JP7057026B1 - How to quantify sesame lignans - Google Patents

How to quantify sesame lignans Download PDF

Info

Publication number
JP7057026B1
JP7057026B1 JP2021199134A JP2021199134A JP7057026B1 JP 7057026 B1 JP7057026 B1 JP 7057026B1 JP 2021199134 A JP2021199134 A JP 2021199134A JP 2021199134 A JP2021199134 A JP 2021199134A JP 7057026 B1 JP7057026 B1 JP 7057026B1
Authority
JP
Japan
Prior art keywords
vegetable oil
sesame
spectrum
sesame lignan
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021199134A
Other languages
Japanese (ja)
Other versions
JP2023084813A (en
Inventor
しおり 渡辺
清隆 仲川
百合香 乙木
俊治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2021199134A priority Critical patent/JP7057026B1/en
Application granted granted Critical
Publication of JP7057026B1 publication Critical patent/JP7057026B1/en
Publication of JP2023084813A publication Critical patent/JP2023084813A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】ごま油を含有する植物油中のゴマリグナンを短時間で高精度に定量する方法を提供する。【解決手段】ゴマリグナンの定量方法は下記の工程1~3を含む。工程1:HPLC分析により、調整用植物油中のセサミン、セサモリン及びエピセサミンから選ばれる1種のゴマリグナンを定量する工程2:調整用植物油の近赤外スペクトルを測定した後に一次微分単独、二次微分単独、及び一次微分とベクトル正規化との組合せから選ばれる1つのスペクトル前処理をして得られるスペクトルデータと、工程1で得られたゴマリグナンの定量値と、を用いて回帰式を得る工程3:フーリエ変換型近赤外光分析装置を用いて測定用植物油のスペクトルを測定した後に工程2で選ばれたスペクトル前処理をして得られるスペクトルデータと、工程2で得られた回帰式と、を用いて測定用植物油中の工程1で選ばれたゴマリグナンを定量する【選択図】なしPROBLEM TO BE SOLVED: To provide a method for quantifying sesame lignan in a vegetable oil containing sesame oil in a short time with high accuracy. SOLUTION: The method for quantifying sesame lignan includes the following steps 1 to 3. Step 1: Quantify one sesame lignan selected from sesamine, sesamolin and episesamine in the adjusting vegetable oil by HPLC analysis Step 2: After measuring the near-infrared spectrum of the adjusting vegetable oil, the first-order differential alone and the second-order differential alone , And the spectral data obtained by one spectral preprocessing selected from the combination of first-order differentiation and vector normalization, and the quantitative value of sesame lignan obtained in step 1 to obtain a regression equation. The spectral data obtained by measuring the spectrum of the vegetable oil for measurement using a Fourier transform type near-infrared light analyzer and then performing the spectral pretreatment selected in step 2 and the regression equation obtained in step 2 are obtained. Quantify the sesame lignan selected in step 1 in the vegetable oil for measurement using [selection diagram] None

Description

本開示は、ゴマリグナンの定量方法に関する。 The present disclosure relates to a method for quantifying sesame lignans.

食用油等の油脂は、一般的に空気や光等の影響によって酸化が進み品質が低下する。また、油脂の酸化により生じる過酸化物は、食品の風味や栄養価の低下を引き起こすのみならず、生体内における癌等の疾病の要因の一つと考えられている。そのため、油脂にとって酸化を防止する抗酸化物質の含量は重要な要素である。 Oils and fats such as cooking oil are generally oxidized by the influence of air, light and the like, and the quality is deteriorated. In addition, peroxides generated by the oxidation of fats and oils are considered to be one of the causes of diseases such as cancer in the living body as well as causing deterioration of the flavor and nutritional value of foods. Therefore, the content of antioxidants that prevent oxidation is an important factor for fats and oils.

食用油の中でもごま油は酸化し難いことが広く知られている。ごま油は、セサミンに代表されるゴマリグナンという特有の微量成分を含んでいる。ゴマリグナンは強い抗酸化活性を有し、ごま油の酸化し難いという性質に寄与しているため、ごま油の品質維持に欠かせない成分である。また、ゴマリグナンを摂取すると、その抗酸化作用により生体内の活性酸素を低減させて酸化による細胞の老化や生活習慣病を予防することや、抗炎症作用および抗癌作用を奏することが知られている。 It is widely known that sesame oil is difficult to oxidize among cooking oils. Sesame oil contains a peculiar trace component called sesame lignan represented by sesamin. Sesame lignan has a strong antioxidant activity and contributes to the property that sesame oil is difficult to oxidize, so it is an indispensable component for maintaining the quality of sesame oil. In addition, it is known that when sesame lignan is ingested, its antioxidant action reduces active oxygen in the body to prevent cell aging and lifestyle-related diseases due to oxidation, and also has anti-inflammatory and anti-cancer effects. There is.

このようにゴマリグナンは優れた機能を有しており、ごま油の製造においてゴマリグナンの含量の把握は非常に重要である。しかし、ゴマリグナンはごま油中に総量で約0.1~1重量%しか含まれていない。そのため、ゴマリグナンの定量には高い精度が必要であり、微量成分の定量精度に優れる高速液体クロマトグラフィー(HPLC)分析が一般に用いられている(非特許文献1)。 As described above, sesame lignan has an excellent function, and it is very important to understand the content of sesame lignan in the production of sesame oil. However, the total amount of sesame lignan contained in sesame oil is only about 0.1 to 1% by weight. Therefore, high accuracy is required for the quantification of sesame lignans, and high performance liquid chromatography (HPLC) analysis having excellent quantification accuracy of trace components is generally used (Non-Patent Document 1).

福田靖子著、「ゴマ種子の抗酸化成分に関する食品化学的研究」日本食品工業学会誌、1990年6月、第37巻第6号、p.484~492Yasuko Fukuda, "Food Chemical Research on Antioxidant Components of Sesame Seeds," Journal of the Japanese Society of Food Industry, June 1990, Vol. 37, No. 6, p. 484-492

しかし、HPLC分析は微量成分の定量精度に優れるものの、一検体当たりの分析時間が長いという欠点を有する。そのため、ゴマリグナンの定量を短時間かつ高精度で可能な定量方法が求められている。 However, although HPLC analysis is excellent in quantification accuracy of trace components, it has a drawback that the analysis time per sample is long. Therefore, there is a demand for a quantification method capable of quantifying sesame lignans in a short time and with high accuracy.

そこで本開示は、短時間で試料の近赤外スペクトルの測定が可能なフーリエ変換型近赤外光分析装置を用いて測定対象である測定用植物油中のゴマリグナンを高精度で定量できる方法を提供する。 Therefore, the present disclosure provides a method capable of quantifying sesame lignans in a vegetable oil for measurement to be measured with high accuracy by using a Fourier transform type near-infrared optical analyzer capable of measuring the near-infrared spectrum of a sample in a short time. do.

上記課題を解決するため、本開示の技術は以下の手段をとる。
[1]下記の工程1~3を含み、
前記工程2及び前記工程3で用いられるスペクトルデータは1つの連続した波数領域であり、
前記波数領域が、9400±10~5900±10cm -1 であり、
前記工程1で選ばれるゴマリグナンがセサミンであり、且つ前記工程2で選ばれるスペクトル前処理が一次微分とベクトル正規化との組合せであることを特徴とするごま油を含有する植物油中のゴマリグナンの定量方法。
工程1:HPLC分析により、調整用植物油中のセサミン、セサモリン及びエピセサミンから選ばれる1種のゴマリグナンを定量する工程
工程2:フーリエ変換型近赤外光分析装置を用いて前記調整用植物油のスペクトルを測定した後に一次微分単独、二次微分単独、及び一次微分とベクトル正規化との組合せから選ばれる1つのスペクトル前処理をして得られるスペクトルデータと、前記工程1で得られたゴマリグナンの定量値と、を用いて回帰式を得る工程
工程3:フーリエ変換型近赤外光分析装置を用いて測定用植物油のスペクトルを測定した後に前記工程2で選ばれたスペクトル前処理をして得られるスペクトルデータと、前記工程2で得られた回帰式と、を用いて前記測定用植物油中の前記工程1で選ばれたゴマリグナンを定量する工程
[2]下記の工程1~3を含み、
前記工程2及び前記工程3で用いられるスペクトルデータは1つの連続した波数領域であり、
前記波数領域が、9400±10~5900±10cm -1 であり、
前記工程1で選ばれるゴマリグナンがエピセサミンであり、且つ前記工程2で選ばれるスペクトル前処理が一次微分単独であることを特徴とするごま油を含有する植物油中のゴマリグナンの定量方法。
工程1:HPLC分析により、調整用植物油中のセサミン、セサモリン及びエピセサミンから選ばれる1種のゴマリグナンを定量する工程
工程2:フーリエ変換型近赤外光分析装置を用いて前記調整用植物油のスペクトルを測定した後に一次微分単独、二次微分単独、及び一次微分とベクトル正規化との組合せから選ばれる1つのスペクトル前処理をして得られるスペクトルデータと、前記工程1で得られたゴマリグナンの定量値と、を用いて回帰式を得る工程
工程3:フーリエ変換型近赤外光分析装置を用いて測定用植物油のスペクトルを測定した後に前記工程2で選ばれたスペクトル前処理をして得られるスペクトルデータと、前記工程2で得られた回帰式と、を用いて前記測定用植物油中の前記工程1で選ばれたゴマリグナンを定量する工程
[3]下記の工程1~3を含み、
前記工程2及び前記工程3で用いられるスペクトルデータは1つの連続した波数領域であり、
前記波数領域が、9400±10~5900±10cm -1 であり、
前記工程1で選ばれるゴマリグナンがセサモリンであり、且つ前記工程2で選ばれるスペクトル前処理が二次微分単独であることを特徴とするごま油を含有する植物油中のゴマリグナンの定量方法。
工程1:HPLC分析により、調整用植物油中のセサミン、セサモリン及びエピセサミンから選ばれる1種のゴマリグナンを定量する工程
工程2:フーリエ変換型近赤外光分析装置を用いて前記調整用植物油のスペクトルを測定した後に一次微分単独、二次微分単独、及び一次微分とベクトル正規化との組合せから選ばれる1つのスペクトル前処理をして得られるスペクトルデータと、前記工程1で得られたゴマリグナンの定量値と、を用いて回帰式を得る工程
工程3:フーリエ変換型近赤外光分析装置を用いて測定用植物油のスペクトルを測定した後に前記工程2で選ばれたスペクトル前処理をして得られるスペクトルデータと、前記工程2で得られた回帰式と、を用いて前記測定用植物油中の前記工程1で選ばれたゴマリグナンを定量する工程
In order to solve the above problems, the technique of the present disclosure takes the following means.
[1] Including the following steps 1 to 3 ,
The spectral data used in the step 2 and the step 3 is one continuous wavenumber region.
The wave number region is 9400 ± 10 to 5900 ± 10 cm -1 .
A method for quantifying sesame lignan in a vegetable oil containing sesame oil , wherein the sesame lignan selected in step 1 is sesamin, and the spectral pretreatment selected in step 2 is a combination of first derivative and vector normalization. ..
Step 1: Quantify one type of sesame lignan selected from sesamine, sesamolin and episesamine in the adjusting vegetable oil by HPLC analysis. Step 2: Quantify the spectrum of the adjusting vegetable oil using a Fourier transform type near-infrared light analyzer. Spectral data obtained by performing one spectral preprocessing selected from the first-order differential alone, the second-order differential alone, and the combination of the first-order differential and vector normalization after measurement, and the quantitative value of sesame lignan obtained in the above step 1. Step 3: A spectrum obtained by measuring the spectrum of the vegetable oil for measurement using a Fourier transform type near-infrared light analyzer and then performing the spectrum pretreatment selected in the above step 2. A step of quantifying the sesame lignan selected in the step 1 in the vegetable oil for measurement using the data and the regression equation obtained in the step 2 [2] The following steps 1 to 3 are included.
The spectral data used in the step 2 and the step 3 is one continuous wavenumber region.
The wave number region is 9400 ± 10 to 5900 ± 10 cm -1 .
A method for quantifying sesame lignan in a vegetable oil containing sesame oil, wherein the sesame lignan selected in step 1 is episesamine and the spectral pretreatment selected in step 2 is a first derivative alone.
Step 1: A step of quantifying one kind of sesame lignan selected from sesamin, sesamolin and episesamin in the vegetable oil for preparation by HPLC analysis.
Step 2: One spectrum selected from the first derivative alone, the second derivative alone, and the combination of the first derivative and the vector normalization after measuring the spectrum of the adjusting vegetable oil using a Fourier transform type near-infrared light analyzer. A step of obtaining a regression equation using the spectral data obtained by the pretreatment and the quantitative value of sesame lignan obtained in the above step 1.
Step 3: Spectral data obtained by measuring the spectrum of the vegetable oil for measurement using a Fourier transform type near-infrared light analyzer and then performing the spectrum pretreatment selected in the step 2, and the spectrum data obtained in the step 2. A step of quantifying the sesame lignan selected in the step 1 in the vegetable oil for measurement using a regression equation and
[3] Including the following steps 1 to 3,
The spectral data used in the step 2 and the step 3 is one continuous wavenumber region.
The wave number region is 9400 ± 10 to 5900 ± 10 cm -1 .
A method for quantifying sesame lignan in a vegetable oil containing sesame oil, wherein the sesame lignan selected in the step 1 is sesamolin and the spectral pretreatment selected in the step 2 is a second derivative alone.
Step 1: A step of quantifying one kind of sesame lignan selected from sesamin, sesamolin and episesamin in the vegetable oil for preparation by HPLC analysis.
Step 2: One spectrum selected from the first derivative alone, the second derivative alone, and the combination of the first derivative and the vector normalization after measuring the spectrum of the adjusting vegetable oil using a Fourier transform type near-infrared light analyzer. A step of obtaining a regression equation using the spectral data obtained by the pretreatment and the quantitative value of sesame lignan obtained in the above step 1.
Step 3: Spectral data obtained by measuring the spectrum of the vegetable oil for measurement using a Fourier transform type near-infrared light analyzer and then performing the spectrum pretreatment selected in the step 2, and the spectrum data obtained in the step 2. A step of quantifying the sesame lignan selected in the step 1 in the vegetable oil for measurement using a regression equation and

なお、本明細書において「A~B」で示される数値範囲は、特段の記載が無い限り、その上限及び下限を含む。つまり、「A~B」は「A以上、B以下」を意味する。 Unless otherwise specified, the numerical range indicated by "A to B" in the present specification includes the upper limit and the lower limit thereof. That is, "A to B" means "A or more, B or less".

≪ゴマリグナンの定量方法≫
本開示のごま油を含有する植物油中のゴマリグナンの定量方法は、下記の工程1~3を含む。なお、ゴマリグナンの定量方法は工程1~3以外の工程を含んでもよい。
工程1:HPLC分析により、植物油(以下、工程1及び工程2で回帰線を得るために用いる植物油を調整用植物油という)中のセサミン、セサモリン及びエピセサミンから選ばれる1種のゴマリグナンを定量する工程
工程2:フーリエ変換型近赤外光分析装置を用いて前記調整用植物油のスペクトルを測定した後に一次微分単独、二次微分単独、及び一次微分とベクトル正規化との組合せから選ばれる1つのスペクトル前処理をして得られるスペクトルデータと、前記工程1で得られたゴマリグナンの定量値と、を用いて回帰式を得る工程
工程3:フーリエ変換型近赤外光分析装置を用いて測定用植物油のスペクトルを測定した後に前記工程2で選ばれたスペクトル前処理をして得られるスペクトルデータと、前記工程2で得られた回帰式と、を用いて前記測定用植物油中の前記工程1で選ばれたゴマリグナンを定量する工程
≪Calculation method of sesame lignan≫
The method for quantifying sesame lignans in vegetable oil containing sesame oil according to the present disclosure includes the following steps 1 to 3. The method for quantifying sesame lignan may include steps other than steps 1 to 3.
Step 1: A step of quantifying one kind of sesame lignan selected from sesamine, sesamolin and episesamine in the vegetable oil (hereinafter, the vegetable oil used to obtain the regression line in steps 1 and 2 is referred to as the adjusting vegetable oil) by HPLC analysis. 2: After measuring the spectrum of the adjusting vegetable oil using a Fourier transform type near-infrared light analyzer, one spectrum before selected from the first-order differential alone, the second-order differential alone, and the combination of the first-order differential and vector normalization. Step 3: Obtaining a regression equation using the spectral data obtained by the treatment and the quantitative value of sesame lignan obtained in the above step 1. Step 3: Measuring vegetable oil using a Fourier transform type near-infrared light analyzer. It is selected in the step 1 in the vegetable oil for measurement by using the spectrum data obtained by performing the spectrum pretreatment selected in the step 2 after measuring the spectrum and the regression equation obtained in the step 2. The process of quantifying the sesame lignan

<工程1>
工程1では、ごま油を含有する植物油中のゴマリグナンをHPLC(高速液体クロマトグラフィー)分析により定量する。植物油はごま油を含んでいればよく、特に限定されない。同様にごま油も、ごまの種類や製法等により特に限定されない。ゴマリグナンは、セサミン、セサモリン、及びエピセサミンから選ばれる1種である。HPLC分析の方法は特に限定されないが、例えば以下の工程1-1~工程1-4を含む方法が挙げられる。
工程1-1:セサミン、セサモリン、及びエピセサミンから選ばれる1種の精製ゴマリグナンを各種濃度で含む複数の標品をHPLCで溶出し、UV検出器を用いてUVの吸収スペクトルを測定する。
工程1-2:工程1-1で測定されたUVの吸収スペクトルに基づきゴマリグナンの検量線を作成する。
工程1-3:ごま油を含有する複数の調整用植物油を工程1-1と同じ条件のHPLCで溶出し、UVの吸収スペクトルを測定する。
工程1-4:工程1-3で測定されたUVの吸収スペクトルに工程1-2で作成した検量線を適用して、調整用植物油中のゴマリグナンの量を算出する。
なお、ゴマリグナンの検量線は事前に作成したものを用いることで、工程1-1及び工程1-2を省略してもよい。
<Step 1>
In step 1, sesame lignans in vegetable oil containing sesame oil are quantified by HPLC (High Performance Liquid Chromatography) analysis. The vegetable oil may contain sesame oil and is not particularly limited. Similarly, sesame oil is not particularly limited depending on the type of sesame, the manufacturing method, and the like. Goma lignan is one selected from sesamin, sesamolin, and episesamin. The method of HPLC analysis is not particularly limited, and examples thereof include a method including the following steps 1-1 to 1-4.
Step 1-1: A plurality of preparations containing one purified sesame lignan selected from sesamin, sesamolin, and episesamin at various concentrations are eluted by HPLC, and the UV absorption spectrum is measured using a UV detector.
Step 1-2: A calibration curve of sesame lignan is prepared based on the absorption spectrum of UV measured in step 1-1.
Step 1-3: A plurality of adjusting vegetable oils containing sesame oil are eluted by HPLC under the same conditions as in Step 1-1, and the UV absorption spectrum is measured.
Step 1-4: The amount of sesame lignan in the adjusting vegetable oil is calculated by applying the calibration curve prepared in Step 1-2 to the UV absorption spectrum measured in Step 1-3.
By using a calibration curve prepared in advance for sesame lignan, steps 1-1 and 1-2 may be omitted.

ゴマリグナンの定量は、UVの吸収スペクトルのピーク高さ又はピーク面積のいずれに基づいて行ってもよいが、ピーク面積に基づき定量することが好ましい。なお、HPLC分析に関し、カラムの種類、移動相、検出器の種類、測定波長等は適宜変更可能である。 The sesame lignan may be quantified based on either the peak height or the peak area of the UV absorption spectrum, but it is preferably quantified based on the peak area. Regarding HPLC analysis, the type of column, mobile phase, type of detector, measurement wavelength and the like can be appropriately changed.

<工程2>
工程2では、工程1で用いた調整用植物油のスペクトルデータと、工程1で得られたゴマリグナンの定量値と、を用いて回帰式を得る。調整用植物油のスペクトルデータは、調整用植物油の近赤外スペクトルをフーリエ変換型近赤外光分析装置で測定し、得られた原スペクトルデータについてスペクトル前処理をして取得する。
<Step 2>
In step 2, a regression equation is obtained using the spectral data of the adjusting vegetable oil used in step 1 and the quantitative value of sesame lignan obtained in step 1. The spectral data of the adjusting vegetable oil is obtained by measuring the near-infrared spectrum of the adjusting vegetable oil with a Fourier transform type near-infrared optical analyzer and performing spectral preprocessing on the obtained original spectrum data.

調整用植物油の近赤外スペクトルは、フーリエ変換型近赤外光分析装置を用いて測定される。フーリエ変換型近赤外光分析装置は、試料の近赤外光(一般に波数12500~4000cm-1)の吸収に基づく分光を行う装置であり、試料に近赤外光を照射し、透過光または反射光を干渉計により干渉させ、その信号強度をフーリエ変換することで試料の近赤外スペクトルを測定する。フーリエ変換型近赤外光分析装置を用いることにより、分散型の近赤外光分析装置を用いた場合と比べて、短時間で調整用植物油の近赤外スペクトルを測定することができる。 The near-infrared spectrum of the adjusting vegetable oil is measured using a Fourier transform type near-infrared light analyzer. The Fourier conversion type near-infrared light analyzer is a device that performs spectroscopy based on the absorption of near-infrared light (generally, wave number 12500 to 4000 cm -1 ) of the sample, and irradiates the sample with near-infrared light to transmit or transmit light. The near-infrared spectrum of the sample is measured by interfering the reflected light with an interferometer and performing Fourier transform on the signal intensity. By using the Fourier transform type near-infrared light analyzer, the near-infrared spectrum of the vegetable oil for adjustment can be measured in a shorter time than when the distributed near-infrared light analyzer is used.

調整用植物油の近赤外スペクトルを測定して得られた原スペクトルデータは、スペクトル前処理をすることにより、回帰式を得る際に用いるスペクトルデータに変換される。スペクトル前処理は、一次微分単独、二次微分単独、及び一次微分とベクトル正規化との組合せから選ばれる1つを用いることができるが、本発明においては、ゴマリグナンがセサミンの場合は一次微分とベクトル正規化との組み合わせであり、ゴマリグナンがエピセサミンである場合は一次微分単独であり、ゴマリグナンがセサモリンである場合は二次微分単独であるThe original spectrum data obtained by measuring the near-infrared spectrum of the adjusting vegetable oil is converted into the spectrum data used when obtaining the regression equation by performing spectral preprocessing. For the spectrum preprocessing, one selected from the first derivative alone, the second derivative alone, and the combination of the first derivative and the vector normalization can be used, but in the present invention, when the sesame lignan is sesamin, the first derivative and the first derivative can be used. In combination with vector normalization, if sesame lignan is episesamin, it is the first derivative alone , and if sesame lignan is sesamolin, it is the second derivative alone .

回帰式を作成する際に用いられるスペクトルデータの波数領域は近赤外光の範囲内で適宜選択可能であ、複数の連続する波数領域であってもよいが、本発明では、1つの連続した波数領域であり、具体的には9400±10~5900±10cm-1 の波数領域が用いられる。この範囲の波数領域を用いて回帰式を作成することにより、定量精度をより向上することができる。なお、フーリエ変換型近赤外光分析装置による近赤外スペクトルの測定は、測定対象に応じて波数分解能(以下、分解能という)を適宜選択して測定される。そのため、本開示における「連続した波数領域」とは、当該波数領域全体にわたって所定の分解能で示された領域を意味する。工程2における分解能は特に限定されないが、測定精度と測定時間のバランスの観点から16cm-1又は8cm-1であることが好ましく、8cm-1であることが更に好ましい。また、回帰式を作成する際に用いられるスペクトルデータの波数領域は、測定した波数領域の全体であってもよいし、その一部であってもよい。 The wavenumber region of the spectral data used when creating the regression equation can be appropriately selected within the range of near-infrared light, and may be a plurality of continuous wavenumber regions, but in the present invention, one continuous wavenumber region is used. This is the wavenumber region, and specifically, the wavenumber region of 9400 ± 10 to 5900 ± 10 cm -1 is used . By creating a regression equation using the wavenumber region in this range, the quantification accuracy can be further improved. The near-infrared spectrum is measured by the Fourier transform type near-infrared optical analyzer by appropriately selecting the wavenumber resolution (hereinafter referred to as resolution) according to the measurement target. Therefore, the “continuous wavenumber region” in the present disclosure means a region indicated by a predetermined resolution over the entire wavenumber region. The resolution in the step 2 is not particularly limited, but is preferably 16 cm -1 or 8 cm -1 from the viewpoint of the balance between the measurement accuracy and the measurement time, and more preferably 8 cm -1 . Further, the wavenumber region of the spectral data used when creating the regression equation may be the entire measured wavenumber region or a part thereof.

回帰式の作成は多変量回帰分析により行われる。多変量回帰分析の方法は特に限定されないが、部分的最小二乗回帰(PLS)法が特に好ましい。多変量回帰分析は市販のソフトウェアを使用することができる。例えば、OPUS(Bruker社製)、The Unscrambler X(株式会社エス・ティ・ジャパン社製)、Pirouette(ジーエルサイエンス株式会社製)等が使用可能である。 Regression equations are created by multivariate regression analysis. The method of multivariate regression analysis is not particularly limited, but the partial least squares regression (PLS) method is particularly preferable. Commercially available software can be used for multivariate regression analysis. For example, OPUS (manufactured by Bruker), The Unscrambler X (manufactured by ST Japan Co., Ltd.), Pirouette (manufactured by GL Sciences Co., Ltd.) and the like can be used.

スペクトル前処理されたスペクトルデータと、工程1で得られたゴマリグナンの定量値とを多変量回帰分析に供することにより、スペクトルデータからゴマリグナンの含量を予測する回帰式を得ることができる。その際に、スペクトルデータを説明変数に設定し、ゴマリグナンの定量値を目的変数に設定することにより、スペクトルデータの中に内在するゴマリグナンの含量の変化と相関の高い因子を決定し、この因子の回帰係数を用いて回帰式を作成する。なお、作成される回帰式の精度を向上し、ゴマリグナンの定量方法の誤差を低減するために、調整用植物油の検体数は多数、例えば100個以上であることが好ましい。 By subjecting the spectral data preprocessed to the spectrum and the quantitative value of sesame lignan obtained in step 1 to multivariate regression analysis, a regression equation for predicting the content of sesame lignan can be obtained from the spectral data. At that time, by setting the spectral data as an explanatory variable and setting the quantitative value of sesame lignan as the objective variable, a factor having a high correlation with the change in the content of sesame lignan contained in the spectral data was determined, and the factor of this factor was determined. Create a regression equation using the regression coefficient. In order to improve the accuracy of the prepared regression equation and reduce the error in the method for quantifying sesame lignans, the number of samples of the adjusting vegetable oil is preferably large, for example, 100 or more.

<工程3>
工程3では、フーリエ変換型近赤外光分析装置を用いて測定対象である植物油(以下、測定用植物油という)の近赤外スペクトルを測定した後に工程2と同じスペクトル前処理をして得られるスペクトルデータと、工程2で作成した回帰式と、を用いて測定用植物油中のゴマリグナンを定量する。工程3ではフーリエ変換型近赤外光分析装置を用いて測定された近赤外スペクトルに基づき測定用植物油中のゴマリグナンを定量するため、測定用植物油を損なうことなく短時間での定量が可能である。
<Process 3>
In step 3, the near-infrared spectrum of the vegetable oil to be measured (hereinafter referred to as measurement vegetable oil) is measured using a Fourier transform type near-infrared light analyzer, and then the same spectral pretreatment as in step 2 is performed. The sesame lignan in the vegetable oil for measurement is quantified using the spectral data and the regression equation created in step 2. In step 3, sesame lignans in the vegetable oil for measurement are quantified based on the near-infrared spectrum measured using the Fourier transform type near-infrared light analyzer, so that the quantification can be performed in a short time without damaging the vegetable oil for measurement. be.

測定用植物油のスペクトルデータは、工程2における調整用植物油のスペクトルデータを取得する場合と同様にして取得することができる。つまり、フーリエ変換型近赤外光分析装置を用いて測定用植物油の近赤外スペクトルを測定し、得られた原スペクトルデータに対して工程2と同じスペクトル前処理をしてスペクトルデータを得る。フーリエ変換型近赤外光分析装置を用いることにより、分散型の近赤外光分析装置を用いた場合と比べて短時間で測定用植物油の近赤外スペクトルを測定することができる。また、工程3におけるスペクトルの測定条件やスペクトルデータの波数領域等は、ゴマリグナンの定量精度を向上するため、工程2における測定条件や波数領域と同一であることが好ましい。 The spectral data of the vegetable oil for measurement can be acquired in the same manner as in the case of acquiring the spectral data of the vegetable oil for adjustment in step 2. That is, the near-infrared spectrum of the vegetable oil for measurement is measured using a Fourier transform type near-infrared light analyzer, and the obtained original spectrum data is subjected to the same spectral pretreatment as in step 2 to obtain spectral data. By using the Fourier transform type near-infrared light analyzer, the near-infrared spectrum of the vegetable oil for measurement can be measured in a shorter time than when the distributed near-infrared light analyzer is used. Further, it is preferable that the measurement conditions of the spectrum in step 3 and the wave number region of the spectrum data are the same as the measurement conditions and wave number region in step 2 in order to improve the quantification accuracy of sesame lignan.

測定用植物油中のゴマリグナンを定量は、測定用植物油のスペクトルデータに工程2で作成した回帰式を適用することにより行う。このスペクトルデータと回帰式からゴマリグナンを定量する工程には、市販のソフトウェアを使用することができる。なお、工程3で使用するソフトウェアは、ゴマリグナンの定量精度を向上するため、工程2で用いたソフトウェアと同一であることが好ましい。 The quantification of sesame lignans in the vegetable oil for measurement is performed by applying the regression equation created in step 2 to the spectral data of the vegetable oil for measurement. Commercially available software can be used in the step of quantifying sesame lignans from this spectral data and the regression equation. The software used in step 3 is preferably the same as the software used in step 2 in order to improve the accuracy of quantifying sesame lignans.

以下、本開示の具体的な構成及び効果を実施例及び比較例に基づき説明する。 Hereinafter, specific configurations and effects of the present disclosure will be described based on Examples and Comparative Examples.

<ゴマリグナンの検量線の作成>
先ず、各種濃度の精製ゴマリグナン(セサミン、エピセサミン、セサモリン、セサミノール、又はセサモール)を含有する複数の標品を用いて、以下の条件でHPLC分析を行った。そして、得られたUVの吸収スペクトルのピーク面積から各ゴマリグナンの検量線を作成した。
カラム:Develisil OSD-5(4.6×150mm)(野村化学株式会社製)
移動相:水:メタノール=30:70(容積比)
流量:0.8mL/min
検出器:UV検出器(SPD-20A Prominence)(株式会社島津製作所)
測定波長:290nm
<Creation of calibration curve for sesame lignan>
First, HPLC analysis was performed under the following conditions using a plurality of specimens containing various concentrations of purified sesame lignan (sesamin, episesamin, sesamolin, sesaminol, or sesamol). Then, a calibration curve of each sesame lignan was prepared from the peak area of the obtained UV absorption spectrum.
Column: Develisil OSD-5 (4.6 x 150 mm) (manufactured by Nomura Chemical Co., Ltd.)
Mobile phase: Water: Methanol = 30:70 (volume ratio)
Flow rate: 0.8 mL / min
Detector: UV detector (SPD-20A Prominence) (Shimadzu Corporation)
Measurement wavelength: 290 nm

実施例1
<調整用植物油中のゴマリグナンの定量>
製造日が異なる複数(100個)の調整用植物油(竹本油脂株式会社製 太白胡麻油(A-1))について、標品のHPLC分析と同じ条件でHPLC分析を行った。得られたUVの吸収スペクトルのピーク面積と、予め作成したセサミンの検量線とを対比して、各調整用植物油(A-1)中のセサミンを定量した。
Example 1
<Quantification of sesame lignans in vegetable oil for adjustment>
Multiple (100 pieces) adjusting vegetable oils (Taishaku sesame oil (A-1) manufactured by Takemoto Oil & Fat Co., Ltd.) with different production dates were subjected to HPLC analysis under the same conditions as the HPLC analysis of the standard. The peak area of the obtained UV absorption spectrum was compared with the calibration curve of sesamin prepared in advance, and sesamin in each adjusting vegetable oil (A-1) was quantified.

<回帰式の作成>
フーリエ変換型近赤外分光計MPA(Bruker社製)を用いて、HPLC分析に用いた各調整用植物油(A-1)の近赤外スペクトルを以下の条件で測定し、原スペクトルデータを得た。
測定波数:12500~4000cm-1
積算回数:128回
分解能:8cm-1
<Creation of regression equation>
Using a Fourier transform near-infrared spectrometer MPA (manufactured by Bruker), the near-infrared spectrum of each adjusting vegetable oil (A-1) used for HPLC analysis was measured under the following conditions, and the original spectrum data was obtained. rice field.
Wavenumber measured: 12500-4000 cm -1
Number of integrations: 128 times Resolution: 8 cm -1

解析ソフトOpus(Bruker社製)を用いて各調整用植物油の原スペクトルデータについてスペクトル前処理(一次微分及びベクトル正規化)を行った後、波数領域を9400~5900cm-1に限定してスペクトルデータを得た。各調整用植物油について、スペクトルデータを説明変数に、HPLC分析で求めたセサミンの定量値を目的変数にそれぞれ設定し、PLS法で多変量回帰分析することにより回帰式を作成した。 After performing spectral preprocessing (first derivative and vector normalization) on the raw spectral data of each vegetable oil for adjustment using the analysis software Opus (manufactured by Bruker), the wave number region is limited to 9400 to 5900 cm -1 and the spectral data. Got For each adjusting vegetable oil, the spectral data was set as the explanatory variable and the quantitative value of sesamine obtained by HPLC analysis was set as the objective variable, and a regression equation was created by performing multivariate regression analysis by the PLS method.

<測定用植物油中のゴマリグナンの定量>
調整用植物油とは製造日の異なる測定用植物油(竹本油脂株式会社製 太白胡麻油(A-1))について、調整用植物油と同じ条件で近赤外スペクトルの測定及び加工を行い、スペクトルデータを得た。測定用植物油のスペクトルデータに作成した回帰式を適用し、測定用植物油(A-1)中のセサミンの定量値(以下、NIR定量値という)を算出した。
<Quantification of sesame lignans in vegetable oil for measurement>
The near-infrared spectrum of the vegetable oil for measurement (Taishaku sesame oil (A-1) manufactured by Takemoto Oil & Fat Co., Ltd.), which has a different manufacturing date from the vegetable oil for adjustment, is measured and processed under the same conditions as the vegetable oil for adjustment, and spectral data is obtained. rice field. The regression equation created for the spectral data of the vegetable oil for measurement was applied to calculate the quantitative value of sesamin (hereinafter referred to as NIR quantitative value) in the vegetable oil for measurement (A-1).

<定量精度の検討>
近赤外スペクトルの測定に用いた測定用植物油(A-1)について上記条件でHPLC分析を行い、UVの吸収スペクトルのピーク面積と予め作成した検量線とを対比して測定用植物油(A-1)中のセサミンの定量値(以下、HPLC定量値という)を算出した。そして、測定用植物油(A-1)のNIR定量値とHPLC定量値との誤差を下記式により算出し、以下の基準で評価した。実施例1の誤差は2%未満であった。
誤差(%)=|HPLC定量値-NIR定量値|÷HPLC定量値×100
◎:2%未満
〇:2~3%
×:3%超
<Examination of quantitative accuracy>
The measurement vegetable oil (A-1) used for the measurement of the near-infrared spectrum was subjected to HPLC analysis under the above conditions, and the peak area of the UV absorption spectrum was compared with the calibration curve prepared in advance to measure the vegetable oil (A-). 1) The quantitative value of sesamine in 1) (hereinafter referred to as HPLC quantitative value) was calculated. Then, the error between the NIR quantitative value and the HPLC quantitative value of the vegetable oil for measurement (A-1) was calculated by the following formula and evaluated according to the following criteria. The error in Example 1 was less than 2%.
Error (%) = | HPLC quantified value-NIR quantified value | ÷ HPLC quantified value x 100
◎: Less than 2% 〇: 2-3%
×: Over 3%

実施例2~15、参考例16~51、比較例1~25
実施例1と同様にして、表1~表3に示す実施例2~15、参考例16~51及び比較例1~25についても同様に測定および評価を行った。
Examples 2 to 15, Reference Examples 16 to 51, Comparative Examples 1 to 25
In the same manner as in Example 1, Examples 2 to 15, Reference Examples 16 to 51 and Comparative Examples 1 to 25 shown in Tables 1 to 3 were also measured and evaluated in the same manner.

表1~表3中の植物油は以下の通りである。
A-1:竹本油脂株式会社製 太白胡麻油
A-2:竹本油脂株式会社製 太白胡麻油と焙煎ごま油の1:9の混合油
A-3:竹本油脂株式会社製 太白胡麻油と焙煎ごま油の5:5の混合油
A-4:竹本油脂株式会社製 太白胡麻油と焙煎ごま油の9:1の混合油
A-5:かどや製油株式会社製 純白ごま油
A-6:九鬼産業株式会社製 九鬼太白純正胡麻油
A-7:竹本油脂株式会社製 純正胡麻油
A-8:かどや製油株式会社製 金印純正ごま油
The vegetable oils in Tables 1 to 3 are as follows.
A-1: Taishiro sesame oil manufactured by Takemoto Yushi Co., Ltd. A-2: 1: 9 mixed oil of Taishiro sesame oil and roasted sesame oil manufactured by Takemoto Yushi Co., Ltd. A-3: Taishiro sesame oil and roasted sesame oil manufactured by Takemoto Yushi Co., Ltd. : 5 mixed oil A-4: 9: 1 mixed oil of thick white sesame oil and roasted sesame oil manufactured by Takemoto Oil & Fat Co., Ltd. A-5: Pure white sesame oil manufactured by Kadoya Oil Co., Ltd. Sesame oil A-7: Genuine sesame oil manufactured by Takemoto Oil & Fat Co., Ltd. A-8: Genuine sesame oil manufactured by Kadoya Oil Co., Ltd.

Figure 0007057026000001
Figure 0007057026000001

Figure 0007057026000002
Figure 0007057026000002

Figure 0007057026000003
Figure 0007057026000003

実施例1から実施例15、及び参考例16から51は、HPLC定量値に対するNIR定量値の誤差が小さく、フーリエ変換型近赤外光分析装置を用いた高精度の定量方法を実現できた。また、フーリエ変換型近赤外光分析装置を用いているため、測定用植物油中のゴマリグナンを短時間で定量できた。一方、比較例1から比較例18は、ゴマリグナンがセサミノール又はセサモールであるため、一次微分単独、二次微分単独、及び一次微分とベクトル正規化との組合せのいずれの前処理をしてもHPLC定量値に対するNIR定量値の誤差が大きく、フーリエ変換型近赤外光分析装置を用いた定量精度が低かった。比較例19から比較例25は、前処理が一次微分単独、二次微分単独、及び一次微分とベクトル正規化との組合せのいずれでもないため、HPLC定量値に対するNIR定量値の誤差が大きく、フーリエ変換型近赤外光分析装置を用いた定量精度が低かった。
In Examples 1 to 15 and Reference Examples 16 to 51 , the error of the NIR quantified value with respect to the HPLC quantified value was small, and a highly accurate quantification method using a Fourier transform type near-infrared optical analyzer could be realized. In addition, because a Fourier transform type near-infrared optical analyzer was used, sesame lignans in the vegetable oil for measurement could be quantified in a short time. On the other hand, in Comparative Examples 1 to 18, since the sesame lignan is sesaminol or sesamol, HPLC is performed regardless of the pretreatment of the first derivative alone, the second derivative alone, or the combination of the first derivative and the vector normalization. The error of the NIR quantitative value with respect to the quantitative value was large, and the quantitative accuracy using the Fourier transform type near-infrared optical analyzer was low. In Comparative Examples 19 to 25, since the preprocessing is neither the first derivative alone, the second derivative alone, nor the combination of the first derivative and the vector normalization, the error of the NIR quantitative value with respect to the HPLC quantitative value is large, and Fourier The quantitative accuracy using the transform-type near-infrared optical analyzer was low.

Claims (3)

下記の工程1~3を含み、
前記工程2及び前記工程3で用いられるスペクトルデータは1つの連続した波数領域であり、
前記波数領域が、9400±10~5900±10cm -1 であり、
前記工程1で選ばれるゴマリグナンがセサミンであり、且つ前記工程2で選ばれるスペクトル前処理が一次微分とベクトル正規化との組合せであることを特徴とするごま油を含有する植物油中のゴマリグナンの定量方法。
工程1:HPLC分析により、調整用植物油中のセサミン、セサモリン及びエピセサミンから選ばれる1種のゴマリグナンを定量する工程
工程2:フーリエ変換型近赤外光分析装置を用いて前記調整用植物油のスペクトルを測定した後に一次微分単独、二次微分単独、及び一次微分とベクトル正規化との組合せから選ばれる1つのスペクトル前処理をして得られるスペクトルデータと、前記工程1で得られたゴマリグナンの定量値と、を用いて回帰式を得る工程
工程3:フーリエ変換型近赤外光分析装置を用いて測定用植物油のスペクトルを測定した後に前記工程2で選ばれたスペクトル前処理をして得られるスペクトルデータと、前記工程2で得られた回帰式と、を用いて前記測定用植物油中の前記工程1で選ばれたゴマリグナンを定量する工程
Including steps 1 to 3 below
The spectral data used in the step 2 and the step 3 is one continuous wavenumber region.
The wave number region is 9400 ± 10 to 5900 ± 10 cm -1 .
A method for quantifying sesame lignan in a vegetable oil containing sesame oil , wherein the sesame lignan selected in step 1 is sesamin, and the spectral pretreatment selected in step 2 is a combination of first derivative and vector normalization. ..
Step 1: Quantify one type of sesame lignan selected from sesamine, sesamolin and episesamine in the adjusting vegetable oil by HPLC analysis. Step 2: Quantify the spectrum of the adjusting vegetable oil using a Fourier transform type near-infrared light analyzer. Spectral data obtained by performing one spectral preprocessing selected from the first-order differential alone, the second-order differential alone, and the combination of the first-order differential and vector normalization after measurement, and the quantitative value of sesame lignan obtained in the above step 1. Step 3: A spectrum obtained by measuring the spectrum of the vegetable oil for measurement using a Fourier transform type near-infrared light analyzer and then performing the spectrum pretreatment selected in the above step 2. A step of quantifying the sesame lignan selected in the step 1 in the vegetable oil for measurement using the data and the regression equation obtained in the step 2.
下記の工程1~3を含み、 Including steps 1 to 3 below
前記工程2及び前記工程3で用いられるスペクトルデータは1つの連続した波数領域であり、 The spectral data used in the step 2 and the step 3 is one continuous wavenumber region.
前記波数領域が、9400±10~5900±10cm The wave number region is 9400 ± 10 to 5900 ± 10 cm. -1-1 であり、And
前記工程1で選ばれるゴマリグナンがエピセサミンであり、且つ前記工程2で選ばれるスペクトル前処理が一次微分単独であることを特徴とするごま油を含有する植物油中のゴマリグナンの定量方法。 A method for quantifying sesame lignan in a vegetable oil containing sesame oil, wherein the sesame lignan selected in step 1 is episesamine and the spectral pretreatment selected in step 2 is a first derivative alone.
工程1:HPLC分析により、調整用植物油中のセサミン、セサモリン及びエピセサミンから選ばれる1種のゴマリグナンを定量する工程 Step 1: A step of quantifying one kind of sesame lignan selected from sesamin, sesamolin and episesamin in the vegetable oil for preparation by HPLC analysis.
工程2:フーリエ変換型近赤外光分析装置を用いて前記調整用植物油のスペクトルを測定した後に一次微分単独、二次微分単独、及び一次微分とベクトル正規化との組合せから選ばれる1つのスペクトル前処理をして得られるスペクトルデータと、前記工程1で得られたゴマリグナンの定量値と、を用いて回帰式を得る工程 Step 2: One spectrum selected from the first derivative alone, the second derivative alone, and the combination of the first derivative and the vector normalization after measuring the spectrum of the adjusting vegetable oil using a Fourier transform type near-infrared light analyzer. A step of obtaining a regression equation using the spectral data obtained by the pretreatment and the quantitative value of sesame lignan obtained in the above step 1.
工程3:フーリエ変換型近赤外光分析装置を用いて測定用植物油のスペクトルを測定した後に前記工程2で選ばれたスペクトル前処理をして得られるスペクトルデータと、前記工程2で得られた回帰式と、を用いて前記測定用植物油中の前記工程1で選ばれたゴマリグナンを定量する工程 Step 3: Spectral data obtained by measuring the spectrum of the vegetable oil for measurement using a Fourier transform type near-infrared light analyzer and then performing the spectrum pretreatment selected in the step 2, and the spectrum data obtained in the step 2. A step of quantifying the sesame lignan selected in the step 1 in the vegetable oil for measurement using a regression equation and
下記の工程1~3を含み、 Including steps 1 to 3 below
前記工程2及び前記工程3で用いられるスペクトルデータは1つの連続した波数領域であり、 The spectral data used in the step 2 and the step 3 is one continuous wavenumber region.
前記波数領域が、9400±10~5900±10cm The wave number region is 9400 ± 10 to 5900 ± 10 cm. -1-1 であり、And
前記工程1で選ばれるゴマリグナンがセサモリンであり、且つ前記工程2で選ばれるスペクトル前処理が二次微分単独であることを特徴とするごま油を含有する植物油中のゴマリグナンの定量方法。 A method for quantifying sesame lignan in a vegetable oil containing sesame oil, wherein the sesame lignan selected in the step 1 is sesamolin and the spectral pretreatment selected in the step 2 is a second derivative alone.
工程1:HPLC分析により、調整用植物油中のセサミン、セサモリン及びエピセサミンから選ばれる1種のゴマリグナンを定量する工程 Step 1: A step of quantifying one kind of sesame lignan selected from sesamin, sesamolin and episesamin in the vegetable oil for preparation by HPLC analysis.
工程2:フーリエ変換型近赤外光分析装置を用いて前記調整用植物油のスペクトルを測定した後に一次微分単独、二次微分単独、及び一次微分とベクトル正規化との組合せから選ばれる1つのスペクトル前処理をして得られるスペクトルデータと、前記工程1で得られたゴマリグナンの定量値と、を用いて回帰式を得る工程 Step 2: One spectrum selected from the first derivative alone, the second derivative alone, and the combination of the first derivative and the vector normalization after measuring the spectrum of the adjusting vegetable oil using a Fourier transform type near-infrared light analyzer. A step of obtaining a regression equation using the spectral data obtained by the pretreatment and the quantitative value of sesame lignan obtained in the above step 1.
工程3:フーリエ変換型近赤外光分析装置を用いて測定用植物油のスペクトルを測定した後に前記工程2で選ばれたスペクトル前処理をして得られるスペクトルデータと、前記工程2で得られた回帰式と、を用いて前記測定用植物油中の前記工程1で選ばれたゴマリグナンを定量する工程 Step 3: Spectral data obtained by measuring the spectrum of the vegetable oil for measurement using a Fourier transform type near-infrared light analyzer and then performing the spectrum pretreatment selected in the step 2, and the spectrum data obtained in the step 2. A step of quantifying the sesame lignan selected in the step 1 in the vegetable oil for measurement using a regression equation and
JP2021199134A 2021-12-08 2021-12-08 How to quantify sesame lignans Active JP7057026B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021199134A JP7057026B1 (en) 2021-12-08 2021-12-08 How to quantify sesame lignans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021199134A JP7057026B1 (en) 2021-12-08 2021-12-08 How to quantify sesame lignans

Publications (2)

Publication Number Publication Date
JP7057026B1 true JP7057026B1 (en) 2022-04-19
JP2023084813A JP2023084813A (en) 2023-06-20

Family

ID=81291733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021199134A Active JP7057026B1 (en) 2021-12-08 2021-12-08 How to quantify sesame lignans

Country Status (1)

Country Link
JP (1) JP7057026B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034668A1 (en) * 2012-08-31 2014-03-06 築野食品工業株式会社 Method for quantifying γ-oryzanol using near infrared spectroscopy
JP2014074705A (en) * 2012-09-13 2014-04-24 National Agriculture & Food Research Organization Method for measuring cholesterol content in hen eggs involving non-destructive means
CN104132905A (en) * 2014-05-05 2014-11-05 河南科技大学 Detection method for adulterated sesame oil
JP2015135323A (en) * 2013-12-20 2015-07-27 築野食品工業株式会社 Quantifying method of free fatty acid in vegetable oil or in raw material thereof using near infrared spectroscopy method
CN105092526A (en) * 2015-09-11 2015-11-25 天津工业大学 Rapid determination method for content of binary adulterated sesame oil based on near-infrared spectroscopy
CN105136735A (en) * 2015-09-07 2015-12-09 天津工业大学 Rapid and lossless analysis method for content of ternary adulterated sesame oil
CN106841083A (en) * 2016-11-02 2017-06-13 北京工商大学 Sesame oil quality detecting method based on near-infrared spectrum technique
JP2020118525A (en) * 2019-01-23 2020-08-06 九鬼産業株式会社 Device and method for identifying sesame production area
CN112255339A (en) * 2020-10-12 2021-01-22 南京海关动植物与食品检测中心 Method for rapidly determining contents of three sesame lignans in sesame oil

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034668A1 (en) * 2012-08-31 2014-03-06 築野食品工業株式会社 Method for quantifying γ-oryzanol using near infrared spectroscopy
JP2014074705A (en) * 2012-09-13 2014-04-24 National Agriculture & Food Research Organization Method for measuring cholesterol content in hen eggs involving non-destructive means
JP2015135323A (en) * 2013-12-20 2015-07-27 築野食品工業株式会社 Quantifying method of free fatty acid in vegetable oil or in raw material thereof using near infrared spectroscopy method
CN104132905A (en) * 2014-05-05 2014-11-05 河南科技大学 Detection method for adulterated sesame oil
CN105136735A (en) * 2015-09-07 2015-12-09 天津工业大学 Rapid and lossless analysis method for content of ternary adulterated sesame oil
CN105092526A (en) * 2015-09-11 2015-11-25 天津工业大学 Rapid determination method for content of binary adulterated sesame oil based on near-infrared spectroscopy
CN106841083A (en) * 2016-11-02 2017-06-13 北京工商大学 Sesame oil quality detecting method based on near-infrared spectrum technique
JP2020118525A (en) * 2019-01-23 2020-08-06 九鬼産業株式会社 Device and method for identifying sesame production area
CN112255339A (en) * 2020-10-12 2021-01-22 南京海关动植物与食品检测中心 Method for rapidly determining contents of three sesame lignans in sesame oil

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"各種ゴマリグナンの生理活性と生体内代謝", 食品総合研究所成果情報(オンライン), JPN7021005709, 2005, JP, ISSN: 0004671519 *
各種ゴマリグナンの生理活性と生体内代謝,食品総合研究所成果情報(オンライン),日本,2005年,<URL:https://www.naro.go.jp/project/results/files/nfri05-07.pdf>

Also Published As

Publication number Publication date
JP2023084813A (en) 2023-06-20

Similar Documents

Publication Publication Date Title
Rohman Infrared spectroscopy for quantitative analysis and oil parameters of olive oil and virgin coconut oil: A review
Ahmed et al. FT-IR based methodology for quantitation of total tocopherols, tocotrienols and plastochromanol-8 in vegetable oils
Kirchler et al. Critical evaluation of spectral information of benchtop vs. portable near-infrared spectrometers: Quantum chemistry and two-dimensional correlation spectroscopy for a better understanding of PLS regression models of the rosmarinic acid content in Rosmarini folium
Muik et al. Direct, reagent-free determination of free fatty acid content in olive oil and olives by Fourier transform Raman spectrometry
Cebi et al. Prediction of peroxide value in omega-3 rich microalgae oil by ATR-FTIR spectroscopy combined with chemometrics
Carmona et al. Raman spectroscopy study of edible oils and determination of the oxidative stability at frying temperatures
AU2005241130B2 (en) FT-NIR fatty acid determination method
Birkel et al. Application of a portable handheld infrared spectrometer for quantitation of trans fat in edible oils
Bhatnagar et al. Development of a rapid method for determination of lignans content in sesame oil
Pinto et al. Preliminary studies on the mid-infrared analysis of edible oils by direct heating on an ATR diamond crystal
Lerma-García et al. Rapid evaluation of oxidised fatty acid concentration in virgin olive oil using Fourier-transform infrared spectroscopy and multiple linear regression
Afseth et al. Raman and near-infrared spectroscopy for quantification of fat composition in a complex food model system
Mahesar et al. Evaluation of important fatty acid ratios in poultry feed lipids by ATR FTIR spectroscopy
Jović Durbin-Watson partial least-squares regression applied to MIR data on adulteration with edible oils of different origins
Cayuela et al. Rapid determination of olive oil chlorophylls and carotenoids by using visible spectroscopy
Dankowska et al. Application of synchronous fluorescence spectroscopy for determination of extra virgin olive oil adulteration
Schulz et al. Application of near infrared spectroscopy for the quantification of quality parameters in selected vegetables and essential oil plants
Jiménez-Sotelo et al. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils
Koczoń et al. The change of fatty acids composition of Polish biscuits during storage
Tarhan A comparative study of ATR-FTIR, UV–visible and fluorescence spectroscopy combined with chemometrics for quantification of squalene in extra virgin olive oils
Hashem et al. Rapid authentication of extra virgin olive oil using UV and FTIR spectroscopy
Htet et al. PLS-regression-model-assisted raman spectroscopy for vegetable oil classification and non-destructive analysis of alpha-tocopherol contents of vegetable oils
Machado et al. Quantification of chemical characteristics of olive fruit and oil of cv Cobrançosa in two ripening stages using MIR spectroscopy and chemometrics
JP7057026B1 (en) How to quantify sesame lignans
An et al. A simple and practical method for determining iodine values of oils and fats by the FTIR spectrometer with an infrared quartz cuvette

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7057026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150