JP2004347559A - Calibration curve production method - Google Patents

Calibration curve production method Download PDF

Info

Publication number
JP2004347559A
JP2004347559A JP2003147601A JP2003147601A JP2004347559A JP 2004347559 A JP2004347559 A JP 2004347559A JP 2003147601 A JP2003147601 A JP 2003147601A JP 2003147601 A JP2003147601 A JP 2003147601A JP 2004347559 A JP2004347559 A JP 2004347559A
Authority
JP
Japan
Prior art keywords
calibration curve
spectra
spectrum
vial
samples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003147601A
Other languages
Japanese (ja)
Inventor
Masahiro Watari
正博 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2003147601A priority Critical patent/JP2004347559A/en
Publication of JP2004347559A publication Critical patent/JP2004347559A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method producing an efficient calibration curve hard against disturbance by producing a large number of calibration curve-producing spectra from a small number of samples. <P>SOLUTION: In this calibration curve production method using multivariate analysis of near-infrared spectroscopic analysis, the plurality of samples each having a known component and different concentration are each put into a vial, light is irradiated to the samples put in the vials to find the plurality of spectra from transmitting light intensity thereof, and the calibration curve is produced from the spectra. In the calibration curve production method, spectra are newly produced by deforming spectrum data waveforms of the plurality of found spectra on the basis of individual difference of the vials, and produced data are newly added as spectrum data to produce the calibration curve. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は例えば近赤外分光分析計に用いて好適なバイアル瓶を用いた検量線作成方法に関する。
【0002】
【従来の技術】
はじめに本発明が適用される装置の構成について図6(a,b)を用いて簡単に説明する。図6(a)において、1は測定用ホルダであり、このホルダの中央付近にはバイアル瓶(水薬瓶の意…ここでは測定サンプルを入れる瓶)を挿入する瓶挿入孔1aが形成され、この孔に瓶を挿入して測定を行う。なお、この孔1aの周囲には複数個(図では6個)の予熱用瓶を挿入するための予熱用瓶挿入孔1bが形成されている。
【0003】
2はホルダ1を所定の温度に維持するための温調器である。また、このホルダ1の側面には近赤外光(以下、単に光という)を透過するための光透過孔1cが形成されており、この孔1cから入射した光は瓶の中央部を貫通して検出器3に達するように構成されている。
【0004】
検出器3で光電変換された信号は信号変換器4に送られてA/D変換され、LAN等によりデータ処理部(パソコン)5に送られてスペクトル表示される。
図6(b)は上記瓶挿入孔1aに挿入される瓶10の形状例を示すもので、この例ではパイレックス(登録商標)ガラスにより外径(a)8,内径(b)6,高さ(c)40(mm)に形成されたポリプロピレン製蓋13付きの瓶である。
【0005】
このような瓶は試料12を少量採取してサンプルテストを行うための瓶で、取り扱いが簡単であり、図6(a)に示す測定用ホルダの孔に挿入するだけでよいので、手分析の場合に比較して迅速、正確に測定できるという特徴がある。
【0006】
図7は図6(a)に示す装置で図6(b)に示す瓶を4個用意し、この4個の瓶のそれぞれに同一性状の試料12(トルエン+IPA・・・イソプロピルアルコール)を採取し、それぞれの瓶に近赤外光を照射した場合の4つのスペクトルを表示したもので、縦軸は吸光度を横軸は波数(cm−1)を示している。
【0007】
このようなバイアル瓶を用いて検量線を作成する装置の先行技術文献として例えば次のようなものがある。
【0008】
【特許文献】
特開平2001−041879号公報
【0009】
【発明が解決しようとする課題】
ところで、ある液体の検量線を作成するに際しては前述のバイアル瓶に成分が既知の液体を入れて検量線を作成している。
【0010】
しかしながら、同じ仕様のバイアル瓶でも個体差による違い、ロットによる製品のばらつきがある。そのため、検量線作成時と異なるロットのバイアル瓶を使用して未知試料を測定すると検量線計算結果にばらつきが生じるという問題があった。
【0011】
図8はあるロットの瓶と前述の成分が既知の試料を用いて測定したスペクトルをもとに作成した検量線と、この検量線を基準として検量線作成時とは異なる3ロットの瓶に前述の試料を入れてそれぞれ近赤外光を照射してスペクトルを作成し、これをもとに検量線を用いてサンプル成分を予測した結果である。各ロットにより予測値がばらついているのが分かる。
【0012】
スペクトルの波形処理には色々の種類があるが、そのうちの一つにベースライン補正がある。ベースライン補正は一定波長におけるサンプルの透過率を補正するもので、バイアル瓶の透過率のバラツキを補正出来る可能性があり検討を行った。
図9は図7に示す4つのスペクトルのうちベースラインのデータ補正を行ってこれらのベースラインを合わせた状態を示すものである。図に示すように図7の縦軸に示す吸光度のベースラインAがA’に示すように下がっているのがわかる。
【0013】
図10は同一のロットを使用した上述のベースライン補正後のスペクトルを用いて作成した検量線で他のロットに入ったサンプルを予測した結果である。
図に示すように予測値が図8に示すものよりさらにばらついているのが分かる。
【0014】
本発明は上記問題点を解決するためになされたもので、求めた複数個のスペクトルから検量線を作成するに際し、バイアル瓶の個々及びロットのバラツキを考慮してスペクトルデータ波形を変形させて検量線を作成することによりバイアル瓶のばらつきによる影響が少ない検量線の作成方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
このような目的を達成するために本発明では、請求項1においては、
成分が既知で濃度の異なる複数の試料のそれぞれをバイアル瓶に入れ、これらバイアル瓶に入れた試料に光を照射してその透過光量から複数のスペクトルを求め、そのスペクトルから検量線を作成する近赤外分光分析の多変量解析を用いた検量線作成方法において、前記求めた複数個のスペクトルのスペクトルデータ波形を、バイアル瓶の個体差に基づいて変形させたスペクトルを新たに作成し、作成したデータを新たにスペクトルデータとして加えて検量線を作成したことを特徴とする。
【0016】
請求項2においては、請求項1記載の検量線作成方法において、スペクトルデータの変形は波形のベースライン、縦軸の変化、傾きについて行なうことを特徴とする。
【0017】
【発明の実施の形態】
以下図面を用いて本発明を詳しく説明する。図1(a,b)は図7に示す波形と吸光度のスペクトルグラフの中でA’’で示すベースライン補正のほか、スペクトルのピークD→D’の高さ補正とともに傾きE→E’を補正したものである。
【0018】
図2は図1で補正したスペクトルデータをもとに作成した検量線を使用して他のロットのバイアル瓶に入ったサンプルの予測結果を示すもので、予測値のばらつきが小さくなっているのが分かる。
以後は、バイアル瓶の個体差を示すデータである。
【0019】
図3は同一仕様で作製した瓶の空バイアル瓶(試料を入れない状態)のOH基の吸収スペクトル比較を示すもので、同一仕様の瓶であっても吸収スペクトルに違いがあることを示している。
図4は同一仕様の瓶の3つの系列(ロット)ごとに赤外線の透過率を測定したもので、系列ごとに透過率がばらついていることが分かる。
【0020】
図5は4つの系列(ロット)の瓶の実効光路長(ロットによる光路長の分布)の測定結果を示すもので、ここでもロットにより寸法(光路長)がばらついているのがわかる。
【0021】
したがって、本発明はロットごと、個体ごとに異なるバイアル瓶の光学特性の影響により変化するサンプルスペクトルの変化を予測して、同一ロットで得られたサンプルスペクトルデータを変形させ、バイアル瓶のロットよる変動や個々のバイアル瓶のバラツキに対応した検量線作成用スペクトルを作る、すなわち少ないサンプルから多くの検量線作成用スペクトルを作ることにより効率的かつ、外乱に強い検量線を作成することができる。
【0022】
本発明の以上の説明は、説明および例示を目的として特定の好適な実施例を示したに過ぎない。したがって本発明はその本質から逸脱せずに多くの変更、変形をなし得ることは当業者に明らかである。例えば、瓶の寸法は一例を示したに過ぎず具体的数値に限定するものではない。又スペクトル処理としてこの例では示さなかった微分、スムージング等を行い新たなスペクトルを作成することも可能である。特許請求の範囲の欄の記載により定義される本発明の範囲は、その範囲内の変更、変形を包含するものとする。
【0023】
【発明の効果】
以上説明したように、本発明によれば、成分が既知で濃度の異なる複数の試料のそれぞれをバイアル瓶に入れ、これらバイアル瓶に入れた試料に光を照射してその透過光量から複数のスペクトルを求め、そのスペクトルから検量線を作成する近赤外分光分析の多変量解析を用いた検量線作成方法において、前記求めた複数個のスペクトルのスペクトルデータ波形を、バイアル瓶の個体差に基づいて変形させたスペクトルを新たに作成し、作成したデータを新たにスペクトルデータとして加えて検量線を作成したので、少ないサンプルから多くの検量線作成用スペクトルを作ることにより効率的かつ、外乱に強い検量線を作成する方法を実現することができた。
【図面の簡単な説明】
【図1】波形と吸光度のスペクトルグラフを補正した状態を示す図である。
【図2】図1で補正したスペクトルデータをもとに作成した検量線プロットを示す図である。
【図3】同一仕様で作製したバイアル瓶の試料を入れない状態のOH基の吸収スペクトル比較を示す図である。
【図4】同一仕様で作製した瓶の3つの系列ごとに赤外線の透過率を測定した図である。
【図5】4つの系列(ロット)の瓶の実効光路長(ロットによる光路長の分布)の測定結果を示す図である。
【図6】本発明が適用される装置の構成である。
【図7】バイアル瓶に入れたサンプルのスペクトル測定例を示す図である。
【図8】1ロットのバイアル瓶のサンプルから作成した検量線を使用して他の3ロットのバイアル瓶に入ったサンプルを予測した結果を示す図である。
【図9】図7に示すスペクトルにベースライン補正をかけた結果を示す図である。
【図10】同一ロットのバイアル瓶で採ったサンプルスペクトルにベースライン補正を施し、そのスペクトルを使用して検量線を作成し、その検量線を用いて他の3ロットに入れたサンプルを予測した結果を示す図である。
【符号の説明】
1 測定用ホルダ
2 温調器
3 検出器
4 信号変換器
5 パソコン
10 バイアル瓶
12 試料
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for preparing a calibration curve using a vial suitable for use in, for example, a near infrared spectrometer.
[0002]
[Prior art]
First, the configuration of an apparatus to which the present invention is applied will be briefly described with reference to FIGS. In FIG. 6A, reference numeral 1 denotes a measurement holder, and a bottle insertion hole 1a for inserting a vial (meaning a vial bottle, in this case, a bottle for putting a measurement sample) is formed near the center of the holder. The measurement is performed by inserting a bottle into this hole. A preheating bottle insertion hole 1b for inserting a plurality of (six in the figure) preheating bottles is formed around the hole 1a.
[0003]
Reference numeral 2 denotes a temperature controller for maintaining the holder 1 at a predetermined temperature. A light transmitting hole 1c for transmitting near-infrared light (hereinafter, simply referred to as light) is formed on a side surface of the holder 1, and light incident from the hole 1c passes through the center of the bottle. The detector 3.
[0004]
The signal photoelectrically converted by the detector 3 is sent to a signal converter 4 where it is A / D converted, sent to a data processing unit (PC) 5 via a LAN or the like, and displayed in a spectrum.
FIG. 6B shows an example of the shape of the bottle 10 inserted into the bottle insertion hole 1a. In this example, the outer diameter (a) 8, the inner diameter (b) 6, and the height are made of Pyrex (registered trademark) glass. (C) A bottle with a polypropylene lid 13 formed to 40 (mm).
[0005]
Such a bottle is a bottle for collecting a small amount of the sample 12 and performing a sample test. The bottle is easy to handle and only needs to be inserted into the hole of the measurement holder shown in FIG. There is a feature that measurement can be performed quickly and accurately as compared with the case.
[0006]
FIG. 7 shows an apparatus shown in FIG. 6 (a) in which four bottles shown in FIG. 6 (b) are prepared, and a sample 12 (toluene + IPA... Isopropyl alcohol) of the same nature is collected in each of these four bottles. Then, four spectra are shown when each bottle is irradiated with near-infrared light, where the vertical axis indicates absorbance and the horizontal axis indicates wave number (cm-1).
[0007]
Prior art documents of an apparatus for creating a calibration curve using such a vial include the following, for example.
[0008]
[Patent Document]
JP-A-2001-041879
[Problems to be solved by the invention]
By the way, when preparing a calibration curve for a certain liquid, a calibration curve is prepared by putting a liquid having a known component into the vial.
[0010]
However, even vials with the same specifications have differences due to individual differences and variations in products by lot. Therefore, when an unknown sample is measured using a vial from a lot different from that used when the calibration curve was created, there was a problem that the calculation result of the calibration curve varied.
[0011]
FIG. 8 shows a calibration curve created based on a bottle of a certain lot and a spectrum measured using a sample whose components are known, and a bottle of three lots different from the time when the calibration curve was created based on the calibration curve. This is a result of preparing a spectrum by irradiating near-infrared light with each sample and predicting sample components using a calibration curve based on the spectrum. It can be seen that the predicted values vary from lot to lot.
[0012]
There are various types of spectral waveform processing, one of which is baseline correction. The baseline correction corrects the transmittance of the sample at a certain wavelength, and the possibility of correcting the variation in the transmittance of the vial bottle was examined.
FIG. 9 shows a state in which data correction of the base line is performed among the four spectra shown in FIG. 7 and these base lines are matched. As shown in the figure, it can be seen that the baseline A of the absorbance shown on the vertical axis of FIG. 7 has decreased as shown by A ′.
[0013]
FIG. 10 shows a result of predicting a sample included in another lot by a calibration curve created using the spectrum after the above-described baseline correction using the same lot.
As shown in the figure, it can be seen that the predicted values further vary from those shown in FIG.
[0014]
The present invention has been made in order to solve the above-described problems.When creating a calibration curve from a plurality of obtained spectra, the calibration is performed by deforming the spectrum data waveform in consideration of the variation of individual vials and lots. An object of the present invention is to provide a method for creating a calibration curve in which the influence of variations in vials is small by creating a curve.
[0015]
[Means for Solving the Problems]
In order to achieve such an object, in the present invention, in claim 1,
Each of a plurality of samples having known components and different concentrations is placed in a vial, the sample placed in the vial is irradiated with light to obtain a plurality of spectra from the amount of transmitted light, and a calibration curve is prepared from the spectra. In the calibration curve creation method using multivariate analysis of infrared spectroscopy, the spectrum data waveforms of the plurality of spectra obtained above were newly created and created by transforming the spectrum based on individual differences between vials. It is characterized in that a calibration curve is created by newly adding data as spectrum data.
[0016]
According to a second aspect of the present invention, in the method for creating a calibration curve according to the first aspect, the spectrum data is modified with respect to a waveform base line, a change of a vertical axis, and a slope.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 (a, b) shows, in addition to the baseline correction indicated by A ″ in the waveform and absorbance spectrum graphs shown in FIG. 7, the slope E → E ′ together with the height correction of the spectrum peaks D → D ′. It has been corrected.
[0018]
FIG. 2 shows the prediction results of the samples placed in the vials of the other lots using the calibration curve created based on the spectrum data corrected in FIG. 1. The dispersion of the prediction values is small. I understand.
Thereafter, it is data indicating individual differences of vials.
[0019]
FIG. 3 shows a comparison of absorption spectra of OH groups in empty vial bottles (in a state where no sample is put) of bottles manufactured with the same specifications. I have.
FIG. 4 shows the results obtained by measuring the transmittance of infrared rays for each of three series (lots) of bottles having the same specifications, and it can be seen that the transmittance varies for each series.
[0020]
FIG. 5 shows the measurement results of the effective optical path length (distribution of the optical path length depending on the lot) of the bottles of the four series (lots). It can be seen that the dimensions (optical path length) also vary depending on the lot.
[0021]
Therefore, the present invention predicts a change in the sample spectrum that changes due to the influence of the optical properties of the vial that differs for each lot and for each individual, deforms the sample spectrum data obtained in the same lot, and changes the variation due to the lot of the vial. In addition, by creating a spectrum for preparing a calibration curve corresponding to the variation of individual vial bottles, that is, by creating a large number of spectra for preparing a calibration curve from a small number of samples, a calibration curve that is efficient and resistant to disturbance can be created.
[0022]
The foregoing description of the present invention has been presented by way of illustration and example only of particular preferred embodiments. Thus, it will be apparent to one skilled in the art that the present invention may be modified or modified in many ways without departing from its essentials. For example, the size of the bottle is merely an example, and is not limited to specific numerical values. It is also possible to create a new spectrum by performing differentiation, smoothing, etc., not shown in this example, as the spectrum processing. The scope of the present invention defined by the description of the claims is intended to cover alterations and modifications within the scope.
[0023]
【The invention's effect】
As described above, according to the present invention, each of a plurality of samples having known components and different concentrations is placed in a vial, the sample placed in the vial is irradiated with light, and a plurality of spectra are obtained from the amount of transmitted light. In the calibration curve creation method using multivariate analysis of near-infrared spectroscopy to create a calibration curve from the spectrum, the spectrum data waveform of the obtained plurality of spectra, based on individual differences of vial bottles A new deformed spectrum was created, and the created data was added as new spectrum data to create a calibration curve.Therefore, by creating many calibration curve creation spectra from a small number of samples, efficient and robust against disturbances The method of creating lines could be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing a state where a spectrum graph of a waveform and an absorbance is corrected.
FIG. 2 is a diagram showing a calibration curve plot created based on the spectrum data corrected in FIG.
FIG. 3 is a diagram showing a comparison of absorption spectra of OH groups in a state in which a sample of a vial bottle manufactured according to the same specification is not placed.
FIG. 4 is a view showing a measurement of infrared transmittance for each of three series of bottles manufactured with the same specifications.
FIG. 5 is a diagram illustrating a measurement result of an effective optical path length (distribution of an optical path length according to a lot) of four series (lots) of bottles.
FIG. 6 is a configuration of an apparatus to which the present invention is applied.
FIG. 7 is a diagram showing an example of spectrum measurement of a sample placed in a vial bottle.
FIG. 8 is a diagram showing a result of predicting a sample contained in another three lots of vials using a calibration curve created from a sample of one lot of vials.
9 is a diagram showing a result of applying a baseline correction to the spectrum shown in FIG. 7;
FIG. 10: Baseline correction was performed on a sample spectrum taken in a vial bottle of the same lot, a calibration curve was created using the spectrum, and samples in the other three lots were predicted using the calibration curve. It is a figure showing a result.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Measurement holder 2 Temperature controller 3 Detector 4 Signal converter 5 Personal computer 10 Vial bottle 12 Sample

Claims (2)

成分が既知で濃度の異なる複数の試料のそれぞれをバイアル瓶に入れ、これらバイアル瓶に入れた試料に光を照射してその透過光量から複数のスペクトルを求め、そのスペクトルから検量線を作成する近赤外分光分析の多変量解析を用いた検量線作成方法において、前記求めた複数個のスペクトルのスペクトルデータ波形を、バイアル瓶の個体差に基づいて変形させたスペクトルを新たに作成し、作成したデータを新たにスペクトルデータとして加えて検量線を作成したことを特徴とする検量線作成方法。Each of a plurality of samples having known components and different concentrations is placed in a vial, the sample placed in the vial is irradiated with light to obtain a plurality of spectra from the amount of transmitted light, and a calibration curve is prepared from the spectra. In the calibration curve creation method using multivariate analysis of infrared spectroscopy, the spectrum data waveforms of the plurality of spectra obtained above were newly created and created by transforming the spectrum based on individual differences between vials. A method for creating a calibration curve, characterized in that a calibration curve is created by newly adding data as spectrum data. スペクトルデータの変形は波形のベースライン、縦軸の大きさ、傾きについて行なうことを特徴とする請求項1記載の検量線作成方法。2. The calibration curve creation method according to claim 1, wherein the modification of the spectrum data is performed for the baseline of the waveform, the magnitude of the vertical axis, and the slope.
JP2003147601A 2003-05-26 2003-05-26 Calibration curve production method Pending JP2004347559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003147601A JP2004347559A (en) 2003-05-26 2003-05-26 Calibration curve production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147601A JP2004347559A (en) 2003-05-26 2003-05-26 Calibration curve production method

Publications (1)

Publication Number Publication Date
JP2004347559A true JP2004347559A (en) 2004-12-09

Family

ID=33534087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147601A Pending JP2004347559A (en) 2003-05-26 2003-05-26 Calibration curve production method

Country Status (1)

Country Link
JP (1) JP2004347559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187594A (en) * 2006-01-16 2007-07-26 Yokogawa Electric Corp Correction method of calibration curve
JP2008050674A (en) * 2006-08-28 2008-03-06 Mitsubishi Chemicals Corp Method for forming oxide film and apparatus for forming oxide film
WO2014034668A1 (en) * 2012-08-31 2014-03-06 築野食品工業株式会社 Method for quantifying γ-oryzanol using near infrared spectroscopy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187594A (en) * 2006-01-16 2007-07-26 Yokogawa Electric Corp Correction method of calibration curve
JP2008050674A (en) * 2006-08-28 2008-03-06 Mitsubishi Chemicals Corp Method for forming oxide film and apparatus for forming oxide film
WO2014034668A1 (en) * 2012-08-31 2014-03-06 築野食品工業株式会社 Method for quantifying γ-oryzanol using near infrared spectroscopy
JPWO2014034668A1 (en) * 2012-08-31 2016-08-08 築野食品工業株式会社 Quantitative determination of γ-oryzanol using near infrared spectroscopy

Similar Documents

Publication Publication Date Title
Smith et al. Modern Raman spectroscopy: a practical approach
Chen et al. Extracting chemical information from spectral data with multiplicative light scattering effects by optical path-length estimation and correction
Paiva et al. Quantification of biodiesel and adulteration with vegetable oils in diesel/biodiesel blends using portable near-infrared spectrometer
Gupta Molecular and laser spectroscopy: advances and applications
Challa et al. Chemometrics-based process analytical technology (PAT) tools: applications and adaptation in pharmaceutical and biopharmaceutical industries
Chen et al. Adaptive wavelet transform suppresses background and noise for quantitative analysis by Raman spectrometry
Macleod et al. Emerging non-invasive Raman methods in process control and forensic applications
Ntziouni et al. Review of existing standards, guides, and practices for Raman spectroscopy
García Martín Potential of near-infrared spectroscopy for the determination of olive oil quality
Sheehy et al. Open-sourced Raman spectroscopy data processing package implementing a baseline removal algorithm validated from multiple datasets acquired in human tissue and biofluids
Carreres-Prieto et al. Spectroscopy transmittance by LED calibration
Chalmers et al. Vibrational spectroscopy techniques: basics and instrumentation
Melendreras et al. An affordable NIR spectroscopic system for fraud detection in olive oil
García-González et al. Infrared, raman, and fluorescence spectroscopies: Methodologies and applications
JP2004347559A (en) Calibration curve production method
Hjältén et al. Line positions and intensities of the ν1 band of 12CH3I using mid-infrared optical frequency comb Fourier transform spectroscopy
Workman Jr et al. Calibration transfer chemometrics, part II: a review of the subject
Mainreck et al. Characterization of glycosaminoglycans by tandem vibrational microspectroscopy and multivariate data analysis
Martinez Gila et al. Non-invasive methodology to estimate polyphenol content in extra virgin olive oil based on stepwise multilinear regression
JP4974042B2 (en) Spectral correction method
Lasch et al. Data acquisition and analysis in biomedical vibrational spectroscopy
Ciaccheri et al. Measuring water residue in olive oil by means of a smartphone-connected pocket spectrometer and artificial intelligence
Zhou et al. Quantification of the Soluble Solids Content of Intact Apples by Vis–NIR Transmittance Spectroscopy and the LS-SVM Method
Gordon et al. Raman spectroscopy
Workman Jr et al. Using Reference Materials, Part II: Photometric Standards