JPWO2014080868A1 - ランキンサイクル用作動媒体およびランキンサイクルシステム - Google Patents

ランキンサイクル用作動媒体およびランキンサイクルシステム Download PDF

Info

Publication number
JPWO2014080868A1
JPWO2014080868A1 JP2014548555A JP2014548555A JPWO2014080868A1 JP WO2014080868 A1 JPWO2014080868 A1 JP WO2014080868A1 JP 2014548555 A JP2014548555 A JP 2014548555A JP 2014548555 A JP2014548555 A JP 2014548555A JP WO2014080868 A1 JPWO2014080868 A1 JP WO2014080868A1
Authority
JP
Japan
Prior art keywords
working medium
rankine cycle
mass
cfo
rankine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014548555A
Other languages
English (en)
Inventor
正人 福島
正人 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2014080868A1 publication Critical patent/JPWO2014080868A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

燃焼性が抑えられ、オゾン層への影響が少なく、地球温暖化への影響が少なく、かつサイクル性能(効率および能力)に優れるランキンサイクルシステムを与えるランキンサイクル用作動媒体、および安全性が確保され、サイクル性能(効率および能力)に優れるランキンサイクルシステムを提供する。1−クロロ−2,3,3,3−テトラフルオロプロペン、および1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンの一方または両方を含むランキンサイクル用作動媒体を、ランキンサイクルシステムに用いる。

Description

本発明は、ランキンサイクル用作動媒体、該ランキンサイクル用作動媒体を用いたランキンサイクルシステムおよび該ランキンサイクル用作動媒体を含む組成物に関する。
ランキンサイクルを利用して、重油、石油等の燃料を燃焼して得られる温度よりも低い中低温域の熱源からエネルギーを回収する技術が進歩し、廃熱回収発電、海洋温度差発電、地熱バイナリー発電、等が実用化または試験されている。
従来、発電やヒートポンプ等に用いられる作動媒体としては、水;プロパン、ブタン等の炭化水素類;トリクロロフルオロメタン(CFC−11)、ジクロロジフルオロメタン(CFC−12)、クロロジフルオロメタン(HCFC−22)、トリクロロトリフルオロエタン(CFC−113)、ジクロロテトラフルオロエタン(CFC−114)等のフルオロカーボン類;アンモニア等が知られている。
中でも、ランキンサイクルによる廃熱回収発電に用いられる作動媒体としてはCFC−11およびCFC−113が、海洋温度差発電に用いられる作動媒体としてはHCFC−22やプロパン、アンモニアが、地熱発電に用いられる作動媒体としてはイソブタン等が、各々使用されている。
アンモニアおよび炭化水素類は、毒性、引火性、腐食性等の安全性の問題、エネルギー効率が劣る等の理由により、商業的な利用に制約が生じる。
これに対して、フルオロカーボン類の多くは、毒性が少ない、非可燃性、化学的に安定、標準沸点の異なる各種フルオロカーボン類が容易に入手できる等の利点から、ランキンサイクル用作動媒体として注目されている。
しかし、フルオロカーボン類のうち、塩素原子を含む化合物は、環境残留性を有し、またオゾン層破壊に関係があるとされ、段階的に削減および全廃が進められている。たとえば、塩素原子を含み、かつ総ての水素原子がハロゲン化されたクロロフルオロカーボン(以下「CFC」という。)については、日本、米国、欧州等の先進国においては既に全廃されている。
また、フルオロカーボン類のうち、水素原子と塩素原子とを含むヒドロクロロフルオロカーボン(以下「HCFC」という。)に関しては、先進国においては2020年の全廃に向けた削減が進められている。
また、炭化水素類の総ての水素原子がフッ素原子で置換されたパーフルオロカーボン(以下「PFC」という。)および炭化水素類の水素原子の一部がフッ素原子で置換されたヒドロフルオロカーボン(以下「HFC」という。)は、塩素原子を含まないため、オゾン層への影響はないものの、地球温暖化への影響が指摘され、大気中への排出を抑制すべき温暖化化合物として規定されている。
たとえば、自動車空調機器用冷媒として用いられている1,1,1,2−テトラフルオロエタン(HFC−134a)は、地球温暖化係数が1430(100年値)と大きい。
HFC−134aに代わる冷媒としては、二酸化炭素、HFC−134aに比べて地球温暖化係数が124(100年値)と小さい1,1−ジフルオロエタン(HFC−152a)が検討されている。
しかし、二酸化炭素は、HFC−134aに比べて機器圧力が極めて高くなるなど、多くの解決すべき課題を有する。HFC−152aは、燃焼範囲を有しており、安全性確保の課題を有する。
一方、ランキンサイクル用作動媒体として、1−クロロ−3,3,3−トリフルオロプロペン(以下「1233zd」という。)を用いることも提案されている(特許文献1)。しかし、サイクル性能(効率および能力)については必ずしも充分ではなかった。
特表2012−511087号公報
本発明は、上記事情に鑑みてなされたものであって、燃焼性が抑えられ、オゾン層への影響が少なく、地球温暖化への影響が少なく、かつサイクル性能(効率および能力)に優れるランキンサイクルシステムを与えるランキンサイクル用作動媒体、および安全性が確保され、サイクル性能(効率および能力)に優れるランキンサイクルシステムを提供する。さらに、本発明は、上記ランキンサイクル用作動媒体を含むランキンサイクル用の作動媒体組成物を提供する。
なお、以下、ランキンサイクル用作動媒体を作動媒体ともいう。
本発明のランキンサイクル用作動媒体は、1−クロロ−2,3,3,3−テトラフルオロプロペン(以下、「HCFO−1224yd」という。)および1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン(以下、「CFO−1214ya」という。)の一方または両方を含む。
本発明のランキンサイクル用作動媒体において、ランキンサイクル用作動媒体100質量%中に占めるHCFO−1224ydおよびCFO−1214yaの合計の割合は60質量%以上であることが好ましい。
なお、HCFO−1224ydおよびCFO−1214yaはいずれもクロロフルオロオレフィンに属する化合物であり、以下、これら化合物を含めクロロフルオロオレフィンを「CFO」という。
本発明のランキンサイクル用作動媒体は、HCFO−1224ydおよびCFO−1214ya以外のCFO(以下、「他のCFO」という。)をさらに含んでいてもよく、その場合ランキンサイクル用作動媒体100質量%中に占める他のCFOの割合は40質量%以下であることが好ましい。
本発明のランキンサイクル用作動媒体は、炭化水素をさらに含んでいてもよく、その場合ランキンサイクル用作動媒体100質量%中に占める炭化水素の割合は40質量%以下であることが好ましい。
本発明のランキンサイクル用作動媒体は、HFCをさらに含んでいてもよく、その場合ランキンサイクル用作動媒体100質量%中に占めるHFCの割合は40質量%以下であることが好ましい。
本発明のランキンサイクル用作動媒体は、塩素原子を有しないヒドロフルオロオレフィン(以下、「HFO」という。)をさらに含んでいてもよく、その場合ランキンサイクル用作動媒体100質量%中に占めるHFOの割合は40質量%以下であることが好ましい。
本発明のランキンサイクルシステムは、本発明のランキンサイクル用作動媒体を用いたものであることを特徴とする。
本発明のランキンサイクル用の作動媒体組成物は、本発明のランキンサイクル用作動媒体と、潤滑剤、安定剤および漏れ検出物質から選ばれる少なくとも1種とを含むことを特徴とする。
本発明のランキンサイクル用作動媒体は、燃焼性が抑えられ、オゾン層への影響が少なく、地球温暖化への影響が少なく、かつサイクル性能(効率および能力)に優れるランキンサイクルシステムを与える。
本発明のランキンサイクルシステムは、安全性が確保され、サイクル性能(効率および能力)に優れる。
ランキンサイクルシステムの一例を示す概略構成図である。 ランキンサイクルシステムにおけるランキンサイクル用作動媒体の状態変化を温度−エントロピ線図上に記載したサイクル図である。 ランキンサイクルシステムにおけるランキンサイクル用作動媒体の状態変化を圧力−エンタルピ線図上に記載したサイクル図である。 凝縮温度が25℃の際の各蒸発温度における各作動媒体のHCFO−1224ydを基準とする相対能力を示すグラフである。 凝縮温度が50℃の際の各蒸発温度における各作動媒体のHCFO−1224ydを基準とする相対能力を示すグラフである。 凝縮温度が25℃の際の各蒸発温度における各作動媒体のHCFO−1224ydを基準とする相対効率を示すグラフである。 凝縮温度が50℃の際の各蒸発温度における各作動媒体のHCFO−1224ydを基準とする相対効率を示すグラフである。
<ランキンサイクル用作動媒体>
本発明のランキンサイクル用作動媒体は、HCFO−1224yd、およびCFO−1214yaの一方または両方を含む。本発明のランキンサイクル用作動媒体は、必要に応じて、他のCFO、炭化水素、HFC、HFO等の上記以外の作動媒体を含んでいてもよい。
また、本発明の作動媒体は、作動媒体とともに使用される作動媒体以外の成分と併用することができる(以下、作動媒体と作動媒体以外の成分を含む組成物を作動媒体含有組成物という)。作動媒体以外の成分としては、潤滑油、安定剤、漏れ検出物質、乾燥剤、その他の添加剤等が挙げられる。
(HCFO−1224yd、およびCFO−1214ya)
本発明のランキンサイクル用作動媒体は、クロロフルオロオレフィン(以下、「CFO」ともいう。)であるHCFO−1224ydおよびCFO−1214yaの一方または両方を含む。CFOとは、分子中に炭素−炭素二重結合を一つ以上含む不飽和鎖式炭化水素の水素原子の2以上が、塩素原子またはフッ素原子で置換され、かつ、塩素原子およびフッ素原子を1つ以上含む化合物である。CFOには、水素原子を有しないものと水素原子を有するものとがあり、そのうち水素原子を有するCFOを以下「HCFO」という。
本発明の作動媒体は、HCFO−1224ydおよびCFO−1214yaの一方を含んでいてもよいし、両方を含んでいてもよい。両方を含む場合、両者の配合割合に特に限定はない。両者は、あらゆる配合割合において、サイクル性能(効率および能力)に優れるランキンサイクルシステムを与えることができる。
本発明の作動媒体がHCFO−1224ydとCFO−1214yaの一方を含む場合、本発明の作動媒体100質量%中HCFO−1224ydまたはCFO−1214yaが占める割合は、60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、100質量%が特に好ましい。
本発明の作動媒体がHCFO−1224ydおよびCFO−1214yaの両方を含む場合、本発明の作動媒体100質量%中に占めるHCFO−1224ydおよびCFO−1214yaの合計の割合は、60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、100質量%が特に好ましい。
HCFO−1224ydにはE体とZ体があり、両者は類似した物性を有し、沸点もほぼ同一である。したがって、HCFO−1224ydとしてE体とZ体は各々単独で使用してもよく、また両者を適宜の割合で含むHCFO−1224ydを使用してもよい。
(他のCFO)
本発明のランキンサイクル用作動媒体が他のCFO(HCFO−1224ydおよびCFO−1214ya以外のCFO)を含む場合、他のCFOの炭素−炭素二重結合は一つのみであることが好ましい。また、炭素数は、作動媒体として適切な沸点を有することから、2〜3であることが好ましい。また、フッ素原子数(N)と塩素原子数(NCl)は、各々1〜5であることが好ましい。また、フッ素原子数(N)と塩素原子数(NCl)の合計(NF+Cl)は2以上であり、2〜6であることが好ましく、4〜6であることがより好ましい。また、水素原子数とフッ素原子数と塩素原子数の合計に対するフッ素原子数と塩素原子数の合計の割合(NF+Cl/NH+F+Cl)は、0.5〜1.0であることが好ましく、0.7〜1.0であることがより好ましい。前記合計(NF+Cl)または前記割合(NF+Cl/NH+F+Cl)が下限値以上であれば、燃焼性をより抑制しやすい。
また、フッ素原子数と塩素原子数の割合(N/NCl)は、0.1〜0.8であることが好ましく、0.5〜0.8であることがより好ましい。
他のCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
他のCFOを用いる場合、本発明のランキンサイクル用作動媒体100質量%中に占める他のCFOの割合は、1〜40質量%が好ましく、5〜20質量%がより好ましい。
(炭化水素)
炭化水素は、後述の潤滑油、特に鉱物油に対する作動媒体の溶解性を向上させる成分である。
炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等が挙げられる。
炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
炭化水素を用いる場合、本発明の作動媒体100質量%中に占める炭化水素の割合は、1〜40質量%が好ましく、2〜10質量%がより好ましい。炭化水素が好ましい下限値以上であれば、作動媒体への潤滑油の溶解性を向上させやすい。炭化水素が好ましい上限値以下であれば、作動媒体の燃焼性を抑制するのに効果がある。
(HFC)
HFCは、ランキンサイクルシステムのサイクル性能(能力)を向上させる成分である。
HFCとしては、オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHFCが好ましい。
HFCとしては、ジフルオロメタン、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、ペンタフルオロエタン、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が挙げられ、オゾン層への影響が少なく、かつ地球温暖化への影響が小さい点から、ジフルオロメタン(HFC−32)、1,1−ジフルオロメタン(HFC−152a)、1,1,2,2−テトラフルオロエタン(HFC−134)、1,1,1,2−テトラフルオロエタン(HFC−134a)またはペンタフルオロエタン(HFC−125)が特に好ましい。
HFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
HFCを用いる場合、本発明の作動媒体100質量%中に占めるHFCの割合は、1〜40質量%であることが好ましく、5〜20で質量%あることがより好ましい。
(HFO)
HFOは、分子中に炭素−炭素二重結合を一つ以上含む不飽和鎖式炭化水素の水素原子の一部がフッ素原子で置換され、かつ、塩素原子を含まない化合物である。HFOは、ランキンサイクルシステムのサイクル性能(能力)を向上させる成分である。
HFOとしては、オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHFOが好ましい。またHFOの炭素−炭素二重結合は一つのみであることが好ましい。また、炭素数は、作動媒体として適切な沸点を有することから、2〜4であることが好ましい。
HFOとしては、ジフルオロエチレン、トリフルオロエチレン、トリフルオロプロピレン、テトラフルオロプロピレン、ペンタフルオロプロピレン等が挙げられ、オゾン層への影響が少なく、かつ地球温暖化への影響が小さい点から、1,1−ジフルオロエチレン(HFO−1132a)、1,2−ジフルオロエチレン(HFO−1132)、1,1,2−トリフルオロエチレン(HFO−1123)、2,3,3,3−テトラフルオロオレフィン(HFO−1234yf)、1,3,3,3−テトラフルオロオレフィン(HFO−1234ze)が特に好ましい。
HFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
HFOを用いる場合、本発明の作動媒体100質量%中に占めるHFOの割合は、1〜40質量%であることが好ましく、5〜20質量%あることがより好ましい。
(他の作動媒体)
本発明の作動媒体は、炭素数1〜4のアルコール、または、従来の作動媒体、冷媒、熱伝達媒体として用いられている化合物(以下、該アルコールおよび化合物をまとめて、「他の作動媒体」という。)を含んでいてもよい。
他の作動媒体としては、下記の化合物が挙げられる。
含フッ素エーテル:ペルフルオロプロピルメチルエーテル(COCH)、ペルフルオロブチルメチルエーテル(COCH)、ペルフルオロブチルエチルエーテル(COC)、1,1,2,2−テトラフルオロエチル−2,2,2−トリフルオロエチルエーテル(CFHCFOCHCF、旭硝子社製、AE−3000)等。
本発明の作動媒体100質量%中に占める他の作動媒体の割合は、本発明の効果を著しく低下させない範囲であればよく、30質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下が特に好ましい。
(作用効果)
HCFO−1224ydおよびCFO−1214yaは、燃焼性を抑制するハロゲンの割合が多い。また、炭素−炭素二重結合を有するため大気中のOHラジカルによって分解されやすい。そのため、HCFO−1224ydおよびCFO−1214yaの一方または両方を含む本発明のランキンサイクル用作動媒体は、燃焼性が抑えられ、オゾン層への影響が少なく、地球温暖化への影響が少ない。
また、本発明者が検討した結果、HCFO−1224ydもしくはCFO−1214yaを含む作動媒体、またはこれらの両方を含む作動媒体は、サイクル性能(効率および能力)に優れるランキンサイクルシステムを与えることが判明した。
<潤滑油等>
本発明のランキンサイクル用作動媒体は、さらに、作動媒体以外の成分を含有する作動媒体含有組成物として用いることができる。作動媒体以外の成分としては、潤滑剤、安定剤、漏れ検出物質、乾燥剤等の公知の添加剤が挙げられる。
(潤滑油)
作動媒体含有組成物に使用される潤滑油としては、ランキンサイクルシステムに用いられる公知の潤滑油が用いられる。
潤滑油としては、含酸素系合成油(エステル系潤滑油、エーテル系潤滑油等)、フッ素系潤滑油、鉱物油、炭化水素系合成油等が挙げられる。
エステル系潤滑油としては、二塩基酸エステル油、ポリオールエステル油、コンプレックスエステル油、ポリオール炭酸エステル油等が挙げられる。
二塩基酸エステルとしては、炭素数5〜10の二塩基酸(グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等)と、直鎖または分枝アルキル基を有する炭素数1〜15の一価アルコール(メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール等)とのエステルが好ましい。具体的には、グルタル酸ジトリデシル、アジピン酸ジ(2−エチルヘキシル)、アジピン酸ジイソデシル、アジピン酸ジトリデシル、セバシン酸ジ(3−エチルヘキシル)等が挙げられる。
ポリオールエステル油としては、ジオール(エチレングリコール、1,3−プロパンジオール、プロピレングリコール、1,4−ブタンジオール、1,2−ブタンジオール、1,5−ペンタジオール、ネオペンチルグリコール、1,7−ヘプタンジオール、1,12−ドデカンジオール等)または水酸基を3〜20個有するポリオール(トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスリトール、グリセリン、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物等)と、炭素数6〜20の脂肪酸(ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、エイコサン酸、オレイン酸等の直鎖または分枝の脂肪酸、もしくはα炭素原子が4級であるいわゆるネオ酸等)とのエステルが好ましい。
ポリオールエステル油は、遊離の水酸基を有していてもよい。
ポリオールエステル油としては、ヒンダードアルコール(ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスルトール等)のエステル(トリメチロールプロパントリペラルゴネート、ペンタエリスリトール2−エチルヘキサノエート、ペンタエリスリトールテトラペラルゴネート等)が好ましい。
コンプレックスエステル油とは、脂肪酸および二塩基酸と、一価アルコールおよびポリオールとのエステルである。脂肪酸、二塩基酸、一価アルコール、ポリオールとしては、上述と同様のものを用いることができる。
ポリオール炭酸エステル油とは、炭酸とポリオールとのエステルである。
ポリオールとしては、上述と同様のジオールや上述と同様のポリオールが挙げられる。また、ポリオール炭酸エステル油としては、環状アルキレンカーボネートの開環重合体であってもよい。
エーテル系潤滑油としては、ポリビニルエーテル油やポリオキシアルキレン系潤滑油が挙げられる。
ポリビニルエーテル油としては、アルキルビニルエーテルなどのビニルエーテルモノマーを重合して得られたもの、ビニルエーテルモノマーとオレフィン性二重結合を有する炭化水素モノマーとを共重合して得られたもの、およびポリビニルエーテルと、アルキレングリコールもしくはポリアルキレングリコール、またはそれらのモノエーテルとの共重合体がある。
ビニルエーテルモノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
オレフィン性二重結合を有する炭化水素モノマーとしては、エチレン、プロピレン、各種ブテン、各種ペンテン、各種ヘキセン、各種ヘプテン、各種オクテン、ジイソブチレン、トリイソブチレン、スチレン、α−メチルスチレン、各種アルキル置換スチレン等が挙げられる。オレフィン性二重結合を有する炭化水素モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
ポリビニルエーテル共重合体は、ブロックまたはランダム共重合体のいずれであってもよい。
ポリビニルエーテルは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
ポリオキシアルキレン系潤滑油としては、ポリオキシアルキレンモノオール、ポリオキシアルキレンポリオール、ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールのアルキルエーテル化物、ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールのエステル化物等が挙げられる。ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールは、水酸化アルカリなどの触媒の存在下、水や水酸基含有化合物などの開始剤に炭素数2〜4のアルキレンオキシド(エチレンオキシド、プロピレンオキシド等)を開環付加重合させる方法等により得られたものが挙げられる。また、ポリアルキレン鎖中のオキシアルキレン単位は、1分子中において同一であってもよく、2種以上のオキシアルキレン単位が含まれていてもよい。1分子中に少なくともオキシプロピレン単位が含まれることが好ましい。
開始剤としては、水、メタノールやブタノール等の1価アルコール、エチレングリコール、プロピレングリコール、ペンタエリスリトール、グリセロール等の多価アルコールが挙げられる。
ポリオキシアルキレン系潤滑油としては、ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールの、アルキルエーテル化物やエステル化物が好ましい。また、ポリオキシアルキレンポリオールとしては、ポリオキシアルキレングリコールが好ましい。特に、ポリグリコール油と呼ばれる、ポリオキシアルキレングリコールの末端水酸基がメチル基等のアルキル基でキャップされた、ポリオキシアルキレングリコールのアルキルエーテル化物が好ましい。
フッ素系潤滑油としては、合成油(後述する鉱物油、ポリα−オレフィン、アルキルベンゼン、アルキルナフタレン等)の水素原子をフッ素原子に置換した化合物、ペルフルオロポリエーテル油、フッ素化シリコーン油等が挙げられる。
鉱物油としては、原油を常圧蒸留または減圧蒸留して得られた潤滑油留分を、精製処理(溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、白土処理等)を適宜組み合わせて精製したパラフィン系鉱物油、ナフテン系鉱物油等が挙げられる。
炭化水素系合成油としては、ポリα−オレフィン、アルキルベンゼン、アルキルナフタレン等が挙げられる。
潤滑油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
潤滑油の含有量は、本発明の効果を著しく低下させない範囲であればよく、用途、圧縮機の形式等によっても異なるが、作動媒体(100質量部)に対して、通常10〜100質量部であり、20〜50質量部が好ましい。
(安定剤)
作動媒体含有組成物に使用される安定剤は、熱および酸化に対する作動媒体の安定性を向上させる成分である
安定剤としては、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が挙げられる。
耐酸化性向上剤および耐熱性向上剤としては、N,N’−ジフェニルフェニレンジアミン、p−オクチルジフェニルアミン、p,p’−ジオクチルジフェニルアミン、N−フェニル−1−ナフチルアミン、N−フェニル−2−ナフチルアミン、N−(p−ドデシル)フェニル−2−ナフチルアミン、ジ−1−ナフチルアミン、ジ−2−ナフチルアミン、N−アルキルフェノチアジン、6−(t−ブチル)フェノール、2,6−ジ−(t−ブチル)フェノール、4−メチル−2,6−ジ−(t−ブチル)フェノール、4,4’−メチレンビス(2,6−ジ−t−ブチルフェノール)等が挙げられる。耐酸化性向上剤および耐熱性向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
金属不活性剤としては、イミダゾール、ベンズイミダゾール、2−メルカプトベンズチアゾール、2,5−ジメチルカプトチアジアゾール、サリシリジン−プロピレンジアミン、ピラゾール、ベンゾトリアゾール、トルトリアゾール、2−メチルベンズアミダゾール、3,5−イメチルピラゾール、メチレンビス−ベンゾトリアゾール、有機酸またはそれらのエステル、第1級、第2級または第3級の脂肪族アミン、有機酸または無機酸のアミン塩、複素環式窒素含有化合物、アルキル酸ホスフェートのアミン塩またはそれらの誘導体等が挙げられる。
安定剤の含有量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体含有組成物(100質量部)に対して、通常5質量部以下であり、1質量部以下が好ましい。
(漏れ検出物質)
作動媒体含有組成物に使用される漏れ検出物質としては、紫外線蛍光染料、臭気ガスや臭いマスキング剤等が挙げられる。
紫外線蛍光染料としては、米国特許第4249412号明細書、特表平10−502737号公報、特表2007−511645号公報、特表2008−500437号公報、特表2008−531836号公報に記載されたもの等、公知の紫外線蛍光染料が挙げられる。
臭いマスキング剤としては、特表2008−500437号公報、特表2008−531836号公報に記載されたもの等、公知の香料が挙げられる。
漏れ検出物質を用いる場合には、ランキンサイクル用作動媒体への漏れ検出物質の溶解性を向上させる可溶化剤を用いてもよい。
可溶化剤としては、特表2007−511645号公報、特表2008−500437号公報、特表2008−531836号公報に記載されたもの等が挙げられる。
漏れ検出物質の含有量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体含有組成物(100質量部)に対して、通常2質量部以下であり、0.5質量部以下が好ましい。
<ランキンサイクルシステム>
本発明のランキンサイクルシステムは、本発明の作動媒体を用いたシステムである。
ランキンサイクルシステムとは、作動媒体を加熱し、高温高圧状態の蒸気となった作動媒体を膨張機にて断熱膨張させ、該断熱膨張によって発生する仕事によって発電機を駆動させ、発電を行うシステムである。
作動媒体を加熱する熱源としては、地熱エネルギー、太陽熱、50〜200℃程度の中〜高温度域廃熱等を好適に利用することができる。
図1は、本発明のランキンサイクルシステムの一例を示す概略構成図である。ランキンサイクルシステム10は、高温高圧の作動媒体蒸気Cを膨張させて低温低圧の作動媒体蒸気Dとする膨張機11と、膨張機11における作動媒体蒸気Cの断熱膨張によって発生する仕事によって駆動される発電機12と、膨張機11から排出された作動媒体蒸気Dを冷却し、液化して作動媒体Aとする凝縮器13と、凝縮器13から排出された作動媒体Aを加圧して高圧の作動媒体Bとするポンプ14と、ポンプ14から排出された作動媒体Bを加熱して高温高圧の作動媒体蒸気Cとする蒸発器15と、凝縮器13に流体Eを供給するポンプ16と、蒸発器15に流体Fを供給するポンプ17とを具備して概略構成されるシステムである。
ランキンサイクルシステム10においては、以下のサイクルが繰り返される。
(i)蒸発器15から排出された高温高圧の作動媒体蒸気Cを膨張機11にて膨張させて低温低圧のランキンサイクル用作動媒体蒸気Dとする。この際、膨張機11における作動媒体蒸気Cの断熱膨張によって発生する仕事によって発電機12を駆動させ、発電を行う。
(ii)膨張機11から排出された作動媒体蒸気Dを凝縮器13にて流体Eによって冷却し、液化して作動媒体Aとする。この際、流体Eは加熱されて流体E’となり、凝縮器13から排出される。
(iii)凝縮器13から排出された作動媒体Aをポンプ14にて加圧して高圧の作動媒体Bとする。
(iv)ポンプ14から排出された作動媒体Bを蒸発器15にて流体Fによって加熱して高温高圧の作動媒体蒸気Cとする。この際、流体Fは冷却されて流体F’となり、蒸発器15から排出される。
ランキンサイクルシステム10は、断熱変化および等圧変化からなるサイクルであり、作動媒体の状態変化を温度−エントロピ線図上に記載すると図2のように表すことができる。
図2中、AB’C’D’曲線は、飽和線である。AB過程は、ポンプ14で断熱圧縮を行い、作動媒体Aを高圧の作動媒体Bとする過程である。BB’C’C過程は、蒸発器15で等圧加熱を行い、高圧の作動媒体Bを高温高圧の作動媒体蒸気Cとする過程である。CD過程は、膨張機11で断熱膨張を行い、高温高圧の作動媒体蒸気Cを低温低圧の作動媒体蒸気Dとし、仕事を発生させる過程である。DA過程は、凝縮器13で等圧冷却を行い、低温低圧の作動媒体蒸気Dを作動媒体Aに戻す過程である。
同様に、作動媒体の状態変化を圧力−エンタルピ線図上に記載すると図3のように表すことができる。
(水分濃度)
ランキンサイクルシステム内に水分が混入すると、特に低温で使用される際に問題が生じる場合がある。たとえば、キャピラリーチューブ内での氷結、作動媒体や潤滑油の加水分解、熱サイクル内で発生した酸成分による材料劣化、コンタミナンツの発生等の問題が発生する。特に、潤滑油がエステル系潤滑油、エーテル系潤滑油等である場合は、吸湿性が極めて高く、また、加水分解反応を生じやすく、潤滑油としての特性が低下し、圧縮機の長期信頼性を損なう大きな原因となる。したがって、潤滑油の加水分解を抑えるためには、ランキンサイクルシステム内の水分濃度を抑制する必要がある。
ランキンサイクルシステム内の作動媒体の水分濃度は、100ppm以下が好ましく、20ppm以下がより好ましい。
ランキンサイクルシステム内の水分濃度を抑制する方法としては、乾燥剤(シリカゲル、活性アルミナ、ゼオライト等)を用いる方法が挙げられる。乾燥剤は、液状の作動媒体と接触させることが、脱水効率の点で好ましい。たとえば、凝縮器13の出口、または蒸発器15の入口に乾燥剤を配置して、作動媒体と接触させることが好ましい。
乾燥剤としては、乾燥剤と作動媒体との化学反応性、乾燥剤の吸湿能力の点から、ゼオライト系乾燥剤が好ましい。
ゼオライト系乾燥剤としては、従来の鉱物系潤滑油に比べて吸湿量の高い潤滑油を用いる場合には、吸湿能力に優れる点から、下式(1)で表される化合物を主成分とするゼオライト系乾燥剤が好ましい。
2/nO・Al・xSiO・yHO ・・・(1)。
ただし、Mは、Na、K等の1族の元素またはCa等の2族の元素であり、nは、Mの原子価であり、x、yは、結晶構造にて定まる値である。Mを変化させることにより細孔径を調整できる。
乾燥剤の選定においては、細孔径および破壊強度が特に重要である。
作動媒体の分子径よりも大きい細孔径を有する乾燥剤を用いた場合、ランキンサイクル用作動媒体が乾燥剤中に吸着され、その結果、作動媒体と乾燥剤との化学反応が生じ、不凝縮性気体の生成、乾燥剤の強度の低下、吸着能力の低下等の好ましくない現象を生じることとなる。
したがって、乾燥剤としては、細孔径の小さいゼオライト系乾燥剤を用いることが好ましい。特に、細孔径が3.5Å以下である、ナトリウム・カリウムA型の合成ゼオライトが好ましい。作動媒体の分子径よりも小さい細孔径を有するナトリウム・カリウムA型合成ゼオライトを適用することによって、作動媒体を吸着することなく、熱サイクルシステム内の水分のみを選択的に吸着除去できる。言い換えると、作動媒体の乾燥剤への吸着が起こりにくいことから、熱分解が起こりにくくなり、その結果、ランキンサイクルシステムを構成する材料の劣化やコンタミナンツの発生を抑制できる。
ゼオライト系乾燥剤の大きさは、小さすぎると熱サイクルシステムの弁や配管細部への詰まりの原因となり、大きすぎると乾燥能力が低下するため、約0.5〜5mmが好ましい。形状としては、粒状または円筒状が好ましい。
ゼオライト系乾燥剤は、粉末状のゼオライトを結合剤(ベントナイト等)で固めることにより任意の形状とすることができる。ゼオライト系乾燥剤を主体とするかぎり、他の乾燥剤(シリカゲル、活性アルミナ等)を併用してもよい。
作動媒体に対するゼオライト系乾燥剤の使用割合は、特に限定されない。
(不凝縮性気体濃度)
ランキンサイクルシステム内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良、作動圧力の上昇という悪影響をおよぼすため、極力混入を抑制する必要がある。特に、不凝縮性気体の一つである酸素は、作動媒体や潤滑油と反応し、分解を促進する。
不凝縮性気体濃度は、作動媒体の気相部において、ランキンサイクル用作動媒体に対する容積割合で1.5体積%以下が好ましく、0.5体積%以下が特に好ましい。
(作用効果)
以上説明したランキンサイクルシステムにあっては、燃焼性が抑えられた本発明の作動媒体を用いているため、安全性が確保されたものとなる。
また、熱力学性質に優れる本発明の作動媒体を用いているため、サイクル性能(効率および能力)に優れる。また、効率が優れていることから、回収熱量(受熱量)当たり、多くの電力が得られるともに、能力が優れていることから、システムを小型化できる。
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<評価方法>
図1のランキンサイクルシステム10に各種作動媒体を適用した場合の発電能力Lおよびランキンサイクル効率ηを、以下の下式(2)、下式(3)により求めた。下式(2)、下式(3)において、hはエンタルピで、その添え字は図1におけるランキンサイクル用作動媒体の状態を表す。例えばhCは図1におけるランキンサイクル用作動媒体蒸気Cのエンタルピである。
評価は、凝縮器13におけるランキンサイクル用作動媒体の凝縮温度を25℃または50℃とし、蒸発器15におけるランキンサイクル用作動媒体の蒸発温度を60℃、80℃、100℃、120℃、140℃のいずれかとして行った。
また、機器効率による損失、および配管、熱交換器における圧力損失はないものとした。
L=hC−hD ・・・(2)
η=有効仕事/受熱量
=(発電能力−ポンプ仕事)/受熱量
={(hC−hD)−(hB−hA))/(hC−hB
なお、ポンプ仕事は、他の項目にくらべ極めて小さいことから、これを無視するとランキンサイクル効率は以下のようになる。
η={(hC−hD)−(hB−hA))/{(hC−hA)−(hB−hA)}
≒(hC−hD)/(hC−hA) ・・・(3)
C、hD、hAの各エンタルピは、算出に必要となる熱力学性質を、対応状態原理に基づく一般化状態方程式(Soave−Redlich−Kwong式)、および熱力学諸関係式に基づき算出して求めた。特性値が入手できない場合は、原子団寄与法に基づく推算手法を用い算出を行った。
以下の評価結果は、同一条件(凝縮温度と蒸発温度、装置条件等、作動媒体以外の条件が同一)で求めたHCFO−1224ydの発電能力Lおよびランキンサイクル効率ηに対する相対値として示した。すなわち、相対能力は、同一条件で求めたHCFO−1224ydの発電能力Lに対する当該作動媒体の発電能力Lの比であり、相対効率は、同一条件で求めたHCFO−1224ydのランキンサイクル効率ηに対する当該作動媒体のランキンサイクル効率ηの比である。
<評価対象>
以下の3種の作動媒体について評価を行った。また、HCFO−1224ydとCFO−1214yaを混合した作動媒体についても評価を行った。
・HCFO−1224yd(E体とZ体のモル比は1:1)
・CFO−1214ya
・HFC−134a
<評価結果>
図4に凝縮温度が25℃の際の各蒸発温度における各作動媒体の相対能力を示す。また、図5に凝縮温度が50℃の際の各蒸発温度における各作動媒体の相対能力を示す。
図4および図5の結果から、本発明のランキンサイクル用作動媒体であるHCFO−1224ydおよびCFO-1214yaは、広い温度範囲にわたり優れた発電能力を有していることが理解できる。特に蒸発温度100℃以上ではHFC−134aよりも大きな発電能力を有していることがわかった。
図6に凝縮温度が25℃の際の各蒸発温度における各作動媒体の相対効率を示す。また、図7に凝縮温度が50℃の際の各蒸発温度における各作動媒体の相対効率を示す。
図6および図7の結果から、本発明のランキンサイクル用作動媒体であるHCFO−1224ydおよびCFO−1214yaは、特に凝縮温度が25℃の際、広い蒸発温度範囲にわたりHFC−134aより優れたランキンサイクル効率を有していることがわかった。
本発明のランキンサイクル用作動媒体であるHCFO−1224ydおよびCFO−1214yaは、効率、能力共に優れているといえる。
表1に、凝縮温度が25℃、蒸発温度が120℃の条件におけるHCFO−1224ydとCFO−1214ya、並びにこれらの混合媒体の相対能力と相対効率を示す。なお、表1における%は、作動媒体中における質量%である。
表1に示すように、HCFO−1224ydとCFO−1214yaの混合媒体は、任意の配合比率において、効率、能力共に優れていることがわかった。
Figure 2014080868
本発明のランキンサイクル用作動媒体は、発電システム(廃熱回収発電等)用作動流体として有用である。
なお、2012年11月20日に出願された日本特許出願2012−254494号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである
10…ランキンサイクルシステム、11…膨張機、12…発電機、13…凝縮器、14…ポンプ、15…蒸発器、16…ポンプ、17…ポンプ

Claims (12)

  1. 1−クロロ−2,3,3,3−テトラフルオロプロペンおよび1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンの一方または両方を含む、ランキンサイクル用作動媒体。
  2. 前記ランキンサイクル用作動媒体100質量%中に占める1−クロロ−2,3,3,3−テトラフルオロプロペンおよび1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンの合計の割合が60質量%以上である、請求項1に記載のランキンサイクル用作動媒体。
  3. 1−クロロ−2,3,3,3−テトラフルオロプロペンおよび1,1−ジクロロ−2,3,3,3−テトラフルオロプロペン以外のクロロフルオロオレフィンをさらに含む、請求項1または2に記載のランキンサイクル用作動媒体。
  4. 前記ランキンサイクル用作動媒体100質量%中に占める前記クロロフルオロオレフィンの割合が40質量%以下である、請求項3に記載のランキンサイクル用作動媒体。
  5. 炭化水素をさらに含む、請求項1または2に記載のランキンサイクル用作動媒体。
  6. 前記ランキンサイクル用作動媒体100質量%中に占める前記炭化水素の割合が40質量%以下である、請求項5に記載のランキンサイクル用作動媒体。
  7. ヒドロフルオロカーボンをさらに含む、請求項1または2に記載のランキンサイクル用作動媒体。
  8. 前記ランキンサイクル用作動媒体100質量%中に占める前記ヒドロフルオロカーボンの割合が40質量%以下である、請求項7に記載のランキンサイクル用作動媒体。
  9. 塩素原子を有しないヒドロフルオロオレフィンをさらに含む、請求項1または2に記載のランキンサイクル用作動媒体。
  10. 前記ランキンサイクル用作動媒体100質量%中に占める前記ヒドロフルオロオレフィンの割合が40質量%以下である、請求項9に記載のランキンサイクル用作動媒体。
  11. 請求項1〜10のいずれか一項に記載のランキンサイクル用作動媒体を用いた、ランキンサイクルシステム。
  12. 請求項1〜10のいずれか一項に記載のランキンサイクル用作動媒体と、潤滑剤、安定剤および漏れ検出物質から選ばれる少なくとも1種とを含む、ランキンサイクル用の作動媒体組成物。
JP2014548555A 2012-11-20 2013-11-18 ランキンサイクル用作動媒体およびランキンサイクルシステム Pending JPWO2014080868A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012254494 2012-11-20
JP2012254494 2012-11-20
PCT/JP2013/081065 WO2014080868A1 (ja) 2012-11-20 2013-11-18 ランキンサイクル用作動媒体およびランキンサイクルシステム

Publications (1)

Publication Number Publication Date
JPWO2014080868A1 true JPWO2014080868A1 (ja) 2017-01-05

Family

ID=50776051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014548555A Pending JPWO2014080868A1 (ja) 2012-11-20 2013-11-18 ランキンサイクル用作動媒体およびランキンサイクルシステム

Country Status (2)

Country Link
JP (1) JPWO2014080868A1 (ja)
WO (1) WO2014080868A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3018183T3 (da) 2014-09-26 2022-12-05 Daikin Ind Ltd Halogenolefinbaseret sammensætning og anvendelse deraf
EP3549995A1 (en) * 2014-09-26 2019-10-09 Daikin Industries, Ltd. Haloolefin-based composition
WO2016171264A1 (ja) * 2015-04-24 2016-10-27 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
CN107532070A (zh) * 2015-04-24 2018-01-02 旭硝子株式会社 热循环系统用组合物以及热循环系统
CN108700343A (zh) * 2016-02-19 2018-10-23 Agc株式会社 热循环系统以及使用了该热循环系统的热循环方法
WO2017146189A1 (ja) * 2016-02-25 2017-08-31 旭硝子株式会社 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法
JP6717062B2 (ja) * 2016-06-08 2020-07-01 Agc株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP6908042B2 (ja) * 2016-07-29 2021-07-21 Agc株式会社 熱サイクル用作動媒体
WO2019022140A1 (ja) * 2017-07-26 2019-01-31 Agc株式会社 熱サイクルシステムおよびそれを用いた熱サイクル方法
EP3744808B1 (en) * 2018-02-20 2022-03-30 PHC Holdings Corporation Cold storage device
FR3086287B1 (fr) 2018-09-26 2020-09-18 Arkema France Stabilisation du 1-chloro-3,3,3-trifluoropropene

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2751428B2 (ja) * 1989-06-30 1998-05-18 旭硝子株式会社 3,3―ジクロロ―1,1,1,2,2―ペンタフルオロプロパン系組成物
JP2870095B2 (ja) * 1990-03-06 1999-03-10 旭硝子株式会社 ジクロロペンタフルオロプロパン系組成物
EP2529164A4 (en) * 2010-01-25 2013-08-07 Arkema Inc HEAT TRANSFER COMPOSITION OF OXYGENATED LUBRICANT COMPRISING REFRIGERANTS BASED ON HYDROFLUOROOLEFINS AND HYDROCHLOROFLUOROOLEFINS
RU2636152C2 (ru) * 2011-05-19 2017-11-21 Асахи Гласс Компани, Лимитед Рабочая среда и система теплового цикла
EP3239267B1 (en) * 2011-05-19 2020-02-12 AGC Inc. Working medium and heat-cycle system
RU2625307C2 (ru) * 2011-05-19 2017-07-13 Асахи Гласс Компани, Лимитед Рабочая среда и система теплового цикла
JPWO2013015201A1 (ja) * 2011-07-22 2015-02-23 旭硝子株式会社 熱サイクル用作動媒体および熱サイクルシステム
AU2012325962B2 (en) * 2011-10-20 2016-05-19 The Chemours Company Fc, Llc. Azeotrope-like compositions of E-1-chloro-2,3,3,3-tetrafluoropropene and uses thereof
JP6019759B2 (ja) * 2012-05-30 2016-11-02 セントラル硝子株式会社 フルオロアルケンを含有する熱伝達媒体

Also Published As

Publication number Publication date
WO2014080868A1 (ja) 2014-05-30

Similar Documents

Publication Publication Date Title
JP7456473B2 (ja) 作動媒体および熱サイクルシステム
JP7167975B2 (ja) 組成物
JP5935799B2 (ja) 作動媒体および熱サイクルシステム
WO2014080868A1 (ja) ランキンサイクル用作動媒体およびランキンサイクルシステム
JP6493388B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2012157762A1 (ja) 作動媒体および熱サイクルシステム
WO2013015201A1 (ja) 熱サイクル用作動媒体および熱サイクルシステム
JPWO2015129548A1 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2012157761A1 (ja) 作動媒体および熱サイクルシステム