079248 JP2013079248W WO2015063858A1 WO 2015063858 A1 WO2015063858 A1 WO 2015063858A1 JP 2013079248 W JP2013079248 W JP 2013079248W WO 2015063858 A1 WO2015063858 A1 WO 2015063858A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
pipe joint
heat exchanger
flat tube
peripheral surface
Prior art date
Application number
PCT/JP2013/079248
Other languages
French (fr)
Japanese (ja)
Inventor
真哉 東井上
繁佳 松井
石橋 晃
岡崎 多佳志
伊東 大輔
裕樹 宇賀神
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13896742.7A priority Critical patent/EP3064819B1/en
Priority to JP2015544658A priority patent/JP6207624B2/en
Priority to PCT/JP2013/079248 priority patent/WO2015063858A1/en
Priority to US15/026,644 priority patent/US20160245560A1/en
Priority to CN201380080615.3A priority patent/CN105683639B/en
Publication of WO2015063858A1 publication Critical patent/WO2015063858A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Definitions

  • the present invention relates to a pipe joint, a heat exchanger, and an air conditioner.
  • a penetration part is formed, a flat tube is connected to one end of the penetration part, and a pipe having a cross-sectional shape different from that of the flat pipe, for example, a circular pipe, is connected to the other end of the penetration part. Some are connected.
  • a plurality of flow paths are formed in the flat tube in the long axis direction (see, for example, Patent Document 1).
  • JP 2013-142454 A (paragraph [0009], FIGS. 1 and 2)
  • a pipe joint for example, if an inertial force of a component parallel to the long axis direction of a flat tube is acting on a fluid passing through a pipe having a cross-sectional shape different from that of the flat tube, the inertial force causes the flat tube to The balance of the fluid flowing into each formed flow path changes.
  • the fluid passing through a tube having a cross-sectional shape different from that of a flat tube is a gas-liquid two-phase refrigerant
  • the phenomenon becomes significant.
  • the central axis of one end to which the flat tube is connected and the central axis of the other end to which the tube having a different cross-sectional shape from the flat tube is connected are coaxial.
  • the change of the balance of the fluid flowing into each flow path formed in the flat tube cannot be dealt with. In other words, such a pipe joint has a problem that the balance of the fluid flowing into the plurality of flow paths of the flat tube cannot be optimized.
  • the present invention has been made against the background of the above problems, and an object thereof is to obtain a pipe joint capable of optimizing the balance of fluid flowing into a plurality of flow paths of a flat tube. Moreover, an object of this invention is to obtain the heat exchanger provided with such a pipe joint. Moreover, an object of this invention is to obtain the air conditioning apparatus provided with such a heat exchanger.
  • a penetrating portion is formed, a flat tube is connected to one end of the penetrating portion, and another pipe having a cross-sectional shape different from that of the flat tube is connected to the other end of the penetrating portion.
  • the central axis of the one end and the central axis of the other end are eccentric from each other.
  • FIG. 1 is a perspective view of a heat exchanger according to Embodiment 1.
  • FIG. It is a perspective view in the state which the laminated header of the heat exchanger which concerns on Embodiment 1 decomposed
  • FIG. It is a figure explaining the connection of the heat exchange part and splitting flow part of the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a figure explaining the connection of the heat exchange part and splitting flow part of the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a figure explaining the connection of the heat exchange part and split mixing flow part of the modification of the heat exchanger which concerns on Embodiment 1.
  • FIG. 1 It is a figure explaining the connection of the heat exchange part and split mixing flow part of the modification of the heat exchanger which concerns on Embodiment 1.
  • FIG. 2 It is a figure explaining the connection of the heat exchange part and split mixing flow part of the modification of the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a figure which shows the structure of the windward concentric pipe joint of the heat exchanger which concerns on Embodiment 1, and a leeward concentric pipe joint. It is a figure which shows the structure of the windward concentric pipe joint and leeward concentric pipe joint of the heat exchanger which concerns on a comparative example. It is a figure which shows the structure of the windward eccentric pipe joint and leeward eccentric pipe joint of the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a figure explaining the connection of the heat exchange part and split mixing flow part of the modification of the heat exchanger which concerns on Embodiment 2.
  • FIG. It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 2 is applied. It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 2 is applied.
  • the pipe joint which concerns on this invention is a member which comprises a heat exchanger below is demonstrated, the pipe joint which concerns on this invention may be a member which comprises another apparatus.
  • the heat exchanger provided with the pipe joint according to the present invention is applied to an air conditioner is described.
  • the present invention is not limited to such a case, and includes, for example, a refrigerant circulation circuit. You may apply to another refrigeration cycle apparatus.
  • the heat exchanger provided with the pipe joint according to the present invention is an outdoor heat exchanger of an air conditioner is described, it is not limited to such a case, and the indoor heat exchange of the air conditioner It may be a vessel.
  • an air conditioning apparatus switches between heating operation and cooling operation is demonstrated, it is not limited to such a case, You may perform only heating operation or cooling operation.
  • Embodiment 1 FIG. The heat exchanger according to Embodiment 1 will be described. ⁇ Configuration of heat exchanger> Below, the structure of the heat exchanger which concerns on Embodiment 1 is demonstrated. (Schematic configuration of heat exchanger) Below, schematic structure of the heat exchanger which concerns on Embodiment 1 is demonstrated. 1 is a perspective view of a heat exchanger according to Embodiment 1. FIG. As shown in FIG. 1, the heat exchanger 1 includes a heat exchanging unit 2 and a split blending unit 3.
  • the heat exchange unit 2 includes an upwind heat exchange unit 21 disposed on the leeward side and a leeward side disposed on the leeward side in the direction of passage of air passing through the heat exchange unit 2 (the white arrow in the figure). And a heat exchanging unit 31.
  • the windward heat exchange unit 21 includes a plurality of windward heat transfer tubes 22 and a plurality of windward fins 23 joined to the plurality of windward heat transfer tubes 22 by, for example, brazing.
  • the leeward side heat exchange unit 31 includes a plurality of leeward side heat transfer tubes 32 and a plurality of leeward side fins 33 joined to the plurality of leeward side heat transfer tubes 32 by brazing or the like, for example.
  • the heat exchanging unit 2 may be configured by two rows of the windward side heat exchanging unit 21 and the leeward side heat exchanging unit 31, or may be configured by three or more rows.
  • the windward side heat transfer tube 22 and the leeward side heat transfer tube 32 are flat tubes, and a plurality of flow paths are formed in the major axis direction. Each of the plurality of windward side heat transfer tubes 22 and the plurality of leeward side heat transfer tubes 32 is bent in a hairpin shape between one end and the other end to form folded portions 22a and 32a.
  • the windward side heat transfer tubes 22 and the leeward side heat transfer tubes 32 are arranged in a plurality of stages in a direction intersecting with the passage direction of air passing through the heat exchanging unit 2 (the white arrow in the figure). One end and the other end of each of the plurality of windward side heat transfer tubes 22 and the plurality of leeward side heat transfer tubes 32 are arranged in parallel so as to face the mixing / mixing flow portion 3.
  • the distribution flow unit 3 includes a laminated header 51 and a cylindrical header 61.
  • the laminated header 51 and the cylindrical header 61 are arranged side by side so as to follow the passage direction of air passing through the heat exchanging unit 2 (the white arrow in the figure).
  • a refrigerant pipe (not shown) is connected to the laminated header 51 via a connecting pipe 52.
  • Refrigerant piping (not shown) is connected to the tubular header 61 via a connecting pipe 62.
  • the connection pipe 52 and the connection pipe 62 are, for example, circular pipes.
  • the laminated header 51 is connected to the windward heat exchanging unit 21, and a split flow channel 51 a is formed therein.
  • the split-mixing flow channel 51a distributes the refrigerant flowing from the refrigerant pipe (not shown) to the plurality of windward side heat transfer tubes 22 of the windward side heat exchange unit 21. It becomes an outflow distribution channel.
  • the split flow channel 51a joins refrigerant flowing in from the plurality of windward side heat transfer tubes 22 of the windward side heat exchange unit 21 to a refrigerant pipe (not shown). It becomes the merging channel that flows out.
  • the stacked header 51 corresponds to the “header disposed on the windward side” of the present invention.
  • the cylindrical header 61 is connected to the leeward side heat exchanging portion 31 and a split flow channel 61a is formed therein.
  • the split flow channel 61a distributes the refrigerant flowing from the refrigerant pipe (not shown) to the plurality of leeward heat transfer tubes 32 of the leeward heat exchange unit 31. It becomes an outflow distribution channel.
  • the split-mixing flow channel 61a joins refrigerant flowing in from the plurality of leeward heat transfer tubes 32 of the leeward heat exchange unit 31 to a refrigerant pipe (not shown). It becomes the merging channel that flows out.
  • the cylindrical header 61 corresponds to the “header arranged on the leeward side” of the present invention.
  • FIG. 2 is a perspective view of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • coolant in case the distribution flow path 51a of the laminated header 51 functions as a distribution flow path is shown by the arrow.
  • the third plate-like member 55 formed with is laminated via a plurality of clad members 56_1 to 56_4 in which the partial flow passages 56a are formed, whereby the laminated header 51 is configured.
  • a brazing material is applied to both surfaces or one surface of the cladding materials 56_1 to 56_4.
  • the first plate member 53, the plurality of second plate members 54_1 to 54_3, the third plate member 55, and the plurality of clad members 56_1 to 56_4 are collectively referred to as “plate members”. May be described.
  • the partial flow paths 53a, 55a, and 56a are circular through holes.
  • Each of the partial flow paths 54a_1 to 54a_3 is a linear (for example, Z-shaped, S-shaped, etc.) through groove in which the height in the gravity direction of one end and the other end is different from each other.
  • a refrigerant pipe (not shown) is connected to the partial flow path 53a through the connection pipe 52.
  • the windward heat transfer tube 22 is connected to each of the partial flow paths 55a via the connection pipe 57.
  • the connection pipe 57 is, for example, a circular pipe or an elliptical pipe.
  • the partial flow path 56a of the cladding material 56_1 is formed at a position facing the partial flow path 53a.
  • the partial flow path 56a of the cladding material 56_4 is formed at a position facing the partial flow path 55a.
  • One end and the other end of the partial flow paths 54a_1 to 54a_3 are opposed to the partial flow paths 56a of the clad members 56_2 to 56_4 laminated adjacent to the side close to the windward heat exchange section 21.
  • a portion between one end portion and the other end portion of the partial flow paths 54a_1 to 54a_3 is a partial flow path 56a of the clad material 56_1 to 56_3 laminated adjacent to the side far from the windward heat exchange section 21. Opposite.
  • the split flow channel 51a functions as a distribution channel when the refrigerant flows in the direction of the arrow in the figure, and functions as a merging channel when the refrigerant flows in the direction opposite to the arrow in the figure.
  • the refrigerant that has flowed into the partial flow channel 53a via the connection pipe 52 passes through the partial flow channel 56a and is at one end of the partial flow channel 54a_1. Between the first end and the other end, hits the surface of the clad material 56_2, and is branched in two directions.
  • the branched refrigerant flows out from one end and the other end of the partial flow channel 54a_1, and passes between the one end and the other end of the partial flow channel 54a_2 via the partial flow channel 56a.
  • the branched refrigerant flows out from one end and the other end of the partial flow path 54a_2, and passes between the one end and the other end of the partial flow path 54a_3 through the partial flow path 56a. , And hits the surface of the clad material 56_4 to be branched in two directions.
  • the branched refrigerant flows out from one end and the other end of the partial flow path 54a_3, and flows into the connection pipe 57 through the partial flow path 56a and the partial flow path 55a.
  • the refrigerant that has flowed into the partial channel 55a via the connection pipe 57 passes through the partial channel 56a and is at one end of the partial channel 54a_3. And flows into the other end, and flows into the partial flow path 56a communicating between one end and the other end of the partial flow path 54a_3, thereby being merged.
  • the merged refrigerant flows into one end and the other end of the partial flow path 54a_2, and flows into the partial flow path 56a that communicates between one end and the other end of the partial flow path 54a_2. To be merged.
  • the merged refrigerant flows into one end and the other end of the partial flow path 54a_1, and flows into the partial flow path 56a that communicates between one end and the other end of the partial flow path 54a_1. To be merged.
  • the merged refrigerant flows into the connecting pipe 52 through the partial flow path 53a.
  • first plate-like member 53, the second plate-like members 54_1 to 54_3, and the third plate-like member 55 may be directly laminated without using the clad members 56_1 to 56_4.
  • the partial flow path 56a functions as a refrigerant isolation flow path, so that the refrigerant passing through the partial flow paths 53a, 54a_1 to 54a_3, 55a can be isolated from each other. Ensured.
  • Each of the first plate-like member 53, the second plate-like members 54_1 to 54_3, and the third plate-like member 55, and the clad members 56_1 to 56_4 laminated adjacent to each other are integrated into a plate shape.
  • the members may be directly laminated.
  • FIG. 3 is a perspective view of a cylindrical header of the heat exchanger according to the first embodiment.
  • merging flow path is shown by the arrow.
  • the cylindrical header 61 includes a cylindrical portion 63 in which one end and the other end are closed so that the axial direction is parallel to the direction of gravity. is there.
  • the axial direction of the cylindrical portion 63 may not be parallel to the direction of gravity. Since the cylindrical header 61 is disposed so that the axial direction of the cylindrical portion 63 and the longitudinal direction of the laminated header 51 are parallel to each other, the split flow portion 3 is saved.
  • the cylindrical portion 63 may be, for example, a cylindrical portion having an elliptical cross section.
  • a refrigerant pipe (not shown) is connected to the side wall of the cylindrical portion 63 via a connecting pipe 62.
  • the leeward heat transfer tube 32 is connected to the side wall of the cylindrical portion 63 via a plurality of connection tubes 64.
  • the connection pipe 64 is, for example, a circular pipe or an elliptical pipe.
  • the inner side of the cylindrical portion 63 is a split blending flow path 61a.
  • the split flow channel 61a functions as a merge channel when the refrigerant flows in the direction of the arrow in the figure, and functions as a distribution channel when the refrigerant flows in the direction opposite to the arrow in the figure.
  • the split flow channel 61a functions as a merge channel
  • the refrigerant that has flowed into the plurality of connection pipes 64 merges by passing through the inside of the cylindrical portion 63 and flowing into the connection pipe 62.
  • the mixing / mixing flow path 61a functions as a distribution flow path
  • the refrigerant flowing into the connection pipe 62 is distributed by passing through the inside of the cylindrical portion 63 and flowing into the plurality of connection pipes 64.
  • connection pipe 62 and the plurality of connection pipes 64 are arranged so that the direction in which the connection pipe 62 is connected and the direction in which the plurality of connection pipes 64 are connected are not aligned. It is good to be connected. By being configured in this way, it is possible to improve the uniformity of the refrigerant flowing into the plurality of connection pipes 64 when the mixing / mixing flow path 61a functions as a distribution flow path.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG.
  • the windward concentric pipe joint 41 ⁇ / b> A is joined to one end 22 b of the windward heat transfer pipe 22.
  • the upwind eccentric pipe joint 41 ⁇ / b> B is joined to the other end 22 c of the upwind heat transfer tube 22.
  • the leeward concentric pipe joint 42 ⁇ / b> A is joined to the other end 32 c of the leeward heat transfer pipe 32.
  • the leeward eccentric pipe joint 42 ⁇ / b> B is joined to one end 32 b of the leeward heat transfer tube 32.
  • the connecting pipe 57 of the laminated header 51 is connected to the windward concentric pipe joint 41A.
  • a connecting pipe 64 of the tubular header 61 is connected to the leeward side concentric pipe joint 42A.
  • the upwind eccentric pipe joint 41B and the downwind eccentric pipe joint 42B are connected by a crossover pipe 43.
  • the cross-over tube 43 is, for example, a circular tube or an elliptic tube bent in an arc shape.
  • FIG. 6 is a diagram for explaining the connection of the heat exchange unit and the mixing and mixing unit in the modification of the heat exchanger according to the first embodiment. 6 is a cross-sectional view taken along the line AA in FIG. As shown in FIG. 5, the windward side heat transfer tube 22 and the leeward side heat transfer tube 32 include one end 22 b and the other end 22 c of the windward side heat transfer tube 22 and one of the leeward side heat transfer tubes 32.
  • the end portion 32b and the other end portion 32c may be arranged in a zigzag shape when the heat exchanger 1 is viewed from the side, and as shown in FIG. You may arrange
  • 7 and 8 are diagrams for explaining the connection of the heat exchange unit and the mixing and mixing unit in the modification of the heat exchanger according to the first embodiment.
  • 7 and 8 are cross-sectional views taken along the line AA in FIG.
  • the other end 22c of the windward heat transfer tube 22, and one end 22b of the windward heat transfer tube 22 adjacent to the windward heat transfer tube 22 Are connected using the windward side transition pipe 44 and the windward concentric pipe joint 41 ⁇ / b> A, and the other end 32 c of the leeward side heat transfer pipe 32 and the leeward side heat transfer pipe 32 on the next stage of the leeward side heat transfer pipe 32.
  • the windward side transition pipe 44 and the leeward side transition pipe 45 are, for example, a circular pipe or an elliptical pipe bent in an arc shape.
  • the windward heat transfer tube 22 and the leeward heat transfer tube 32 are not bent into a hairpin shape between one end and the other end, and the folded portions 22a and 32a are not formed.
  • One end portion of the heat pipe 22 and one end portion of the windward heat transfer pipe 22 adjacent to the heat pipe 22 are connected using the windward transition pipe 44 and the windward concentric pipe joint 41A, and the windward side
  • One end portion of the side heat transfer tube 32 and one end portion of the leeward side heat transfer tube 32 adjacent to the side heat transfer tube 32 are connected using the leeward side crossover tube 45 and the leeward side concentric pipe joint 42A.
  • the refrigerant may be folded back.
  • FIG. 9 is a diagram illustrating the structures of the windward concentric pipe joint and the leeward concentric pipe joint of the heat exchanger according to Embodiment 1.
  • sectional drawing in the state which looked at the windward concentric pipe joint 41A and the leeward side concentric pipe coupling 42A the sectional view in the state seen from the side, those top views, and those A bottom view is shown.
  • FIG. 9 sectional drawing in the state which looked at the windward concentric pipe joint 41A and the leeward side concentric pipe coupling 42A, the sectional view in the state seen from the side, those top views, and those A bottom view is shown.
  • FIG. 9 shows a case where the connection pipe 57 of the laminated header 51 and the connection pipe 64 of the cylindrical header 61 are circular pipes.
  • a penetration portion 71 is formed in the windward concentric pipe joint 41 ⁇ / b> A and the leeward concentric pipe joint 42 ⁇ / b> A.
  • the cross-sectional shape of one end 72 of the penetrating portion 71 is a shape that follows the cross-sectional shape of the windward side heat transfer tube 22 or the leeward side heat transfer tube 32.
  • the cross-sectional shape of the other end 73 of the penetrating portion 71 is a shape that follows the cross-sectional shape of the connection pipe 57 of the laminated header 51 or the connection pipe 64 of the cylindrical header 61.
  • the central axis of one end 72 and the central axis of the other end 73 are coaxial.
  • the inner diameter D (D1, D2) in the entire circumferential direction of the cross-sectional shape of the other end portion 73 is W2 ⁇ D ⁇ W1.
  • the flow path cross-sectional area (d1 2 ⁇ ⁇ / 4) of the connection pipe 57 of the laminated header 51 and the connection pipe 64 of the cylindrical header 61 is the flow path cross-sectional area of the windward side heat transfer pipe 22 and the leeward side heat transfer pipe 32. Larger than (w1 ⁇ w2 ⁇ number of flow paths).
  • D1 can be shortened to downsize the windward concentric pipe joint 41A and the leeward side concentric pipe joint 42A, and D2 can be lengthened to join a pipe having a large channel cross-sectional area.
  • it is compatible to reduce the pressure loss generated in the refrigerant passing through the windward concentric pipe joint 41A and the leeward concentric pipe joint 42A.
  • W2 ⁇ D ⁇ W1 since W2 ⁇ D ⁇ W1, the degree of freedom of bending of the connection pipe 57 of the laminated header 51 and the connection pipe 64 of the cylindrical header 61 is improved.
  • FIG. 10 is a diagram illustrating the structures of the windward concentric pipe joint and the leeward concentric pipe joint of the heat exchanger according to the comparative example.
  • FIG. 10 shows a cross-sectional view of the windward concentric pipe joint 41A and the leeward concentric pipe joint 42A as viewed from the front.
  • the pipes connected to one end 72 and the other end 73 of the upwind concentric pipe joint 41A and the downwind concentric pipe joint 42A are shown by dotted lines.
  • the cross-sectional shape of the inner peripheral surface of the one end 72 is changed to the cross-sectional shape of the inner peripheral surface of the other end 73.
  • a shape converting portion 74 that is continuously changed is formed. As shown in FIG. 10, when the shape converting portion 74 is not formed in the penetrating portion 71, that is, when one end 72 and the other end 73 are in direct communication, one end A vortex is produced at the corner of 72, and pressure loss occurs in the refrigerant passing through the windward concentric pipe joint 41A and the leeward concentric pipe joint 42A. Such a phenomenon is suppressed by forming the shape conversion part 74 in the area
  • connection pipe 57 of the laminated header 51 and the connection pipe 64 of the cylindrical header 61 are joined in a state where they are inserted up to the boundary between the other end 73 and the shape conversion part 74. That is, the region where the outer peripheral surface of the connection pipe 57 of the multilayer header 51 and the outer peripheral surface of the connection pipe 64 of the cylindrical header 61 is joined to the inner peripheral surface of the other end 73 is adjacent to the shape conversion unit 74. Therefore, the refrigerant flowing in from the connection pipe 57 of the laminated header 51 and the connection pipe 64 of the cylindrical header 61 flows into the windward side heat transfer pipe 22 and the leeward side heat transfer pipe 32 without passing through the steps, resulting in pressure loss. Occurrence is further suppressed. In addition, the axial dimension of the other end 73 can be reduced, and the downwind concentric pipe joint 41A and the downwind concentric pipe joint 42A are reduced in size.
  • FIG. 11 is a diagram illustrating the structure of the upwind eccentric pipe joint and the downwind eccentric pipe joint of the heat exchanger according to the first embodiment.
  • the cross section of the windward eccentric pipe joint 41B and the leeward eccentric pipe joint 42B in the state seen from the front and its peripheral members are illustrated.
  • the windward eccentric pipe joint 41B and the leeward eccentric pipe joint 42B have the same configuration as the windward concentric pipe joint 41A and the leeward side concentric pipe joint 42A, but as shown in FIG. The difference is that the central axis and the central axis of the other end 73 are eccentric from each other.
  • the amount of eccentricity Z is 0 ⁇ Z ⁇ W3 / 2, where W3 is the outer diameter in the major axis direction of the windward side heat transfer tube 22 and the leeward side heat transfer tube 32.
  • the distance between the central axis of the other end 73 of the penetration part 71 of the upwind eccentric pipe joint 41B and the central axis of the leeward side heat transfer pipe 32 is one of the penetration parts 71 of the upwind eccentric pipe joint 41B. It is eccentric so as to be shorter than the distance between the central axis of the end portion 72 and the central axis of the leeward heat transfer tube 32. In addition, the distance between the central axis of the other end 73 of the penetrating portion 71 of the leeward side eccentric pipe joint 42B and the central axis of the upwind heat transfer pipe 22 is such that the distance between the penetrating part 71 of the leeward side eccentric pipe joint 42B. It is eccentric so as to be shorter than the distance between the central axis of one end 72 and the central axis of the windward heat transfer tube 22.
  • FIG. 12 has shown the case where the air conditioning apparatus 91 performs heating operation.
  • FIG. 13 shows a case where the air conditioner 91 performs a cooling operation.
  • the air conditioner 91 includes a compressor 92, a four-way valve 93, an outdoor heat exchanger (heat source side heat exchanger) 94, an expansion device 95, and an indoor heat exchanger.
  • the compressor 92, the four-way valve 93, the outdoor heat exchanger 94, the expansion device 95, and the indoor heat exchanger 96 are connected by a refrigerant pipe to form a refrigerant circulation circuit.
  • the four-way valve 93 may be another flow path switching device.
  • the outdoor heat exchanger 94 is the heat exchanger 1.
  • the heat exchanger 1 is provided such that the laminated header 51 is disposed on the windward side of the air flow generated by driving the outdoor fan 97 and the cylindrical header 61 is disposed on the leeward side.
  • the outdoor fan 97 may be provided on the leeward side of the heat exchanger 1 or may be provided on the leeward side of the heat exchanger 1.
  • a compressor 92, a four-way valve 93, a throttle device 95, an outdoor fan 97, an indoor fan 98, various sensors, and the like are connected to the control device 99.
  • the control device 99 By switching the flow path of the four-way valve 93 by the control device 99, the heating operation and the cooling operation are switched.
  • the condensed refrigerant enters a high-pressure supercooled liquid state, flows out of the indoor heat exchanger 96, and becomes a low-pressure gas-liquid two-phase refrigerant by the expansion device 95.
  • the low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 94, exchanges heat with the air supplied by the outdoor fan 97, and evaporates.
  • the evaporated refrigerant enters a low-pressure superheated gas state, flows out of the outdoor heat exchanger 94, and is sucked into the compressor 92 through the four-way valve 93. That is, during the heating operation, the outdoor heat exchanger 94 acts as an evaporator.
  • the refrigerant flows into the split flow channel 51 a of the laminated header 51 and is distributed, passes through the windward concentric pipe joint 41 ⁇ / b> A, and reaches the windward heat transfer tube 22 of the windward heat exchange unit 21. Flow into.
  • the refrigerant flowing into the windward side heat transfer tube 22 sequentially passes through the windward side eccentric pipe joint 41B, the crossover pipe 43, and the leeward side eccentric pipe joint 42B, and flows into the leeward side heat transfer pipe 32 of the leeward side heat exchange section 31.
  • the refrigerant that has flowed into the leeward heat transfer pipe 32 passes through the leeward side concentric pipe joint 42 ⁇ / b> A, flows into the mixed flow passage 61 a of the tubular header 61, and is merged.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 92 flows into the outdoor heat exchanger 94 through the four-way valve 93, exchanges heat with the air supplied by the outdoor fan 97, and condenses.
  • the condensed refrigerant enters a high-pressure supercooled liquid state or a low dryness state, flows out of the outdoor heat exchanger 94, and enters a low-pressure gas-liquid two-phase state by the expansion device 95.
  • the low-pressure gas-liquid two-phase refrigerant flows into the indoor heat exchanger 96 and evaporates by heat exchange with the air supplied by the indoor fan 98, thereby cooling the room.
  • the evaporated refrigerant becomes a low-pressure superheated gas state, flows out of the indoor heat exchanger 96, and is sucked into the compressor 92 through the four-way valve 93. That is, during the cooling operation, the outdoor heat exchanger 94 functions as a condenser.
  • the refrigerant flows into the split flow passage 61 a of the cylindrical header 61 and is distributed, passes through the leeward concentric pipe joint 42 ⁇ / b> A, and passes through the leeward heat transfer tube 32 of the leeward heat exchanger 31. Flow into.
  • the refrigerant that has flowed into the leeward heat transfer pipe 32 sequentially passes through the leeward eccentric pipe joint 42B, the crossover pipe 43, and the windward eccentric pipe joint 41B, and then flows into the windward heat transfer pipe 22 of the windward heat exchange section 21. To do.
  • the refrigerant that has flowed into the windward heat transfer pipe 22 passes through the windward concentric pipe joint 41 ⁇ / b> A, flows into the mixed flow passage 51 a of the laminated header 51, and is merged.
  • FIG.14 and FIG.15 is a figure explaining the liquid quantity distribution of the refrigerant
  • the flow direction of the refrigerant is indicated by black arrows. That is, when the heat exchanging unit 2 acts as an evaporator, as shown in FIGS. 14 and 15, the refrigerant is in a parallel flow with the air flow generated by driving the outdoor fan 97, that is, the wind It flows from the upper heat transfer tube 22 to the leeward heat transfer tube 32, and flows from the crossover tube 43 into the leeward eccentric tube joint 42B in a gas-liquid two-phase state.
  • the eccentric amount Z between the central axis of one end 72 and the central axis of the other end 73 is Z> 0.
  • a large amount of the liquid refrigerant that has flowed into the eccentric pipe joint 42 ⁇ / b> B flows into the S point side of the leeward heat transfer pipe 32.
  • the heat exchanger 1 acts as an evaporator, since the heat load (heat exchange amount) on the windward side of the air flow generated by driving the outdoor fan 97 is large, the S point side of the leeward heat transfer tube 32, that is, on the windward side.
  • FIG.16 and FIG.17 is a figure explaining the gas quantity distribution of the refrigerant
  • the flow direction of the refrigerant is indicated by black arrows.
  • the heat exchanging unit 2 acts as a condenser, as shown in FIGS. 16 and 17, the refrigerant is in a relationship opposite to the air flow generated by driving the outdoor fan 97, that is, downwind. It flows from the side heat transfer pipe 32 to the windward side heat transfer pipe 22, and flows from the row connecting pipe 43 into the windward side eccentric pipe joint 41B in a gas-liquid two-phase state.
  • the eccentric amount Z between the central axis of one end 72 and the central axis of the other end 73 is Z> 0.
  • the gas refrigerant that has flowed into the eccentric pipe joint 41 ⁇ / b> B flows into the L point side of the windward heat transfer tube 22 as much liquid refrigerant flows into the S point side.
  • the heat exchanger 1 acts as a condenser
  • the heat load (heat exchange amount) on the windward side of the air flow generated by driving the outdoor fan 97 is large, the L point side of the windward heat transfer tube 22, that is, the windward side
  • condensation of the gas refrigerant is promoted and heat exchange efficiency is improved.
  • the radius of curvature of the crossover tube 43 can be reduced, and the volume of the heat exchanging unit 2 can be increased, so that the heat exchange efficiency is further improved.
  • the operating efficiency of the refrigeration cycle is improved and the energy saving performance is improved.
  • the inner diameter in the major axis direction of one end 72 is set to W1. If the inner diameter in the minor axis direction is W2, the inner diameter D (D1, D2) in the entire circumferential direction of the cross-sectional shape of the other end 73 is W2 ⁇ D ⁇ W1, so that the size can be reduced and the pressure It is compatible with reducing the loss. Therefore, the space
  • one end 72 and the other end of the penetrating part 71 are provided in the heat exchanger 1, in the windward concentric pipe joint 41A, the leeward concentric pipe joint 42A, the windward eccentric pipe joint 41B, and the leeward eccentric pipe joint 42B.
  • a shape conversion portion 74 is formed in a region between the portions 73, and the connection pipe 57 of the laminated header 51, the connection pipe 64 of the cylindrical header 61, and the crossover pipe on the inner peripheral surface of the other end 73 Since the area
  • interval of the heat exchange part 2 and the split mixing flow part 3 can be narrowed, the volume of the heat exchange part 2 can be expanded, and heat exchange efficiency is improved. And with the improvement in heat exchange efficiency, the operating efficiency of the refrigeration cycle is improved and the energy saving performance is improved. Moreover, it is also possible to save the space of the heat exchanger 1 while maintaining the performance of the refrigeration cycle.
  • FIG. 18 is a perspective view of the heat exchanger according to the second embodiment. As shown in FIG. 18, the heat exchanging unit 2 includes only the windward heat exchanging unit 21.
  • the windward side heat transfer tubes 22 are arranged in a plurality of stages in a direction intersecting with the passage direction of air passing through the heat exchanging unit 2 (indicated by white arrows in the figure). Each of the plurality of windward side heat transfer tubes 22 is bent in a hairpin shape between one end and the other end to form a folded portion 22a. One end and the other end of each of the plurality of windward side heat transfer tubes 22 are juxtaposed so as to face the laminated header 51.
  • the laminated header 51 is connected to the windward heat exchanging unit 21, and a split flow channel 51 a is formed therein.
  • the split-mixing flow channel 51a distributes the refrigerant flowing from the refrigerant pipe (not shown) to the plurality of windward side heat transfer tubes 22 of the windward side heat exchange unit 21. It becomes an outflow distribution channel.
  • the split flow channel 51a joins refrigerant flowing in from the plurality of windward side heat transfer tubes 22 of the windward side heat exchange unit 21 to a refrigerant pipe (not shown). It becomes the merging channel that flows out.
  • the cylindrical header 61 is connected to the windward heat exchange unit 21, and a split flow channel 61a is formed therein.
  • the split flow channel 61a distributes the refrigerant flowing from the refrigerant pipe (not shown) to the plurality of windward heat transfer tubes 22 of the windward heat exchange unit 21. It becomes an outflow distribution channel.
  • the split-mixing flow channel 61a joins refrigerant flowing in from the plurality of windward side heat transfer tubes 22 of the windward side heat exchange unit 21 to a refrigerant pipe (not shown). It becomes the merging channel that flows out.
  • FIG.19 and FIG.20 is a figure explaining the connection of the heat exchange part and splitting flow part of the heat exchanger which concerns on Embodiment 2.
  • FIG. 20 is a cross-sectional view taken along line BB in FIG.
  • the windward concentric pipe joint 41A is joined to one end 22b and the other end 22c of the windward heat transfer tube 22, respectively.
  • the connection pipe 57 of the laminated header 51 is connected to the upwind concentric pipe joint 41 ⁇ / b> A joined to one end 22 b of the upwind heat transfer pipe 22.
  • the connecting pipe 64 of the tubular header 61 is connected to the upwind concentric pipe joint 41A joined to the other end 22c of the upwind heat transfer pipe 22.
  • FIG. 21 is a diagram for explaining the connection of the heat exchange unit and the mixing and mixing unit in a modification of the heat exchanger according to the second embodiment.
  • FIG. 21 is a cross-sectional view taken along the line BB in FIG.
  • the other end portion 22 c of the windward side heat transfer tube 22 and one end portion 22 b of the windward side heat transfer tube 22 adjacent to the windward side heat transfer tube 22 are connected to the windward side step. You may connect using the pipe
  • FIG. 22 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 2 is applied.
  • FIG. 22 has shown the case where the air conditioning apparatus 91 performs heating operation.
  • the refrigerant flow during the heating operation will be described with reference to FIG.
  • the refrigerant flows into the split flow channel 51 a of the laminated header 51 and is distributed, passes through the windward concentric pipe joint 41 ⁇ / b> A, and reaches the windward heat transfer tube 22 of the windward heat exchange unit 21. Flow into.
  • the refrigerant that has flowed into the windward heat transfer pipe 22 passes through the windward concentric pipe joint 41 ⁇ / b> A, flows into the split flow passage 61 a of the tubular header 61, and is merged.
  • FIG. 23 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 2 is applied.
  • FIG. 23 shows a case where the air conditioner 91 performs a cooling operation.
  • the flow of the refrigerant during the cooling operation will be described with reference to FIG.
  • the refrigerant flows into the split flow passage 61 a of the cylindrical header 61 and is distributed, passes through the windward concentric pipe joint 41 ⁇ / b> A, and passes through the windward heat transfer tube 22 of the windward heat exchange unit 21. Flow into.
  • the refrigerant that has flowed into the windward heat transfer pipe 22 passes through the windward concentric pipe joint 41 ⁇ / b> A, flows into the mixed flow passage 51 a of the laminated header 51, and is merged.
  • interval of the heat exchange part 2 and the split mixing flow part 3 can be narrowed, the volume of the heat exchange part 2 can be expanded, and heat exchange efficiency is improved. And with the improvement in heat exchange efficiency, the operating efficiency of the refrigeration cycle is improved and the energy saving performance is improved. Moreover, it is also possible to save the space of the heat exchanger 1 while maintaining the performance of the refrigeration cycle.
  • the region where the shape conversion part 74 is formed and the outer peripheral surface of the connection pipe 57 of the laminated header 51 and the connection pipe 64 of the cylindrical header 61 is joined to the inner peripheral surface of the other end 73 is the shape conversion. Since it is adjacent to the portion 74, it is possible to achieve both a reduction in size and a reduction in pressure loss. Therefore, the space
  • Embodiment 1 and Embodiment 2 were demonstrated, this invention is not limited to description of each embodiment. For example, it is possible to combine all or some of the embodiments.

Abstract

A pipe joint according to the present invention has a passage section (71) formed therein. A flat pipe is connected to one end section (72) of the passage section (71), and another pipe having a different cross-sectional shape than the flat pipe is attached to the other end section (73) of the passage section (71). The central axis of the one end section (72) and the central axis of the other end section (73) are eccentric with respect to one another.

Description

管継手、熱交換器、及び、空気調和装置Pipe fitting, heat exchanger, and air conditioner
 本発明は、管継手と、熱交換器と、空気調和装置と、に関するものである。 The present invention relates to a pipe joint, a heat exchanger, and an air conditioner.
 従来の管継手として、貫通部が形成され、その貫通部の一方の端部に扁平管が接続され、その貫通部の他方の端部に扁平管と断面形状が異なる管、例えば、円管が接続されるものがある。扁平管には、その長軸方向に複数の流路が形成される(例えば、特許文献1参照)。 As a conventional pipe joint, a penetration part is formed, a flat tube is connected to one end of the penetration part, and a pipe having a cross-sectional shape different from that of the flat pipe, for example, a circular pipe, is connected to the other end of the penetration part. Some are connected. A plurality of flow paths are formed in the flat tube in the long axis direction (see, for example, Patent Document 1).
特開2013-142454号公報(段落[0009]、図1、図2)JP 2013-142454 A (paragraph [0009], FIGS. 1 and 2)
 従来の管継手では、例えば、扁平管と断面形状が異なる管を通過する流体に、扁平管の長軸方向と平行な成分の慣性力が作用していると、その慣性力によって、扁平管に形成されたそれぞれの流路に流入する流体のバランスが変化する。特に、扁平管と断面形状が異なる管を通過する流体が、気液二相状態の冷媒である場合に、その現象は顕著となる。しかしながら、そのような管継手では、扁平管が接続される一方の端部の中心軸と、扁平管と断面形状が異なる管が接続される他方の端部の中心軸と、が同軸であるため、扁平管に形成されたそれぞれの流路に流入する流体のバランスの変化に対応することができない。つまり、そのような管継手では、扁平管の複数の流路に流入する流体のバランスを最適化することができないという問題点があった。 In a conventional pipe joint, for example, if an inertial force of a component parallel to the long axis direction of a flat tube is acting on a fluid passing through a pipe having a cross-sectional shape different from that of the flat tube, the inertial force causes the flat tube to The balance of the fluid flowing into each formed flow path changes. In particular, when the fluid passing through a tube having a cross-sectional shape different from that of a flat tube is a gas-liquid two-phase refrigerant, the phenomenon becomes significant. However, in such a pipe joint, the central axis of one end to which the flat tube is connected and the central axis of the other end to which the tube having a different cross-sectional shape from the flat tube is connected are coaxial. The change of the balance of the fluid flowing into each flow path formed in the flat tube cannot be dealt with. In other words, such a pipe joint has a problem that the balance of the fluid flowing into the plurality of flow paths of the flat tube cannot be optimized.
 本発明は、上記のような課題を背景としてなされたものであり、扁平管の複数の流路に流入する流体のバランスを最適化することが可能な管継手を得ることを目的とする。また、本発明は、そのような管継手を備えた熱交換器を得ることを目的とする。また、本発明は、そのような熱交換器を備えた空気調和装置を得ることを目的とする。 The present invention has been made against the background of the above problems, and an object thereof is to obtain a pipe joint capable of optimizing the balance of fluid flowing into a plurality of flow paths of a flat tube. Moreover, an object of this invention is to obtain the heat exchanger provided with such a pipe joint. Moreover, an object of this invention is to obtain the air conditioning apparatus provided with such a heat exchanger.
 本発明に係る管継手は、貫通部が形成され、該貫通部の一方の端部に扁平管が接続され、該貫通部の他方の端部に該扁平管と断面形状が異なる他の管が接続される管継手であって、前記一方の端部の中心軸と前記他方の端部の中心軸とが、互いに偏心されたものである。 In the pipe joint according to the present invention, a penetrating portion is formed, a flat tube is connected to one end of the penetrating portion, and another pipe having a cross-sectional shape different from that of the flat tube is connected to the other end of the penetrating portion. In the pipe joint to be connected, the central axis of the one end and the central axis of the other end are eccentric from each other.
 本発明に係る管継手では、例えば、扁平管と断面形状が異なる管を通過する流体に、扁平管の長軸方向と平行な成分の慣性力が作用している場合でも、貫通部の一方の端部の中心軸と、貫通部の他方の端部の中心軸と、を互いに偏心させることで、扁平管に形成されたそれぞれの流路に流入する流体のバランスを最適化することができる。 In the pipe joint according to the present invention, for example, even when an inertial force of a component parallel to the long axis direction of the flat tube is acting on a fluid passing through a pipe having a cross-sectional shape different from that of the flat tube, By decentering the central axis of the end portion and the central axis of the other end portion of the penetrating portion, the balance of the fluid flowing into each flow path formed in the flat tube can be optimized.
実施の形態1に係る熱交換器の、斜視図である。1 is a perspective view of a heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る熱交換器の、積層型ヘッダの分解した状態での斜視図である。It is a perspective view in the state which the laminated header of the heat exchanger which concerns on Embodiment 1 decomposed | disassembled. 実施の形態1に係る熱交換器の、筒型ヘッダの斜視図である。It is a perspective view of the cylindrical header of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器の、熱交換部及び分配合流部の接続を説明する図である。It is a figure explaining the connection of the heat exchange part and splitting flow part of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器の、熱交換部及び分配合流部の接続を説明する図である。It is a figure explaining the connection of the heat exchange part and splitting flow part of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器の変形例の、熱交換部及び分配合流部の接続を説明する図である。It is a figure explaining the connection of the heat exchange part and split mixing flow part of the modification of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器の変形例の、熱交換部及び分配合流部の接続を説明する図である。It is a figure explaining the connection of the heat exchange part and split mixing flow part of the modification of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器の変形例の、熱交換部及び分配合流部の接続を説明する図である。It is a figure explaining the connection of the heat exchange part and split mixing flow part of the modification of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器の、風上側同心管継手及び風下側同心管継手の構造を示す図である。It is a figure which shows the structure of the windward concentric pipe joint of the heat exchanger which concerns on Embodiment 1, and a leeward concentric pipe joint. 比較例に係る熱交換器の、風上側同心管継手及び風下側同心管継手の構造を示す図である。It is a figure which shows the structure of the windward concentric pipe joint and leeward concentric pipe joint of the heat exchanger which concerns on a comparative example. 実施の形態1に係る熱交換器の、風上側偏心管継手及び風下側偏心管継手の構造を示す図である。It is a figure which shows the structure of the windward eccentric pipe joint and leeward eccentric pipe joint of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器が適用される空気調和装置の、構成を示す図である。It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 1 is applied. 実施の形態1に係る熱交換器が適用される空気調和装置の、構成を示す図である。It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 1 is applied. 実施の形態1に係る熱交換器が蒸発器として作用する場合の、風下側伝熱管に流入する冷媒の液量分布を説明する図である。It is a figure explaining the liquid quantity distribution of the refrigerant | coolant which flows in into a leeward side heat exchanger tube in case the heat exchanger which concerns on Embodiment 1 acts as an evaporator. 実施の形態1に係る熱交換器が蒸発器として作用する場合の、風下側伝熱管に流入する冷媒の液量分布を説明する図である。It is a figure explaining the liquid quantity distribution of the refrigerant | coolant which flows in into a leeward side heat exchanger tube in case the heat exchanger which concerns on Embodiment 1 acts as an evaporator. 実施の形態1に係る熱交換器が凝縮器として作用する場合の、風上側伝熱管に流入する冷媒のガス量分布を説明する図である。It is a figure explaining the gas amount distribution of the refrigerant | coolant which flows in into an upwind heat exchanger tube in case the heat exchanger which concerns on Embodiment 1 acts as a condenser. 実施の形態1に係る熱交換器が凝縮器として作用する場合の、風上側伝熱管に流入する冷媒のガス量分布を説明する図である。It is a figure explaining the gas amount distribution of the refrigerant | coolant which flows in into an upwind heat exchanger tube in case the heat exchanger which concerns on Embodiment 1 acts as a condenser. 実施の形態2に係る熱交換器の、斜視図である。It is a perspective view of the heat exchanger which concerns on Embodiment 2. FIG. 実施の形態2に係る熱交換器の、熱交換部及び分配合流部の接続を説明する図である。It is a figure explaining the connection of the heat exchange part and splitting flow part of the heat exchanger which concerns on Embodiment 2. FIG. 実施の形態2に係る熱交換器の、熱交換部及び分配合流部の接続を説明する図である。It is a figure explaining the connection of the heat exchange part and splitting flow part of the heat exchanger which concerns on Embodiment 2. FIG. 実施の形態2に係る熱交換器の変形例の、熱交換部及び分配合流部の接続を説明する図である。It is a figure explaining the connection of the heat exchange part and split mixing flow part of the modification of the heat exchanger which concerns on Embodiment 2. FIG. 実施の形態2に係る熱交換器が適用される空気調和装置の、構成を示す図である。It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 2 is applied. 実施の形態2に係る熱交換器が適用される空気調和装置の、構成を示す図である。It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 2 is applied.
 以下、本発明に係る管継手について、図面を用いて説明する。
 なお、以下で説明する構成、動作等は、一例にすぎず、本発明に係る管継手は、そのような構成、動作等である場合に限定されない。また、各図において、同一又は類似するものには、同一の符号を付すか、又は、符号を付すことを省略している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
Hereinafter, the pipe joint concerning the present invention is explained using a drawing.
In addition, the structure, operation | movement, etc. which are demonstrated below are only examples, and the pipe joint which concerns on this invention is not limited to a case where it is such a structure, operation | movement, etc. Moreover, in each figure, the same code | symbol is attached | subjected to the same or similar thing, or attaching | subjecting code | symbol is abbreviate | omitted. Further, the illustration of the fine structure is simplified or omitted as appropriate. In addition, overlapping or similar descriptions are appropriately simplified or omitted.
 また、以下では、本発明に係る管継手が、熱交換器を構成する部材である場合を説明しているが、本発明に係る管継手が、他の機器を構成する部材であってもよい。また、以下では、本発明に係る管継手を備えた熱交換器が、空気調和装置に適用される場合を説明しているが、そのような場合に限定されず、例えば、冷媒循環回路を有する他の冷凍サイクル装置に適用されてもよい。また、本発明に係る管継手を備えた熱交換器が、空気調和装置の室外熱交換器である場合を説明しているが、そのような場合に限定されず、空気調和装置の室内熱交換器であってもよい。また、空気調和装置が、暖房運転と冷房運転とを切り替えるものである場合を説明しているが、そのような場合に限定されず、暖房運転又は冷房運転のみを行うものであってもよい。 Moreover, although the case where the pipe joint which concerns on this invention is a member which comprises a heat exchanger below is demonstrated, the pipe joint which concerns on this invention may be a member which comprises another apparatus. . In the following, a case where the heat exchanger provided with the pipe joint according to the present invention is applied to an air conditioner is described. However, the present invention is not limited to such a case, and includes, for example, a refrigerant circulation circuit. You may apply to another refrigeration cycle apparatus. Moreover, although the case where the heat exchanger provided with the pipe joint according to the present invention is an outdoor heat exchanger of an air conditioner is described, it is not limited to such a case, and the indoor heat exchange of the air conditioner It may be a vessel. Moreover, although the case where an air conditioning apparatus switches between heating operation and cooling operation is demonstrated, it is not limited to such a case, You may perform only heating operation or cooling operation.
実施の形態1.
 実施の形態1に係る熱交換器について説明する。
<熱交換器の構成>
 以下に、実施の形態1に係る熱交換器の構成について説明する。
(熱交換器の概略構成)
 以下に、実施の形態1に係る熱交換器の概略構成について説明する。
 図1は、実施の形態1に係る熱交換器の、斜視図である。
 図1に示されるように、熱交換器1は、熱交換部2と、分配合流部3と、を有する。
Embodiment 1 FIG.
The heat exchanger according to Embodiment 1 will be described.
<Configuration of heat exchanger>
Below, the structure of the heat exchanger which concerns on Embodiment 1 is demonstrated.
(Schematic configuration of heat exchanger)
Below, schematic structure of the heat exchanger which concerns on Embodiment 1 is demonstrated.
1 is a perspective view of a heat exchanger according to Embodiment 1. FIG.
As shown in FIG. 1, the heat exchanger 1 includes a heat exchanging unit 2 and a split blending unit 3.
 熱交換部2は、熱交換部2を通過する空気の通過方向(図中白抜き矢印)の、風上側に配設された風上側熱交換部21と、風下側に配設された風下側熱交換部31と、を有する。風上側熱交換部21は、複数の風上側伝熱管22と、その複数の風上側伝熱管22に、例えば、ロウ付け等で接合される複数の風上側フィン23と、を有する。風下側熱交換部31は、複数の風下側伝熱管32と、その複数の風下側伝熱管32に、例えば、ロウ付け等で接合される複数の風下側フィン33と、を有する。熱交換部2が、風上側熱交換部21及び風下側熱交換部31の2列で構成されてもよく、また、3列以上で構成されてもよい。 The heat exchange unit 2 includes an upwind heat exchange unit 21 disposed on the leeward side and a leeward side disposed on the leeward side in the direction of passage of air passing through the heat exchange unit 2 (the white arrow in the figure). And a heat exchanging unit 31. The windward heat exchange unit 21 includes a plurality of windward heat transfer tubes 22 and a plurality of windward fins 23 joined to the plurality of windward heat transfer tubes 22 by, for example, brazing. The leeward side heat exchange unit 31 includes a plurality of leeward side heat transfer tubes 32 and a plurality of leeward side fins 33 joined to the plurality of leeward side heat transfer tubes 32 by brazing or the like, for example. The heat exchanging unit 2 may be configured by two rows of the windward side heat exchanging unit 21 and the leeward side heat exchanging unit 31, or may be configured by three or more rows.
 風上側伝熱管22及び風下側伝熱管32は、扁平管であり、長軸方向に複数の流路が形成される。複数の風上側伝熱管22及び複数の風下側伝熱管32のそれぞれは、一方の端部と他方の端部との間がヘアピン状に折り曲げられて、折返し部22a、32aが形成される。風上側伝熱管22及び風下側伝熱管32は、熱交換部2を通過する空気の通過方向(図中白抜き矢印)と交差する方向に、複数段配設される。複数の風上側伝熱管22及び複数の風下側伝熱管32のそれぞれの一方の端部と他方の端部とは、分配合流部3と対向するように並設される。 The windward side heat transfer tube 22 and the leeward side heat transfer tube 32 are flat tubes, and a plurality of flow paths are formed in the major axis direction. Each of the plurality of windward side heat transfer tubes 22 and the plurality of leeward side heat transfer tubes 32 is bent in a hairpin shape between one end and the other end to form folded portions 22a and 32a. The windward side heat transfer tubes 22 and the leeward side heat transfer tubes 32 are arranged in a plurality of stages in a direction intersecting with the passage direction of air passing through the heat exchanging unit 2 (the white arrow in the figure). One end and the other end of each of the plurality of windward side heat transfer tubes 22 and the plurality of leeward side heat transfer tubes 32 are arranged in parallel so as to face the mixing / mixing flow portion 3.
 分配合流部3は、積層型ヘッダ51と、筒型ヘッダ61と、を有する。積層型ヘッダ51及び筒型ヘッダ61は、熱交換部2を通過する空気の通過方向(図中白抜き矢印)に沿うように、並設される。積層型ヘッダ51には、接続管52を介して、冷媒配管(図示せず)が接続される。筒型ヘッダ61には、接続管62を介して、冷媒配管(図示せず)が接続される。接続管52及び接続管62は、例えば、円管である。 The distribution flow unit 3 includes a laminated header 51 and a cylindrical header 61. The laminated header 51 and the cylindrical header 61 are arranged side by side so as to follow the passage direction of air passing through the heat exchanging unit 2 (the white arrow in the figure). A refrigerant pipe (not shown) is connected to the laminated header 51 via a connecting pipe 52. Refrigerant piping (not shown) is connected to the tubular header 61 via a connecting pipe 62. The connection pipe 52 and the connection pipe 62 are, for example, circular pipes.
 積層型ヘッダ51は、風上側熱交換部21に接続され、内部に分配合流流路51aが形成される。分配合流流路51aは、熱交換部2が蒸発器として作用する場合に、冷媒配管(図示せず)から流入する冷媒を風上側熱交換部21の複数の風上側伝熱管22に分配して流出する分配流路となる。分配合流流路51aは、熱交換部2が凝縮器として作用する場合に、風上側熱交換部21の複数の風上側伝熱管22から流入する冷媒を合流して冷媒配管(図示せず)に流出する合流流路となる。積層型ヘッダ51は、本発明の「風上側に配設されたヘッダ」に相当する。 The laminated header 51 is connected to the windward heat exchanging unit 21, and a split flow channel 51 a is formed therein. When the heat exchange unit 2 acts as an evaporator, the split-mixing flow channel 51a distributes the refrigerant flowing from the refrigerant pipe (not shown) to the plurality of windward side heat transfer tubes 22 of the windward side heat exchange unit 21. It becomes an outflow distribution channel. When the heat exchange unit 2 acts as a condenser, the split flow channel 51a joins refrigerant flowing in from the plurality of windward side heat transfer tubes 22 of the windward side heat exchange unit 21 to a refrigerant pipe (not shown). It becomes the merging channel that flows out. The stacked header 51 corresponds to the “header disposed on the windward side” of the present invention.
 筒型ヘッダ61は、風下側熱交換部31に接続され、内部に分配合流流路61aが形成される。分配合流流路61aは、熱交換部2が凝縮器として作用する場合に、冷媒配管(図示せず)から流入する冷媒を風下側熱交換部31の複数の風下側伝熱管32に分配して流出する分配流路となる。分配合流流路61aは、熱交換部2が蒸発器として作用する場合に、風下側熱交換部31の複数の風下側伝熱管32から流入する冷媒を合流して冷媒配管(図示せず)に流出する合流流路となる。筒型ヘッダ61は、本発明の「風下側に配設されたヘッダ」に相当する。 The cylindrical header 61 is connected to the leeward side heat exchanging portion 31 and a split flow channel 61a is formed therein. When the heat exchange unit 2 acts as a condenser, the split flow channel 61a distributes the refrigerant flowing from the refrigerant pipe (not shown) to the plurality of leeward heat transfer tubes 32 of the leeward heat exchange unit 31. It becomes an outflow distribution channel. When the heat exchange unit 2 acts as an evaporator, the split-mixing flow channel 61a joins refrigerant flowing in from the plurality of leeward heat transfer tubes 32 of the leeward heat exchange unit 31 to a refrigerant pipe (not shown). It becomes the merging channel that flows out. The cylindrical header 61 corresponds to the “header arranged on the leeward side” of the present invention.
(積層型ヘッダの構成)
 以下に、実施の形態1に係る熱交換器の積層型ヘッダの構成について説明する。
 図2は、実施の形態1に係る熱交換器の、積層型ヘッダの分解した状態での斜視図である。なお、図2では、積層型ヘッダ51の分配合流流路51aが、分配流路として機能する場合の冷媒の流れを、矢印で示している。
(Configuration of stacked header)
Below, the structure of the laminated header of the heat exchanger which concerns on Embodiment 1 is demonstrated.
FIG. 2 is a perspective view of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled. In addition, in FIG. 2, the flow of the refrigerant | coolant in case the distribution flow path 51a of the laminated header 51 functions as a distribution flow path is shown by the arrow.
 図2に示されるように、部分流路53aが形成された第1板状部材53と、部分流路54a_1~54a_3が形成された複数の第2板状部材54_1~54_3と、部分流路55aが形成された第3板状部材55と、が、部分流路56aが形成された複数のクラッド材56_1~56_4を介して積層されることで、積層型ヘッダ51が構成される。クラッド材56_1~56_4の両面又は片面には、ロウ材が塗布される。以下では、第1板状部材53と、複数の第2板状部材54_1~54_3と、第3板状部材55と、複数のクラッド材56_1~56_4と、を総称して、「板状部材」と記載する場合がある。 As shown in FIG. 2, the first plate member 53 in which the partial flow channel 53a is formed, the plurality of second plate members 54_1 to 54_3 in which the partial flow channels 54a_1 to 54a_3 are formed, and the partial flow channel 55a. The third plate-like member 55 formed with is laminated via a plurality of clad members 56_1 to 56_4 in which the partial flow passages 56a are formed, whereby the laminated header 51 is configured. A brazing material is applied to both surfaces or one surface of the cladding materials 56_1 to 56_4. Hereinafter, the first plate member 53, the plurality of second plate members 54_1 to 54_3, the third plate member 55, and the plurality of clad members 56_1 to 56_4 are collectively referred to as “plate members”. May be described.
 部分流路53a、55a、56aは、円形状の貫通穴である。部分流路54a_1~54a_3のそれぞれは、一方の端部と他方の端部との重力方向における高さが互いに異なる、線状(例えば、Z字状、S字状等)の貫通溝である。部分流路53aには、接続管52を介して、冷媒配管(図示せず)が接続される。部分流路55aのそれぞれには、接続管57を介して、風上側伝熱管22が接続される。接続管57は、例えば、円管、楕円管等である。 The partial flow paths 53a, 55a, and 56a are circular through holes. Each of the partial flow paths 54a_1 to 54a_3 is a linear (for example, Z-shaped, S-shaped, etc.) through groove in which the height in the gravity direction of one end and the other end is different from each other. A refrigerant pipe (not shown) is connected to the partial flow path 53a through the connection pipe 52. The windward heat transfer tube 22 is connected to each of the partial flow paths 55a via the connection pipe 57. The connection pipe 57 is, for example, a circular pipe or an elliptical pipe.
 クラッド材56_1の部分流路56aは、部分流路53aと対向する位置に形成される。クラッド材56_4の部分流路56aは、部分流路55aと対向する位置に形成される。部分流路54a_1~54a_3の一方の端部及び他方の端部は、風上側熱交換部21に近い側に隣接して積層されるクラッド材56_2~56_4の部分流路56aと対向する。部分流路54a_1~54a_3の一方の端部と他方の端部との間の一部は、風上側熱交換部21に遠い側に隣接して積層されるクラッド材56_1~56_3の部分流路56aと対向する。 The partial flow path 56a of the cladding material 56_1 is formed at a position facing the partial flow path 53a. The partial flow path 56a of the cladding material 56_4 is formed at a position facing the partial flow path 55a. One end and the other end of the partial flow paths 54a_1 to 54a_3 are opposed to the partial flow paths 56a of the clad members 56_2 to 56_4 laminated adjacent to the side close to the windward heat exchange section 21. A portion between one end portion and the other end portion of the partial flow paths 54a_1 to 54a_3 is a partial flow path 56a of the clad material 56_1 to 56_3 laminated adjacent to the side far from the windward heat exchange section 21. Opposite.
 板状部材が積層されると、部分流路53a、54a_1~54a_3、55a、56aが連通され、分配合流流路51aが形成される。分配合流流路51aは、冷媒が図中矢印の方向に流れる際には、分配流路として機能し、冷媒が図中矢印と反対方向に流れる際には、合流流路として機能する。 When the plate-like members are stacked, the partial flow paths 53a, 54a_1 to 54a_3, 55a, 56a are communicated to form the split flow path 51a. The split flow channel 51a functions as a distribution channel when the refrigerant flows in the direction of the arrow in the figure, and functions as a merging channel when the refrigerant flows in the direction opposite to the arrow in the figure.
 分配合流流路51aが分配流路として機能する場合には、接続管52を介して部分流路53aに流入した冷媒は、部分流路56aを通過して、部分流路54a_1の一方の端部と他方の端部との間に流入し、クラッド材56_2の表面に当たって、2方向に分岐される。分岐された冷媒は、部分流路54a_1の一方の端部及び他方の端部から流出して、部分流路56aを介して、部分流路54a_2の一方の端部と他方の端部との間に流入し、クラッド材56_3の表面に当たって、2方向に分岐される。分岐された冷媒は、部分流路54a_2の一方の端部及び他方の端部から流出して、部分流路56aを介して、部分流路54a_3の一方の端部と他方の端部との間に流入し、クラッド材56_4の表面に当たって、2方向に分岐される。分岐された冷媒は、部分流路54a_3の一方の端部及び他方の端部から流出して、部分流路56a及び部分流路55aを介して、接続管57に流入する。 When the split flow channel 51a functions as a distribution channel, the refrigerant that has flowed into the partial flow channel 53a via the connection pipe 52 passes through the partial flow channel 56a and is at one end of the partial flow channel 54a_1. Between the first end and the other end, hits the surface of the clad material 56_2, and is branched in two directions. The branched refrigerant flows out from one end and the other end of the partial flow channel 54a_1, and passes between the one end and the other end of the partial flow channel 54a_2 via the partial flow channel 56a. , And hits the surface of the clad material 56_3 to be branched in two directions. The branched refrigerant flows out from one end and the other end of the partial flow path 54a_2, and passes between the one end and the other end of the partial flow path 54a_3 through the partial flow path 56a. , And hits the surface of the clad material 56_4 to be branched in two directions. The branched refrigerant flows out from one end and the other end of the partial flow path 54a_3, and flows into the connection pipe 57 through the partial flow path 56a and the partial flow path 55a.
 分配合流流路51aが合流流路として機能する場合には、接続管57を介して部分流路55aに流入した冷媒は、部分流路56aを通過して、部分流路54a_3の一方の端部及び他方の端部に流入し、部分流路54a_3の一方の端部と他方の端部との間に連通する部分流路56aに流入することで、合流される。合流された冷媒は、部分流路54a_2の一方の端部及び他方の端部に流入し、部分流路54a_2の一方の端部と他方の端部との間に連通する部分流路56aに流入することで、合流される。合流された冷媒は、部分流路54a_1の一方の端部及び他方の端部に流入し、部分流路54a_1の一方の端部と他方の端部との間に連通する部分流路56aに流入することで、合流される。合流された冷媒は、部分流路53aを介して、接続管52に流入する。 When the split flow channel 51a functions as a merging channel, the refrigerant that has flowed into the partial channel 55a via the connection pipe 57 passes through the partial channel 56a and is at one end of the partial channel 54a_3. And flows into the other end, and flows into the partial flow path 56a communicating between one end and the other end of the partial flow path 54a_3, thereby being merged. The merged refrigerant flows into one end and the other end of the partial flow path 54a_2, and flows into the partial flow path 56a that communicates between one end and the other end of the partial flow path 54a_2. To be merged. The merged refrigerant flows into one end and the other end of the partial flow path 54a_1, and flows into the partial flow path 56a that communicates between one end and the other end of the partial flow path 54a_1. To be merged. The merged refrigerant flows into the connecting pipe 52 through the partial flow path 53a.
 なお、第1板状部材53と第2板状部材54_1~54_3と第3板状部材55とが、クラッド材56_1~56_4を介さずに直接積層されてもよい。クラッド材56_1~56_4を介して積層される場合には、部分流路56aが冷媒隔離流路として機能することとなって、部分流路53a、54a_1~54a_3、55aを通過する冷媒同士の隔離が確実化される。また、第1板状部材53と第2板状部材54_1~54_3と第3板状部材55とのそれぞれと、それに隣接して積層されるクラッド材56_1~56_4と、が一体化された板状部材が、直接積層されてもよい。 Note that the first plate-like member 53, the second plate-like members 54_1 to 54_3, and the third plate-like member 55 may be directly laminated without using the clad members 56_1 to 56_4. In the case of being laminated via the cladding materials 56_1 to 56_4, the partial flow path 56a functions as a refrigerant isolation flow path, so that the refrigerant passing through the partial flow paths 53a, 54a_1 to 54a_3, 55a can be isolated from each other. Ensured. Each of the first plate-like member 53, the second plate-like members 54_1 to 54_3, and the third plate-like member 55, and the clad members 56_1 to 56_4 laminated adjacent to each other are integrated into a plate shape. The members may be directly laminated.
(筒型ヘッダの構成)
 以下に、実施の形態1に係る熱交換器の筒型ヘッダの構成について説明する。
 図3は、実施の形態1に係る熱交換器の、筒型ヘッダの斜視図である。なお、図3では、筒型ヘッダ61の分配合流流路61aが、合流流路として機能する場合の冷媒の流れを、矢印で示している。
(Configuration of cylindrical header)
Below, the structure of the cylindrical header of the heat exchanger which concerns on Embodiment 1 is demonstrated.
FIG. 3 is a perspective view of a cylindrical header of the heat exchanger according to the first embodiment. In addition, in FIG. 3, the flow of the refrigerant | coolant in case the mixing | blending flow path 61a of the cylindrical header 61 functions as a confluence | merging flow path is shown by the arrow.
 図3に示されるように、筒型ヘッダ61は、一方の端部と他方の端部とが閉塞された円筒部63が、軸方向が重力方向と平行になるように配設されたものである。円筒部63の軸方向が、重力方向と平行でなくてもよい。筒型ヘッダ61が、円筒部63の軸方向と積層型ヘッダ51の長手方向とが平行になるように配設されることで、分配合流部3が省スペース化される。なお、円筒部63は、例えば、断面が楕円状の筒部等であってもよい。 As shown in FIG. 3, the cylindrical header 61 includes a cylindrical portion 63 in which one end and the other end are closed so that the axial direction is parallel to the direction of gravity. is there. The axial direction of the cylindrical portion 63 may not be parallel to the direction of gravity. Since the cylindrical header 61 is disposed so that the axial direction of the cylindrical portion 63 and the longitudinal direction of the laminated header 51 are parallel to each other, the split flow portion 3 is saved. The cylindrical portion 63 may be, for example, a cylindrical portion having an elliptical cross section.
 円筒部63の側壁には、接続管62を介して、冷媒配管(図示せず)が接続される。円筒部63の側壁には、複数の接続管64を介して風下側伝熱管32が接続される。接続管64は、例えば、円管、楕円管等である。円筒部63の内側は、分配合流流路61aである。分配合流流路61aは、冷媒が図中矢印の方向に流れる際には、合流流路として機能し、冷媒が図中矢印と反対方向に流れる際には、分配流路として機能する。 A refrigerant pipe (not shown) is connected to the side wall of the cylindrical portion 63 via a connecting pipe 62. The leeward heat transfer tube 32 is connected to the side wall of the cylindrical portion 63 via a plurality of connection tubes 64. The connection pipe 64 is, for example, a circular pipe or an elliptical pipe. The inner side of the cylindrical portion 63 is a split blending flow path 61a. The split flow channel 61a functions as a merge channel when the refrigerant flows in the direction of the arrow in the figure, and functions as a distribution channel when the refrigerant flows in the direction opposite to the arrow in the figure.
 分配合流流路61aが合流流路として機能する場合には、複数の接続管64に流入した冷媒は、円筒部63の内側を通過して接続管62に流入することで、合流される。分配合流流路61aが分配流路として機能する場合には、接続管62に流入した冷媒は、円筒部63の内側を通過して複数の接続管64に流入することで、分配される。 When the split flow channel 61a functions as a merge channel, the refrigerant that has flowed into the plurality of connection pipes 64 merges by passing through the inside of the cylindrical portion 63 and flowing into the connection pipe 62. When the mixing / mixing flow path 61a functions as a distribution flow path, the refrigerant flowing into the connection pipe 62 is distributed by passing through the inside of the cylindrical portion 63 and flowing into the plurality of connection pipes 64.
 円筒部63の周方向のうちの、接続管62が接続される方向と、複数の接続管64が接続される方向と、が一直線上にならないように、接続管62及び複数の接続管64が接続されるとよい。このように構成されることで、分配合流流路61aが分配流路として機能する場合の、複数の接続管64に流入する冷媒の均一性を向上させることが可能となる。 Of the circumferential direction of the cylindrical portion 63, the connection pipe 62 and the plurality of connection pipes 64 are arranged so that the direction in which the connection pipe 62 is connected and the direction in which the plurality of connection pipes 64 are connected are not aligned. It is good to be connected. By being configured in this way, it is possible to improve the uniformity of the refrigerant flowing into the plurality of connection pipes 64 when the mixing / mixing flow path 61a functions as a distribution flow path.
(熱交換部及び分配合流部の接続)
 以下に、実施の形態1に係る熱交換器の熱交換部及び分配合流部の接続について説明する。
 図4及び図5は、実施の形態1に係る熱交換器の、熱交換部及び分配合流部の接続を説明する図である。なお、図5は、図4におけるA-A線での断面図である。
(Connection of heat exchange section and split mixing section)
Below, the connection of the heat exchange part of the heat exchanger which concerns on Embodiment 1, and a part mix flow part is demonstrated.
4 and 5 are diagrams for explaining the connection between the heat exchange unit and the mixing and mixing unit of the heat exchanger according to the first embodiment. FIG. 5 is a cross-sectional view taken along line AA in FIG.
 図4及び図5に示されるように、風上側伝熱管22の一方の端部22bに、風上側同心管継手41Aが接合される。風上側伝熱管22の他方の端部22cに、風上側偏心管継手41Bが接合される。風下側伝熱管32の他方の端部32cに、風下側同心管継手42Aが接合される。風下側伝熱管32の一方の端部32bに、風下側偏心管継手42Bが接合される。 4 and 5, the windward concentric pipe joint 41 </ b> A is joined to one end 22 b of the windward heat transfer pipe 22. The upwind eccentric pipe joint 41 </ b> B is joined to the other end 22 c of the upwind heat transfer tube 22. The leeward concentric pipe joint 42 </ b> A is joined to the other end 32 c of the leeward heat transfer pipe 32. The leeward eccentric pipe joint 42 </ b> B is joined to one end 32 b of the leeward heat transfer tube 32.
 風上側同心管継手41Aには、積層型ヘッダ51の接続管57が接続される。風下側同心管継手42Aには、筒型ヘッダ61の接続管64が接続される。風上側偏心管継手41Bと風下側偏心管継手42Bとは、列渡り管43によって接続される。列渡り管43は、例えば、円弧状に曲げられた円管、楕円管等である。 The connecting pipe 57 of the laminated header 51 is connected to the windward concentric pipe joint 41A. A connecting pipe 64 of the tubular header 61 is connected to the leeward side concentric pipe joint 42A. The upwind eccentric pipe joint 41B and the downwind eccentric pipe joint 42B are connected by a crossover pipe 43. The cross-over tube 43 is, for example, a circular tube or an elliptic tube bent in an arc shape.
 図6は、実施の形態1に係る熱交換器の変形例の、熱交換部及び分配合流部の接続を説明する図である。なお、図6は、図4におけるA-A線に相当する線での断面図である。
 なお、風上側伝熱管22及び風下側伝熱管32は、図5に示されるように、風上側伝熱管22の一方の端部22b及び他方の端部22cと、風下側伝熱管32の一方の端部32b及び他方の端部32cと、が、熱交換器1を側方視した状態において千鳥状になるように、配設されていてもよく、また、図6に示されるように、碁盤状になるように、配設されていてもよい。
FIG. 6 is a diagram for explaining the connection of the heat exchange unit and the mixing and mixing unit in the modification of the heat exchanger according to the first embodiment. 6 is a cross-sectional view taken along the line AA in FIG.
As shown in FIG. 5, the windward side heat transfer tube 22 and the leeward side heat transfer tube 32 include one end 22 b and the other end 22 c of the windward side heat transfer tube 22 and one of the leeward side heat transfer tubes 32. The end portion 32b and the other end portion 32c may be arranged in a zigzag shape when the heat exchanger 1 is viewed from the side, and as shown in FIG. You may arrange | position so that it may become a shape.
 図7及び図8は、実施の形態1に係る熱交換器の変形例の、熱交換部及び分配合流部の接続を説明する図である。なお、図7及び図8は、図4におけるA-A線に相当する線での断面図である。
 また、図7及び図8に示されるように、風上側伝熱管22の他方の端部22cと、その風上側伝熱管22の隣の段の風上側伝熱管22の一方の端部22bと、が風上側段渡り管44と風上側同心管継手41Aとを用いて接続され、風下側伝熱管32の他方の端部32cと、その風下側伝熱管32の隣の段の風下側伝熱管32の一方の端部32bと、が風下側段渡り管45と風下側同心管継手42Aとを用いて接続されていてもよい。風上側段渡り管44及び風下側段渡り管45は、例えば、円弧状に曲げられた円管、楕円管等である。
7 and 8 are diagrams for explaining the connection of the heat exchange unit and the mixing and mixing unit in the modification of the heat exchanger according to the first embodiment. 7 and 8 are cross-sectional views taken along the line AA in FIG.
Further, as shown in FIGS. 7 and 8, the other end 22c of the windward heat transfer tube 22, and one end 22b of the windward heat transfer tube 22 adjacent to the windward heat transfer tube 22, Are connected using the windward side transition pipe 44 and the windward concentric pipe joint 41 </ b> A, and the other end 32 c of the leeward side heat transfer pipe 32 and the leeward side heat transfer pipe 32 on the next stage of the leeward side heat transfer pipe 32. May be connected using the leeward side crossover pipe 45 and the leeward side concentric pipe joint 42A. The windward side transition pipe 44 and the leeward side transition pipe 45 are, for example, a circular pipe or an elliptical pipe bent in an arc shape.
 また、風上側伝熱管22及び風下側伝熱管32の一方の端部と他方の端部との間がヘアピン状に折り曲げられて、折返し部22a、32aが形成されるのではなく、風上側伝熱管22の一方の端部と、それの隣の段の風上側伝熱管22の一方の端部と、が、風上側段渡り管44と風上側同心管継手41Aとを用いて接続され、風下側伝熱管32の一方の端部と、それの隣の段の風下側伝熱管32の一方の端部と、が、風下側段渡り管45と風下側同心管継手42Aとを用いて接続されることで、冷媒が折り返されてもよい。 In addition, the windward heat transfer tube 22 and the leeward heat transfer tube 32 are not bent into a hairpin shape between one end and the other end, and the folded portions 22a and 32a are not formed. One end portion of the heat pipe 22 and one end portion of the windward heat transfer pipe 22 adjacent to the heat pipe 22 are connected using the windward transition pipe 44 and the windward concentric pipe joint 41A, and the windward side One end portion of the side heat transfer tube 32 and one end portion of the leeward side heat transfer tube 32 adjacent to the side heat transfer tube 32 are connected using the leeward side crossover tube 45 and the leeward side concentric pipe joint 42A. Thus, the refrigerant may be folded back.
(風上側同心管継手及び風下側同心管継手の構造の詳細)
 以下に、実施の形態1に係る熱交換器の風上側同心管継手及び風下側同心管継手の構造の詳細について説明する。
 図9は、実施の形態1に係る熱交換器の、風上側同心管継手及び風下側同心管継手の構造を示す図である。なお、図9では、風上側同心管継手41A及び風下側同心管継手42Aを正面視した状態での断面図と、それらを側面視した状態での断面図と、それらの上面図と、それらの下面図と、を示している。また、図9では、風上側同心管継手41A及び風下側同心管継手42Aの、一方の端部72及び他方の端部73に接続される管が、点線で図示される。また、図9では、積層型ヘッダ51の接続管57及び筒型ヘッダ61の接続管64が円管である場合を示している。
(Details of the structure of the leeward concentric pipe joint and leeward concentric pipe joint)
Details of the structures of the windward concentric pipe joint and the leeward concentric pipe joint of the heat exchanger according to Embodiment 1 will be described below.
FIG. 9 is a diagram illustrating the structures of the windward concentric pipe joint and the leeward concentric pipe joint of the heat exchanger according to Embodiment 1. In addition, in FIG. 9, sectional drawing in the state which looked at the windward concentric pipe joint 41A and the leeward side concentric pipe coupling 42A, the sectional view in the state seen from the side, those top views, and those A bottom view is shown. In FIG. 9, the pipes connected to one end 72 and the other end 73 of the upwind concentric pipe joint 41A and the downwind concentric pipe joint 42A are shown by dotted lines. FIG. 9 shows a case where the connection pipe 57 of the laminated header 51 and the connection pipe 64 of the cylindrical header 61 are circular pipes.
 図9に示されるように、風上側同心管継手41A及び風下側同心管継手42Aには、貫通部71が形成される。貫通部71の一方の端部72の断面形状は、風上側伝熱管22又は風下側伝熱管32の断面形状に沿う形状である。貫通部71の他方の端部73の断面形状は、積層型ヘッダ51の接続管57又は筒型ヘッダ61の接続管64の断面形状に沿う形状である。一方の端部72の中心軸と、他方の端部73の中心軸と、は同軸である。 As shown in FIG. 9, a penetration portion 71 is formed in the windward concentric pipe joint 41 </ b> A and the leeward concentric pipe joint 42 </ b> A. The cross-sectional shape of one end 72 of the penetrating portion 71 is a shape that follows the cross-sectional shape of the windward side heat transfer tube 22 or the leeward side heat transfer tube 32. The cross-sectional shape of the other end 73 of the penetrating portion 71 is a shape that follows the cross-sectional shape of the connection pipe 57 of the laminated header 51 or the connection pipe 64 of the cylindrical header 61. The central axis of one end 72 and the central axis of the other end 73 are coaxial.
 風上側同心管継手41A及び風下側同心管継手42Aを正面視した状態において、一方の端部72の内径(長軸方向の内径)をW1とすると、他方の端部73の内径D1は、D1≦W1である。また、風上側同心管継手41A及び風下側同心管継手42Aを側面視した状態において、一方の端部72の内径(短軸方向の内径)をW2とすると、他方の端部73の内径D2は、D2≧W2である。つまり、他方の端部73の断面形状の全周方向での内径D(D1、D2)は、W2≦D≦W1である。また、積層型ヘッダ51の接続管57及び筒型ヘッダ61の接続管64の流路断面積(d1×π/4)は、風上側伝熱管22及び風下側伝熱管32の流路断面積(w1×w2×流路数)と比較して大きい。なお、積層型ヘッダ51の接続管57及び筒型ヘッダ61の接続管64が、楕円管である場合には、D1>D2、又は、D1<D2となる。 In a state where the windward concentric pipe joint 41A and the leeward concentric pipe joint 42A are viewed from the front, when the inner diameter (the inner diameter in the major axis direction) of one end 72 is W1, the inner diameter D1 of the other end 73 is D1. ≦ W1. Further, in a state in which the windward concentric pipe joint 41A and the leeward concentric pipe joint 42A are viewed from the side, when the inner diameter (the inner diameter in the minor axis direction) of one end 72 is W2, the inner diameter D2 of the other end 73 is , D2 ≧ W2. That is, the inner diameter D (D1, D2) in the entire circumferential direction of the cross-sectional shape of the other end portion 73 is W2 ≦ D ≦ W1. The flow path cross-sectional area (d1 2 × π / 4) of the connection pipe 57 of the laminated header 51 and the connection pipe 64 of the cylindrical header 61 is the flow path cross-sectional area of the windward side heat transfer pipe 22 and the leeward side heat transfer pipe 32. Larger than (w1 × w2 × number of flow paths). When the connection pipe 57 of the laminated header 51 and the connection pipe 64 of the cylindrical header 61 are elliptical pipes, D1> D2 or D1 <D2.
 このように構成されることで、D1を短くして風上側同心管継手41A及び風下側同心管継手42Aを小型化することと、D2を長くして流路断面積の大きい管を接合できるようにして、風上側同心管継手41A及び風下側同心管継手42Aを通過する冷媒に生じる圧力損失を低減することと、が両立される。また、W2≦D≦W1であることで、積層型ヘッダ51の接続管57及び筒型ヘッダ61の接続管64の、折り曲げの自由度等が向上される。 By being configured in this manner, D1 can be shortened to downsize the windward concentric pipe joint 41A and the leeward side concentric pipe joint 42A, and D2 can be lengthened to join a pipe having a large channel cross-sectional area. Thus, it is compatible to reduce the pressure loss generated in the refrigerant passing through the windward concentric pipe joint 41A and the leeward concentric pipe joint 42A. In addition, since W2 ≦ D ≦ W1, the degree of freedom of bending of the connection pipe 57 of the laminated header 51 and the connection pipe 64 of the cylindrical header 61 is improved.
 図10は、比較例に係る熱交換器の、風上側同心管継手及び風下側同心管継手の構造を示す図である。なお、図10では、風上側同心管継手41A及び風下側同心管継手42Aを正面視した状態での断面図を示している。また、図10では、風上側同心管継手41A及び風下側同心管継手42Aの、一方の端部72及び他方の端部73に接続される管が、点線で図示される。
 また、貫通部71の、一方の端部72と他方の端部73との間の領域に、一方の端部72の内周面の断面形状を他方の端部73の内周面の断面形状に連続的に変化させる形状変換部74が形成される。図10に示されるように、貫通部71に、形状変換部74が形成されていない、つまり、一方の端部72と他方の端部73とが直接連通される場合には、一方の端部72の隅部で渦が生じ、風上側同心管継手41A及び風下側同心管継手42Aを通過する冷媒に圧力損失が生じてしまうこととなるが、貫通部71の、一方の端部72と他方の端部73との間の領域に、形状変換部74が形成されることで、そのような現象が抑制される。
FIG. 10 is a diagram illustrating the structures of the windward concentric pipe joint and the leeward concentric pipe joint of the heat exchanger according to the comparative example. FIG. 10 shows a cross-sectional view of the windward concentric pipe joint 41A and the leeward concentric pipe joint 42A as viewed from the front. In FIG. 10, the pipes connected to one end 72 and the other end 73 of the upwind concentric pipe joint 41A and the downwind concentric pipe joint 42A are shown by dotted lines.
Further, in the region between the one end 72 and the other end 73 of the penetrating portion 71, the cross-sectional shape of the inner peripheral surface of the one end 72 is changed to the cross-sectional shape of the inner peripheral surface of the other end 73. A shape converting portion 74 that is continuously changed is formed. As shown in FIG. 10, when the shape converting portion 74 is not formed in the penetrating portion 71, that is, when one end 72 and the other end 73 are in direct communication, one end A vortex is produced at the corner of 72, and pressure loss occurs in the refrigerant passing through the windward concentric pipe joint 41A and the leeward concentric pipe joint 42A. Such a phenomenon is suppressed by forming the shape conversion part 74 in the area | region between the edge parts 73 of this.
 そして、更に、積層型ヘッダ51の接続管57及び筒型ヘッダ61の接続管64が、他方の端部73と形状変換部74との境界まで挿入された状態で接合される。つまり、他方の端部73の内周面の、積層型ヘッダ51の接続管57及び筒型ヘッダ61の接続管64の外周面が接合される領域は、形状変換部74に隣接する。そのため、積層型ヘッダ51の接続管57及び筒型ヘッダ61の接続管64から流入する冷媒が、段差を介さずに風上側伝熱管22及び風下側伝熱管32に流入することとなり、圧力損失が生じることが更に抑制される。また、他方の端部73の軸方向の寸法を小さくすることが可能となり、風上側同心管継手41A及び風下側同心管継手42Aが小型化される。 Further, the connection pipe 57 of the laminated header 51 and the connection pipe 64 of the cylindrical header 61 are joined in a state where they are inserted up to the boundary between the other end 73 and the shape conversion part 74. That is, the region where the outer peripheral surface of the connection pipe 57 of the multilayer header 51 and the outer peripheral surface of the connection pipe 64 of the cylindrical header 61 is joined to the inner peripheral surface of the other end 73 is adjacent to the shape conversion unit 74. Therefore, the refrigerant flowing in from the connection pipe 57 of the laminated header 51 and the connection pipe 64 of the cylindrical header 61 flows into the windward side heat transfer pipe 22 and the leeward side heat transfer pipe 32 without passing through the steps, resulting in pressure loss. Occurrence is further suppressed. In addition, the axial dimension of the other end 73 can be reduced, and the downwind concentric pipe joint 41A and the downwind concentric pipe joint 42A are reduced in size.
(風上側偏心管継手及び風下側偏心管継手の構造の詳細)
 以下に、実施の形態1に係る熱交換器の風上側偏心管継手及び風下側偏心管継手の構造の詳細について説明する。
 図11は、実施の形態1に係る熱交換器の、風上側偏心管継手及び風下側偏心管継手の構造を示す図である。なお、図11では、正面視した状態での、風上側偏心管継手41B及び風下側偏心管継手42Bの断面と、その周辺部材を図示している。
(Details of the structure of the upwind eccentric fitting and leeward eccentric fitting)
Below, the detail of the structure of the windward eccentric pipe joint and leeward eccentric pipe joint of the heat exchanger which concerns on Embodiment 1 is demonstrated.
FIG. 11 is a diagram illustrating the structure of the upwind eccentric pipe joint and the downwind eccentric pipe joint of the heat exchanger according to the first embodiment. In addition, in FIG. 11, the cross section of the windward eccentric pipe joint 41B and the leeward eccentric pipe joint 42B in the state seen from the front and its peripheral members are illustrated.
 風上側偏心管継手41B及び風下側偏心管継手42Bは、風上側同心管継手41A及び風下側同心管継手42Aと同様の構成を有するが、図11に示されるように、一方の端部72の中心軸と、他方の端部73の中心軸と、が互いに偏心していることが相違する。その偏心量Zは、風上側伝熱管22及び風下側伝熱管32の長軸方向の外径をW3とすると、0<Z<W3/2である。風上側偏心管継手41Bの貫通部71の他方の端部73の中心軸と、風下側伝熱管32の中心軸と、の間の距離が、風上側偏心管継手41Bの貫通部71の一方の端部72の中心軸と、風下側伝熱管32の中心軸と、の間の距離と比較して短くなるように偏心される。また、風下側偏心管継手42Bの貫通部71の他方の端部73の中心軸と、風上側伝熱管22の中心軸と、の間の距離が、風下側偏心管継手42Bの貫通部71の一方の端部72の中心軸と、風上側伝熱管22の中心軸と、の間の距離と比較して短くなるように偏心される。 The windward eccentric pipe joint 41B and the leeward eccentric pipe joint 42B have the same configuration as the windward concentric pipe joint 41A and the leeward side concentric pipe joint 42A, but as shown in FIG. The difference is that the central axis and the central axis of the other end 73 are eccentric from each other. The amount of eccentricity Z is 0 <Z <W3 / 2, where W3 is the outer diameter in the major axis direction of the windward side heat transfer tube 22 and the leeward side heat transfer tube 32. The distance between the central axis of the other end 73 of the penetration part 71 of the upwind eccentric pipe joint 41B and the central axis of the leeward side heat transfer pipe 32 is one of the penetration parts 71 of the upwind eccentric pipe joint 41B. It is eccentric so as to be shorter than the distance between the central axis of the end portion 72 and the central axis of the leeward heat transfer tube 32. In addition, the distance between the central axis of the other end 73 of the penetrating portion 71 of the leeward side eccentric pipe joint 42B and the central axis of the upwind heat transfer pipe 22 is such that the distance between the penetrating part 71 of the leeward side eccentric pipe joint 42B. It is eccentric so as to be shorter than the distance between the central axis of one end 72 and the central axis of the windward heat transfer tube 22.
<熱交換器が適用される空気調和装置の構成>
 以下に、実施の形態1に係る熱交換器が適用される空気調和装置の構成について説明する。
 図12及び図13は、実施の形態1に係る熱交換器が適用される空気調和装置の、構成を示す図である。なお、図12は、空気調和装置91が暖房運転する場合を示している。また、図13は、空気調和装置91が冷房運転する場合を示している。
<Configuration of air conditioner to which heat exchanger is applied>
Below, the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 1 is applied is demonstrated.
12 and 13 are diagrams showing a configuration of an air conditioner to which the heat exchanger according to Embodiment 1 is applied. In addition, FIG. 12 has shown the case where the air conditioning apparatus 91 performs heating operation. FIG. 13 shows a case where the air conditioner 91 performs a cooling operation.
 図12及び図13に示されるように、空気調和装置91は、圧縮機92と、四方弁93と、室外熱交換器(熱源側熱交換器)94と、絞り装置95と、室内熱交換器(負荷側熱交換器)96と、室外ファン(熱源側ファン)97と、室内ファン(負荷側ファン)98と、制御装置99と、を有する。圧縮機92と四方弁93と室外熱交換器94と絞り装置95と室内熱交換器96とが冷媒配管で接続されて、冷媒循環回路が形成される。四方弁93は、他の流路切替装置であってもよい。 As shown in FIGS. 12 and 13, the air conditioner 91 includes a compressor 92, a four-way valve 93, an outdoor heat exchanger (heat source side heat exchanger) 94, an expansion device 95, and an indoor heat exchanger. (Load side heat exchanger) 96, outdoor fan (heat source side fan) 97, indoor fan (load side fan) 98, and control device 99. The compressor 92, the four-way valve 93, the outdoor heat exchanger 94, the expansion device 95, and the indoor heat exchanger 96 are connected by a refrigerant pipe to form a refrigerant circulation circuit. The four-way valve 93 may be another flow path switching device.
 室外熱交換器94は、熱交換器1である。熱交換器1は、室外ファン97の駆動によって生じる空気流れの風上側に積層型ヘッダ51が配設され、風下側に筒型ヘッダ61が配設されるように、設けられる。室外ファン97は、熱交換器1の風上側に設けられてもよく、また、熱交換器1の風下側に設けられてもよい。 The outdoor heat exchanger 94 is the heat exchanger 1. The heat exchanger 1 is provided such that the laminated header 51 is disposed on the windward side of the air flow generated by driving the outdoor fan 97 and the cylindrical header 61 is disposed on the leeward side. The outdoor fan 97 may be provided on the leeward side of the heat exchanger 1 or may be provided on the leeward side of the heat exchanger 1.
 制御装置99には、例えば、圧縮機92、四方弁93、絞り装置95、室外ファン97、室内ファン98、各種センサ等が接続される。制御装置99によって、四方弁93の流路が切り替えられることで、暖房運転と冷房運転とが切り替えられる。 For example, a compressor 92, a four-way valve 93, a throttle device 95, an outdoor fan 97, an indoor fan 98, various sensors, and the like are connected to the control device 99. By switching the flow path of the four-way valve 93 by the control device 99, the heating operation and the cooling operation are switched.
<熱交換器及び空気調和装置の動作>
 以下に、実施の形態1に係る熱交換器、及び、その熱交換器が適用される空気調和装置の動作について説明する。
(暖房運転時の熱交換器及び空気調和装置の動作)
 以下に、図12を用いて、暖房運転時の冷媒の流れについて説明する。
 圧縮機92から吐出される高圧高温のガス状態の冷媒は、四方弁93を介して室内熱交換器96に流入し、室内ファン98によって供給される空気との熱交換によって凝縮することで、室内を暖房する。凝縮した冷媒は、高圧の過冷却液状態となり、室内熱交換器96から流出し、絞り装置95によって、低圧の気液二相状態の冷媒となる。低圧の気液二相状態の冷媒は、室外熱交換器94に流入し、室外ファン97によって供給される空気と熱交換を行い、蒸発する。蒸発した冷媒は、低圧の過熱ガス状態となり、室外熱交換器94から流出し、四方弁93を介して圧縮機92に吸入される。つまり、暖房運転時には、室外熱交換器94は、蒸発器として作用する。
<Operation of heat exchanger and air conditioner>
Below, the operation | movement of the heat exchanger which concerns on Embodiment 1, and the air conditioning apparatus to which the heat exchanger is applied is demonstrated.
(Operation of heat exchanger and air conditioner during heating operation)
Hereinafter, the refrigerant flow during the heating operation will be described with reference to FIG.
The high-pressure and high-temperature gaseous refrigerant discharged from the compressor 92 flows into the indoor heat exchanger 96 through the four-way valve 93 and is condensed by heat exchange with the air supplied by the indoor fan 98. Heat up. The condensed refrigerant enters a high-pressure supercooled liquid state, flows out of the indoor heat exchanger 96, and becomes a low-pressure gas-liquid two-phase refrigerant by the expansion device 95. The low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 94, exchanges heat with the air supplied by the outdoor fan 97, and evaporates. The evaporated refrigerant enters a low-pressure superheated gas state, flows out of the outdoor heat exchanger 94, and is sucked into the compressor 92 through the four-way valve 93. That is, during the heating operation, the outdoor heat exchanger 94 acts as an evaporator.
 室外熱交換器94において、冷媒は、積層型ヘッダ51の分配合流流路51aに流入して分配され、風上側同心管継手41Aを通過して、風上側熱交換部21の風上側伝熱管22に流入する。風上側伝熱管22に流入した冷媒は、風上側偏心管継手41B、列渡り管43、及び風下側偏心管継手42Bを順に通過して、風下側熱交換部31の風下側伝熱管32に流入する。風下側伝熱管32に流入した冷媒は、風下側同心管継手42Aを通過して、筒型ヘッダ61の分配合流流路61aに流入して合流される。 In the outdoor heat exchanger 94, the refrigerant flows into the split flow channel 51 a of the laminated header 51 and is distributed, passes through the windward concentric pipe joint 41 </ b> A, and reaches the windward heat transfer tube 22 of the windward heat exchange unit 21. Flow into. The refrigerant flowing into the windward side heat transfer tube 22 sequentially passes through the windward side eccentric pipe joint 41B, the crossover pipe 43, and the leeward side eccentric pipe joint 42B, and flows into the leeward side heat transfer pipe 32 of the leeward side heat exchange section 31. To do. The refrigerant that has flowed into the leeward heat transfer pipe 32 passes through the leeward side concentric pipe joint 42 </ b> A, flows into the mixed flow passage 61 a of the tubular header 61, and is merged.
(冷房運転時の熱交換器及び空気調和装置の動作)
 以下に、図13を用いて、冷房運転時の冷媒の流れについて説明する。
 圧縮機92から吐出される高圧高温のガス状態の冷媒は、四方弁93を介して室外熱交換器94に流入し、室外ファン97によって供給される空気と熱交換を行い、凝縮する。凝縮した冷媒は、高圧の過冷却液状態、もしくは、低乾き度状態となり、室外熱交換器94から流出し、絞り装置95によって、低圧の気液二相状態となる。低圧の気液二相状態の冷媒は、室内熱交換器96に流入し、室内ファン98によって供給される空気との熱交換によって蒸発することで、室内を冷却する。蒸発した冷媒は、低圧の過熱ガス状態となり、室内熱交換器96から流出し、四方弁93を介して圧縮機92に吸入される。つまり、冷房運転時には、室外熱交換器94は、凝縮器として作用する。
(Operation of heat exchanger and air conditioner during cooling operation)
Hereinafter, the flow of the refrigerant during the cooling operation will be described with reference to FIG.
The high-pressure and high-temperature gas refrigerant discharged from the compressor 92 flows into the outdoor heat exchanger 94 through the four-way valve 93, exchanges heat with the air supplied by the outdoor fan 97, and condenses. The condensed refrigerant enters a high-pressure supercooled liquid state or a low dryness state, flows out of the outdoor heat exchanger 94, and enters a low-pressure gas-liquid two-phase state by the expansion device 95. The low-pressure gas-liquid two-phase refrigerant flows into the indoor heat exchanger 96 and evaporates by heat exchange with the air supplied by the indoor fan 98, thereby cooling the room. The evaporated refrigerant becomes a low-pressure superheated gas state, flows out of the indoor heat exchanger 96, and is sucked into the compressor 92 through the four-way valve 93. That is, during the cooling operation, the outdoor heat exchanger 94 functions as a condenser.
 室外熱交換器94において、冷媒は、筒型ヘッダ61の分配合流流路61aに流入して分配され、風下側同心管継手42Aを通過して、風下側熱交換部31の風下側伝熱管32に流入する。風下側伝熱管32に流入した冷媒は、風下側偏心管継手42B、列渡り管43、及び風上側偏心管継手41Bを順に通過して、風上側熱交換部21の風上側伝熱管22に流入する。風上側伝熱管22に流入した冷媒は、風上側同心管継手41Aを通過して、積層型ヘッダ51の分配合流流路51aに流入して合流される。 In the outdoor heat exchanger 94, the refrigerant flows into the split flow passage 61 a of the cylindrical header 61 and is distributed, passes through the leeward concentric pipe joint 42 </ b> A, and passes through the leeward heat transfer tube 32 of the leeward heat exchanger 31. Flow into. The refrigerant that has flowed into the leeward heat transfer pipe 32 sequentially passes through the leeward eccentric pipe joint 42B, the crossover pipe 43, and the windward eccentric pipe joint 41B, and then flows into the windward heat transfer pipe 22 of the windward heat exchange section 21. To do. The refrigerant that has flowed into the windward heat transfer pipe 22 passes through the windward concentric pipe joint 41 </ b> A, flows into the mixed flow passage 51 a of the laminated header 51, and is merged.
<熱交換器の作用>
 以下に、実施の形態1に係る熱交換器の作用について説明する。
 熱交換器1では、風上側偏心管継手41B及び風下側偏心管継手42Bにおいて、一方の端部72の中心軸と他方の端部73の中心軸とが、互いに偏心される。そのため、風上側伝熱管22及び風下側伝熱管32に流入する流体のそれぞれのバランスが、最適化される。
<Operation of heat exchanger>
Below, the effect | action of the heat exchanger which concerns on Embodiment 1 is demonstrated.
In the heat exchanger 1, in the upwind eccentric pipe joint 41B and the downwind eccentric pipe joint 42B, the central axis of one end 72 and the central axis of the other end 73 are eccentric from each other. Therefore, each balance of the fluid which flows into the windward side heat exchanger tube 22 and the leeward side heat exchanger tube 32 is optimized.
 図14及び図15は、実施の形態1に係る熱交換器が蒸発器として作用する場合の、風下側伝熱管に流入する冷媒の液量分布を説明する図である。なお、図14では、冷媒の流れ方向を黒塗り矢印で示している。
 つまり、熱交換部2が蒸発器として作用する場合においては、図14及び図15に示されるように、冷媒は、室外ファン97の駆動によって生じる空気流れと並行流になる関係で、つまり、風上側伝熱管22から風下側伝熱管32に流れ、列渡り管43から風下側偏心管継手42Bに気液二相状態で流入する。列渡り管43を通過する気液二相状態の冷媒は、遠心力の影響を受け、密度の大きい冷媒が外側を流れ、密度の小さい冷媒が内側を流れることとなる。そのため、風下側偏心管継手42Bにおいて、一方の端部72の中心軸と他方の端部73の中心軸との偏心量Zが、Z=0である場合には、風下側偏心管継手42Bに流入した液冷媒は、風下側伝熱管32のL点側に、S点側と比較して多く流入することとなる。
FIG.14 and FIG.15 is a figure explaining the liquid quantity distribution of the refrigerant | coolant which flows in into a leeward heat exchanger tube when the heat exchanger which concerns on Embodiment 1 acts as an evaporator. In FIG. 14, the flow direction of the refrigerant is indicated by black arrows.
That is, when the heat exchanging unit 2 acts as an evaporator, as shown in FIGS. 14 and 15, the refrigerant is in a parallel flow with the air flow generated by driving the outdoor fan 97, that is, the wind It flows from the upper heat transfer tube 22 to the leeward heat transfer tube 32, and flows from the crossover tube 43 into the leeward eccentric tube joint 42B in a gas-liquid two-phase state. The refrigerant in the gas-liquid two-phase state that passes through the crossover pipe 43 is affected by the centrifugal force, so that a refrigerant having a high density flows outside and a refrigerant having a low density flows inside. Therefore, in the leeward side eccentric pipe joint 42B, when the amount of eccentricity Z between the central axis of the one end 72 and the central axis of the other end 73 is Z = 0, the leeward side eccentric pipe joint 42B The amount of liquid refrigerant that has flowed in flows more into the L point side of the leeward heat transfer tube 32 than at the S point side.
 それに対し、熱交換器1では、風下側偏心管継手42Bにおいて、一方の端部72の中心軸と他方の端部73の中心軸との偏心量Zが、Z>0であるため、風下側偏心管継手42Bに流入した液冷媒は、風下側伝熱管32のS点側に多く流入することとなる。熱交換器1が蒸発器として作用する場合、室外ファン97の駆動によって生じる空気流れの風上側の熱負荷(熱交換量)が大きいため、風下側伝熱管32のS点側、つまり風上側の流路に液冷媒が多く流れるように、扁平管の流路穴に分配されることで、液冷媒の蒸発が促進され、熱交換効率が向上される。更に、列渡り管43の曲率半径を小さくすることが可能となって、熱交換部2の容積を拡大することができるため、熱交換効率が更に向上される。そして、熱交換効率の向上に伴って、冷凍サイクルの運転効率が向上され、省エネ性能が向上される。また、冷凍サイクルの性能を維持しつつ、熱交換器1を省スペース化することも可能である。 On the other hand, in the heat exchanger 1, in the leeward side eccentric pipe joint 42B, the eccentric amount Z between the central axis of one end 72 and the central axis of the other end 73 is Z> 0. A large amount of the liquid refrigerant that has flowed into the eccentric pipe joint 42 </ b> B flows into the S point side of the leeward heat transfer pipe 32. When the heat exchanger 1 acts as an evaporator, since the heat load (heat exchange amount) on the windward side of the air flow generated by driving the outdoor fan 97 is large, the S point side of the leeward heat transfer tube 32, that is, on the windward side. By distributing the liquid refrigerant to the flow path holes of the flat tube so that a large amount of liquid refrigerant flows in the flow path, evaporation of the liquid refrigerant is promoted and heat exchange efficiency is improved. Furthermore, the radius of curvature of the crossover tube 43 can be reduced, and the volume of the heat exchanging unit 2 can be increased, so that the heat exchange efficiency is further improved. And with the improvement in heat exchange efficiency, the operating efficiency of the refrigeration cycle is improved and the energy saving performance is improved. Moreover, it is also possible to save the space of the heat exchanger 1 while maintaining the performance of the refrigeration cycle.
 図16及び図17は、実施の形態1に係る熱交換器が凝縮器として作用する場合の、風上側伝熱管に流入する冷媒のガス量分布を説明する図である。なお、図16では、冷媒の流れ方向を黒塗り矢印で示している。
 また、熱交換部2が凝縮器として作用する場合においては、図16及び図17に示されるように、冷媒は、室外ファン97の駆動によって生じる空気流れと対向流になる関係で、つまり、風下側伝熱管32から風上側伝熱管22に流れ、列渡り管43から風上側偏心管継手41Bに気液二相状態で流入する。列渡り管43を通過する気液二相状態の冷媒は、遠心力の影響を受け、密度の大きい冷媒が外側を流れ、密度の小さい冷媒が内側を流れることとなる。そのため、風上側偏心管継手41Bにおいて、一方の端部72の中心軸と他方の端部73の中心軸との偏心量Zが、Z=0である場合には、風上側偏心管継手41Bに流入した液冷媒は、風上側伝熱管22のL点側に、S点側と比較して多く流入することとなる。
FIG.16 and FIG.17 is a figure explaining the gas quantity distribution of the refrigerant | coolant which flows in into an upwind heat exchanger tube in case the heat exchanger which concerns on Embodiment 1 acts as a condenser. In FIG. 16, the flow direction of the refrigerant is indicated by black arrows.
In the case where the heat exchanging unit 2 acts as a condenser, as shown in FIGS. 16 and 17, the refrigerant is in a relationship opposite to the air flow generated by driving the outdoor fan 97, that is, downwind. It flows from the side heat transfer pipe 32 to the windward side heat transfer pipe 22, and flows from the row connecting pipe 43 into the windward side eccentric pipe joint 41B in a gas-liquid two-phase state. The refrigerant in the gas-liquid two-phase state that passes through the crossover pipe 43 is affected by the centrifugal force, so that a refrigerant having a high density flows outside and a refrigerant having a low density flows inside. Therefore, in the upwind eccentric pipe joint 41B, when the eccentric amount Z between the central axis of the one end 72 and the central axis of the other end 73 is Z = 0, the upwind eccentric pipe joint 41B A larger amount of the flowing liquid refrigerant flows into the L point side of the windward side heat transfer tube 22 as compared with the S point side.
 それに対し、熱交換器1では、風上側偏心管継手41Bにおいて、一方の端部72の中心軸と他方の端部73の中心軸との偏心量Zが、Z>0であるため、風上側偏心管継手41Bに流入したガス冷媒は、液冷媒がS点側に多く流入する分、風上側伝熱管22のL点側に多く流入することとなる。熱交換器1が凝縮器として作用する場合、室外ファン97の駆動によって生じる空気流れの風上側の熱負荷(熱交換量)が大きいため、風上側伝熱管22のL点側、つまり風上側の流路にガス冷媒が多く流れるように、扁平管の流路穴に分配されることで、ガス冷媒の凝縮が促進され、熱交換効率が向上される。更に、列渡り管43の曲率半径を小さくすることが可能となって、熱交換部2の容積を拡大することができるため、熱交換効率が更に向上される。そして、熱交換効率の向上に伴って、冷凍サイクルの運転効率が向上され、省エネ性能が向上される。また、冷凍サイクルの性能を維持しつつ、熱交換器1を省スペース化することも可能である。 On the other hand, in the heat exchanger 1, in the upwind eccentric pipe joint 41B, the eccentric amount Z between the central axis of one end 72 and the central axis of the other end 73 is Z> 0. The gas refrigerant that has flowed into the eccentric pipe joint 41 </ b> B flows into the L point side of the windward heat transfer tube 22 as much liquid refrigerant flows into the S point side. When the heat exchanger 1 acts as a condenser, since the heat load (heat exchange amount) on the windward side of the air flow generated by driving the outdoor fan 97 is large, the L point side of the windward heat transfer tube 22, that is, the windward side By distributing the gas refrigerant in the flow path hole of the flat tube so that a large amount of the gas refrigerant flows in the flow path, condensation of the gas refrigerant is promoted and heat exchange efficiency is improved. Furthermore, the radius of curvature of the crossover tube 43 can be reduced, and the volume of the heat exchanging unit 2 can be increased, so that the heat exchange efficiency is further improved. And with the improvement in heat exchange efficiency, the operating efficiency of the refrigeration cycle is improved and the energy saving performance is improved. Moreover, it is also possible to save the space of the heat exchanger 1 while maintaining the performance of the refrigeration cycle.
 また、熱交換器1では、風上側同心管継手41A、風下側同心管継手42A、風上側偏心管継手41B及び風下側偏心管継手42Bにおいて、一方の端部72の長軸方向の内径をW1、短軸方向の内径をW2とすると、他方の端部73の断面形状の全周方向での内径D(D1、D2)が、W2≦D≦W1であるため、小型化することと、圧力損失を低減することとが両立される。そのため、熱交換部2と分配合流部3との間隔を狭くして、熱交換部2の容積を拡大することができ、熱交換効率が向上される。そして、熱交換効率の向上に伴って、冷凍サイクルの運転効率が向上され、省エネ性能が向上される。また、冷凍サイクルの性能を維持しつつ、熱交換器1を省スペース化することも可能である。 In the heat exchanger 1, in the windward concentric pipe joint 41A, the leeward concentric pipe joint 42A, the windward eccentric pipe joint 41B, and the leeward eccentric pipe joint 42B, the inner diameter in the major axis direction of one end 72 is set to W1. If the inner diameter in the minor axis direction is W2, the inner diameter D (D1, D2) in the entire circumferential direction of the cross-sectional shape of the other end 73 is W2 ≦ D ≦ W1, so that the size can be reduced and the pressure It is compatible with reducing the loss. Therefore, the space | interval of the heat exchange part 2 and the split mixing flow part 3 can be narrowed, the volume of the heat exchange part 2 can be expanded, and heat exchange efficiency is improved. And with the improvement in heat exchange efficiency, the operating efficiency of the refrigeration cycle is improved and the energy saving performance is improved. Moreover, it is also possible to save the space of the heat exchanger 1 while maintaining the performance of the refrigeration cycle.
 また、熱交換器1では、風上側同心管継手41A、風下側同心管継手42A、風上側偏心管継手41B及び風下側偏心管継手42Bにおいて、貫通部71の一方の端部72と他方の端部73との間の領域に、形状変換部74が形成され、他方の端部73の内周面の、積層型ヘッダ51の接続管57、筒型ヘッダ61の接続管64、及び列渡り管43の外周面が接合される領域が、形状変換部74に隣接するため、小型化することと、圧力損失を低減することとが両立される。そのため、熱交換部2と分配合流部3との間隔を狭くして、熱交換部2の容積を拡大することができ、熱交換効率が向上される。そして、熱交換効率の向上に伴って、冷凍サイクルの運転効率が向上され、省エネ性能が向上される。また、冷凍サイクルの性能を維持しつつ、熱交換器1を省スペース化することも可能である。 In the heat exchanger 1, in the windward concentric pipe joint 41A, the leeward concentric pipe joint 42A, the windward eccentric pipe joint 41B, and the leeward eccentric pipe joint 42B, one end 72 and the other end of the penetrating part 71 are provided. A shape conversion portion 74 is formed in a region between the portions 73, and the connection pipe 57 of the laminated header 51, the connection pipe 64 of the cylindrical header 61, and the crossover pipe on the inner peripheral surface of the other end 73 Since the area | region where the outer peripheral surface of 43 is joined is adjacent to the shape conversion part 74, size reduction and reducing pressure loss are compatible. Therefore, the space | interval of the heat exchange part 2 and the split mixing flow part 3 can be narrowed, the volume of the heat exchange part 2 can be expanded, and heat exchange efficiency is improved. And with the improvement in heat exchange efficiency, the operating efficiency of the refrigeration cycle is improved and the energy saving performance is improved. Moreover, it is also possible to save the space of the heat exchanger 1 while maintaining the performance of the refrigeration cycle.
実施の形態2.
 実施の形態2に係る熱交換器について説明する。
 なお、実施の形態1と重複又は類似する説明は、適宜簡略化又は省略している。
<熱交換器の構成>
 以下に、実施の形態2に係る熱交換器の構成について説明する。
(熱交換器の概略構成)
 以下に、実施の形態2に係る熱交換器の概略構成について説明する。
 図18は、実施の形態2に係る熱交換器の、斜視図である。
 図18に示されるように、熱交換部2は、風上側熱交換部21のみを有する。風上側伝熱管22は、熱交換部2を通過する空気の通過方向(図中白抜き矢印)と交差する方向に、複数段配設される。複数の風上側伝熱管22のそれぞれは、一方の端部と他方の端部との間がヘアピン状に折り曲げられて、折返し部22aが形成される。複数の風上側伝熱管22のそれぞれの一方の端部と他方の端部とは、積層型ヘッダ51と対向するように並設される。
Embodiment 2. FIG.
A heat exchanger according to Embodiment 2 will be described.
Note that description overlapping or similar to that in Embodiment 1 is appropriately simplified or omitted.
<Configuration of heat exchanger>
Below, the structure of the heat exchanger which concerns on Embodiment 2 is demonstrated.
(Schematic configuration of heat exchanger)
Below, schematic structure of the heat exchanger which concerns on Embodiment 2 is demonstrated.
FIG. 18 is a perspective view of the heat exchanger according to the second embodiment.
As shown in FIG. 18, the heat exchanging unit 2 includes only the windward heat exchanging unit 21. The windward side heat transfer tubes 22 are arranged in a plurality of stages in a direction intersecting with the passage direction of air passing through the heat exchanging unit 2 (indicated by white arrows in the figure). Each of the plurality of windward side heat transfer tubes 22 is bent in a hairpin shape between one end and the other end to form a folded portion 22a. One end and the other end of each of the plurality of windward side heat transfer tubes 22 are juxtaposed so as to face the laminated header 51.
 積層型ヘッダ51は、風上側熱交換部21に接続され、内部に分配合流流路51aが形成される。分配合流流路51aは、熱交換部2が蒸発器として作用する場合に、冷媒配管(図示せず)から流入する冷媒を風上側熱交換部21の複数の風上側伝熱管22に分配して流出する分配流路となる。分配合流流路51aは、熱交換部2が凝縮器として作用する場合に、風上側熱交換部21の複数の風上側伝熱管22から流入する冷媒を合流して冷媒配管(図示せず)に流出する合流流路となる。 The laminated header 51 is connected to the windward heat exchanging unit 21, and a split flow channel 51 a is formed therein. When the heat exchange unit 2 acts as an evaporator, the split-mixing flow channel 51a distributes the refrigerant flowing from the refrigerant pipe (not shown) to the plurality of windward side heat transfer tubes 22 of the windward side heat exchange unit 21. It becomes an outflow distribution channel. When the heat exchange unit 2 acts as a condenser, the split flow channel 51a joins refrigerant flowing in from the plurality of windward side heat transfer tubes 22 of the windward side heat exchange unit 21 to a refrigerant pipe (not shown). It becomes the merging channel that flows out.
 筒型ヘッダ61は、風上側熱交換部21に接続され、内部に分配合流流路61aが形成される。分配合流流路61aは、熱交換部2が凝縮器として作用する場合に、冷媒配管(図示せず)から流入する冷媒を風上側熱交換部21の複数の風上側伝熱管22に分配して流出する分配流路となる。分配合流流路61aは、熱交換部2が蒸発器として作用する場合に、風上側熱交換部21の複数の風上側伝熱管22から流入する冷媒を合流して冷媒配管(図示せず)に流出する合流流路となる。 The cylindrical header 61 is connected to the windward heat exchange unit 21, and a split flow channel 61a is formed therein. When the heat exchange unit 2 acts as a condenser, the split flow channel 61a distributes the refrigerant flowing from the refrigerant pipe (not shown) to the plurality of windward heat transfer tubes 22 of the windward heat exchange unit 21. It becomes an outflow distribution channel. When the heat exchange unit 2 acts as an evaporator, the split-mixing flow channel 61a joins refrigerant flowing in from the plurality of windward side heat transfer tubes 22 of the windward side heat exchange unit 21 to a refrigerant pipe (not shown). It becomes the merging channel that flows out.
(熱交換部及び分配合流部の接続)
 以下に、実施の形態2に係る熱交換器の熱交換部及び分配合流部の接続について説明する。
 図19及び図20は、実施の形態2に係る熱交換器の、熱交換部及び分配合流部の接続を説明する図である。なお、図20は、図19におけるB-B線での断面図である。
(Connection of heat exchange section and split mixing section)
Below, the connection of the heat exchange part of the heat exchanger which concerns on Embodiment 2, and a part mix flow part is demonstrated.
FIG.19 and FIG.20 is a figure explaining the connection of the heat exchange part and splitting flow part of the heat exchanger which concerns on Embodiment 2. FIG. FIG. 20 is a cross-sectional view taken along line BB in FIG.
 図19及び図20に示されるように、風上側伝熱管22の一方の端部22b及び他方の端部22cのそれぞれに、風上側同心管継手41Aが接合される。風上側伝熱管22の一方の端部22bに接合された風上側同心管継手41Aには、積層型ヘッダ51の接続管57が接続される。風上側伝熱管22の他方の端部22cに接合された風上側同心管継手41Aには、筒型ヘッダ61の接続管64が接続される。 19 and FIG. 20, the windward concentric pipe joint 41A is joined to one end 22b and the other end 22c of the windward heat transfer tube 22, respectively. The connection pipe 57 of the laminated header 51 is connected to the upwind concentric pipe joint 41 </ b> A joined to one end 22 b of the upwind heat transfer pipe 22. The connecting pipe 64 of the tubular header 61 is connected to the upwind concentric pipe joint 41A joined to the other end 22c of the upwind heat transfer pipe 22.
 図21は、実施の形態2に係る熱交換器の変形例の、熱交換部及び分配合流部の接続を説明する図である。なお、図21は、図19におけるB-B線に相当する線での断面図である。
 図21に示されるように、風上側伝熱管22の他方の端部22cと、その風上側伝熱管22の隣の段の風上側伝熱管22の一方の端部22bと、が風上側段渡り管44と風上側同心管継手41Aとを用いて接続されていてもよい。
FIG. 21 is a diagram for explaining the connection of the heat exchange unit and the mixing and mixing unit in a modification of the heat exchanger according to the second embodiment. FIG. 21 is a cross-sectional view taken along the line BB in FIG.
As shown in FIG. 21, the other end portion 22 c of the windward side heat transfer tube 22 and one end portion 22 b of the windward side heat transfer tube 22 adjacent to the windward side heat transfer tube 22 are connected to the windward side step. You may connect using the pipe | tube 44 and 41A of windward concentric pipe joints.
<熱交換器及び空気調和装置の動作>
 以下に、実施の形態2に係る熱交換器、及び、その熱交換器が適用される空気調和装置の動作について説明する。
(暖房運転時の熱交換器及び空気調和装置の動作)
 図22は、実施の形態2に係る熱交換器が適用される空気調和装置の、構成を示す図である。なお、図22は、空気調和装置91が暖房運転する場合を示している。
 以下に、図22を用いて、暖房運転時の冷媒の流れについて説明する。
 室外熱交換器94において、冷媒は、積層型ヘッダ51の分配合流流路51aに流入して分配され、風上側同心管継手41Aを通過して、風上側熱交換部21の風上側伝熱管22に流入する。風上側伝熱管22に流入した冷媒は、風上側同心管継手41Aを通過して、筒型ヘッダ61の分配合流流路61aに流入して合流される。
<Operation of heat exchanger and air conditioner>
Below, operation | movement of the heat exchanger which concerns on Embodiment 2, and the air conditioning apparatus to which the heat exchanger is applied is demonstrated.
(Operation of heat exchanger and air conditioner during heating operation)
FIG. 22 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 2 is applied. In addition, FIG. 22 has shown the case where the air conditioning apparatus 91 performs heating operation.
Hereinafter, the refrigerant flow during the heating operation will be described with reference to FIG.
In the outdoor heat exchanger 94, the refrigerant flows into the split flow channel 51 a of the laminated header 51 and is distributed, passes through the windward concentric pipe joint 41 </ b> A, and reaches the windward heat transfer tube 22 of the windward heat exchange unit 21. Flow into. The refrigerant that has flowed into the windward heat transfer pipe 22 passes through the windward concentric pipe joint 41 </ b> A, flows into the split flow passage 61 a of the tubular header 61, and is merged.
(冷房運転時の熱交換器及び空気調和装置の動作)
 図23は、実施の形態2に係る熱交換器が適用される空気調和装置の、構成を示す図である。なお、図23は、空気調和装置91が冷房運転する場合を示している。
 以下に、図23を用いて、冷房運転時の冷媒の流れについて説明する。
 室外熱交換器94において、冷媒は、筒型ヘッダ61の分配合流流路61aに流入して分配され、風上側同心管継手41Aを通過して、風上側熱交換部21の風上側伝熱管22に流入する。風上側伝熱管22に流入した冷媒は、風上側同心管継手41Aを通過して、積層型ヘッダ51の分配合流流路51aに流入して合流される。
(Operation of heat exchanger and air conditioner during cooling operation)
FIG. 23 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 2 is applied. FIG. 23 shows a case where the air conditioner 91 performs a cooling operation.
Hereinafter, the flow of the refrigerant during the cooling operation will be described with reference to FIG.
In the outdoor heat exchanger 94, the refrigerant flows into the split flow passage 61 a of the cylindrical header 61 and is distributed, passes through the windward concentric pipe joint 41 </ b> A, and passes through the windward heat transfer tube 22 of the windward heat exchange unit 21. Flow into. The refrigerant that has flowed into the windward heat transfer pipe 22 passes through the windward concentric pipe joint 41 </ b> A, flows into the mixed flow passage 51 a of the laminated header 51, and is merged.
<熱交換器の作用>
 以下に、実施の形態2に係る熱交換器の作用について説明する。
 熱交換器1では、実施の形態1に係る熱交換器1と同様に、風上側同心管継手41Aにおいて、一方の端部72の長軸方向の内径をW1、短軸方向の内径をW2とすると、他方の端部73の断面形状の全周方向での内径D(D1、D2)が、W2≦D≦W1であるため、小型化することと、圧力損失を低減することとが両立される。そのため、熱交換部2と分配合流部3との間隔を狭くして、熱交換部2の容積を拡大することができ、熱交換効率が向上される。そして、熱交換効率の向上に伴って、冷凍サイクルの運転効率が向上され、省エネ性能が向上される。また、冷凍サイクルの性能を維持しつつ、熱交換器1を省スペース化することも可能である。
<Operation of heat exchanger>
Below, the effect | action of the heat exchanger which concerns on Embodiment 2 is demonstrated.
In the heat exchanger 1, as in the heat exchanger 1 according to the first embodiment, in the upwind concentric pipe joint 41A, the inner diameter in the major axis direction of one end 72 is W1, and the inner diameter in the minor axis direction is W2. Then, since the inner diameter D (D1, D2) in the entire circumferential direction of the cross-sectional shape of the other end portion 73 is W2 ≦ D ≦ W1, both downsizing and reduction in pressure loss are compatible. The Therefore, the space | interval of the heat exchange part 2 and the split mixing flow part 3 can be narrowed, the volume of the heat exchange part 2 can be expanded, and heat exchange efficiency is improved. And with the improvement in heat exchange efficiency, the operating efficiency of the refrigeration cycle is improved and the energy saving performance is improved. Moreover, it is also possible to save the space of the heat exchanger 1 while maintaining the performance of the refrigeration cycle.
 また、熱交換器1では、実施の形態1に係る熱交換器1と同様に、風上側同心管継手41Aにおいて、貫通部71の一方の端部72と他方の端部73との間の領域に、形状変換部74が形成され、他方の端部73の内周面の、積層型ヘッダ51の接続管57、筒型ヘッダ61の接続管64の外周面が接合される領域が、形状変換部74に隣接するため、小型化することと、圧力損失を低減することとが両立される。そのため、熱交換部2と分配合流部3との間隔を狭くして、熱交換部2の容積を拡大することができ、熱交換効率が向上される。そして、熱交換効率の向上に伴って、冷凍サイクルの運転効率が向上され、省エネ性能が向上される。また、冷凍サイクルの性能を維持しつつ、熱交換器1を省スペース化することも可能である。 Further, in the heat exchanger 1, similarly to the heat exchanger 1 according to Embodiment 1, in the upwind concentric pipe joint 41 </ b> A, a region between one end 72 and the other end 73 of the penetrating portion 71. The region where the shape conversion part 74 is formed and the outer peripheral surface of the connection pipe 57 of the laminated header 51 and the connection pipe 64 of the cylindrical header 61 is joined to the inner peripheral surface of the other end 73 is the shape conversion. Since it is adjacent to the portion 74, it is possible to achieve both a reduction in size and a reduction in pressure loss. Therefore, the space | interval of the heat exchange part 2 and the split mixing flow part 3 can be narrowed, the volume of the heat exchange part 2 can be expanded, and heat exchange efficiency is improved. And with the improvement in heat exchange efficiency, the operating efficiency of the refrigeration cycle is improved and the energy saving performance is improved. Moreover, it is also possible to save the space of the heat exchanger 1 while maintaining the performance of the refrigeration cycle.
 以上、実施の形態1及び実施の形態2について説明したが、本発明は各実施の形態の説明に限定されない。例えば、各実施の形態の全部又は一部を組み合わせることも可能である。 As mentioned above, although Embodiment 1 and Embodiment 2 were demonstrated, this invention is not limited to description of each embodiment. For example, it is possible to combine all or some of the embodiments.
 1 熱交換器、2 熱交換部、3 分配合流部、21 風上側熱交換部、22 風上側伝熱管、22a 折返し部、22b 一方の端部、22c 他方の端部、23 風上側フィン、31 風下側熱交換部、32 風下側伝熱管、32a 折返し部、32b 一方の端部、32c 他方の端部、33 風下側フィン、41A 風上側同心管継手、41B 風上側偏心管継手、42A 風下側同心管継手、42B 風下側偏心管継手、43 列渡り管、44 風上側段渡り管、45 風下側段渡り管、51 積層型ヘッダ、51a 分配合流流路、52、57 接続管、53 第1板状部材、54_1~54_3 第2板状部材、55 第3板状部材、56_1~56_4 クラッド材、53a、54a_1~54a_3、55a、56a 部分流路、61 筒型ヘッダ、61a 分配合流流路、62、64 接続管、63 円筒部、71 貫通部、72 一方の端部、73 他方の端部、74 形状変換部、91 空気調和装置、92 圧縮機、93 四方弁、94 室外熱交換器、95 絞り装置、96 室内熱交換器、97 室外ファン、98 室内ファン、99 制御装置。 DESCRIPTION OF SYMBOLS 1 Heat exchanger, 2 Heat exchange part, 3 Mixing flow part, 21 Upwind heat exchange part, 22 Upwind heat exchanger tube, 22a Folding part, 22b One end, 22c The other end, 23 Upwind fin, 31 Leeward heat exchange section, 32 leeward heat transfer tube, 32a folded section, 32b one end, 32c other end, 33 leeward fin, 41A leeward concentric pipe joint, 41B leeward eccentric pipe joint, 42A leeward side Concentric pipe joint, 42B leeward side eccentric pipe joint, 43 crossover pipe, 44 upwind side crossover pipe, 45 leeward side crossover pipe, 51 laminated header, 51a mixed flow path, 52, 57 connecting pipe, 53 1st Plate member, 54_1 to 54_3, second plate member, 55, third plate member, 56_1 to 56_4, clad material, 53a, 54a_1 to 54a_3, 55a, 56a Dividing channel, 61 cylinder header, 61a mixing flow channel, 62, 64 connecting pipe, 63 cylindrical part, 71 penetrating part, 72 one end part, 73 other end part, 74 shape converting part, 91 air conditioner, 92 compressor, 93 four-way valve, 94 outdoor heat exchanger, 95 throttle device, 96 indoor heat exchanger, 97 outdoor fan, 98 indoor fan, 99 control device.

Claims (13)

  1.  貫通部が形成され、該貫通部の一方の端部に扁平管が接続され、該貫通部の他方の端部に該扁平管と断面形状が異なる他の管が接続される管継手であって、
     前記一方の端部の中心軸と前記他方の端部の中心軸とが、互いに偏心された、
    ことを特徴とする管継手。
    A pipe joint in which a penetration part is formed, a flat tube is connected to one end of the penetration part, and another pipe having a different cross-sectional shape from the flat pipe is connected to the other end of the penetration part. ,
    The central axis of the one end and the central axis of the other end are eccentric from each other;
    A pipe joint characterized by that.
  2.  前記他方の端部の、中心軸と垂直な断面での全周方向の内径Dは、前記一方の端部の、長軸方向の内径W1以下で、且つ、短軸方向の内径W2以上である、
    ことを特徴とする請求項1に記載の管継手。
    The inner diameter D of the other end portion in the cross section perpendicular to the central axis is not more than the inner diameter W1 in the major axis direction and not less than the inner diameter W2 in the minor axis direction of the one end portion. ,
    The pipe joint according to claim 1.
  3.  前記一方の端部の内周面に、前記扁平管の外周面が接合され、
     前記他方の端部の内周面に、前記他の管の外周面が接合され、
     前記貫通部の、前記一方の端部と前記他方の端部との間の領域に、該一方の端部の内周面の断面形状を該他方の端部の内周面の断面形状に連続的に変化させる形状変換部が形成され、
     前記他方の端部の内周面の、前記他の管の外周面が接合される領域は、前記形状変換部に隣接する、
    ことを特徴とする請求項1又は2に記載の管継手。
    The outer peripheral surface of the flat tube is joined to the inner peripheral surface of the one end,
    The outer peripheral surface of the other pipe is joined to the inner peripheral surface of the other end,
    In the region between the one end and the other end of the penetrating portion, the cross-sectional shape of the inner peripheral surface of the one end is continuous with the cross-sectional shape of the inner peripheral surface of the other end. A shape changing portion that is changed in an automatic manner,
    The area of the inner peripheral surface of the other end where the outer peripheral surface of the other pipe is joined is adjacent to the shape conversion unit,
    The pipe joint according to claim 1 or 2, characterized by the above-mentioned.
  4.  貫通部が形成され、該貫通部の一方の端部に扁平管が接続され、該貫通部の他方の端部に該扁平管と断面形状が異なる他の管が接続される管継手であって、
     前記一方の端部の内周面に、前記扁平管の外周面が接合され、
     前記他方の端部の内周面に、前記他の管の外周面が接合され、
     前記貫通部の、前記一方の端部と前記他方の端部との間の領域に、該一方の端部の内周面の断面形状を該他方の端部の内周面の断面形状に連続的に変化させる形状変換部が形成され、
     前記他方の端部の内周面の、前記他の管の外周面が接合される領域は、前記形状変換部に隣接する、
    ことを特徴とする管継手。
    A pipe joint in which a penetration part is formed, a flat tube is connected to one end of the penetration part, and another pipe having a different cross-sectional shape from the flat pipe is connected to the other end of the penetration part. ,
    The outer peripheral surface of the flat tube is joined to the inner peripheral surface of the one end,
    The outer peripheral surface of the other pipe is joined to the inner peripheral surface of the other end,
    In the region between the one end and the other end of the penetrating portion, the cross-sectional shape of the inner peripheral surface of the one end is continuous with the cross-sectional shape of the inner peripheral surface of the other end. A shape changing portion that is changed in an automatic manner,
    The area of the inner peripheral surface of the other end where the outer peripheral surface of the other pipe is joined is adjacent to the shape conversion unit,
    A pipe joint characterized by that.
  5.  請求項1~3のいずれか一項に記載の管継手と、
     前記管継手の前記一方の端部に、少なくとも一方の端部が接続された前記扁平管と、該扁平管の風上側又は風下側に配設された他の扁平管とを有する熱交換部と、
    を備え、
     前記扁平管に接続された前記管継手の前記他方の端部と、前記他の扁平管と、が列渡り管で接続され、
     前記扁平管に接続された前記管継手の前記他方の端部の中心軸と、前記他の扁平管の中心軸と、の間の距離は、前記扁平管に接続された前記管継手の前記一方の端部の中心軸と、前記他の扁平管の中心軸と、の間の距離と比較して短い、
    ことを特徴とする熱交換器。
    The pipe joint according to any one of claims 1 to 3,
    A heat exchanging section having the flat tube with at least one end connected to the one end of the pipe joint, and another flat tube disposed on the windward side or leeward side of the flat tube; ,
    With
    The other end of the pipe joint connected to the flat tube and the other flat tube are connected by a crossover tube,
    The distance between the central axis of the other end of the pipe joint connected to the flat pipe and the central axis of the other flat pipe is the one of the pipe joints connected to the flat pipe Shorter than the distance between the central axis of the end of the other and the central axis of the other flat tube,
    A heat exchanger characterized by that.
  6.  前記熱交換部が蒸発器として作用する場合に、
     前記他の扁平管は、前記扁平管の風上側に配設された、
    ことを特徴とする請求項5に記載の熱交換器。
    When the heat exchange part acts as an evaporator,
    The other flat tube is disposed on the windward side of the flat tube,
    The heat exchanger according to claim 5.
  7.  前記熱交換部が凝縮器として作用する場合に、
     前記他の扁平管は、前記扁平管の風下側に配設された、
    ことを特徴とする請求項5又は6に記載の熱交換器。
    When the heat exchange part acts as a condenser,
    The other flat tube is disposed on the leeward side of the flat tube,
    The heat exchanger according to claim 5 or 6 characterized by things.
  8.  貫通部が形成され、該貫通部の一方の端部に扁平管が接続され、該貫通部の他方の端部に該扁平管と断面形状が異なる他の管が接続された管継手と、
     前記管継手の前記一方の端部に、少なくとも一方の端部が接続された前記扁平管が、風上側と風下側とに配設された熱交換部と、
     前記熱交換部に接続され、風上側に配設されたヘッダ及び風下側に配設されたヘッダと、
    を備え、
     前記風上側に配設された扁平管に接続された前記管継手の前記他方の端部と、前記風下側に配設された扁平管に接続された前記管継手の前記他方の端部と、が列渡り管で接続され、
     前記列渡り管は、前記熱交換部と、前記風上側に配設されたヘッダと、前記風下側に配設されたヘッダと、の間に配設され、
     前記管継手は、前記他方の端部の、中心軸と垂直な断面での全周方向の内径Dが、前記一方の端部の、長軸方向の内径W1以下で、且つ、短軸方向の内径W2以上である、
    ことを特徴とする熱交換器。
    A pipe joint in which a penetration part is formed, a flat tube is connected to one end of the penetration part, and another pipe having a different cross-sectional shape from the flat pipe is connected to the other end of the penetration part;
    The flat tube having at least one end connected to the one end of the pipe joint, and a heat exchange section disposed on the leeward side and the leeward side;
    Connected to the heat exchanging unit, a header disposed on the leeward side and a header disposed on the leeward side;
    With
    The other end of the pipe joint connected to the flat tube disposed on the leeward side, and the other end of the pipe joint connected to the flat tube disposed on the leeward side; Are connected by a crossover tube,
    The crossover tube is disposed between the heat exchange unit, a header disposed on the leeward side, and a header disposed on the leeward side,
    In the pipe joint, an inner diameter D of the other end portion in a cross section perpendicular to the central axis is equal to or less than an inner diameter W1 in the major axis direction of the one end portion, and in the minor axis direction. An inner diameter W2 or more,
    A heat exchanger characterized by that.
  9.  前記列渡り管の流路断面積は、前記扁平管の流路断面積と比較して大きい、
    ことを特徴とする請求項5~8のいずれか一項に記載の熱交換器。
    The cross-sectional area of the crossover tube is larger than the cross-sectional area of the flat tube,
    The heat exchanger according to any one of claims 5 to 8, wherein
  10.  請求項4に記載の管継手と、
     前記管継手の前記一方の端部に、少なくとも一方の端部が接続された前記扁平管が設けられた熱交換部と、
     冷媒を分配して流出する分配流路、又は、冷媒を合流して流出する合流流路が形成され、前記管継手の前記他方の端部に、該分配流路の出口側の接続管又は該合流流路の入口側の接続管が接続されたヘッダと、
    を備えたことを特徴とする熱交換器。
    A pipe joint according to claim 4;
    A heat exchanging portion provided with the flat tube with at least one end connected to the one end of the pipe joint;
    A distribution flow path for distributing and flowing out the refrigerant, or a merge flow path for combining and flowing out the refrigerant is formed, and the other end of the pipe joint is connected to the connecting pipe on the outlet side of the distribution flow path or the A header to which a connecting pipe on the inlet side of the confluence channel is connected;
    A heat exchanger characterized by comprising:
  11.  貫通部が形成され、該貫通部の一方の端部に扁平管が接続され、該貫通部の他方の端部に該扁平管と断面形状が異なる他の管が接続された管継手と、
     前記管継手の前記一方の端部に、少なくとも一方の端部が接続された前記扁平管が設けられた熱交換部と、
     冷媒を分配して流出する分配流路、又は、冷媒を合流して流出する合流流路が形成され、前記管継手の前記他方の端部に、該分配流路の出口側の接続管又は該合流流路の入口側の接続管が接続されたヘッダと、
    を備え、
     前記管継手は、前記他方の端部の、中心軸と垂直な断面での全周方向の内径Dが、前記一方の端部の、長軸方向の内径W1以下で、且つ、短軸方向の内径W2以上である、
    ことを特徴とする熱交換器。
    A pipe joint in which a penetration part is formed, a flat tube is connected to one end of the penetration part, and another pipe having a different cross-sectional shape from the flat pipe is connected to the other end of the penetration part;
    A heat exchanging portion provided with the flat tube with at least one end connected to the one end of the pipe joint;
    A distribution flow path for distributing and flowing out the refrigerant, or a merge flow path for combining and flowing out the refrigerant is formed, and the other end of the pipe joint is connected to the connecting pipe on the outlet side of the distribution flow path or the A header to which a connecting pipe on the inlet side of the confluence channel is connected;
    With
    In the pipe joint, an inner diameter D of the other end portion in a cross section perpendicular to the central axis is equal to or less than an inner diameter W1 in the major axis direction of the one end portion, and in the minor axis direction. An inner diameter W2 or more,
    A heat exchanger characterized by that.
  12.  前記接続管の流路断面積は、前記扁平管の流路断面積と比較して大きい、
    ことを特徴とする請求項10又は11に記載の熱交換器。
    The cross-sectional area of the connecting pipe is larger than the cross-sectional area of the flat tube,
    The heat exchanger according to claim 10 or 11, characterized in that.
  13.  請求項5~12のいずれか一項に記載の熱交換器を備えた、
    ことを特徴とする空気調和装置。
    A heat exchanger according to any one of claims 5 to 12 is provided.
    An air conditioner characterized by that.
PCT/JP2013/079248 2013-10-29 2013-10-29 Pipe joint, heat exchanger, and air conditioner WO2015063858A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13896742.7A EP3064819B1 (en) 2013-10-29 2013-10-29 Pipe joint, heat exchanger, and air conditioner
JP2015544658A JP6207624B2 (en) 2013-10-29 2013-10-29 Heat exchanger and air conditioner
PCT/JP2013/079248 WO2015063858A1 (en) 2013-10-29 2013-10-29 Pipe joint, heat exchanger, and air conditioner
US15/026,644 US20160245560A1 (en) 2013-10-29 2013-10-29 Tube fitting, heat exchanger, and air-conditioning apparatus
CN201380080615.3A CN105683639B (en) 2013-10-29 2013-10-29 Pipe joint, heat exchanger and air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079248 WO2015063858A1 (en) 2013-10-29 2013-10-29 Pipe joint, heat exchanger, and air conditioner

Publications (1)

Publication Number Publication Date
WO2015063858A1 true WO2015063858A1 (en) 2015-05-07

Family

ID=53003509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079248 WO2015063858A1 (en) 2013-10-29 2013-10-29 Pipe joint, heat exchanger, and air conditioner

Country Status (5)

Country Link
US (1) US20160245560A1 (en)
EP (1) EP3064819B1 (en)
JP (1) JP6207624B2 (en)
CN (1) CN105683639B (en)
WO (1) WO2015063858A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017104049A1 (en) * 2015-12-17 2018-03-29 三菱電機株式会社 HEAT EXCHANGER, AIR CONDITIONER EQUIPPED WITH THE SAME, AND METHOD FOR PRODUCING HEAT EXCHANGER
EP3385643A4 (en) * 2015-12-01 2018-12-05 Mitsubishi Electric Corporation Refrigeration cycle device
WO2019160153A1 (en) * 2018-02-19 2019-08-22 三星電子株式会社 Outdoor unit and air conditioning device
WO2020203589A1 (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Heat exchanger, method for manufacturing heat exchanger, and method for manufacturing header assembly

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054376B2 (en) * 2013-10-29 2018-08-21 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
CN110462324B (en) * 2017-03-27 2021-07-20 大金工业株式会社 Heat exchanger and refrigerating apparatus
JP6766723B2 (en) * 2017-03-27 2020-10-14 ダイキン工業株式会社 Heat exchanger or refrigeration equipment
CN107144049A (en) * 2017-06-30 2017-09-08 广东美芝制冷设备有限公司 Heat exchanger
US11536496B2 (en) * 2018-10-29 2022-12-27 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
WO2020200285A1 (en) * 2019-04-02 2020-10-08 杭州三花微通道换热器有限公司 Flat tube and heat exchanger having same
WO2021245901A1 (en) * 2020-06-05 2021-12-09 三菱電機株式会社 Refrigerant distributor, heat exchanger, and air-conditioning device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093633U (en) * 1983-11-29 1985-06-26 日立金属株式会社 Hopper with slider gate
JPS6138389U (en) * 1984-08-14 1986-03-10 積水化学工業株式会社 Pipe fittings for buried pipes
JP2010185614A (en) * 2009-02-12 2010-08-26 Mitsubishi Electric Corp Flat pipe joint
JP2011127831A (en) * 2009-12-17 2011-06-30 Mitsubishi Electric Corp Heat exchanger and refrigerating cycle device including the same
JP2012082986A (en) * 2010-10-07 2012-04-26 Mitsubishi Electric Corp Heat exchanger
JP2013134016A (en) * 2011-12-27 2013-07-08 Daikin Industries Ltd Heat exchanger
JP2013142454A (en) 2012-01-12 2013-07-22 Mitsubishi Electric Corp Pipe joint, heat exchanger, and method of manufacturing heat exchanger

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739049A (en) * 1980-08-21 1982-03-04 Sumitomo Metal Ind Ltd Manufacture of seamless eccentric reducer tube joint
JPS602087U (en) * 1983-06-18 1985-01-09 日本軽金属株式会社 pipe fittings
JPH02306069A (en) * 1989-05-19 1990-12-19 Showa Alum Corp Vaporizer
DE19882106T1 (en) * 1997-12-15 2000-03-30 Bestex Kyoei Co Method of forming a heavily gelled pipe and a heavily gelled pipe
FR2783045B1 (en) * 1998-09-04 2000-11-24 Valeo Climatisation MULTI-CIRCUIT HEAT EXCHANGER, PARTICULARLY FOR MOTOR VEHICLES
JP3342006B2 (en) * 2000-03-29 2002-11-05 フタバ産業株式会社 Manufacturing method of eccentric expanded pipe
JP4582887B2 (en) * 2000-09-25 2010-11-17 日新製鋼株式会社 Manufacturing method of metal pipe having end of eccentric diameter expansion pipe
JP4536243B2 (en) * 2000-10-31 2010-09-01 株式会社ティラド Heat exchanger for air conditioning
JP3960233B2 (en) * 2002-04-03 2007-08-15 株式会社デンソー Heat exchanger
JP4300508B2 (en) * 2002-12-25 2009-07-22 株式会社ティラド Plate fin and heat exchanger core for heat exchanger
US6722422B1 (en) * 2003-06-10 2004-04-20 Feldmeier Equipment, Inc. Heat exchange system with improved flow velocity adjustment mechanism
US6843274B1 (en) * 2003-06-25 2005-01-18 Air Systems International, Inc. Electrically conductive confined space ventilator conduit formed of conductive polymer, electrical grounding circuit for ventilation system using same, and methods of using and forming same
EP2144028B1 (en) * 2006-04-14 2018-06-06 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and refrigerating air conditioner
JP4887213B2 (en) * 2007-05-18 2012-02-29 日立アプライアンス株式会社 Refrigerant distributor and air conditioner
JP5192793B2 (en) * 2007-11-30 2013-05-08 株式会社アステア Manufacturing method for eccentric tube expansion
JP2010249343A (en) * 2009-04-13 2010-11-04 Mitsubishi Electric Corp Fin tube type heat exchanger and air conditioner using the same
JP5423792B2 (en) * 2009-06-19 2014-02-19 ダイキン工業株式会社 Ceiling-mounted air conditioner
DE102009047620C5 (en) * 2009-12-08 2023-01-19 Hanon Systems Heat exchanger with tube bundle
JP5295207B2 (en) * 2010-11-19 2013-09-18 三菱電機株式会社 Finned tube heat exchanger and air conditioner using the same
JP5779447B2 (en) * 2011-08-17 2015-09-16 旭化成ホームズ株式会社 Radiant panel device
US9702637B2 (en) * 2012-04-26 2017-07-11 Mitsubishi Electric Corporation Heat exchanger, indoor unit, and refrigeration cycle apparatus
WO2014115240A1 (en) * 2013-01-22 2014-07-31 三菱電機株式会社 Refrigerant distributor and heat pump device using refrigerant distributor
US10054376B2 (en) * 2013-10-29 2018-08-21 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093633U (en) * 1983-11-29 1985-06-26 日立金属株式会社 Hopper with slider gate
JPS6138389U (en) * 1984-08-14 1986-03-10 積水化学工業株式会社 Pipe fittings for buried pipes
JP2010185614A (en) * 2009-02-12 2010-08-26 Mitsubishi Electric Corp Flat pipe joint
JP2011127831A (en) * 2009-12-17 2011-06-30 Mitsubishi Electric Corp Heat exchanger and refrigerating cycle device including the same
JP2012082986A (en) * 2010-10-07 2012-04-26 Mitsubishi Electric Corp Heat exchanger
JP2013134016A (en) * 2011-12-27 2013-07-08 Daikin Industries Ltd Heat exchanger
JP2013142454A (en) 2012-01-12 2013-07-22 Mitsubishi Electric Corp Pipe joint, heat exchanger, and method of manufacturing heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3385643A4 (en) * 2015-12-01 2018-12-05 Mitsubishi Electric Corporation Refrigeration cycle device
US11105538B2 (en) 2015-12-01 2021-08-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2017104049A1 (en) * 2015-12-17 2018-03-29 三菱電機株式会社 HEAT EXCHANGER, AIR CONDITIONER EQUIPPED WITH THE SAME, AND METHOD FOR PRODUCING HEAT EXCHANGER
WO2019160153A1 (en) * 2018-02-19 2019-08-22 三星電子株式会社 Outdoor unit and air conditioning device
JP2019143844A (en) * 2018-02-19 2019-08-29 三星電子株式会社Samsung Electronics Co.,Ltd. Outdoor unit and air conditioner
WO2020203589A1 (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Heat exchanger, method for manufacturing heat exchanger, and method for manufacturing header assembly

Also Published As

Publication number Publication date
EP3064819A4 (en) 2017-05-31
JPWO2015063858A1 (en) 2017-03-09
CN105683639A (en) 2016-06-15
US20160245560A1 (en) 2016-08-25
JP6207624B2 (en) 2017-10-04
CN105683639B (en) 2018-01-19
EP3064819B1 (en) 2019-07-24
EP3064819A1 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP6207624B2 (en) Heat exchanger and air conditioner
JP6091641B2 (en) Heat exchanger and air conditioner
JP6012857B2 (en) Laminated header, heat exchanger, and air conditioner
JP6038302B2 (en) Laminated header, heat exchanger, and air conditioner
JP6116683B2 (en) Laminated header, heat exchanger, and air conditioner
JP6177319B2 (en) Laminated header, heat exchanger, and air conditioner
JP6333401B2 (en) Heat exchanger and air conditioner
WO2014184916A1 (en) Laminated header, heat exchanger, and air conditioner
JP6479195B2 (en) Distributor, stacked header, heat exchanger, and air conditioner
JP6388716B2 (en) Laminated header, heat exchanger, and air conditioner
WO2016056063A1 (en) Heat exchanger and air conditioning device
WO2017203566A1 (en) Distributor, laminated header, heat exchanger, and air conditioning device
JP6005268B2 (en) Laminated header, heat exchanger, and air conditioner
JP6138264B2 (en) Laminated header, heat exchanger, and air conditioner
WO2014184913A1 (en) Stacked header, heat exchanger, and air conditioning device
WO2015045073A1 (en) Laminate-type header, heat exchanger, and air-conditioning apparatus
JP6080982B2 (en) Laminated header, heat exchanger, and air conditioner
WO2015111220A1 (en) Heat exchanger and air conditioning device
JPWO2015111216A1 (en) Laminated header, heat exchanger, and air conditioner
WO2022215164A1 (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544658

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15026644

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013896742

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013896742

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE