JPWO2014034668A1 - Quantitative determination of γ-oryzanol using near infrared spectroscopy - Google Patents

Quantitative determination of γ-oryzanol using near infrared spectroscopy Download PDF

Info

Publication number
JPWO2014034668A1
JPWO2014034668A1 JP2014533020A JP2014533020A JPWO2014034668A1 JP WO2014034668 A1 JPWO2014034668 A1 JP WO2014034668A1 JP 2014533020 A JP2014533020 A JP 2014533020A JP 2014533020 A JP2014533020 A JP 2014533020A JP WO2014034668 A1 JPWO2014034668 A1 JP WO2014034668A1
Authority
JP
Japan
Prior art keywords
sample
oryzanol
oil
rice
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014533020A
Other languages
Japanese (ja)
Inventor
博之 橋本
博之 橋本
幸和 原田
幸和 原田
拓也 中上
拓也 中上
香奈 安井
香奈 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsuno Food Industrial Co Ltd
Original Assignee
Tsuno Food Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsuno Food Industrial Co Ltd filed Critical Tsuno Food Industrial Co Ltd
Publication of JPWO2014034668A1 publication Critical patent/JPWO2014034668A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/129Using chemometrical methods

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本発明は、食品、飼料、化粧品、医薬品、生体試料などに含まれるγ−オリザノールを簡便かつ高精度で定量する方法を提供することを課題とし、以下の(1)〜(3)の工程を含む方法によって試料中のγ−オリザノールを定量するための回帰式を得、得られた回帰式と、当該回帰式の作成に使用した波長領域における試料の近赤外光スペクトルデータとを用いて試料中のγ−オリザノールを定量する。(1)試料の近赤外光スペクトルを測定する工程(2)当該試料のγ−オリザノール含量を定量する工程(3)近赤外光スペクトルを測定した波長範囲の全部または一部の波長領域で得られたスペクトルデータと、定量したγ−オリザノール含量とを多変量解析法により解析し、γ−オリザノール含量と関係する因子を決定する工程An object of the present invention is to provide a simple and highly accurate method for quantifying γ-oryzanol contained in food, feed, cosmetics, pharmaceuticals, biological samples, and the like, and the following steps (1) to (3): The sample is obtained using the regression equation for quantifying γ-oryzanol in the sample by the method including the obtained regression equation and the near-infrared spectrum data of the sample in the wavelength region used to create the regression equation. Quantitatively γ-oryzanol. (1) Step of measuring the near-infrared light spectrum of the sample (2) Step of quantifying the γ-oryzanol content of the sample (3) In all or part of the wavelength range in which the near-infrared light spectrum was measured A step of analyzing the obtained spectral data and the quantified γ-oryzanol content by a multivariate analysis method and determining a factor related to the γ-oryzanol content

Description

本発明は、近赤外光分光法を用いたγ−オリザノールの定量方法に関するものである。   The present invention relates to a method for quantifying γ-oryzanol using near infrared spectroscopy.

米糠から抽出して得られる米油(米糠油)は、栄養・生理機能に富み、味質、食感にも優れた食用油として注目され、利用が拡大している。米油に含まれる主要な生理機能成分としては、γ−オリザノール、ビタミンE、植物ステロールなどがあるが、中でもγ−オリザノールは、米油に特異的に存在し、様々な保健機能を持つことから注目を集めている。γ−オリザノール(γ−Oryzanol)は1954年に米油から初めて単離された化合物であり、フェルラ酸とトリテルペンアルコールもしくは植物ステロールのエステルの総称である。米油が他の植物油と比較して保存安定性に優れるのは、このγ−オリザノールが豊富に含まれていることが一因である。γ−オリザノールは、コーン、大麦などにも存在することが知られているが、米に比べればその含量は僅かである。   Rice oil obtained by extracting from rice bran (rice bran oil) is attracting attention as an edible oil that is rich in nutrition and physiological functions, and excellent in taste and texture, and its use is expanding. Major physiological functional components contained in rice oil include γ-oryzanol, vitamin E, and plant sterols. Among them, γ-oryzanol exists specifically in rice oil and has various health functions. It attracts attention. γ-Oryzanol is a compound that was first isolated from rice oil in 1954, and is a generic name for esters of ferulic acid and triterpene alcohol or plant sterols. One of the reasons why rice oil is superior in storage stability compared to other vegetable oils is that it is rich in γ-oryzanol. It is known that γ-oryzanol is also present in corn, barley and the like, but its content is small compared to rice.

γ−オリザノールは抗酸化作用や紫外線保護効果を有することから、抗酸化剤や紫外線吸収剤として利用されている。さらに、高脂血症、更年期障害、過敏性腸症候群、心身症における身体症候ならびに不安、緊張、抑鬱等の改善を目的とした医薬品あるいはその原料として用いられている。また、抗酸化剤として食品添加物に認可されている。   Since γ-oryzanol has an antioxidant action and an ultraviolet protection effect, it is used as an antioxidant and an ultraviolet absorber. Furthermore, it is used as a drug or a raw material for the purpose of improving hyperlipidemia, climacteric disorder, irritable bowel syndrome, physical symptoms in psychosomatic disorders, anxiety, tension, depression and the like. It is also approved for food additives as an antioxidant.

γ−オリザノールは体内で消化されて加水分解されるため、その生理機能の多くはその構成成分であるフェルラ酸、トリテルペンアルコール、植物ステロールの機能であると考えられている。しかし最近では、γ−オリザノールとしての形態で転写因子NF−κBの活性化阻害作用を介した抗炎症作用、糖尿病や潰瘍性大腸炎などの予防・改善効果、IgE捕捉作用によるI型アレルギーの低減作用、酸化ストレスの低減作用によるエタノール性肝炎予防・改善作用、アルツハイマー病治療効果を持つインスリン様増殖因子(IGF−1)の増加作用などの保健機能食品としての有用な機能が続々と報告されている。これらの点から、γ−オリザノールの含量を正確に定量することは、玄米、米糠、米油やこれらを含む関連製品の品質を評価する上で極めて重要な技術である。   Since γ-oryzanol is digested in the body and hydrolyzed, most of its physiological functions are considered to be functions of its constituent components ferulic acid, triterpene alcohol, and plant sterol. However, recently, in the form of γ-oryzanol, anti-inflammatory action through the inhibition of activation of transcription factor NF-κB, prevention / improvement effect of diabetes, ulcerative colitis, etc., reduction of type I allergy by action of capturing IgE Many useful functions as health functional foods have been reported, such as the action to prevent and improve ethanolic hepatitis by reducing oxidative stress, and the action of increasing insulin-like growth factor (IGF-1), which has an effect of treating Alzheimer's disease. Yes. From these points, accurately quantifying the content of γ-oryzanol is a very important technique for evaluating the quality of brown rice, rice bran, rice oil and related products containing them.

γ−オリザノールの定量法としては、γ−オリザノールが波長320nm付近に強い吸収極大を持つことから、試料油脂をn−ヘプタン等の溶媒に溶解させ、分光光度計により定量を行うのが一般的である。本法は迅速性に優れ、非常に簡便な手法であるが、UV検出には化合物の選択性が低いため、試料組成によっては正確な定量ができないという欠点がある。γ−オリザノールのより精密な分析法としては高速液体クロマトグラフィー(HPLC)を用いる方法が知られており、中でも逆相クロマトグラフィーを用いた例が多く報告されている(非特許文献1、2)。しかし、これらのHPLC法は、試料毎の条件検討が必要であり、操作が煩雑で迅速性に欠けるという欠点がある。   As a method for quantifying γ-oryzanol, γ-oryzanol has a strong absorption maximum in the vicinity of a wavelength of 320 nm. Therefore, it is common to dissolve sample oil and fat in a solvent such as n-heptane and perform quantification with a spectrophotometer. is there. Although this method is excellent in rapidity and is a very simple technique, there is a drawback that accurate quantification cannot be performed depending on the sample composition because of low compound selectivity for UV detection. As a more precise analysis method for γ-oryzanol, a method using high performance liquid chromatography (HPLC) is known, and many examples using reverse phase chromatography have been reported (Non-Patent Documents 1 and 2). . However, these HPLC methods require the examination of conditions for each sample, and have the disadvantages that the operation is complicated and lacks in speed.

近赤外分光法は、物質分子による近赤外光(一般的に波長域800〜2500nmを指す)の吸収に基づく分光法であり、食品の分野では果実、野菜、魚類等の成分測定や加工食品の品質管理などに用いられている。近赤外分光法の利点は特に、試料を損傷しないことであり、あるがままの状態で分析ができるため、非常に迅速に多成分の同時定量が可能であるということがある。近赤外分光法は、特に青果物の分析方法として一般的なものである。青果物の非破壊分析法としては糖類の定量方法(例えば特許文献1)、水分の定量方法(例えば特許文献2)、硝酸イオン定量方法(例えば特許文献3)などが報告されている。近赤外分光法は穀類の分析でも実用化が進んでおり、米の澱粉、タンパク質、水分、灰分、アミノ酸、食味値を同時分析した例が報告されている(非特許文献3)。また、著者らは近赤外分光法を用いた玄米の水分と油分(トリアシルグリセロール)の非破壊分析法を開発し特許出願している(特願2011−211455)。近赤外分光法は臨床試験用途でも使用されており、血液中のコレステロール、血糖値、トリアシルグリセロール、アディポネクチンなどを同時分析した例が報告されている(特許文献4)。しかし、γ−オリザノールを非破壊分析法により定量したことはこれまでに報告されておらず、近赤外分光法を用いた分析例も報告されていない。   Near-infrared spectroscopy is spectroscopy based on absorption of near-infrared light (generally indicating a wavelength range of 800 to 2500 nm) by substance molecules, and in the field of food, measurement and processing of components such as fruits, vegetables, and fish Used for food quality control. The advantage of near-infrared spectroscopy is in particular that the sample is not damaged and that it can be analyzed as it is, so that multicomponent simultaneous quantification is possible very quickly. Near-infrared spectroscopy is a common method for analyzing fruits and vegetables. As non-destructive analysis methods for fruits and vegetables, a saccharide determination method (for example, Patent Document 1), a moisture determination method (for example, Patent Document 2), and a nitrate ion determination method (for example, Patent Document 3) have been reported. Near-infrared spectroscopy has also been put to practical use in the analysis of cereals, and an example of simultaneous analysis of rice starch, protein, moisture, ash, amino acid, and taste value has been reported (Non-patent Document 3). In addition, the authors developed a nondestructive analysis method for brown rice moisture and oil (triacylglycerol) using near-infrared spectroscopy and filed a patent application (Japanese Patent Application No. 2011-212455). Near-infrared spectroscopy is also used for clinical trials, and an example of simultaneous analysis of cholesterol, blood glucose level, triacylglycerol, adiponectin and the like in blood has been reported (Patent Document 4). However, it has not been reported so far that γ-oryzanol has been quantified by nondestructive analysis, and no analysis example using near infrared spectroscopy has been reported.

特開2009−098033号公報JP 2009-098033 A 特開2004−020470号公報JP 2004-020470 A 特開2010−210355号公報JP 2010-210355 A 特開2007−285922号公報JP 2007-285922 A

Azrina, A. et al., Extraction and Determination of Oryzanol in Rice Bran of Mixed Herbarium UKMB; AZ 6807:MR 185, AZ 6808: MR 211, AZ6809: MR 29, ASEAN Food Journal, 15(1), 89-96(2008)Azrina, A. et al., Extraction and Determination of Oryzanol in Rice Bran of Mixed Herbarium UKMB; AZ 6807: MR 185, AZ 6808: MR 211, AZ6809: MR 29, ASEAN Food Journal, 15 (1), 89-96 (2008) A.G. Gopala Krishna et al., Effect of Refining of Crude Rice Bran Oil on the Retention of Oryzanol in the Refined Oil, JAOCS, 78(2),127-131 (2001)A.G.Gopala Krishna et al., Effect of Refining of Crude Rice Bran Oil on the Retention of Oryzanol in the Refined Oil, JAOCS, 78 (2), 127-131 (2001) 近藤みゆき、「近赤外分光法による食品の化学分析」名古屋文理大学紀要、2007、第7号、p23−28Miyuki Kondo, “Chemical Analysis of Foods by Near Infrared Spectroscopy” Bulletin of Nagoya Bunri University, 2007, No. 7, p23-28

本発明は、食品、飼料、化粧品、医薬品、生体試料などに含まれるγ−オリザノールを簡便かつ高精度で定量する方法を提供することを課題とする。   An object of the present invention is to provide a simple and highly accurate method for quantifying γ-oryzanol contained in foods, feeds, cosmetics, pharmaceuticals, biological samples and the like.

本発明は、上記課題を解決するために、以下の各発明を包含する。
[1]試料中のγ−オリザノールを定量するための回帰式を得る方法であって、以下の(1)〜(3)の工程を含むことを特徴とする方法。
(1)試料の近赤外光スペクトルを測定する工程
(2)当該試料のγ−オリザノール含量を定量する工程
(3)近赤外光スペクトルを測定した波長範囲の全部または一部の波長領域で得られたスペクトルデータと、定量したγ−オリザノール含量とを多変量解析法により解析し、γ−オリザノール含量と関係する因子を決定する工程
[2]試料が、γ−オリザノールを含む食品、飼料、化粧品もしくは医薬品またはこれらの原料もしくは素材であることを特徴とする前記[1]に記載の方法。
[3]試料が、穀物またはその一部であることを特徴とする前記[1]または[2]に記載の方法。
[4]穀物が、玄米であることを特徴とする前記[3]に記載の方法。
[5]試料が、油脂またはその加工品またはこれらの原料もしくは素材であることを特徴とする前記[1]または[2]に記載の方法。
[6]油脂が米油または米油を含有するものであることを特徴とする前記[5]に記載の方法。
[7]試料が、生体由来であることを特徴とする前記[1]または[2]に記載の方法。
[8]前記工程(1)の前に、試料中のγ−オリザノールを溶媒で抽出する工程をさらに含むことを特徴とする前記[1]に記載の方法。
[9]溶媒が、ヘキサンまたはクロロホルムであることを特徴とする前記[8]に記載の方法。
[10]近赤外光スペクトルが、拡散反射光または透過光のスペクトルであることを特徴とする前記[1]〜[9]のいずれかに記載の方法。
[11]前記(3)の工程における波長領域が、800〜2500nmまたはその一部であることを特徴とする前記[1]〜[10]のいずれかに記載の方法。
[12]前記(3)の工程における波長領域が、1440±10nm、1938±10nm、2030±10nm、2105±10nmの少なくとも1つの領域を含むことを特徴とする前記[11]に記載の方法。
[13]前記[1]〜[12]のいずれかに記載の方法により得られた回帰式と、当該回帰式の作成に使用した波長領域における被験試料の近赤外光スペクトルデータとを用いることを特徴とするγ−オリザノールの定量方法。
The present invention includes the following inventions in order to solve the above problems.
[1] A method for obtaining a regression equation for quantifying γ-oryzanol in a sample, comprising the following steps (1) to (3):
(1) Step of measuring the near-infrared light spectrum of the sample (2) Step of quantifying the γ-oryzanol content of the sample (3) In all or part of the wavelength range in which the near-infrared light spectrum was measured Analyzing the obtained spectral data and the quantified γ-oryzanol content by a multivariate analysis method, and determining a factor related to the γ-oryzanol content [2] a food, feed containing γ-oryzanol, The method according to [1] above, wherein the method is a cosmetic or pharmaceutical product, or a raw material or material thereof.
[3] The method according to [1] or [2], wherein the sample is a grain or a part thereof.
[4] The method according to [3], wherein the grain is brown rice.
[5] The method according to [1] or [2], wherein the sample is oil or fat, a processed product thereof, or a raw material or material thereof.
[6] The method according to [5] above, wherein the fat / oil contains rice oil or rice oil.
[7] The method according to [1] or [2], wherein the sample is derived from a living body.
[8] The method according to [1], further comprising a step of extracting γ-oryzanol in the sample with a solvent before the step (1).
[9] The method according to [8], wherein the solvent is hexane or chloroform.
[10] The method according to any one of [1] to [9], wherein the near-infrared light spectrum is a spectrum of diffusely reflected light or transmitted light.
[11] The method according to any one of [1] to [10], wherein the wavelength region in the step (3) is 800 to 2500 nm or a part thereof.
[12] The method according to [11], wherein the wavelength region in the step (3) includes at least one region of 1440 ± 10 nm, 1938 ± 10 nm, 2030 ± 10 nm, 2105 ± 10 nm.
[13] Using the regression equation obtained by the method according to any one of [1] to [12] and near-infrared light spectrum data of the test sample in the wavelength region used to create the regression equation. A method for quantifying γ-oryzanol characterized by the above.

本発明によれば、食品、飼料、化粧品、医薬品、生体試料などに含まれるγ−オリザノールを簡便かつ高精度で定量する方法を提供することができる。特に本発明は、油脂中のγ−オリザノール含量や玄米一粒中のγ−オリザノール含量を非破壊的かつ迅速に定量できる点で、非常に有用である。   According to the present invention, it is possible to provide a method for quantifying γ-oryzanol contained in foods, feeds, cosmetics, pharmaceuticals, biological samples and the like easily and with high accuracy. In particular, the present invention is very useful in that the γ-oryzanol content in fats and oils and the γ-oryzanol content in one grain of brown rice can be quantified nondestructively and rapidly.

ヘキサン溶液中のγ−オリザノール含量について、NIR予測値(定量値)と化学分析値(実測値)の相関を示す図である。It is a figure which shows the correlation of NIR prediction value (quantitative value) and chemical analysis value (actual measurement value) about (gamma)-oryzanol content in a hexane solution. 米油中のγ−オリザノール含量について、NIR予測値(定量値)と化学分析値(実測値)の相関を示す図である。It is a figure which shows the correlation of NIR predicted value (quantitative value) and chemical analysis value (actual measurement value) about (gamma)-oryzanol content in rice oil. γ−オリザノール標品(98%、築野食品)をHPLCで分析し、紫外可視分光検出器(320nm)で検出して得られたUVクロマトグラムを示す図である。It is a figure which shows the UV chromatogram obtained by analyzing (gamma)-oryzanol sample (98%, Tsukino foodstuff) by HPLC, and detecting with a ultraviolet visible spectroscopic detector (320 nm). 玄米一粒中のγ−オリザノール含量について、NIR予測値(定量値)と化学分析値(実測値)の相関を示す図である。It is a figure which shows the correlation of NIR prediction value (quantitative value) and chemical analysis value (actual measurement value) about (gamma)-oryzanol content in one grain of brown rice.

〔試料中のγ−オリザノールを定量するための回帰式を得る方法〕
本発明は、試料中のγ−オリザノールを定量するための回帰式を得る方法(以下、「本発明の回帰式を得る方法」という。)を提供する。本発明の回帰式を得る方法は、以下の(1)〜(3)の工程を含むものであればよい。
(1)回帰式を得るための試料の近赤外光(以下「NIR」と記す。)スペクトルを測定する工程
(2)回帰式を得るための試料のγ−オリザノール含量を定量する工程
(3)NIRスペクトルを測定した波長範囲の全部または一部の波長領域で得られたスペクトルデータと、γ−オリザノール含量の実測値とを多変量解析法により解析し、γ−オリザノール含量と関係する因子を決定する工程
本発明の回帰式を得る方法は、(1)〜(3)以外の工程を含んでいてもよく、その内容は問わない。
[Method for obtaining regression equation for quantifying γ-oryzanol in sample]
The present invention provides a method for obtaining a regression equation for quantifying γ-oryzanol in a sample (hereinafter referred to as “method for obtaining the regression equation of the present invention”). The method of obtaining the regression formula of this invention should just contain the process of the following (1)-(3).
(1) A step of measuring a near-infrared light (hereinafter referred to as “NIR”) spectrum of a sample for obtaining a regression equation (2) A step of quantifying the γ-oryzanol content of the sample for obtaining a regression equation (3 ) The spectrum data obtained in all or part of the wavelength range where the NIR spectrum was measured and the measured value of the γ-oryzanol content were analyzed by a multivariate analysis method, and factors related to the γ-oryzanol content were determined. Step of determining The method for obtaining the regression equation of the present invention may include steps other than (1) to (3), and the contents thereof are not limited.

工程(1)では、試料のNIRスペクトルを測定する。NIRスペクトルの測定方法は特に限定されないが、拡散反射法または透過法が好ましく、これらを試料によって使い分けることがより好ましい。試料が固体であれば主に拡散反射法を用い、試料が液体であれば主に透過法を用いて測定することが好ましが、液体の場合でも着色が強く、光を透過しにくい試料の場合は拡散反射光を測定することが好ましい。試料が溶液の場合は、適宜濃度を調整して透過光を測定することが好ましい。測定セルは特に限定されないが、測定試料、測定法に応じて使い分けることが好ましい。NIRスペクトルの測定は、オフライン(off line)分析だけではなく、アットライン(at line)、オンライン(on line)、インライン(in line)、無侵襲(non-invasive)分析などの形で実施してもよい。NIRスペクトルの測定は、試料を採取し分析室の近赤外分析計で測定することもできるが、生産現場や倉庫に近赤外分析計を持ち込みその場で測定することもできる。また製造ラインに近赤外分析計を組み込むことにより連続的に試料のNIRスペクトルを測定することも可能である。   In step (1), the NIR spectrum of the sample is measured. The measuring method of the NIR spectrum is not particularly limited, but the diffuse reflection method or the transmission method is preferable, and it is more preferable to use these properly depending on the sample. If the sample is a solid, it is preferable to use the diffuse reflection method. If the sample is a liquid, the measurement is preferably performed using the transmission method. In this case, it is preferable to measure diffuse reflection light. When the sample is a solution, it is preferable to measure the transmitted light by appropriately adjusting the concentration. The measurement cell is not particularly limited, but it is preferable to use properly depending on the measurement sample and the measurement method. NIR spectra are measured not only in off-line analysis but also in at-line, on-line, in-line, non-invasive analysis, etc. Also good. The NIR spectrum can be measured by taking a sample and measuring with a near-infrared analyzer in the analysis room, or by bringing a near-infrared analyzer into a production site or warehouse and measuring it on the spot. It is also possible to continuously measure the NIR spectrum of a sample by incorporating a near-infrared analyzer in the production line.

NIRスペクトルの測定には、市販の近赤外分光分析計を用いることができるが、透過光と拡散反射光を測定できるものが好ましい。また、試料に応じて固体測定モジュール、液体測定モジュール、光ファイバーモジュール、固体透過測定モジュールを備えたものが利用できる。また、測定セルの温度調節機能を備えたものがより好ましい。具体的にはMPA(ブルカー・オプティクス)、TANGO(ブルカー・オプティクス)、NIRFlex N−500(ビュッヒ)、NIRFlex N−400(ビュッヒ)、NIRLab N−200(ビュッヒ)、NIRMaster(ビュッヒ)、NIRS6500(ニレコ)、XDS・NIRシリーズ(ニレコ)、SpectraStar Series(BLTEC)、光品質チェッカーHOS−Fシリーズ(SAIKA)、光品質チェッカーポータブルHQC−F30(SAIKA)、IRAffinity−1(島津製作所)、LAMBDA750/950/1050およびFrontier NIR(パーキンエルマー)、FT−IR4000シリーズおよびFT−IR6000シリーズ(日本分光)、FT−NIR MB3600(ABB BOMEM)などが挙げられ、なかでもMPA、TANGOが好ましく、MPAが特に好ましい。得られるスペクトルは、フーリエ変換スペクトルであることが好ましい。   For measurement of the NIR spectrum, a commercially available near-infrared spectrometer can be used, but those capable of measuring transmitted light and diffuse reflected light are preferred. Moreover, what was equipped with the solid measurement module, the liquid measurement module, the optical fiber module, and the solid permeation | transmission measurement module according to a sample can be utilized. Moreover, what provided the temperature control function of the measurement cell is more preferable. Specifically, MPA (Bruker Optics), TANGO (Bruker Optics), NIRFlex N-500 (Buch), NIRFlex N-400 (Buch), NIRLab N-200 (Buch), NIRMaster (Buch), NIRS6500 (Nireco) ), XDS / NIR series (Nireko), SpectraStar Series (BLTEC), optical quality checker HOS-F series (SAIKA), optical quality checker portable HQC-F30 (SAIKA), IRAffinity-1 (Shimadzu Corporation), LAMBDA 750/950 / 1050 and Frontier NIR (Perkin Elmer), FT-IR4000 series and FT-IR6000 series (JASCO), FT-NIR MB36 0 (ABB Bomem) and the like, with preference given to MPA, preferably TANGO, MPA is particularly preferred. The obtained spectrum is preferably a Fourier transform spectrum.

本発明で定量するγ−オリザノールは、フェルラ酸とトリテルペンアルコールのエステル体またはフェルラ酸と植物ステロールのエステル体を指す。トリテルペンアルコールとしてはシクロアルテノール、24−メチレンシクロアルタノール、シクロブラノール、シクロアルタノール、シクロサドール、シクロラウデノール、ブチロスペリモール、パルケオール、イソシクロサドール等が挙げられる。植物ステロールとしてはα−シトステロール、β−シトステロール、スティグマステロール、カンペステロール、α−シトスタノール、β−シトスタノール、スティグマスタノール、カンペスタノール、ブラシカステロール、フコステロール、イソフコステロール、スピナステロール、アベナステロール等が挙げられる。γ−オリザノールの分子種組成については特に限定されず、フェルラ酸と上記のトリテルペンアルコールまたは植物ステロールのエステル体がどのような比率で存在していてもかまわない。   The γ-oryzanol determined in the present invention refers to an ester of ferulic acid and triterpene alcohol or an ester of ferulic acid and plant sterol. Examples of the triterpene alcohol include cycloartenol, 24-methylenecycloartanol, cyclobranol, cycloartanol, cyclosador, cyclolaudenol, butyrosperimol, parqueol, and isocyclosador. Plant sterols include α-sitosterol, β-sitosterol, stigmasterol, campesterol, α-sitostanol, β-sitostanol, stigmasteranol, campestanol, brassicasterol, fucosterol, isofucosterol, spinasterol, avenasterol, etc. Is mentioned. The molecular species composition of γ-oryzanol is not particularly limited, and ferulic acid and the ester of the above-mentioned triterpene alcohol or plant sterol may be present in any ratio.

試料は特に限定されないが、γ−オリザノールを含有している可能性のあるものが好ましい。具体的には、例えば、食品、飼料、化粧品、医薬品、生体試料などが挙げられる。なかでも、原料や素材としてγ−オリザノールを含有する植物またはその一部が使用されているもの、または食品添加物や抗酸化剤としてγ−オリザノールが添加されているものがより好ましい。γ−オリザノールを含有する植物としては、例えば、イネ、大麦、トウモロコシなどが挙げられる。植物の一部としては、これらの種子、すなわち穀物が挙げられる。穀物は、種子そのもの、種子の一部、またはこれらを粉砕した粉など、どのような形態でもよい。植物としてはイネが好ましく、イネの種子としては籾殻を除去した玄米、玄米から得られた米糠、精白途中の玄米、精白後の白米、加工糠、脱脂糠、米糠の搾油残渣、脱脂途中の米糠、およびこれらの粉砕物などが挙げられる。   The sample is not particularly limited, but a sample that may contain γ-oryzanol is preferable. Specific examples include foods, feeds, cosmetics, pharmaceuticals, and biological samples. Especially, the thing in which the plant or the part containing (gamma) -oryzanol is used as a raw material or a raw material, or the thing to which (gamma) -oryzanol is added as a food additive or an antioxidant is more preferable. Examples of plants containing γ-oryzanol include rice, barley, and corn. Part of the plant includes these seeds, or grains. The grain may be in any form such as the seed itself, a part of the seed, or a powder obtained by pulverizing these. Rice is preferred as the plant, and rice seeds from which rice husks have been removed, rice bran obtained from brown rice, brown rice in the middle of whitening, white rice after whitening, processed rice bran, defatted rice bran, oil residue of rice bran, rice bran in the middle of degreasing , And a pulverized product thereof.

γ−オリザノールを含有する植物またはその一部を原料や素材として含む食品としては、例えば、菓子類(米菓、蒸菓子、ロックケーキ、クレープ、餅、ホットケーキ、ゼリー、ガム、キャンディー、グミ、マフィン、蒸しまんじゅう、カップケーキ、焼き菓子、鯛焼き、団子、クッキー、カステラ、マドレーヌ、ワッフルなど)、パン類(パン、スコーン、ナンなど)、麺類(うどん、ラーメン、そば、パスタ、マカロニなど)、練り製品(かまぼこ、ちくわ、はんぺん、さつま揚げ、ソーセージなど)、料理全般(白飯、おにぎり、おかゆ、豆腐、シリアル、ニョッキスープ、お好み焼き、カレー、シチュー、グラタン、天ぷら衣、パスタスープ、だんご汁、ピザ、ハンバーグ、チャーハン、スープの素など)、粉類(米粉、玄米粉、コーンスターチ、パン粉、片栗粉、天ぷら粉など)、ドリンク類(茶、コーヒー、ココア、清涼飲料、果実飲料、乳性飲料、酒類、栄養ドリンクなど)、調味料(醤油、ソース、料理酒、みりん、だし類、味噌など)、錠菓、サプリメント類などが挙げられる。   Examples of foods containing γ-oryzanol-containing plants or parts thereof as raw materials and materials include confectionery (rice cake, steamed confectionery, rock cake, crepe, rice cake, hot cake, jelly, gum, candy, gummi, Muffins, steamed buns, cupcakes, baked goods, grilled sweets, dumplings, cookies, castella, madeleine, waffles, etc.), breads (bread, scones, naan etc.), noodles (udon, ramen, soba, pasta, macaroni, etc.) , Kneaded products (kamaboko, chikuwa, hanpen, sweet potato, sausage, etc.), cooking in general (white rice, rice balls, rice porridge, tofu, cereal, gnocchi soup, okonomiyaki, curry, stew, gratin, tempura, pasta soup, dango soup, pizza, Hamburger, fried rice, soup, etc.), flour (rice flour, brown rice flour, Starch, bread crumbs, potato starch, tempura, etc.), drinks (tea, coffee, cocoa, soft drinks, fruit drinks, milky drinks, alcoholic beverages, energy drinks, etc.), seasonings (soy sauce, sauce, cooked liquor, mirin, dashi) And miso), tablet confectionery, and supplements.

植物に比べるとγ−オリザノール含量は低いが、動物由来の原料または素材を使用した食品等も試料として好ましい。特にγ−オリザノールを含む飼料で飼育された家畜、養殖魚などを原料または素材として使用した食品、食品添加物や抗酸化剤としてγ-オリザノールを添加された食品などが好適である。動物由来の原料または素材を使用した食品等としては、例えば、牛肉、牛脂、牛乳、豚肉、ラード、馬肉、羊肉、鶏肉、鶏卵、レバー、魚肉、魚油、魚卵、魚粉およびこれらの加工品(例えば、卵黄、卵白、とき卵、ゆで卵、卵焼き、メレンゲ、粉ミルク、脱脂粉乳、プリン、ヨーグルトなど)が挙げられる。   Although the content of γ-oryzanol is lower than that of plants, foods using animal-derived materials or materials are also preferable as samples. In particular, livestock bred with feed containing γ-oryzanol, foods using cultured fish as raw materials or materials, food additives and foods added with γ-oryzanol as an antioxidant are suitable. Examples of foods using animal-derived ingredients or materials include beef, beef tallow, milk, pork, lard, horse meat, lamb, chicken, chicken eggs, liver, fish, fish oil, fish eggs, fish meal and processed products thereof (for example, For example, egg yolk, egg white, sometimes egg, boiled egg, fried egg, meringue, powdered milk, skimmed milk powder, pudding, yogurt and the like.

このような原料や素材を含む飼料としては、例えば、ウシ、ウマ、ブタ等の家畜用飼料、ニワトリ等の家禽用飼料、イヌ、ネコ等のペット用飼料、養殖魚用飼料などが挙げられる。
このような原料や素材を含む化粧品としては、例えば、イネ、大麦、トウモロコシなどのγ−オリザノールを含有する植物のエキスを配合したクリーム、ローション、ジェル、ミスト、マスク、パック、シャンプー、リンス、入浴剤等が挙げられる。
このような原料や素材を含む医薬品としては、例えば、イネ、大麦、トウモロコシなどのγ−オリザノールを含有する植物由来の成分を含む賦形剤を用いた錠剤、粉薬、カプセル剤等が挙げられる。また、γ−オリザノールを有効成分として含有するあらゆる剤形の医薬品、例えば高脂血症治療剤、更年期障害治療剤、皮膚外用剤、育毛剤、歯磨き剤、口中薬、点眼薬、点鼻薬などが挙げられる。
Examples of feed containing such raw materials and materials include feed for livestock such as cattle, horses and pigs, feed for poultry such as chickens, pet feed for dogs and cats, feed for cultured fish, and the like.
Cosmetics containing such raw materials and materials include, for example, creams, lotions, gels, mists, masks, packs, shampoos, rinses, baths containing plant extracts containing γ-oryzanol such as rice, barley and corn. Agents and the like.
Examples of pharmaceuticals containing such raw materials and materials include tablets, powders, capsules and the like using excipients containing plant-derived components containing γ-oryzanol such as rice, barley, and corn. In addition, pharmaceuticals of all dosage forms containing γ-oryzanol as an active ingredient, such as hyperlipidemia therapeutic agent, climacteric disorder therapeutic agent, skin external preparation, hair restorer, toothpaste, oral medicine, eye drops, nasal drops, etc. Can be mentioned.

試料が食品、飼料、化粧品、医薬品、生体試料などまたはこれらの原料や素材であって、非破壊分析を目的とする場合、試料をそのまま工程(1)のNIRスペクトル測定に供してもよいが、測定精度を向上させるために試料の調製を行うことが好ましい。例えば、試料が固体の場合、異物が除去されていることが好ましい。また、支障が無ければ乾燥処理を行って水分を除くことが好ましい。乾燥処理法は特に限定されないが、試料の損壊や変質を避けるため、凍結乾燥法や真空乾燥法などを用いることが好ましい。固体試料はこれらの前処理を行った上でさらにその大きさや形状によって適正な測定セルを使い分けることが好ましい。例えば玄米を試料とする場合には穀物用のセルなどに数粒の玄米を詰め込んで測定してもよいが、一粒で測定する場合は一粒用のセルを用いることが好ましい。   When the sample is food, feed, cosmetics, pharmaceuticals, biological sample, etc., or these raw materials and materials, and the purpose is non-destructive analysis, the sample may be subjected to NIR spectrum measurement in step (1) as it is, In order to improve the measurement accuracy, it is preferable to prepare a sample. For example, when the sample is a solid, it is preferable that foreign matters have been removed. If there is no problem, it is preferable to remove the moisture by performing a drying treatment. The drying method is not particularly limited, but it is preferable to use a freeze drying method, a vacuum drying method, or the like in order to avoid damage or alteration of the sample. It is preferable that the solid sample is subjected to these pretreatments, and an appropriate measurement cell is used depending on its size and shape. For example, when brown rice is used as a sample, several grains of brown rice may be packed in a grain cell or the like, but when measuring with one grain, it is preferable to use a single cell.

非破壊分析を目的としない場合には、試料の均質化のために粉砕処理を施すことが好ましく、さらに乾燥処理を行って水分を除去することが好ましい。この場合の乾燥処理法は特に限定されないが、凍結乾燥法、真空乾燥法など試料の変性を避けられる方法が好ましい。粉砕処理法は特に限定されないが、例えば試料が固体の場合で試料が大きすぎてそのまま破砕できない場合は、適切な大きさに切断、破断してから粉砕処理を施すのがよく、試料が軟質の場合はまず凍結乾燥処理や真空乾燥処理を行ってから破砕するのがよい。例えば、試料が液体の場合、沈殿や異物が除去されていることが好ましい。非破壊分析を目的としない場合や、非破壊分析を目的とする場合でも特に支障が無い場合は、攪拌処理による均質化や乾燥処理による水分除去を行うことが好ましい。乾燥処理方法は特に限定されず、凍結乾燥法や真空乾燥法などを用いることができる。   When non-destructive analysis is not intended, it is preferable to perform a pulverization process for homogenizing the sample, and it is preferable to perform a drying process to remove moisture. The drying method in this case is not particularly limited, but a method that can avoid denaturation of the sample, such as a freeze drying method or a vacuum drying method, is preferable. The pulverization method is not particularly limited. For example, when the sample is solid and the sample is too large to be crushed as it is, it is preferable to cut and break it to an appropriate size before applying the pulverization treatment. In this case, it is preferable to first perform freeze-drying treatment or vacuum drying treatment before crushing. For example, when the sample is a liquid, it is preferable that precipitates and foreign matters have been removed. When there is no problem even when non-destructive analysis is not intended or when non-destructive analysis is intended, it is preferable to perform homogenization by stirring treatment or water removal by drying treatment. The drying method is not particularly limited, and a freeze drying method, a vacuum drying method, or the like can be used.

試料が固体、液体に関わらず主成分がタンパク質である場合で非破壊分析を目的としない場合には、タンパク質の除去処理を行うことが好ましい。除タンパク処理の方法は特に限定されず、酸や有機溶媒の添加による沈殿法、限外濾過法、透析法、カラム法などが挙げられる。試料が固体の場合は試料を破断・粉砕した上で適当な溶媒に懸濁し、除タンパク処理を行うことが好ましい。試料中のγ−オリザノール濃度は、少なくとも10ppm以上であることが好ましい。一例として玄米を直接分析する際には、50ppm以上が好ましく、100ppm以上がさらに好ましい。   In the case where the main component is protein regardless of whether the sample is solid or liquid, and non-destructive analysis is not intended, it is preferable to perform protein removal treatment. The method of protein removal treatment is not particularly limited, and examples thereof include precipitation method by adding acid or organic solvent, ultrafiltration method, dialysis method, column method and the like. When the sample is solid, the sample is preferably broken and pulverized and then suspended in a suitable solvent for protein removal treatment. The concentration of γ-oryzanol in the sample is preferably at least 10 ppm or more. As an example, when brown rice is directly analyzed, 50 ppm or more is preferable, and 100 ppm or more is more preferable.

また、油脂またはその加工品も試料として好適に用いることができる。油脂またはその加工品の原料、組成、製法等については特に限定されないが、γ−オリザノールを含むものが好ましい。γ−オリザノールを含む油脂としては、例えば、米油、米胚芽油、γ−オリザノール高含有油、コーン油、大麦油などが挙げられる。また、これらと他の油脂とのブレンド油もγ−オリザノールを含む油脂として好適である。他の油脂としては、例えば、ごま油、サフラワー油、大豆油、菜種油、ひまわり油、オリーブ油、グレープシードオイル、ヤシ油、パーム油、パーム核油、綿実油、ヤシ油、アマニ油、ひまし油、ハトムギ油、小麦胚芽油、シソ油、エゴマ油、サチャインチ油、クルミ油、キウイ種子油、サルビア種子油、マカデミアナッツ油、ヘーゼルナッツ油、カボチャ種子油、椿油、茶実油、ボラージ油、カカオ脂、サル脂、シア脂、藻油などの植物油脂、または牛脂、ラード、魚油などの動物油、あるいはそれらのエステル交換油、水素添加油、分別油等の油脂類などが挙げられる。これらの中でも、米油または米油を含む油脂が好ましい。油脂の純度は特に限定されず、精製された油脂、精製前の原油、精製途中の油脂のいずれであってもよい。精製された油脂は使用前のものでもよく、使用後のもの(廃油)でもよい。また、精油過程で生じた脱臭スカム、ソープストック、遊離脂肪酸、ワックス(ロウ)、ガム質などの副産物も試料として好適に用いることができる。   Oils and fats or processed products thereof can also be suitably used as samples. Although it does not specifically limit about the raw material, composition, manufacturing method, etc. of fats and oils or its processed goods, The thing containing (gamma) -oryzanol is preferable. Examples of fats and oils containing γ-oryzanol include rice oil, rice germ oil, γ-oryzanol-rich oil, corn oil, and barley oil. Also, blended oils of these with other fats and oils are suitable as fats and oils containing γ-oryzanol. Other fats and oils include, for example, sesame oil, safflower oil, soybean oil, rapeseed oil, sunflower oil, olive oil, grape seed oil, coconut oil, palm oil, palm kernel oil, cottonseed oil, coconut oil, linseed oil, castor oil, pearl oil , Wheat germ oil, perilla oil, sesame oil, sacha inchi oil, walnut oil, kiwi seed oil, salvia seed oil, macadamia nut oil, hazelnut oil, pumpkin seed oil, coconut oil, tea seed oil, borage oil, cacao oil, sal fat, Examples thereof include vegetable oils and fats such as shea fat and algae oil, or animal oils such as beef tallow, lard and fish oil, or oils and fats such as transesterified oil, hydrogenated oil and fractionated oil. Among these, rice oil or fats and oils containing rice oil are preferable. The purity of fats and oils is not particularly limited, and may be any of refined fats and oils, crude oil before refining, and fats and oils during refining. The refined fats and oils may be before use or after use (waste oil). Further, by-products such as deodorized scum, soap stock, free fatty acid, wax (wax), gum and the like produced during the essential oil process can be suitably used as a sample.

油脂の加工品としては、例えば、天ぷら、天かす、唐揚げ、フライ、マーガリン、バター、チーズ、フライドポテト、油揚げ、厚揚げ、生クリーム、コーヒーミルク(粉)、ホイップクリーム、ドレッシング、マヨネーズ、タルタルソース、オイスターソース、ホワイトソース、ポテトチップス、チョコレート、ビスケット、コーンスナック、ポップコーン、クラッカー、揚げせんべい、米菓、ショートケーキ、エクレア、シュークリーム、ウエハース、ババロア、ドーナッツ、かりんとう、アイスクリームなどの食品が挙げられる。また、例えば、石鹸、洗剤、ファンデーション、クレンジングオイル、アロマオイル、リップクリーム、マニキュアなどの油脂を主体とする化粧品などが挙げられる。   Examples of processed oils and fats include tempura, tempura, deep-fried, fried, margarine, butter, cheese, french fries, deep-fried, deep-fried, fresh cream, coffee milk (powder), whipped cream, dressing, mayonnaise, tartar Foods such as sauce, oyster sauce, white sauce, potato chips, chocolate, biscuits, corn snacks, popcorn, crackers, fried rice crackers, rice crackers, short cakes, eclairs, cream puffs, wafers, bavaroa, donuts, karinto, ice cream It is done. Moreover, for example, cosmetics mainly composed of fats and oils such as soaps, detergents, foundations, cleansing oils, aroma oils, lip balms, and nail polishes can be used.

油脂または主成分が油脂である油脂加工品の場合、試料をそのまま工程(1)のNIRスペクトル測定に供してもよいが、測定精度を向上させるために試料の調製を行うことが好ましい。例えば試料が固体の油脂または油脂加工品の場合、異物が除去されており、均質な状態であることが好ましい。固体のまま拡散反射法によりNIRスペクトルを測定しても構わないが、加温による溶解が可能であれば加温して液体状態とし、透過法によりNIRスペクトルを測定することが好ましい。例えば試料が液体の油脂または油脂加工品の場合、攪拌処理を行って均質化することが好ましく、沈殿や異物は除去されていることが好ましい。試料の粘度が高い場合には試料を入れた測定セルを加温して試料粘度を下げることが好ましい。試料が不透明な場合であって加温により透明化できる場合には測定セルを加温して透明化した状態で測定することが好ましい。これらの油脂に含まれるγ−オリザノール濃度は10ppm以上が好ましく、100ppm以上であることがより好ましく、1000ppm以上であることがさらに好ましい。主成分が油脂以外の油脂加工品の場合については、上述の食品、飼料、化粧品、医薬品などまたはこれらの原料や素材である場合と同様である。   In the case of fats and oils or processed fats and oils whose main component is fats and oils, the sample may be subjected to the NIR spectrum measurement in step (1) as it is, but it is preferable to prepare the sample in order to improve measurement accuracy. For example, in the case where the sample is a solid fat or oil processed product, it is preferable that foreign matters are removed and the sample is in a homogeneous state. The NIR spectrum may be measured by the diffuse reflection method while it is in a solid state, but if dissolution by heating is possible, the NIR spectrum is preferably measured by heating to a liquid state and measuring by the transmission method. For example, when the sample is a liquid oil or processed oil product, it is preferable to homogenize by performing a stirring process, and it is preferable that precipitates and foreign substances are removed. When the viscosity of the sample is high, it is preferable to lower the sample viscosity by heating the measurement cell containing the sample. When the sample is opaque and can be clarified by heating, it is preferable to measure in a state where the measurement cell is heated and clarified. The concentration of γ-oryzanol contained in these fats and oils is preferably 10 ppm or more, more preferably 100 ppm or more, and further preferably 1000 ppm or more. The case where the main component is a processed fat or oil other than fat is the same as the case of the above-mentioned food, feed, cosmetics, pharmaceuticals, etc., or these raw materials and materials.

本発明により得られる回帰式は、臨床試験やγ−オリザノールの代謝研究などを目的とした生体由来の試料中のγ−オリザノールの定量にも利用することができる。生体由来の試料は特に限定されないが、例えば、動物の生体構成成分が好適である。動物由来の試料としては、例えばヒトや実験動物、家畜、養殖魚などの血液、血清、血漿、組織液、リンパ液、脳脊髄液、母乳、膿、粘液、鼻水、喀痰、尿、糞便、腹水、精液等の体液類、皮膚、粘膜、各種臓器、骨等の組織、毛髪、体毛などを挙げることができる。   The regression equation obtained by the present invention can also be used for quantification of γ-oryzanol in a sample derived from a living body for the purpose of clinical trials or γ-oryzanol metabolism studies. Although the sample derived from a living body is not particularly limited, for example, a biological component of an animal is preferable. Examples of animal-derived samples include blood, serum, plasma, tissue fluid, lymph fluid, cerebrospinal fluid, breast milk, pus, mucus, runny nose, sputum, urine, feces, ascites, semen from humans, laboratory animals, livestock, farmed fish, etc. And body fluids such as skin, mucous membrane, various organs, tissues such as bone, hair, body hair and the like.

試料が生体由来の試料であって、非破壊分析を目的とする場合は、試料をそのまま工程(1)のNIRスペクトル測定に供してもよいが、測定精度を向上させるために試料の調製を行うことが好ましい。試料が固体の場合、異物を取り除くことが好ましく、試料が液体の場合、異物や沈殿を除き攪拌処理を行って均質化することが好ましい。
非破壊分析を目的としない場合は、粉砕や攪拌による均一化や除タンパク処理を行うことが好ましい。しかし試料中に含まれるγ−オリザノールは非常に低濃度であることが予測されるため、直接分析では十分な測定感度が得られない可能性もある。よって、安定した回収率が得られることが条件であるが、試料を直接分析するよりも試料を濃縮したり、溶媒を用いて抽出した粗脂質を測定試料として調製するのがより好ましい。抽出法については特に限定されないが、抽出効率の向上のため、除タンパク処理を先に行うことが好ましい。除タンパク処理の方法は特に限定されず、上述の食品、飼料、化粧品、医薬品などまたはこれらの原料や素材である場合と同様である。試料を直接分析する場合、測定試料中のγ−オリザノール濃度については、10ppm以上が好ましい。
When the sample is a sample derived from a living body and is intended for nondestructive analysis, the sample may be directly used for the NIR spectrum measurement in the step (1), but the sample is prepared in order to improve the measurement accuracy. It is preferable. When the sample is a solid, it is preferable to remove foreign substances, and when the sample is a liquid, it is preferable to perform homogenization by removing the foreign substances and precipitation.
When non-destructive analysis is not aimed, it is preferable to perform homogenization or protein removal treatment by crushing or stirring. However, since γ-oryzanol contained in the sample is predicted to be very low in concentration, there is a possibility that sufficient measurement sensitivity cannot be obtained by direct analysis. Therefore, it is a condition that a stable recovery rate can be obtained, but it is more preferable to concentrate a sample or prepare a crude lipid extracted using a solvent as a measurement sample than to directly analyze the sample. The extraction method is not particularly limited, but it is preferable to perform the protein removal treatment first in order to improve extraction efficiency. The method of protein removal treatment is not particularly limited, and is the same as the case of the above-mentioned food, feed, cosmetics, pharmaceuticals, etc. or these raw materials and materials. When the sample is directly analyzed, the concentration of γ-oryzanol in the measurement sample is preferably 10 ppm or more.

試料中のγ−オリザノールを溶媒で抽出し、得られた抽出物を工程(1)または工程(2)に供してもよい。このような抽出物を測定に供する場合には、本発明の回帰式を得る方法の工程(1)の前に、試料中のγ−オリザノールを溶媒で抽出する工程を有することが好ましい。抽出に用いる溶媒は、γ−オリザノールが溶解可能な溶媒であることが好ましい。γ−オリザノールが溶解可能な溶媒としては、例えば、ジエチルエーテル、ジメチルエーテル、メチルエチルエーテル、ジイソプロピルエーテル、2-メトキシエタノール、テトラヒドロフラン(THF)などのエーテル類、メタノール、エタノール、プロパノール、イソプロパノール(2−プロパノール)、ブタノール、t-ブタノール、グリセリン、エチレングリコールなどの炭素数3〜11のアルコール類、ペンタン、ヘキサンなどの炭素数5〜17のアルカン類、ペンテン、ヘキセンなどの炭素数5〜20のアルケン類、アセトン、アセトニトリル、クロロホルム、ヘキサン、シクロヘキサン、ヘプタン、酢酸エチル、ジオキサン、テトラヒドロフラン(THF)、トリフルオロ酢酸、ベンゼン、ジメチルスルホキシド(DMSO)、石油エーテル、トルエン、ジメチルホルムアミド、ジクロロメタン、四塩化炭素、t−ブチルアセトアセタートなどが挙げられる。これらの溶媒は単独で用いてもよいし、均質に混合できるならば任意の割合で混合したものを用いてもよい。抽出法は特に限定されず、公知の脂質抽出法を用いることができる。例えば、ソックスレー抽出法、クロロホルム−メタノール抽出法、酸分解法などが挙げられ、中でもソックスレー抽出法が抽出効率の点で好ましい。試料をそのまま溶媒抽出しても構わないが、試料が固体の場合は異物を除去することが好ましく、また、試料の均質化と抽出効率の向上のために粉砕処理を行うことが好ましい。試料が液体の場合は異物や沈殿物を除去することが好ましく、攪拌処理を行って均質化することが好ましい。水分を除去する場合は、凍結乾燥法や真空乾燥法などを用いることが好ましい。   You may extract (gamma)-oryzanol in a sample with a solvent, and use the obtained extract for process (1) or process (2). When using such an extract for measurement, it is preferable to have a step of extracting γ-oryzanol in the sample with a solvent before step (1) of the method for obtaining the regression equation of the present invention. The solvent used for extraction is preferably a solvent in which γ-oryzanol can be dissolved. Examples of the solvent in which γ-oryzanol can be dissolved include ethers such as diethyl ether, dimethyl ether, methyl ethyl ether, diisopropyl ether, 2-methoxyethanol, and tetrahydrofuran (THF), methanol, ethanol, propanol, and isopropanol (2-propanol). ), Alcohols having 3 to 11 carbon atoms such as butanol, t-butanol, glycerin and ethylene glycol, alkanes having 5 to 17 carbon atoms such as pentane and hexane, and alkenes having 5 to 20 carbon atoms such as pentene and hexene. , Acetone, acetonitrile, chloroform, hexane, cyclohexane, heptane, ethyl acetate, dioxane, tetrahydrofuran (THF), trifluoroacetic acid, benzene, dimethyl sulfoxide (DMSO), stone Ether, toluene, dimethylformamide, dichloromethane, carbon tetrachloride, etc. t- butyl acetoacetate are exemplified. These solvents may be used alone, or may be used in an arbitrary ratio as long as they can be mixed uniformly. The extraction method is not particularly limited, and a known lipid extraction method can be used. For example, a Soxhlet extraction method, a chloroform-methanol extraction method, an acid decomposition method and the like can be mentioned. Among them, the Soxhlet extraction method is preferable in terms of extraction efficiency. The sample may be solvent-extracted as it is, but when the sample is a solid, it is preferable to remove foreign matter, and it is preferable to perform a pulverization treatment in order to homogenize the sample and improve extraction efficiency. When the sample is a liquid, it is preferable to remove foreign matters and precipitates, and it is preferable to homogenize by performing a stirring process. In the case of removing moisture, it is preferable to use a freeze drying method, a vacuum drying method, or the like.

抽出物は溶媒が除去された粗脂質の状態でも、溶媒に溶けた抽出液の状態のどちらでも構わないが、前者の場合には油脂試料と同様の方法で試料を調製することが好ましい。後者の場合には溶媒の除去処理を行って油脂試料と同様の調製を行ってもよいし、抽出液をそのまま、あるいは必要に応じて溶媒交換、希釈等を行った後にNIRスペクトル測定に供してもよい。抽出液の場合、その溶解溶媒は上述の抽出溶媒と同様のものを用いることができるが、精度の高い測定のためにはヘキサンまたはクロロホルムを用いることが好ましく、ヘキサンを用いることがより好ましい。抽出溶媒がこれらの溶媒でない場合にはヘキサンまたはクロロホルムに溶媒交換を行うことが好ましい。溶媒の除去方法は特に限定されないが、測定試料の変性を避けるために低温・真空条件下で行うことが好ましい。具体的には上述の乾燥(水分除去)法と同様の方法を好適に用いることができる。測定試料中のγ−オリザノール濃度は、試料が粗脂質である場合は上述の油脂試料と同様であるが、溶液である場合は10ppm以上が好ましく、50ppm以上がより好ましい。   The extract may be in the state of crude lipid from which the solvent has been removed or in the form of an extract dissolved in the solvent. In the former case, it is preferable to prepare the sample by the same method as for the oil and fat sample. In the latter case, the removal of the solvent may be performed and the preparation similar to that of the oil and fat sample may be performed, or the extract may be subjected to NIR spectrum measurement as it is or after performing solvent exchange, dilution or the like as necessary. Also good. In the case of an extract, the dissolution solvent can be the same as the above-mentioned extraction solvent, but hexane or chloroform is preferably used, and hexane is more preferable for highly accurate measurement. When the extraction solvent is not one of these solvents, it is preferable to perform solvent exchange with hexane or chloroform. The method for removing the solvent is not particularly limited, but it is preferably performed under low temperature and vacuum conditions in order to avoid denaturation of the measurement sample. Specifically, a method similar to the above-described drying (moisture removal) method can be suitably used. The γ-oryzanol concentration in the measurement sample is the same as that of the above-described oil and fat sample when the sample is a crude lipid, but is preferably 10 ppm or more and more preferably 50 ppm or more when the sample is a solution.

回帰式を得るための試料は、γ−オリザノール含量の定量に供する被験試料と類似の形態であって、γ−オリザノール含量の異なるものを用意することが好ましい。こうした試料の調製法は特に限定されないが、例えば試料が玄米などの穀物である場合、回帰式を得るための試料はγ−オリザノール含量の異なる種々の品種・系統を用いる手法が挙げられる。試料が食品や油脂加工品などの固体である場合、原料や素材としてγ−オリザノールを含有する植物またはその一部を混ぜ込み濃度の調節を行う手法が考えられる。試料が油脂などの均質な液体である場合、回帰式を得るための試料はγ−オリザノール含量の高いものと低いものを任意の割合で混合して濃度を調節してもよい。試料が溶液である場合、そのまま試料とすることができる。また、溶媒に溶かすこともできるが溶媒に溶かす前の形態については特に限定されない。回帰式を得るための試料は、γ−オリザノールの標品を溶媒に溶かした溶液を用いてもよいが、被験試料に近い組成を持つ溶液を調製して用いることがより好ましい。また、回帰式を得るための溶液試料は、γ−オリザノール濃度が既知の溶液が1つあれば、この溶液にγ−オリザノールを添加する、またはこの溶液を溶媒で希釈することによって、γ−オリザノール濃度を必要に応じて調製することができる。回帰式を得るための試料は、γ−オリザノールの最小濃度と最大濃度の試料の間に被験試料が全て入るように調製することが好ましい。回帰式を得るための試料数は多いほどよく、特に玄米などの固体試料の場合、十分な予測精度を得るためには30試料以上が好ましく、50試料以上であることがより好ましい。   The sample for obtaining the regression equation is preferably prepared in a form similar to the test sample used for quantification of the γ-oryzanol content and having a different γ-oryzanol content. A method for preparing such a sample is not particularly limited. For example, when the sample is a grain such as brown rice, a method for using various varieties and strains having different γ-oryzanol contents can be used as a sample for obtaining a regression equation. When the sample is a solid such as a food or processed oil product, a method of adjusting the concentration by mixing a plant containing γ-oryzanol or a part thereof as a raw material or material can be considered. When the sample is a homogeneous liquid such as fats and oils, the concentration of the sample for obtaining the regression equation may be adjusted by mixing a high and low γ-oryzanol content at an arbitrary ratio. When the sample is a solution, it can be used as it is. Moreover, although it can melt | dissolve in a solvent, it does not specifically limit about the form before melt | dissolving in a solvent. As a sample for obtaining the regression equation, a solution obtained by dissolving a sample of γ-oryzanol in a solvent may be used, but it is more preferable to prepare and use a solution having a composition close to that of the test sample. In addition, if there is one solution sample having a known γ-oryzanol concentration, a solution sample for obtaining a regression equation is obtained by adding γ-oryzanol to this solution or diluting this solution with a solvent to obtain γ-oryzanol. The concentration can be adjusted as needed. The sample for obtaining the regression equation is preferably prepared so that all the test samples are placed between the sample having the minimum concentration and the maximum concentration of γ-oryzanol. The larger the number of samples for obtaining the regression equation, the better. In particular, in the case of a solid sample such as brown rice, 30 samples or more are preferable and 50 samples or more are more preferable in order to obtain sufficient prediction accuracy.

工程(2)では、工程(1)でNIRスペクトルを測定した試料のγ−オリザノール含量を測定する。工程(1)に供した試料単位でγ−オリザノール含量を測定すればよい。試料中のγ−オリザノール含量の定量方法は特に限定されず、公知の方法を用いることができる。例えば、分光光度計を用いた吸光度法やポリフェノール類の検出法であるFolin−Denis法により、γ−オリザノールを簡便に定量することができる。また、より高い分析精度を求める場合はガスクロマトグラフィー(GC)や高速液体クロマトグラフィー(HPLC)などを用いた精密測定を行うことができる。検量線の予測精度を高めるためには精密測定を行うことが好ましく、精度の点でHPLCを用いるのがより好ましい。試料が固体の場合には、例えば公知の方法で粗脂質を抽出し、必要に応じて溶媒置換、濃縮、希釈、精製等を行って得られた溶液を定量に供することができる。試料が液体の場合には、そのまま定量に供してもよく、必要に応じて溶媒置換、濃縮、希釈、精製等を行ってもよい。   In step (2), the γ-oryzanol content of the sample whose NIR spectrum was measured in step (1) is measured. What is necessary is just to measure (gamma)-oryzanol content by the sample unit provided to the process (1). The method for quantifying the γ-oryzanol content in the sample is not particularly limited, and a known method can be used. For example, γ-oryzanol can be easily quantified by an absorbance method using a spectrophotometer or a Folin-Denis method which is a detection method of polyphenols. When higher analysis accuracy is required, precise measurement using gas chromatography (GC), high performance liquid chromatography (HPLC), or the like can be performed. In order to improve the prediction accuracy of the calibration curve, it is preferable to perform precise measurement, and it is more preferable to use HPLC in terms of accuracy. When the sample is a solid, for example, a crude lipid is extracted by a known method, and a solution obtained by solvent substitution, concentration, dilution, purification, etc., if necessary, can be subjected to quantification. When the sample is a liquid, it may be subjected to quantification as it is, and solvent substitution, concentration, dilution, purification, etc. may be performed as necessary.

HPLCを用いる場合、その手法は特に限定されないが、逆相クロマトグラフィー、順相クロマトグラフィー、ゲル浸透クロマトグラフィー、イオンクロマトグラフィーなどが好ましく、逆相クロマトグラフィーがより好ましい。逆相クロマトグラフィーで用いられる移動相は、γ−オリザノールを溶解でき、かつ逆相クロマトグラフィーに適した溶媒が好ましい。好適な溶媒として、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノールなど等の低級アルコール類、テトラヒドロフラン(THF)などのエーテル類、アセトニトリル、酢酸、ギ酸、アセトン、ジメチルスルホキシド(DMSO)、ヘキサン、酢酸エチル、ジオキサン、アセトン、クロロホルム、ベンゼン、トルエン、ジクロロメタン、酢酸アンモニウム、ギ酸アンモニウム、水、トリフルオロ酢酸、これらの均質な混合液などが挙げられる。移動相に用いる有機溶媒は、HPLCグレード以上であることが好ましい。逆相クロマトグラフィーに用いられるカラムについては、ポリマーベース、シリカベース、ハイブリッドのカラムが挙げられ、この内シリカベースのカラムが好ましい。逆相カラムとしては固定相の異なるC30、C18(ODS)、C8、C4、TMS、Ph、PFP、CNカラムなどが挙げられ、この内C18(ODS)カラムが特に好ましい。カラムの形状は特に限定されない。カラム充填剤の粒径は特に限定されないが、平均粒子径が5μm以下であることが好ましく、3μm以下であることがより好ましい。カラム温度は、通常約10〜60℃の範囲で用いられ、約20〜50℃の範囲が好ましく、約30〜50℃の範囲がより好ましい。流速はカラムの性能上問題ない範囲であれば特に限定されない。検出器はγ−オリザノールを検出できるものであれば特に限定されない。具体的には、蛍光(FL)検出器、紫外可視分光(UV-Vis)検出器、フォトダイオードアレイ(PDA)検出器、蒸発光散乱(ELSD)検出器、質量(MS)検出器、電気化学(EC)検出器、示差屈折率(RI)検出器、電気電導度(CD)検出器、コロナCAD検出器などが挙げられる。中でもγ−オリザノールの特異性の点で、紫外可視分光検出器、フォトダイオードアレイ検出器、質量検出器、蛍光検出器を用いることが好ましい。   When HPLC is used, the method is not particularly limited, but reverse phase chromatography, normal phase chromatography, gel permeation chromatography, ion chromatography and the like are preferable, and reverse phase chromatography is more preferable. The mobile phase used in reverse phase chromatography is preferably a solvent that can dissolve γ-oryzanol and is suitable for reverse phase chromatography. Suitable solvents include lower alcohols such as methanol, ethanol, propanol, isopropanol and n-butanol, ethers such as tetrahydrofuran (THF), acetonitrile, acetic acid, formic acid, acetone, dimethyl sulfoxide (DMSO), hexane and ethyl acetate. , Dioxane, acetone, chloroform, benzene, toluene, dichloromethane, ammonium acetate, ammonium formate, water, trifluoroacetic acid, and a homogeneous mixture thereof. The organic solvent used for the mobile phase is preferably higher than HPLC grade. Examples of the column used for reverse phase chromatography include polymer-based, silica-based and hybrid columns, and of these, silica-based columns are preferred. Examples of the reverse phase column include C30, C18 (ODS), C8, C4, TMS, Ph, PFP, and CN columns having different stationary phases. Among these, the C18 (ODS) column is particularly preferable. The shape of the column is not particularly limited. The particle size of the column filler is not particularly limited, but the average particle size is preferably 5 μm or less, more preferably 3 μm or less. The column temperature is usually used in the range of about 10-60 ° C, preferably in the range of about 20-50 ° C, more preferably in the range of about 30-50 ° C. The flow rate is not particularly limited as long as it does not cause a problem in column performance. The detector is not particularly limited as long as it can detect γ-oryzanol. Specifically, a fluorescence (FL) detector, an ultraviolet-visible spectroscopy (UV-Vis) detector, a photodiode array (PDA) detector, an evaporative light scattering (ELSD) detector, a mass (MS) detector, an electrochemical Examples include (EC) detectors, differential refractive index (RI) detectors, electrical conductivity (CD) detectors, and corona CAD detectors. Among them, in view of the specificity of γ-oryzanol, it is preferable to use an ultraviolet-visible spectroscopic detector, a photodiode array detector, a mass detector, or a fluorescence detector.

γ−オリザノールは複数の分子種から構成されている。γ−オリザノールのピークは分離条件によっては一本になることもあれば、複数のピークに分かれることもある。この分離条件は特に限定されないが、分子種ごとにピークが分離している条件が、同定が容易である点で好ましい。γ−オリザノールの定量方法は分子種ごとの標品が入手可能であれば分子種ごとに定量し、その定量値を合計してγ−オリザノール総量としてもよいが、分子種ごとの標品が入手できない場合、混合物を標品として主要なピークの面積値または高さの合計を用いて定量してもよい。定量にはピークの高さを用いても面積を用いてもよいが、分子種ごとのピーク分離が得られない場合はピーク面積を用いた方がよい。標品はγ−オリザノールとしての純度が明らかであればその組成は特に限定されず、分子種の混合物でも単一の分子種でも構わない。γ−オリザノール(混合物)標品としては「TSUNO γ−オリザノール」(築野食品)、「γ−オリザノール」(オリザ油化)等が挙げられ、単一分子種の標品としては「フェルラ酸シクロアルテニル」(和光純薬)等が挙げられる。   γ-oryzanol is composed of a plurality of molecular species. Depending on the separation conditions, the peak of γ-oryzanol may be single or may be divided into a plurality of peaks. This separation condition is not particularly limited, but a condition in which a peak is separated for each molecular species is preferable in terms of easy identification. If a standard for each molecular species is available, the γ-oryzanol quantification method can be quantified for each molecular species, and the total of the quantitative values may be used as the total amount of γ-oryzanol. However, a standard for each molecular species is available. If this is not possible, the mixture may be quantified using the total peak area value or height as a standard. For quantification, the peak height or the area may be used, but when peak separation for each molecular species cannot be obtained, it is better to use the peak area. As long as the purity of γ-oryzanol is clear, the composition of the sample is not particularly limited, and it may be a mixture of molecular species or a single molecular species. Examples of γ-oryzanol (mixture) preparations include “TSUNO γ-oryzanol” (Tsukino Foods), “γ-oryzanol” (Oryza Oily), etc., and examples of single molecular species include “ferulic acid cyclohexane”. Artenyl ”(Wako Pure Chemical Industries) and the like.

工程(3)では、NIRスペクトルを測定した波長範囲の全部または一部の波長領域で得られたスペクトルデータと、定量したγ−オリザノール含量とを多変量解析法により解析し、γ−オリザノール含量と関係する因子を決定する。NIRスペクトルを測定した波長範囲の一部とはNIRスペクトルを測定した波長範囲に含まれる任意の部分領域である。NIRスペクトルを測定した波長範囲の一部は特に限定されないが、800〜2500nmまたはその一部であることが好ましく、1333〜2175nmまたはその一部であることがより好ましい。また、γ−オリザノールに関連する1440±10nm、1938±10nm、2030±10nm、2105±10nmの好ましくは1つ以上、より好ましくは2つ以上の領域を含むものが好ましい。また、この1つの波長領域は最大波長と最小波長の差が20nm以上の連続した領域であることが好ましく、100nm以上の連続した領域であることがより好ましく、200nm以上の連続した領域であることがさらに好ましい。この波長領域は1つのみを設定してもよく、複数設定してもよい。ただし、拡散反射光を用いる場合は解析に用いる波長領域の最大波長と最小波長の差の合計(解析に用いる波長領域が1つの場合は単独で)が250nm以上であることが好ましく、500nm以上であることがより好ましい。   In step (3), the spectrum data obtained in all or a part of the wavelength range in which the NIR spectrum is measured and the quantified γ-oryzanol content are analyzed by a multivariate analysis method, and the γ-oryzanol content is determined. Determine the factors involved. The part of the wavelength range in which the NIR spectrum is measured is an arbitrary partial region included in the wavelength range in which the NIR spectrum is measured. Although a part of wavelength range which measured the NIR spectrum is not specifically limited, It is preferable that it is 800-2500 nm or its part, and it is more preferable that it is 1333-2175 nm or its part. Further, those containing 1440 ± 10 nm, 1938 ± 10 nm, 2030 ± 10 nm, 2105 ± 10 nm, preferably 1 or more, more preferably 2 or more regions related to γ-oryzanol are preferable. Further, this one wavelength region is preferably a continuous region where the difference between the maximum wavelength and the minimum wavelength is 20 nm or more, more preferably a continuous region of 100 nm or more, and a continuous region of 200 nm or more. Is more preferable. Only one wavelength region or a plurality of wavelength regions may be set. However, when diffuse reflected light is used, the sum of the differences between the maximum wavelength and the minimum wavelength in the wavelength region used for analysis (if there is only one wavelength region used for analysis) is preferably 250 nm or more, and 500 nm or more. More preferably.

工程(3)で用いられる多変量解析法には、PLS(partial least squares)回帰分析法、多重線形回帰分析(MLR、multiple linear regression)法、主成分回帰分析(PCR、principal component regreesion)法、CLS(classical least squares)回帰分析法などがあるが、この内PLS回帰分析法を用いるのが好ましい。PLS回帰分析は市販のソフトウェアを使用して行うことができる。使用するソフトウェアは、例えば、The Unscrambler(株式会社カモソフトウェアジャパン)、OPUS(ブルカー・オプティクス社)、NIRCal(日本ビュッヒ社)、Pirouette(ジーエルサイエンス社)などが例示できる。これらのソフトウェアを利用して、NIR拡散反射光スペクトルを解析し、その結果を本発明の定量法で用いる。使用するスペクトルデータまたはフーリエ変換スペクトルデータは、原スペクトルデータでもよいが、原スペクトルデータを加工したものを使用することが好ましい。データ加工の方法としては、例えば、一次微分、二次微分、三次微分などの多次微分(Derivative)、平滑化(Smoothing)、スペクトルの減算(Subtraction)、正規化(Normalize)、MSC補正(MultiplicativeScatter Correction)、SNV補正(Standard Normal Variate Correction)などが挙げられる。   The multivariate analysis method used in the step (3) includes PLS (partial least squares) regression analysis method, multiple linear regression analysis (MLR) method, principal component regression analysis (PCR, principal component regression) method, There are CLS (classical least squares) regression analysis methods, among which the PLS regression analysis method is preferably used. PLS regression analysis can be performed using commercially available software. Examples of the software to be used include The Unscrambler (Camo Software Japan Co., Ltd.), OPUS (Bruker Optics Co., Ltd.), NIRCal (Nippon Büch Co., Ltd.), and Pirouette (GL Sciences Inc.). Using these software, the NIR diffuse reflected light spectrum is analyzed, and the result is used in the quantification method of the present invention. The spectrum data or the Fourier transform spectrum data to be used may be original spectrum data, but it is preferable to use data obtained by processing the original spectrum data. As a method of data processing, for example, first-order differentiation, second-order differentiation, third-order differentiation such as third-order differentiation (Derivative), smoothing (Smoothing), spectrum subtraction (Normalization), normalization (Normalize), MSC correction (MultiplicativeScatter) Correction), SNV correction (Standard Normal Variate Correction), and the like.

解析に用いる波長領域のスペクトルデータと定量したγ−オリザノール含量(γ−オリザノールの実測値)とをPLS回帰分析に供することにより、γ−オリザノール含量と関係する因子を決定して回帰式を得ることができる。γ−オリザノール含量と関係する因子とは、スペクトルデータの中に内在するγ−オリザノール含量の変化と相関の高い仮想的な変量を指す。この因子の回帰係数を用いてスペクトルデータからγ−オリザノール含量を予測する回帰式を作成する。近赤外分光法では、通常回帰式作成後、回帰式を得るための試料以外の試料(評価用試料)を用いて、作成された回帰式の測定精度を評価する。回帰式の測定精度は評価用試料の実測値と作成した回帰式によって算出された予測値による分析値との残差(測定誤差)の標準偏差や平均値によって評価する。この予測値(定量値)と実測値の散布図が図1、2、4である。検量線回帰式はこの実測値と予測値(定量値)の相関が最大となるように導出された回帰式である。   By using the spectral data of the wavelength region used for the analysis and the quantified γ-oryzanol content (actual value of γ-oryzanol) for PLS regression analysis, a factor related to γ-oryzanol content is determined to obtain a regression equation Can do. The factor related to the γ-oryzanol content refers to a hypothetical variable highly correlated with the change in the γ-oryzanol content inherent in the spectral data. Using the regression coefficient of this factor, a regression equation for predicting the γ-oryzanol content is created from the spectrum data. In near-infrared spectroscopy, after creating a regression equation, the measurement accuracy of the created regression equation is evaluated using a sample other than the sample for obtaining the regression equation (evaluation sample). The measurement accuracy of the regression equation is evaluated by the standard deviation or average value of the residual (measurement error) between the actual measurement value of the evaluation sample and the analysis value based on the predicted value calculated by the created regression equation. Scatter charts of the predicted value (quantitative value) and the actual measurement value are shown in FIGS. The calibration curve regression equation is a regression equation derived so that the correlation between the actual measurement value and the predicted value (quantitative value) is maximized.

〔NIR分光法を利用したγ−オリザノールの定量方法〕
本発明のNIR分光法を利用したγ−オリザノールの定量方法(以下、「本発明の定量方法」という。)は、上記本発明の回帰式を得る方法により得られた回帰式と、当該回帰式の作成に使用した波長領域における被験試料のNIRスペクトルデータとを用いる定量方法である。具体的には、まず、被験試料のNIRスペクトルを測定する。NIRスペクトルを測定する波長範囲は、回帰式の作成に使用した波長領域を含むものであればよく、800〜2500nmであることが好ましい。
[Method of quantifying γ-oryzanol using NIR spectroscopy]
The quantification method of γ-oryzanol using the NIR spectroscopy of the present invention (hereinafter referred to as “the quantification method of the present invention”) includes a regression equation obtained by the method of obtaining the regression equation of the present invention, and the regression equation. Is a quantification method using NIR spectrum data of a test sample in the wavelength region used for preparation of the above. Specifically, first, the NIR spectrum of the test sample is measured. The wavelength range for measuring the NIR spectrum is not particularly limited as long as it includes the wavelength region used for preparing the regression equation, and is preferably 800 to 2500 nm.

被験試料のNIRスペクトルデータは、上記本発明の回帰式を得る方法においてNIRスペクトルデータを測定する場合と同様にして測定することができるが、NIRスペクトルの測定装置、測定法、解析方法は回帰式を得るための試料と同じものを使用することが好ましい。すなわち、市販の近赤外分光分析計を用いてNIRスペクトルを測定しスペクトルデータ、好ましくはフーリエ変換スペクトルデータを測定する。スペクトルデータまたはフーリエ変換スペクトルデータは、原スペクトルデータでもよいが、原スペクトルデータを加工したものを使用することが好ましい。データ加工の方法としては、例えば、一次微分、二次微分、三次微分などの多次微分(Derivative)、平滑化(Smoothing)、スペクトルの減算(Subtraction)、正規化(Normalize)、MSC補正(Multiplicative Scatter Correction)、SNV補正(Standard Normal Variate Correction)などが挙げられる。   The NIR spectrum data of the test sample can be measured in the same manner as in the case of measuring the NIR spectrum data in the method of obtaining the regression equation of the present invention, but the NIR spectrum measuring device, measurement method, and analysis method are regression equations. It is preferable to use the same sample as that for obtaining the above. That is, a NIR spectrum is measured using a commercially available near-infrared spectrometer, and spectrum data, preferably Fourier transform spectrum data, is measured. The spectrum data or the Fourier transform spectrum data may be the original spectrum data, but it is preferable to use the original spectrum data. Examples of data processing methods include, for example, first-order differentiation, second-order differentiation, third-order differentiation and the like (Derivative), smoothing (Smoothing), spectrum subtraction (Normalization), normalization (Normalization), MSC correction (Multiplicative). Scatter correction), SNV correction (standard normal variant correction), and the like.

被験試料のNIRスペクトルデータ(好ましくは上記の加工を施されたもの)を解析して、先に得られた回帰式を適用することにより、被験試料のγ−オリザノール含量の予測値を算出する。この予測値がNIRによる被験試料のγ−オリザノールの定量値となる。ここでのスペクトルデータの解析と予測値(定量値)の算出は市販のソフトウェアを使用して行うことができる。使用するソフトウェアは例えばThe Unscrambler(株式会社カモソフトウェアジャパン)、OPUS(ブルカー・オプティクス社)、NIRCal(日本ビュッヒ社)、Pirouette(ジーエルサイエンス社)などが例示できる。   The predicted value of the γ-oryzanol content of the test sample is calculated by analyzing the NIR spectrum data (preferably subjected to the above processing) of the test sample and applying the previously obtained regression equation. This predicted value becomes the quantitative value of γ-oryzanol of the test sample by NIR. The analysis of the spectrum data here and the calculation of the predicted value (quantitative value) can be performed using commercially available software. Examples of the software to be used include The Unscrambler (Camo Software Japan Co., Ltd.), OPUS (Bruker Optics), NIRCal (Nippon Büch), Pirouette (GL Science).

なお本発明の定量方法においては、被験試料に水分が多く含まれる場合が想定され、その場合には乾物量あたりで定量することが考えられる。そうしたケースでは測定試料に水分除去処理を行ってからNIRスペクトルデータを取得し定量するか、何らかの方法で水分含量を定量し、予測値(定量値)を補正する必要がある。水分含量の定量法としては試料の一部を採取して乾燥減量法、カールフィッシャー法にて計測する方法が挙げられる。また、非破壊分析を目的とする場合には、NIRスペクトルデータを用いて水分含量を予測する方法を好適に用いることができる。   In the quantification method of the present invention, it is assumed that the test sample contains a large amount of water, and in that case, it may be quantified per dry matter amount. In such a case, it is necessary to obtain and quantify NIR spectrum data after performing moisture removal treatment on the measurement sample, or to quantify the moisture content by some method and correct the predicted value (quantitative value). Examples of the method for determining the water content include a method in which a part of a sample is collected and measured by a loss on drying method or a Karl Fischer method. For the purpose of nondestructive analysis, a method for predicting the water content using NIR spectrum data can be suitably used.

以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

〔実施例1:γ−オリザノール試料の検量線回帰式〕
1−1 ヘキサン溶媒の検討
(1) 市販のパーム油1gを100mLのヘキサンに溶解して1%(w/v)溶液とし、γ−オリザノール(98%、築野食品製)を添加してγ−オリザノール含量5〜280ppmの溶液試料を調製した。各試料中のγ−オリザノール含量はγ−オリザノール/ヘキサン溶液を標品として、320nmの吸光度に基づき分光光度計Nano Drop2000c(サーモフィッシャーサイエンティフィック社)を用いて定量した。
(2) (1)で調製した試料のNIR透過光を、FT型近赤外分析計MPA(ブルカー・オプティクス社)を用いて800nmから2500nm(12500〜4000cm−1)の範囲で測定した。
(3) 得られた原スペクトルの前処理(2次微分処理)を行い、前処理スペクトル(1333〜1470nm、1835〜2175nm)の波長データを説明変数とし、γ−オリザノール含量を目的変数とするPLS回帰分析により、ヘキサン溶媒試料の検量モデルを作成した。NIR予測値(定量値)と化学分析値(実測値)の相関を図1に示した。ここでのNIR予測値(ppm、定量値)はγ−オリザノール含量の検量線回帰式とNIRスペクトルのデータから測定装置によって導出される計算値である。PLS回帰分析結果から、γ−オリザノール含量に関連する重要な波長データとして1440±10nm、1938±10nm、2030±10nm、2105±10nmの4つの領域がリストアップされた。
[Example 1: Calibration curve regression equation of γ-oryzanol sample]
1-1 Examination of hexane solvent
(1) 1 g of commercially available palm oil is dissolved in 100 mL of hexane to make a 1% (w / v) solution, and γ-oryzanol (98%, manufactured by Tsukino Foods) is added to add γ-oryzanol content of 5 to 280 ppm. A solution sample was prepared. The γ-oryzanol content in each sample was quantified using a spectrophotometer Nano Drop2000c (Thermo Fisher Scientific) based on the absorbance at 320 nm using a γ-oryzanol / hexane solution as a standard.
(2) The NIR transmitted light of the sample prepared in (1) was measured in the range of 800 nm to 2500 nm (12500 to 4000 cm −1 ) using an FT type near infrared analyzer MPA (Bruker Optics).
(3) Pre-processing (second-order differentiation) of the obtained original spectrum, wavelength data of the pre-processed spectrum (1333-1470 nm, 1835-2175 nm) as explanatory variables, and PLS with γ-oryzanol content as an objective variable A calibration model of a hexane solvent sample was created by regression analysis. The correlation between the predicted NIR value (quantitative value) and the chemical analysis value (actual measurement value) is shown in FIG. The NIR predicted value (ppm, quantitative value) here is a calculated value derived by a measuring device from a calibration curve regression equation of γ-oryzanol content and NIR spectrum data. From the PLS regression analysis results, four regions of 1440 ± 10 nm, 1938 ± 10 nm, 2030 ± 10 nm, and 2105 ± 10 nm were listed as important wavelength data related to the γ-oryzanol content.

1−2 クロロホルム溶媒の検討
実施例1においてヘキサンをクロロホルムに変更し、同様に検量線回帰式を作成した。
1−3 メタノール溶媒の検討
実施例1においてヘキサンをメタノールに変更し、同様に検量線回帰式を作成した。
1−4 t−ブタノール溶媒の検討
実施例1においてヘキサンをt−ブタノールに変更し、同様に検量線回帰式を作成した。
1-2 Examination of chloroform solvent In Example 1, hexane was changed to chloroform, and a calibration curve regression equation was similarly prepared.
1-3 Examination of methanol solvent In Example 1, hexane was changed to methanol, and a calibration curve regression equation was similarly prepared.
1-4 Examination of t-Butanol Solvent In Example 1, hexane was changed to t-butanol, and a calibration curve regression equation was similarly prepared.

表1に異なる溶媒でのγ−オリザノールのNIR予測値(ppm、定量値)と実測値の相関係数を示した。ヘキサンおよびクロロホルムにおいて非常に高い相関係数が得られたが、t−ブタノールやメタノールの場合、十分な相関が得られなかった。   Table 1 shows the correlation coefficient between the NIR predicted value (ppm, quantitative value) of γ-oryzanol in different solvents and the actually measured value. A very high correlation coefficient was obtained in hexane and chloroform, but sufficient correlation was not obtained in the case of t-butanol or methanol.

〔実施例2:ヘキサン溶媒試料の至適波長範囲の検討〕
実施例1のヘキサン溶媒試料について、前処理スペクトルの波長データの波長範囲を様々に変えてγ−オリザノール検量モデルを作成した。得られた検量モデルの全条件の決定係数Rを表2に示した。波長は用いた波長範囲を示しており、最小波長と最大波長で区切られた1区間(条件No.7〜15)ないし2区間(条件No.1〜6)のデータを用いて解析を行った。表2からわかるように条件No.1〜15でNIR予測値(定量値)と化学分析値(実測値)には高い相関関係が見られた。これらの相関の高い条件には実施例1で示されたγ−オリザノールに関連する波長領域である1440±10nm、1938±10nm、2030±10nm、2105±10nmの領域を1つ以上含むという共通点があった。
[Example 2: Examination of optimum wavelength range of hexane solvent sample]
For the hexane solvent sample of Example 1, a γ-oryzanol calibration model was created by changing the wavelength range of the wavelength data of the pretreatment spectrum in various ways. The coefficient of determination R 2 in all conditions of the obtained calibration models are shown in Table 2. The wavelength indicates the wavelength range used, and analysis was performed using data of one section (conditions No. 7 to 15) or two sections (conditions No. 1 to 6) divided by the minimum wavelength and the maximum wavelength. . As can be seen from Table 2, condition no. From 1 to 15, a high correlation was found between the predicted NIR value (quantitative value) and the chemical analysis value (actual measurement value). These highly correlated conditions include one or more of the 1440 ± 10 nm, 1938 ± 10 nm, 2030 ± 10 nm, and 2105 ± 10 nm wavelength regions related to γ-oryzanol shown in Example 1. was there.

〔実施例3:油脂試料の検量線回帰式〕
(1) 市販の米油1gにγ−オリザノール高含有米油である「胚芽油ガンマ」(γ−オリザノール含量約30%、築野食品)、または米胚芽油(γ−オリザノール含量約5%、築野食品)を任意の割合で添加し、γ−オリザノール含量0.3〜15重量%の油脂試料を調製した。γ−オリザノール5〜15%の試料は米油と胚芽油ガンマの混合、γ−オリザノール0.3〜5%の試料は米油と米胚芽油の混合にて調製した。各試料中のγ−オリザノール含量は、γ−オリザノール(98%、築野食品)/ヘキサン溶液を標品として、320nmの吸光度に基づき分光光度計Nano Drop2000c(サーモフィッシャーサイエンティフィック社)を用いて定量した。
(2) (1)で調製した試料のNIR透過光を、FT型近赤外分析計MPA(ブルカー・オプティクス社)を用いて800nmから2500nm(12500〜4000cm−1)の範囲で測定した。なお、油脂試料を均質化させるため、測定セルを75℃に加熱して温度の安定を確認してからNIRスペクトルを取得した。
(3) 得られた原スペクトルの前処理(2次微分処理)を行い、前処理スペクトル(1333〜1470nm、1835〜2175nm)の波長データを説明変数とし、γ−オリザノール含量を目的変数とするPLS回帰分析により、油脂試料の検量モデルを作成した。NIR予測値(定量値)と化学分析値(実測値)の相関を図2に示した。ここでのNIR予測値(重量%、定量値)はγ−オリザノール含量の検量線回帰式とNIRスペクトルのデータから測定装置によって導出される計算値である。定量値と実測値は非常に高い相関(R=0.99)を示し、実施例1のヘキサン溶液と同様に高い予測精度を持つことが明らかとなった。
[Example 3: Regression equation of calibration curve of oil and fat sample]
(1) 1 g of commercially available rice oil, “germ oil gamma” (γ-oryzanol content of about 30%, Tsukino Food), or rice germ oil (γ-oryzanol content of about 5%, (Tsukino Food) was added at an arbitrary ratio to prepare an oil and fat sample having a γ-oryzanol content of 0.3 to 15% by weight. Samples of γ-oryzanol 5-15% were prepared by mixing rice oil and germ oil gamma, and samples of γ-oryzanol 0.3-5% were prepared by mixing rice oil and rice germ oil. The γ-oryzanol content in each sample was determined using a spectrophotometer Nano Drop2000c (Thermo Fisher Scientific) based on the absorbance at 320 nm using γ-oryzanol (98%, Tsukino Food) / hexane solution as a standard. Quantified.
(2) The NIR transmitted light of the sample prepared in (1) was measured in the range of 800 nm to 2500 nm (12500 to 4000 cm −1 ) using an FT type near infrared analyzer MPA (Bruker Optics). In addition, in order to homogenize the fat and oil sample, the measurement cell was heated to 75 ° C. and the temperature stability was confirmed, and then the NIR spectrum was acquired.
(3) Pre-processing (second-order differentiation) of the obtained original spectrum, wavelength data of the pre-processed spectrum (1333-1470 nm, 1835-2175 nm) as explanatory variables, and PLS with γ-oryzanol content as an objective variable A calibration model of oil and fat samples was created by regression analysis. The correlation between the predicted NIR value (quantitative value) and the chemical analysis value (actual measurement value) is shown in FIG. The predicted NIR value (% by weight, quantitative value) here is a calculated value derived from a calibration curve regression equation of γ-oryzanol content and NIR spectrum data by a measuring device. The quantitative value and the actually measured value showed a very high correlation (R 2 = 0.99), and it became clear that the prediction accuracy was as high as that of the hexane solution of Example 1.

〔実施例4:玄米試料の検量線回帰式〕
4−1 粗脂質の抽出
(1) 玄米一粒を秤量した後、凍結乾燥処理し、ろ紙に包んで薬さじにて押しつぶした。
(2) 押しつぶした試料をろ紙ごと抽出用円筒ガラスフィルターに入れ、セミ・ミクロ脂肪抽出器セットにて、エーテル25mLを用いて、加温機を100℃に設定し、6時間ソックスレー抽出を行った。
(3) 抽出液をナシ型フラスコに移し、ロータリーエバポレーターにより乾固した。
(4) ナシ型フラスコの粗脂質をクロロホルム1.2mLに溶解し、脂質のクロロホルム溶液を2mLバイアル瓶に移し、遠心エバポレーターにより濃縮乾固することで玄米一粒の粗脂質を得た。
[Example 4: Calibration curve regression formula of brown rice sample]
4-1 Extraction of crude lipid
(1) One grain of brown rice was weighed, freeze-dried, wrapped in filter paper and crushed with a spoon.
(2) Put the crushed sample together with the filter paper into a cylindrical glass filter for extraction, and with a semi-micro fat extractor set, use 25 mL of ether, set the heating machine to 100 ° C., and perform Soxhlet extraction for 6 hours .
(3) The extract was transferred to a pear-shaped flask and dried with a rotary evaporator.
(4) The crude lipid of the pear-shaped flask was dissolved in 1.2 mL of chloroform, and the chloroform solution of the lipid was transferred to a 2 mL vial, and concentrated and dried by a centrifugal evaporator to obtain one grain of crude rice.

4−2 γ-オリザノール含量の測定
(1) 上記4−1(4)で得られた粗脂質にエタノールを加えて1mg/mLの溶液とした。
(2) 試料注入量10μL(粗脂質10μg相当)としてHPLC法によりγ−オリザノール含量の測定を行った。HPLC装置には、ProminenceHPLCシステム(LC−20AD、島津製作所)を用いた。検出器には、紫外可視吸光度検出器(波長320nm、島津製作所)を、カラムには、信和化工製「STR−ODSII」(2.0×150mm、粒子径5μm)を用いた。移動相は、メタノール:アセトニトリル=1:1(v/v)とし、カラム温度40℃、流速0.20mL/分とした。
(3) γ−オリザノール標品(98%、築野食品)を上記(2)と同一条件で分析し、上記(2)で得られたUVクロマトグラムからγ−オリザノールのピーク4種(フェルラ酸シクロアルテニル、フェルラ酸24−メチレンシクロアルタニル、フェルラ酸カンペステリル、フェルラ酸β−シトステリル)を同定した。γ−オリザノール標品のUVクロマトグラムを図3に示す。
(4) フェルラ酸シクロアルテニル(99%、和光純薬)を標品とし、それぞれのγ−オリザノールの分子種の定量値をフェルラ酸シクロアルテニル換算で算出した。
4-2 Measurement of γ-oryzanol content
(1) Ethanol was added to the crude lipid obtained in 4-1 (4) above to make a 1 mg / mL solution.
(2) The γ-oryzanol content was measured by the HPLC method with a sample injection amount of 10 μL (corresponding to 10 μg of crude lipid). A Prominence HPLC system (LC-20AD, Shimadzu Corporation) was used as the HPLC apparatus. An ultraviolet-visible absorbance detector (wavelength: 320 nm, Shimadzu Corporation) was used as the detector, and “STR-ODSII” (2.0 × 150 mm, particle diameter: 5 μm) manufactured by Shinwa Kako was used as the column. The mobile phase was methanol: acetonitrile = 1: 1 (v / v), the column temperature was 40 ° C., and the flow rate was 0.20 mL / min.
(3) The γ-oryzanol sample (98%, Tsukino Food) was analyzed under the same conditions as in (2) above, and the four γ-oryzanol peaks (ferulic acid) were determined from the UV chromatogram obtained in (2) above. Cycloartenyl, ferulic acid 24-methylenecycloartanyl, ferulic acid campesteryl, ferulic acid β-sitosteryl). The UV chromatogram of the γ-oryzanol sample is shown in FIG.
(4) Using cycloartenyl ferulate (99%, Wako Pure Chemical Industries) as a sample, the quantitative value of each γ-oryzanol molecular species was calculated in terms of cycloartenyl ferulate.

4−3 γ−オリザノールの含量検量線回帰式の作成
(1) 12品種のイネの玄米を各3粒用意した。
(2) 分析装置としてFT型近赤外分析計MPA(ブルカー・オプティクス社)を用い、玄米のNIR拡散反射光を800nmから2500nm(12500〜4000cm−1)の範囲で測定した。
(3) スペクトルを取得した玄米について、上記4−1および4−2の方法で粗脂質を抽出し、各玄米1粒中のγ−オリザノール含量を定量した。
(4) 得られた原スペクトルの前処理(2次微分処理)を行い、前処理スペクトル(1333〜2355nm)の波長データを説明変数とし、測定したγ−オリザノール含量を目的変数とするPLS回帰分析により、玄米1粒のγ−オリザノール検量モデルを作成した。NIR予測値(定量値)と化学分析値(実測値)の相関を図4に示した。ここでのNIR予測値(ppm、定量値)はγ−オリザノール含量の検量線回帰式とNIRスペクトルのデータから測定装置によって導出される計算値である。
4-3 Preparation of γ-oryzanol content calibration curve regression formula
(1) Three kinds of 12 rice varieties of brown rice were prepared.
(2) The NIR diffuse reflected light of brown rice was measured in the range of 800 nm to 2500 nm (12500 to 4000 cm −1 ) using an FT type near infrared analyzer MPA (Bruker Optics) as an analyzer.
(3) About the brown rice which acquired the spectrum, the crude lipid was extracted by the method of said 4-1 and 4-2, and the content of (gamma)-oryzanol in one grain of each brown rice was quantified.
(4) Pre-processing (second-order differential processing) of the obtained original spectrum, PLS regression analysis using the wavelength data of the pre-processed spectrum (13333 to 2355 nm) as an explanatory variable and the measured γ-oryzanol content as an objective variable Thus, a γ-oryzanol calibration model for 1 grain of brown rice was prepared. The correlation between the NIR predicted value (quantitative value) and the chemical analysis value (actually measured value) is shown in FIG. The NIR predicted value (ppm, quantitative value) here is a calculated value derived by a measuring device from a calibration curve regression equation of γ-oryzanol content and NIR spectrum data.

図4に見られるように、NIR予測値(定量値)と化学分析値(実測値)には高い相関が見られており、予測精度は油脂やその溶液を試料とした場合には及ばないものの、玄米を試料とした場合にも本法が適用できることが示された。   As shown in FIG. 4, the NIR predicted value (quantitative value) and the chemical analysis value (actually measured value) are highly correlated, and the prediction accuracy is not as good as when the oil or its solution is used as a sample. It was shown that this method can also be applied to brown rice samples.

〔実施例5:玄米試料の至適波長範囲の検討〕
玄米試料について、前処理スペクトルの波長データの波長範囲を様々に変えてγ−オリザノール検量モデルを作成した。得られた検量モデルの全条件の決定係数Rを表3に示した。波長は用いた波長範囲を示しており、最小波長と最大波長で区切られた1区間(条件No.2、5以外)ないし2区間(条件No.2、5)のデータを用いて解析を行った。表3からわかるように条件No.1〜10でNIR予測値(定量値)と化学分析値(実測値)に高い相関関係が見られた。これらの相関の高い条件には、実施例1で示されたγ−オリザノールと関連する波長領域である1440±10nm、1938±10nm、2030±10nm、2105±10nmの領域を1つ以上含み、最小波長と最大波長で区切られた1区間(条件No.2、5以外)または2区間(条件No.2、5)の波長領域の合計が500nm以上であるという共通点があった。
[Example 5: Examination of optimum wavelength range of brown rice sample]
A γ-oryzanol calibration model was prepared for the brown rice sample by changing the wavelength range of the wavelength data of the pretreatment spectrum in various ways. The coefficient of determination R 2 in all conditions of the obtained calibration models are shown in Table 3. The wavelength indicates the wavelength range used, and analysis is performed using data from one section (other than condition Nos. 2 and 5) or two sections (conditions No. 2 and 5) divided by the minimum and maximum wavelengths. It was. As can be seen from Table 3, condition no. In 1 to 10, a high correlation was found between the predicted NIR value (quantitative value) and the chemical analysis value (actual measurement value). These highly correlated conditions include one or more of the 1440 ± 10 nm, 1938 ± 10 nm, 2030 ± 10 nm, and 2105 ± 10 nm wavelength regions associated with γ-oryzanol shown in Example 1, and the minimum There was a common point that the sum of the wavelength regions of one section (other than conditions No. 2 and 5) or two sections (conditions No. 2 and 5) divided by the wavelength and the maximum wavelength was 500 nm or more.

〔試験例1:米胚芽油および米原油に含まれるγ−オリザノールの定量〕
米胚芽油および米原油に対して、以下の1〜4の各方法でγ−オリザノールの定量を行いその結果を比較した。それぞれの方法で3回ずつの測定を行い、平均値を算出した。
[Test Example 1: Determination of γ-oryzanol contained in rice germ oil and rice crude oil]
Quantification of γ-oryzanol was performed on rice germ oil and rice crude oil by the following methods 1 to 4 and the results were compared. Each method was measured three times, and the average value was calculated.

1:NIRスペクトルによる定量
(1) FT型近赤外分析計MPA(ブルカー・オプティクス社)を用いて、米胚芽油または米原油を直接75℃に加温した測定セルに入れ、温度の安定を待ってNIR透過光を800nmから2500nm(12500〜4000cm−1)の範囲で測定した。
(2) 実施例3で作成したγ−オリザノール検量モデルに(1)で測定したNIRスペクトルデータを当てはめて、γ−オリザノール含量を予測した。
1: Quantification by NIR spectrum
(1) Using an FT-type near-infrared analyzer MPA (Bruker Optics), put rice germ oil or rice crude oil directly in a measuring cell heated to 75 ° C, wait for the temperature to stabilize, and transmit NIR transmitted light. It measured in the range of 800 nm to 2500 nm (12500-4000 cm < -1 >).
(2) The γ-oryzanol content was predicted by applying the NIR spectral data measured in (1) to the γ-oryzanol calibration model prepared in Example 3.

2:ヘキサン溶液のNIRスペクトルによる定量
(1) 米胚芽油または米原油の1gを100mLのヘキサンに溶解して1%(w/v)溶液を調製し、試料とした。
(2) (1)で調製した試料のNIR透過光を、FT型近赤外分析計MPA(ブルカー・オプティクス社)を用いて800nmから2500nm(12500〜4000cm−1)の範囲で測定した。
(3) 実施例1で作成したγ−オリザノール検量モデルに(1)で測定したNIRスペクトルデータを当てはめて、γ−オリザノール含量を定量した。
2: Determination of hexane solution by NIR spectrum
(1) 1 g of rice germ oil or rice crude oil was dissolved in 100 mL of hexane to prepare a 1% (w / v) solution, which was used as a sample.
(2) The NIR transmitted light of the sample prepared in (1) was measured in the range of 800 nm to 2500 nm (12500 to 4000 cm −1 ) using an FT type near infrared analyzer MPA (Bruker Optics).
(3) The NIR spectral data measured in (1) was applied to the γ-oryzanol calibration model prepared in Example 1 to quantify the γ-oryzanol content.

3:化学分析(吸光度法)
上記2の米胚芽油または米原油のヘキサン溶液を、γ−オリザノール(98%、築野食品工業)のヘキサン溶液を標品として320nmの吸光度に基づき分光光度計Nano Drop2000c(サーモフィッシャーサイエンティフィック社)を用いて定量した。
3: Chemical analysis (absorbance method)
Spectrophotometer Nano Drop2000c (Thermo Fisher Scientific Co., Ltd.) based on the absorbance at 320 nm using the hexane solution of rice germ oil or rice crude oil of 2 above and the hexane solution of γ-oryzanol (98%, Tsukino Food Industries) as the standard. ).

4:化学分析(HPLC法)
実施例4の4−2において玄米粗脂質中のγ−オリザノール含量を測定した方法と同じ方法を用いて、米胚芽油または米原油中のγ−オリザノール含量を定量した。
4: Chemical analysis (HPLC method)
The γ-oryzanol content in rice germ oil or rice crude oil was quantified using the same method as the method for measuring the γ-oryzanol content in the brown rice crude lipid in Example 4-2.

表4に1〜4の方法で予測または定量した米胚芽油および米原油中のγ−オリザノールの予測値または定量値を示した。表4からわかるように、米胚芽油においてはNIRによる予測値と化学分析による定量値はほぼ一致しており、NIR法の妥当性が示された。一方、米原油においては2つのNIR法の予測値およびHPLC法の定量値はほぼ一致しているが、吸光度法の定量値は若干高めになった。これは米原油には米胚芽油に比べて不純物が多く、γ−オリザノール以外にも320nmに吸収極大を持つ物質が存在しているためと推定され、NIR法が吸光度法よりも汎用性が高い(不純物の多い試料に対してもHPLC法に近い正確な予測が可能)であることが示された。   Table 4 shows the predicted value or quantitative value of γ-oryzanol in rice germ oil and rice crude oil predicted or quantified by the methods 1 to 4. As can be seen from Table 4, in rice germ oil, the predicted value by NIR and the quantitative value by chemical analysis were almost the same, indicating the validity of the NIR method. On the other hand, in US crude oil, the predicted values of the two NIR methods and the quantitative values of the HPLC method are almost the same, but the quantitative values of the absorbance method are slightly higher. This is presumably because rice crude oil has more impurities than rice germ oil, and there are substances other than γ-oryzanol that have an absorption maximum at 320 nm, and the NIR method is more versatile than the absorbance method. (Accurate prediction close to the HPLC method is possible even for a sample with many impurities).

〔試験例2:種々の食用油を用いたモデル試料の定量〕
(1)市販のパーム油、菜種油、大豆油、魚油にγ−オリザノール(98%、築野食品)を添加して加熱溶解し、γ−オリザノール含量が約0.5重量%となるモデル試料を調製した。
(2)(1)のモデル試料に対して、試験例1と同様に4種類の方法で予測ないし定量したγ−オリザノール含量の予測値および定量値を算出した。それぞれの方法で3回ずつの測定を行い、算出した平均値を表5に示した。表5から明らかなように、それぞれのモデル試料でNIRによる予測値と化学分析による定量値はほぼ一致した。よって米油以外の油脂にも、本法が適用できることが判明した。
[Test Example 2: Determination of model samples using various edible oils]
(1) A model sample in which γ-oryzanol content is about 0.5% by weight by adding γ-oryzanol (98%, Tsukino Food) to commercially available palm oil, rapeseed oil, soybean oil, and fish oil and dissolving them by heating. Prepared.
(2) For the model sample of (1), the predicted value and quantitative value of the γ-oryzanol content predicted or quantified by the four methods as in Test Example 1 were calculated. Measurements were performed three times by each method, and the calculated average values are shown in Table 5. As is clear from Table 5, the predicted value by NIR and the quantitative value by chemical analysis almost coincided with each model sample. Therefore, it was found that this method can be applied to fats and oils other than rice oil.

〔試験例3:米糠中のγ−オリザノールの定量〕
(1)品種の異なる稲A、BおよびCの米糠各約10gずつにジエチルエーテル100mLを加えて、以下実施例4と同様にソックスレー抽出を行い、溶媒を除去して粗脂質を得た。
(2)(1)の粗脂質に対して試験例1と同様の方法でNIR予測値および定量値を導出し、これを米糠あたりの含量(重量%)に換算した。それぞれの方法で3回ずつの測定を行って得られた平均値を表6に示した。表6から明らかなように、それぞれの米糠でNIRによる予測値と化学分析による定量値はほぼ一致したが、吸光度法の定量値は若干高めになる傾向があり、これについては試験例1と同様の考察が可能である。
[Test Example 3: Determination of γ-oryzanol in rice bran]
(1) 100 mL of diethyl ether was added to about 10 g of rice bran of different rice varieties A, B and C, and Soxhlet extraction was performed in the same manner as in Example 4 to remove the solvent and obtain crude lipid.
(2) NIR predicted values and quantitative values were derived from the crude lipid of (1) in the same manner as in Test Example 1, and converted into the content (% by weight) per rice bran. Table 6 shows the average values obtained by measuring three times by each method. As is clear from Table 6, the NIR predicted value and the chemical analysis quantitative value almost coincided with each rice bran, but the absorbance method quantitative value tends to be slightly higher, which is the same as in Test Example 1. Is possible.

〔試験例4:飼料の分析〕
試験例3の米糠を、玄米粉を配合した鶏用飼料に変えて同様の試験を行った。飼料は抽出の前にすり鉢ですりつぶし、均質化した後に粗脂質を抽出した。その結果、NIR予測値と化学分析値はほぼ一致し、本法の妥当性が示された。
[Test Example 4: Analysis of feed]
A similar test was conducted by changing the rice bran of Test Example 3 to a chicken feed containing brown rice flour. The feed was ground in a mortar before extraction, and after homogenization, crude lipids were extracted. As a result, the predicted NIR value and the chemical analysis value almost coincided, indicating the validity of this method.

〔試験例5:石鹸の分析〕
試験例3の米糠を米油とパーム油の混合油を原料とする石鹸に変えて同様の試験を行った。石鹸は1g程度を切り出して粗脂質を抽出した。その結果、NIR予測値と化学分析値はほぼ一致し、本法の妥当性が示された。
[Test Example 5: Analysis of soap]
A similar test was conducted by changing the rice bran of Test Example 3 to a soap made from a mixed oil of rice oil and palm oil. About 1 g of soap was cut out and crude lipid was extracted. As a result, the predicted NIR value and the chemical analysis value almost coincided, indicating the validity of this method.

〔試験例6:γ−オリザノール配合薬品の分析〕
試験例3の米糠を、γ−オリザノールを20%程度配合した細粒剤に変えて同様の試験を行った。その結果、NIR予測値と化学分析値はほぼ一致し、本法の妥当性が示された。
[Test Example 6: Analysis of drug containing γ-oryzanol]
A similar test was conducted by changing the rice bran of Test Example 3 to a fine granule containing about 20% of γ-oryzanol. As a result, the predicted NIR value and the chemical analysis value almost coincided, indicating the validity of this method.

〔試験例7:血液の分析〕
試験例3の米糠を、米胚芽油(γ−オリザノール含量約1.0%)を10%程度含有した飼料で3週間飼育した4週齢のウィスター系雄ラット6匹(日本クレア(株))の血清に変えて同様の試験を行った。血清は飼育最終日にエーテル麻酔後、開腹し、腹部下大動脈採血により血液を採取した。採取した血液は常法に従い血清を分離した。分離した血清は限外濾過処理およびエタノールの添加により除タンパク処理を行った後、ヘキサンによりγ−オリザノールを含む脂質を抽出し、分析試料とした。その結果、NIR予測値と化学分析値の平均値はほぼ一致し、本法の妥当性が示された。
[Test Example 7: Blood analysis]
Six 4-week-old Wistar male rats (Nippon Claire Co., Ltd.) raised for 3 weeks in a diet containing about 10% rice germ oil (γ-oryzanol content: about 1.0%). The same test was conducted in place of the serum. Serum was subjected to ether anesthesia on the last day of breeding, followed by laparotomy, and blood was collected by sampling the abdominal aorta. Serum was separated from the collected blood according to a conventional method. The separated serum was subjected to protein removal treatment by ultrafiltration treatment and addition of ethanol, and then a lipid containing γ-oryzanol was extracted with hexane to obtain an analysis sample. As a result, the average values of NIR predicted values and chemical analysis values almost coincided, indicating the validity of this method.

なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。   The present invention is not limited to the above-described embodiments and examples, and various modifications are possible within the scope shown in the claims, and technical means disclosed in different embodiments are appropriately combined. The obtained embodiment is also included in the technical scope of the present invention. Moreover, all the academic literatures and patent literatures described in this specification are incorporated herein by reference.

Claims (13)

試料中のγ−オリザノールを定量するための回帰式を得る方法であって、以下の(1)〜(3)の工程を含むことを特徴とする方法。
(1)試料の近赤外光スペクトルを測定する工程
(2)当該試料のγ−オリザノール含量を定量する工程
(3)近赤外光スペクトルを測定した波長範囲の全部または一部の波長領域で得られたスペクトルデータと、定量したγ−オリザノール含量とを多変量解析法により解析し、γ−オリザノール含量と関係する因子を決定する工程
A method for obtaining a regression equation for quantifying γ-oryzanol in a sample, comprising the following steps (1) to (3).
(1) Step of measuring the near-infrared light spectrum of the sample (2) Step of quantifying the γ-oryzanol content of the sample (3) In all or part of the wavelength range in which the near-infrared light spectrum was measured A step of analyzing the obtained spectral data and the quantified γ-oryzanol content by a multivariate analysis method and determining a factor related to the γ-oryzanol content
試料が、γ−オリザノールを含む食品、飼料、化粧品もしくは医薬品またはこれらの原料もしくは素材であることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the sample is a food, feed, cosmetic or pharmaceutical product containing γ-oryzanol, or a raw material or material thereof. 試料が、穀物またはその一部であることを特徴とする請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the sample is a grain or a part thereof. 穀物が、玄米であることを特徴とする請求項3に記載の方法。   The method according to claim 3, wherein the cereal is brown rice. 試料が、油脂またはその加工品またはこれらの原料もしくは素材であることを特徴とする請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the sample is oil or fat, a processed product thereof, or a raw material or material thereof. 油脂が、米油または米油を含有するものであることを特徴とする請求項5に記載の方法。   The method according to claim 5, wherein the fats and oils contain rice oil or rice oil. 試料が、生体由来であることを特徴とする請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the sample is derived from a living body. 前記工程(1)の前に、試料中のγ−オリザノールを溶媒で抽出する工程をさらに含むことを特徴とする請求項1に記載の方法。   The method according to claim 1, further comprising a step of extracting γ-oryzanol in the sample with a solvent before the step (1). 溶媒が、ヘキサンまたはクロロホルムであることを特徴とする請求項8に記載の方法。   The method according to claim 8, wherein the solvent is hexane or chloroform. 近赤外光スペクトルが、拡散反射光または透過光のスペクトルであることを特徴とする請求項1〜9のいずれかに記載の方法。   The method according to claim 1, wherein the near-infrared light spectrum is a spectrum of diffusely reflected light or transmitted light. 前記(3)の工程における波長領域が、800〜2500nmまたはその一部であることを特徴とする請求項1〜10のいずれかに記載の方法。   The method according to claim 1, wherein the wavelength region in the step (3) is 800 to 2500 nm or a part thereof. 前記(3)の工程における波長領域が、1440±10nm、1938±10nm、2030±10nm、2105±10nmの少なくとも1つの領域を含むことを特徴とする請求項11に記載の方法。   12. The method according to claim 11, wherein the wavelength region in the step (3) includes at least one region of 1440 ± 10 nm, 1938 ± 10 nm, 2030 ± 10 nm, and 2105 ± 10 nm. 請求項1〜12のいずれかに記載の方法により得られた回帰式と、当該回帰式の作成に使用した波長領域における被験試料の近赤外光スペクトルデータとを用いることを特徴とするγ−オリザノールの定量方法。   A regression equation obtained by the method according to any one of claims 1 to 12, and near-infrared light spectrum data of a test sample in a wavelength region used for the creation of the regression equation, γ- Method for quantifying oryzanol.
JP2014533020A 2012-08-31 2013-08-27 Quantitative determination of γ-oryzanol using near infrared spectroscopy Pending JPWO2014034668A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012192173 2012-08-31
JP2012192173 2012-08-31
PCT/JP2013/072882 WO2014034668A1 (en) 2012-08-31 2013-08-27 Method for quantifying γ-oryzanol using near infrared spectroscopy

Publications (1)

Publication Number Publication Date
JPWO2014034668A1 true JPWO2014034668A1 (en) 2016-08-08

Family

ID=50183480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014533020A Pending JPWO2014034668A1 (en) 2012-08-31 2013-08-27 Quantitative determination of γ-oryzanol using near infrared spectroscopy

Country Status (2)

Country Link
JP (1) JPWO2014034668A1 (en)
WO (1) WO2014034668A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116026780B (en) * 2023-03-28 2023-07-14 江西中医药大学 Method and system for online detection of coating moisture absorption rate based on series strategy wavelength selection

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122220A (en) * 2014-07-26 2014-10-29 湖北金龙泉生物科技有限公司 Rapid and accurate gamma-oryzanol determining method
JP6826802B2 (en) * 2016-06-06 2021-02-10 一般財団法人雑賀技術研究所 Measurement method and equipment for functional pigment components of edible parts of fruits and vegetables
JP6861015B2 (en) * 2016-11-11 2021-04-21 株式会社相馬光学 Meat fat measurement method
JP7057026B1 (en) * 2021-12-08 2022-04-19 竹本油脂株式会社 How to quantify sesame lignans

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005827A (en) * 2000-06-19 2002-01-09 Kanazawa Kazuki Method for acquisition of information on specimen
JP2004347559A (en) * 2003-05-26 2004-12-09 Yokogawa Electric Corp Calibration curve production method
JP2009244015A (en) * 2008-03-31 2009-10-22 Osaka Univ Quality evaluation method of angelica acutiloba
JP2010210543A (en) * 2009-03-12 2010-09-24 Seiko Epson Corp Sensor unit, terahertz spectral measurement apparatus, and terahertz spectral measurement method
JP2011120543A (en) * 2009-12-14 2011-06-23 J-Oil Mills Inc Oil and fat composition containing unsaponifiable material derived from rice bran
WO2012063794A1 (en) * 2010-11-09 2012-05-18 築野食品工業株式会社 METHOD FOR PRODUCING OIL OR FAT THAT CONTAINS γ-ORYZANOL

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210360A (en) * 2009-03-10 2010-09-24 Naraken Chusho Kigyo Sien Center Method of measuring amount of pueraria lobata isoflavone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005827A (en) * 2000-06-19 2002-01-09 Kanazawa Kazuki Method for acquisition of information on specimen
JP2004347559A (en) * 2003-05-26 2004-12-09 Yokogawa Electric Corp Calibration curve production method
JP2009244015A (en) * 2008-03-31 2009-10-22 Osaka Univ Quality evaluation method of angelica acutiloba
JP2010210543A (en) * 2009-03-12 2010-09-24 Seiko Epson Corp Sensor unit, terahertz spectral measurement apparatus, and terahertz spectral measurement method
JP2011120543A (en) * 2009-12-14 2011-06-23 J-Oil Mills Inc Oil and fat composition containing unsaponifiable material derived from rice bran
WO2012063794A1 (en) * 2010-11-09 2012-05-18 築野食品工業株式会社 METHOD FOR PRODUCING OIL OR FAT THAT CONTAINS γ-ORYZANOL

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
R.BUCCI ET AL.: "Comparison of three spectrophotometric methods for the determination of γ-oryzanol in rice bran oil", ANALYTICAL AND BIOANALYTICAL CHEMISTRY, vol. 375, no. 8, JPN6013056959, April 2003 (2003-04-01), US, pages 1254 - 1259, ISSN: 0003007342 *
浅野貞彦,外4名: "24−メチレンシクロアルタノールからシクロブラノールへの異性化について", 油化学, vol. 26, no. 9, JPN6013056960, 20 October 1977 (1977-10-20), JP, pages 545 - 549, ISSN: 0003007343 *
近藤みゆき: "近赤外分光法による食品の化学的分析", 名古屋文理大学紀要, vol. 第7号, JPN7013004197, 2007, JP, pages 23 - 28, ISSN: 0003007344 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116026780B (en) * 2023-03-28 2023-07-14 江西中医药大学 Method and system for online detection of coating moisture absorption rate based on series strategy wavelength selection

Also Published As

Publication number Publication date
WO2014034668A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP5748897B1 (en) Determination of free fatty acids in vegetable oils and their raw materials using near infrared spectroscopy
Boz Ferulic acid in cereals-a review.
Navarro et al. Macadamia oil extraction methods and uses for the defatted meal byproduct
Hu et al. Chemical composition and sensory characteristics of oat flakes: A comparative study of naked oat flakes from China and hulled oat flakes from western countries
da Silva et al. Food safety, hypolipidemic and hypoglycemic activities, and in vivo protein quality of microalga Scenedesmus obliquus in Wistar rats
WO2014034668A1 (en) Method for quantifying γ-oryzanol using near infrared spectroscopy
Tang et al. Flaxseed oil: Extraction, Health benefits and products
Maciel et al. The potential of the pecan nut cake as an ingredient for the food industry
Mueed et al. Flaxseed bioactive compounds: Chemical composition, functional properties, food applications and health benefits-related gut microbes
Afzal et al. Nutritional potential of Fenugreek supplemented bread with special reference to antioxidant profiling.
JP4358957B2 (en) Agent for scavenging or reducing free radicals or active oxygen
King et al. In vivo and in vitro addition of dried olive extract in poultry
de Lourdes R Giada Food applications for flaxseed and its components: products and processing
Abu-Hiamed Hypocholesterolemic effects of watermelon fruit rind on rats
Yılmaz Tuncel Stabilization of rice bran: a review
Frankowski et al. Concentration of Pro-Health Compound of Sorghum Grain-Based Foods
Widodo et al. Acceptance test of Blondo, snakehead fish flour and brown rice flour based biscuit formulation
CN102216318B (en) Antioxidant
CN1777420A (en) Processed fat composition for preventing/ameliorating lifestyle-related diseases
JP2007274985A (en) Food containing treated product derived from dioscorea esculenta
JP2012121840A (en) Blood triglyceride level rise inhibitor
JP2009291187A (en) Food composition for improving eating habit
Moharram et al. Shea butter: Chemistry, quality, and new market potentials
Rozan et al. Chemical composition, phytochemical Profile, antioxidant activity of Eruca sativa seeds, and utilization of defatted seeds in the production of functional biscuits
Muangrat et al. Exploring the potential of black soldier fly larvae oil: Supercritical CO2 extraction, physicochemical analysis, antioxidant properties, shelf life, and keratinocyte growth inhibition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630