JPWO2014017291A1 - Method for making silicone resin conductive and silicone resin with metal film - Google Patents

Method for making silicone resin conductive and silicone resin with metal film Download PDF

Info

Publication number
JPWO2014017291A1
JPWO2014017291A1 JP2014526845A JP2014526845A JPWO2014017291A1 JP WO2014017291 A1 JPWO2014017291 A1 JP WO2014017291A1 JP 2014526845 A JP2014526845 A JP 2014526845A JP 2014526845 A JP2014526845 A JP 2014526845A JP WO2014017291 A1 JPWO2014017291 A1 JP WO2014017291A1
Authority
JP
Japan
Prior art keywords
silicone resin
substrate
treatment
catalyst
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014526845A
Other languages
Japanese (ja)
Inventor
西脇 泰二
泰二 西脇
梅田 泰
泰 梅田
雄彦 田代
雄彦 田代
正洋 吉野
正洋 吉野
本間 英夫
英夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Gakuin School Corp
Original Assignee
Kanto Gakuin School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Gakuin School Corp filed Critical Kanto Gakuin School Corp
Publication of JPWO2014017291A1 publication Critical patent/JPWO2014017291A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemically Coating (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本発明のシリコーン樹脂の導電化方法は、不飽和結合含有オルガノポリシロキサンを重合し、シリコーン樹脂からなる基体を作製する基体作製工程と、前記基体に紫外線を照射するUV処理工程、及び前記基体とオゾン水とを接触させるオゾン工程の少なくともいずれかの工程と、無電解めっき反応の触媒を基体に付与する触媒工程と、無電解めっき膜を成膜する導電化工程と、を具備する。The conductive method of the silicone resin of the present invention comprises a substrate preparation step of polymerizing an unsaturated bond-containing organopolysiloxane to prepare a substrate made of a silicone resin, a UV treatment step of irradiating the substrate with ultraviolet rays, and the substrate. It comprises at least one of an ozone process for contacting ozone water, a catalyst process for imparting a catalyst for electroless plating reaction to a substrate, and a conductive process for forming an electroless plating film.

Description

本発明は、無電解めっき法によるシリコーン樹脂の導電化方法及び無電解めっき法により成膜された金属皮膜付シリコーン樹脂に関する。   The present invention relates to a conductive method for a silicone resin by an electroless plating method and a silicone resin with a metal film formed by an electroless plating method.

有機物と無機物とのハイブリッド素材であるシリコーン樹脂は、その優れた特性からMEMS構造体、ナノテクノロジー構造体、及び光学部品等への応用が期待されている。すなわち、シロキサン結合の直鎖高分子に有機基が結合したシリコーン樹脂は、高耐薬品性及び高耐熱性を示す。特に、PDMS(poly dimethyl siloxane)を主成分とするシリコーン樹脂、例えば、室温でゴム弾性を有するエラストマーであるシリコーンゴムは、透明で高屈折率という優れた光学特性を示し、光学用途の次世代材料としても注目を集めている。   Silicone resin, which is a hybrid material of an organic substance and an inorganic substance, is expected to be applied to MEMS structures, nanotechnology structures, optical parts and the like because of its excellent characteristics. That is, a silicone resin in which an organic group is bonded to a siloxane-bonded linear polymer exhibits high chemical resistance and high heat resistance. In particular, silicone resin based on PDMS (poly dimethyl siloxane), for example, silicone rubber, which is an elastomer having rubber elasticity at room temperature, is a next-generation material for optical applications that exhibits excellent optical properties such as transparency and high refractive index. Also attracting attention.

シリコーン樹脂を更に高機能化するために、シリコーン樹脂への金属膜形成が多く研究されている。しかし、その多くは、蒸着法又はスパッタ法等の、いわゆる乾式成膜法である。   In order to further enhance the functionality of silicone resins, much research has been conducted on the formation of metal films on silicone resins. However, most of them are so-called dry film forming methods such as vapor deposition or sputtering.

発明者は、湿式成膜法、特に複雑な表面形状の樹脂に対しても均一な金属膜の形成が可能な無電解めっき法に着目し研究を進めている。無電解めっき法による樹脂への金属膜成膜では、一般的に化学的エッチング処理、物理的エッチング処理等により表面を粗化した後、触媒を付与し、続いて、めっき法による成膜が行われる。   The inventor has been conducting research while focusing on a wet film forming method, particularly an electroless plating method capable of forming a uniform metal film even on a resin having a complicated surface shape. When forming a metal film on a resin by electroless plating, the surface is generally roughened by chemical etching, physical etching, etc., and then a catalyst is applied, followed by film formation by plating. Is called.

しかし、シリコーン樹脂は、化学的エッチングが容易ではなく、物理的粗化では光学特性又は/及び物性が劣化してしまうおそれがあった。   However, the chemical etching of the silicone resin is not easy, and there is a possibility that optical properties and / or physical properties may be deteriorated by physical roughening.

なお、発明者らは、日本国特開2008−94923号公報において、シクロオレフィンポリマー(COP)に紫外線を照射し表面改質することで、表面を大きく粗化することなく、密着性のよい無電解めっき膜の成膜が可能なことを開示している。   In addition, in Japanese Unexamined Patent Application Publication No. 2008-94923, the inventors of the present invention have improved adhesion by irradiating the cycloolefin polymer (COP) with ultraviolet rays without greatly roughening the surface. It discloses that an electrolytic plating film can be formed.

しかし、シリコーン樹脂は、シクロオレフィンポリマーとは全く構造が異なるため、シクロオレフィンポリマーの技術を単純に応用することはできない。特に光学用途の透明なシリコーン樹脂の場合には、表面粗化は光学特性に大きな影響を及ぼすことが懸念されていた。   However, since the structure of silicone resin is completely different from that of cycloolefin polymer, the technology of cycloolefin polymer cannot be simply applied. In particular, in the case of a transparent silicone resin for optical use, there has been a concern that surface roughening has a great influence on optical properties.

このため、シリコーン樹脂の特性、特に光学特性を劣化することなく、密着性のよい無電解めっき膜が成膜できるシリコーン樹脂の導電化方法が求められていた。   For this reason, there has been a demand for a conductive method for a silicone resin that can form an electroless plating film with good adhesion without deteriorating the properties of the silicone resin, particularly the optical properties.

本発明の実施形態は、密着性のよい無電解めっき膜が成膜できるシリコーン樹脂の導電化方法及び密着性のよい金属皮膜付シリコーン樹脂を提供することを目的とする。   An object of an embodiment of the present invention is to provide a conductive method of a silicone resin capable of forming an electroless plating film having good adhesion and a silicone resin with a metal film having good adhesion.

本発明の実施形態のシリコーン樹脂の導電化方法は、不飽和結合含有オルガノポリシロキサンを重合しシリコーン樹脂からなる基体を作製する基体作製工程と、前記基体に紫外線を照射するUV処理工程、及び前記基体とオゾン水と接触させるオゾン工程の少なくともいずれかの工程と、無電解めっき反応の触媒を表面に付与する触媒工程と、無電解めっき膜を成膜する導電化工程と、を具備する。   The conductive method of the silicone resin according to the embodiment of the present invention includes a substrate preparation step of preparing a substrate made of a silicone resin by polymerizing an unsaturated bond-containing organopolysiloxane, a UV treatment step of irradiating the substrate with ultraviolet rays, and the above It comprises at least one of an ozone process for contacting the substrate and ozone water, a catalyst process for imparting a catalyst for electroless plating reaction to the surface, and a conductive process for forming an electroless plating film.

また、別の実施形態の金属皮膜付シリコーン樹脂は、シリコーン樹脂からなる基体と、前記基体の上に成膜された無電解めっき膜と、からなる。   Moreover, the silicone resin with a metal film of another embodiment consists of the base | substrate which consists of a silicone resin, and the electroless-plating film | membrane formed into a film on the said base | substrate.

第1実施形態のPDMSの導電化方法を説明するためのフローチャートである。It is a flowchart for demonstrating the electrically conductive method of PDMS of 1st Embodiment. 第1実施形態のPDMSの光透過率を示す図である。It is a figure which shows the light transmittance of PDMS of 1st Embodiment. 第1実施形態のPDMSの導電化方法におけるUV処理を説明するための図である。It is a figure for demonstrating the UV process in the electrically conductive method of PDMS of 1st Embodiment. 第1実施形態のPDMSのUV処理前の接触角測定器による測定結果を示す図である。It is a figure which shows the measurement result by the contact angle measuring device before UV processing of PDMS of 1st Embodiment. 第1実施形態のPDMSのUV処理後の接触角測定器による測定結果を示す図である。It is a figure which shows the measurement result by the contact angle measuring device after UV processing of PDMS of 1st Embodiment. 第1実施形態のPDMSのフーリエ変換赤外分光分析装置による測定結果を示す図である。It is a figure which shows the measurement result by the Fourier-transform infrared spectroscopy analyzer of PDMS of 1st Embodiment. 第1実施形態のPDMSのフーリエ変換赤外分光分析装置による測定結果を示す図である。It is a figure which shows the measurement result by the Fourier-transform infrared spectroscopy analyzer of PDMS of 1st Embodiment. 第1実施形態の未処理のPDMSの表面形態測定結果を示す図である。It is a figure which shows the surface form measurement result of untreated PDMS of 1st Embodiment. 第1実施形態のアルカリ処理後のPDMSの表面形態測定結果を示す図である。It is a figure which shows the surface form measurement result of PDMS after the alkali treatment of 1st Embodiment. 第1実施形態の二段処理後のPDMSの表面形態測定結果を示す図である。It is a figure which shows the surface form measurement result of PDMS after the two-step process of 1st Embodiment. 第2実施形態のオゾン水作製方法を説明するための図である。It is a figure for demonstrating the ozone water preparation method of 2nd Embodiment.

<第1実施形態>
以下、図1に示すフローチャートに沿って、第1実施形態のPDMSの導電化方法について説明する。なお、工程間の水洗工程については説明を省略する。
<First Embodiment>
Hereinafter, the PDMS conductive method according to the first embodiment will be described with reference to the flowchart shown in FIG. In addition, description is abbreviate | omitted about the water washing process between processes.

<ステップS11>基体作製工程
不飽和結合含有オルガノポリシロキサンを主成分として重合し、シリコーンゴムからなる基体が作製される。重合には架橋剤としてオルガノハイドロジェンポリシロキサンを用いた。なお、以下、シリコーンゴムのことを、単に「PDMS」又は「シリコーン樹脂」ともいう。
<Step S11> Substrate preparation step A substrate made of silicone rubber is prepared by polymerizing an unsaturated bond-containing organopolysiloxane as a main component. In the polymerization, organohydrogenpolysiloxane was used as a crosslinking agent. Hereinafter, the silicone rubber is also simply referred to as “PDMS” or “silicone resin”.

PDMSの主成分である不飽和結合含有オルガノポリシロキサンは一分子中に少なくとも2個のビニル基又はアリル基などの脂肪族不飽和結合を有しており、例えば、以下の化学式(化1)で示される。   The organopolysiloxane containing unsaturated bonds, which is the main component of PDMS, has at least two aliphatic unsaturated bonds such as vinyl groups or allyl groups in one molecule. For example, the following chemical formula (Formula 1) Indicated.

(化1)

Figure 2014017291
上記式中、p、qは正の整数であり、10≦p+q≦1,000、好ましくは50≦p+q≦500で、0<q/(p+q)≦0.2を満足する。(Chemical formula 1)
Figure 2014017291
In the above formula, p and q are positive integers, 10 ≦ p + q ≦ 1,000, preferably 50 ≦ p + q ≦ 500, and 0 <q / (p + q) ≦ 0.2 is satisfied.

架橋剤であるオルガノハイドロジェンポリシロキサンは、例えば、以下の化学式(化2)で表される。   The organohydrogenpolysiloxane that is a cross-linking agent is represented, for example, by the following chemical formula (Formula 2).

(化2)

Figure 2014017291
上記式中、k、mは正の整数であり、一分子中にケイ素原子に結合した水素原子(SiH基)を少なくとも2個(m=2〜300)、好ましくは3個以上(m=3〜200)、更に好ましくは4〜100個(m=4〜100)有する。(Chemical formula 2)
Figure 2014017291
In the above formula, k and m are positive integers, and at least 2 hydrogen atoms (SiH groups) bonded to silicon atoms (m = 2 to 300), preferably 3 or more (m = 3) in one molecule. To 200), more preferably 4 to 100 (m = 4 to 100).

オルガノハイドロジェンポリシロキサンのSiH基と、主成分のビニル基等の不飽和基とが付加する硬化(重合)反応により、シリコーン樹脂が作製される。   A silicone resin is produced by a curing (polymerization) reaction in which an SiH group of the organohydrogenpolysiloxane and an unsaturated group such as a vinyl group as a main component are added.

なお、重合反応触媒として、白金族金属系触媒、例えば、H2PtCl6・mH2Oを、白金族金属の重量換算で0.1〜500ppm含んでいてもよい。Incidentally, as the polymerization catalyst, a platinum group metal catalyst, for example, the H 2 PtCl 6 · mH 2 O , may contain 0.1~500ppm by weight is a platinum group metal.

更に、必要に応じて、シリコーンオイル等の低分子成分、アセチレンアルコール等の硬化抑制剤、又は、アルコキシシランもしくはシランカップリング剤等の接着性改善成分を配合してもよい
硬化処理は、80〜180℃で5分〜6時間、好ましくは100〜160℃で10分〜4時間である。
Furthermore, if necessary, a low molecular component such as silicone oil, a curing inhibitor such as acetylene alcohol, or an adhesion improving component such as alkoxysilane or silane coupling agent may be blended. It is 5 minutes to 6 hours at 180 ° C., preferably 10 minutes to 4 hours at 100 to 160 ° C.

例えば、信越化学工業製の1液型のシリコーン樹脂(RTV)が、アルミナセラミックス基体上に2mmの厚さに塗布され、150℃、30分間の熱処理により重合され、分子量5000〜10000のPDMSからなる基体10が作製された。   For example, a one-part silicone resin (RTV) manufactured by Shin-Etsu Chemical Co., Ltd. is applied to an alumina ceramic substrate to a thickness of 2 mm, polymerized by heat treatment at 150 ° C. for 30 minutes, and consists of PDMS having a molecular weight of 5000 to 10,000. A substrate 10 was produced.

基体10の作製時に、所定の型枠、又は、2つの型枠を接合した枠型の内部に未硬化の樹脂を流し込むことにより、所望の形状の基体を容易に作製できる。例えば、非線形の内面形状の凹型の枠型を用いることで、非線形の球面を有する透明基体が作製される。   When the base 10 is manufactured, an uncured resin is poured into a predetermined mold frame or a frame mold obtained by joining two mold frames, whereby a base body having a desired shape can be easily manufactured. For example, a transparent substrate having a non-linear spherical surface is produced by using a concave frame shape having a non-linear inner surface shape.

図2に、基体10を分光光度計(日立ハイテクノロジーズ社製、U−3310)により光透過性を測定した結果を示す。基体10は、波長250〜350nm付近になだらかな吸収ピークが観察されたが、波長400nm以上では吸収ピークは観察されず、可視光領域においては良好な光透過性を有していた。   In FIG. 2, the result of having measured the light transmittance of the base | substrate 10 with the spectrophotometer (the Hitachi High-Technologies company make, U-3310) is shown. The substrate 10 showed a gentle absorption peak in the vicinity of a wavelength of 250 to 350 nm. However, no absorption peak was observed at a wavelength of 400 nm or more, and the substrate 10 had good light transmittance.

<ステップS12>UV処理工程
UV処理工程は、基体10に有酸素雰囲気下で紫外線を照射し、表面改質する工程である。UV処理工程で用いる紫外線の主波長は、例えば、170〜400nmが好ましく、照射強度(紫外線の基体10の表面における強度)は、1〜500mW/cmが好ましい。照射強度が前記範囲以上であれば、生産効率がよく、前記範囲以下であれば内部にまで変質が及び基体10の全体が脆くなるおそれがない。
<Step S12> UV treatment step The UV treatment step is a step of surface modification by irradiating the substrate 10 with ultraviolet rays in an aerobic atmosphere. The dominant wavelength of ultraviolet rays used in the UV treatment step is preferably, for example, 170 to 400 nm, and the irradiation intensity (intensity of ultraviolet rays on the surface of the substrate 10) is preferably 1 to 500 mW / cm 2 . If the irradiation intensity is not less than the above range, the production efficiency is good.

紫外線の主波長が前記範囲以上であれば、一般的な光源が使用可能であり、前記範囲以下であれば光線透過率が小さいため、改質効果が得られやすい。より好ましい波長範囲は170〜300nmであり、更に好ましい波長範囲は180〜280nmである。   If the main wavelength of the ultraviolet light is not less than the above range, a general light source can be used, and if it is not more than the above range, the light transmittance is small, so that the modification effect is easily obtained. A more preferable wavelength range is 170 to 300 nm, and a more preferable wavelength range is 180 to 280 nm.

照射時間は照射強度との関係を考慮し決定されるが、0.5分〜60分が好ましい。前記範囲以上では制御が容易であり、前記範囲以下では量産性に問題が生じない。   The irradiation time is determined in consideration of the relationship with the irradiation intensity, but is preferably 0.5 minutes to 60 minutes. Above the range, the control is easy, and below the range, there is no problem in mass productivity.

例えば、図3に示すように、低圧水銀ランプ21を備えたUV照射装置20(主波長:253.7nm、江東電気社製、KOL1−300)を用い、照射距離D:30mm、照射強度:60mW/cmで、最大30分間、基体10に紫外線を照射した。For example, as shown in FIG. 3, using a UV irradiation apparatus 20 (main wavelength: 253.7 nm, manufactured by Koto Electric Co., Ltd., KOL1-300) equipped with a low-pressure mercury lamp 21, an irradiation distance D: 30 mm, an irradiation intensity: 60 mW The substrate 10 was irradiated with ultraviolet rays at / cm 2 for a maximum of 30 minutes.

なお、UV処理により、光透過性は大きくは変化していなかった。   Note that the light transmittance was not significantly changed by the UV treatment.

UV処理の効果を確認するために、UV処理前後の基体10の濡れ性評価を、接触角測定器(メイワフォーシス社製、Phoenix alpha、イオン交換水:50μL)を使用し行った。図4Aに示すように、UV処理前のシリコーン樹脂は接触角θ=99.8度と疎水性であった。一方、図4Bに示すように、UV照射を30分行ったシリコーン樹脂は、大きく親水化し、水が大きく広がっているため、正確な接触角の測定は不可能であった。   In order to confirm the effect of the UV treatment, the wettability evaluation of the substrate 10 before and after the UV treatment was performed using a contact angle measuring device (Meiwa Forsys, Phoenix alpha, ion-exchanged water: 50 μL). As shown in FIG. 4A, the silicone resin before UV treatment was hydrophobic with a contact angle θ = 99.8 degrees. On the other hand, as shown in FIG. 4B, the silicone resin that had been subjected to UV irradiation for 30 minutes became highly hydrophilic and the water spread greatly, so that accurate contact angle measurement was impossible.

また、UV処理によるシリコーン樹脂の化学構造変化を、フーリエ変換赤外分光分析装置(日本分光社製、FT/IR−6100+IRT−5000)を用いて分析した。図5A及び図5Bに示すように、UV処理により、1720cm−1付近にカルボキシル(RCOO−)基に由来する吸収ピークが出現し、3000〜3500cm-1付近の(-OH)基に由来する吸収ピークがより顕著となった。Moreover, the chemical structure change of the silicone resin by UV treatment was analyzed using a Fourier transform infrared spectrometer (manufactured by JASCO Corporation, FT / IR-6100 + IRT-5000). As shown in FIGS. 5A and 5B, the UV treatment, absorption appeared absorption peak attributable to a carboxyl (RCOO-) group near 1720 cm -1, from (-OH) group in the vicinity of 3000~3500Cm -1 The peak became more prominent.

すなわち、直鎖シリコン高分子に結合している有機基が一部分解し、(−C(=0)−)基が生成し、結合の切れた箇所に(RCOO−)基及び低分子の(-OH)基等が生成する改質がUV処理により、行われていると推定される。   That is, a part of the organic group bonded to the linear silicon polymer is decomposed to form a (—C (= 0) —) group, and the (RCOO—) group and the low molecular (− It is presumed that the modification generated by the (OH) group or the like is performed by the UV treatment.

なお、窒素雰囲気又はアンモニア雰囲気など、有機高分子を構成する元素を含有する雰囲気下でUV処理を行うことで、N等を取り込んだ構造に改質することも可能である。   In addition, it is also possible to modify | reform to the structure which took in N etc. by performing UV treatment in the atmosphere containing the element which comprises organic polymer, such as nitrogen atmosphere or ammonia atmosphere.

<ステップS13>アルカリ処理工程
UV処理後の基体10が、アルカリ溶液(50g/L、NaOH溶液、60℃)に2分間浸漬された。アルカリ処理により、改質部の末端がNaとなるため、より親水性となり、触媒工程における触媒の吸着量が増加する。なお、アルカリ処理工程は、必須の工程ではない。
<Step S13> Alkali Treatment Step The substrate 10 after UV treatment was immersed in an alkali solution (50 g / L, NaOH solution, 60 ° C.) for 2 minutes. Since the terminal of the reforming portion becomes Na by the alkali treatment, it becomes more hydrophilic, and the amount of adsorption of the catalyst in the catalyst process increases. Note that the alkali treatment step is not an essential step.

<ステップS14>触媒工程
触媒工程では、無電解めっき反応の触媒であるパラジウム(Pd)が基体10の表面に付与される。
<Step S14> Catalyst Process In the catalyst process, palladium (Pd), which is a catalyst for the electroless plating reaction, is applied to the surface of the substrate 10.

無電解めっき法の触媒工程では、(a) Sn/Pd混合触媒処理、(b) 酸性イオンアクチベーター処理、(c) 塩化第1スズ−塩化Pd二段処理、及び、(d) アルカリ性アクチベーター処理の4種類の触媒処理が広く用いられている。このため、4種類の触媒処理を行い、比較を行った。   In the electroless plating catalyst step, (a) Sn / Pd mixed catalyst treatment, (b) acidic ion activator treatment, (c) stannous chloride-Pd two-stage treatment, and (d) alkaline activator Four types of catalyst treatment are widely used. For this reason, four types of catalyst treatments were performed for comparison.

(a)Sn/Pd混合触媒処理及び(b)酸性イオンアクチベーター処理では、最初に、カチオン系界面活性剤を含むコンディショニング剤(ロームアンドハース電子材料製CC−231)によるコンディショニング処理が行われる。コンディショニング処理により、界面活性剤の疎水基が基体10の表面に吸着し、触媒工程では基体10に吸着した界面活性剤の親水基にPdイオンが吸着する。   In (a) Sn / Pd mixed catalyst treatment and (b) acidic ion activator treatment, first, a conditioning treatment using a conditioning agent containing a cationic surfactant (CC-231 manufactured by Rohm and Haas Electronic Materials) is performed. By the conditioning treatment, the hydrophobic group of the surfactant is adsorbed on the surface of the substrate 10, and Pd ions are adsorbed on the hydrophilic group of the surfactant adsorbed on the substrate 10 in the catalyst step.

(a)Sn/Pd混合触媒処理では、コンディショニング処理の後に、更にプレディップ処理が行われた。プレディップ処理では、例えば、塩化ナトリウム水溶液に浸漬することで、基体10の親水基及びコンディショニング処理で表面に吸着した界面活性剤の親水基、にナトリウムイオン及び塩素イオンが吸着する。このため、表面電位等が、より平準化し、触媒が、より均一に付与する。そして、触媒工程では、Pd/Snコロイド溶液(キャタポジット44、ロームアンドハース社製)に浸漬後、10%硫酸に浸漬する活性化処理(リデューサー処理)が行われる。   (A) In the Sn / Pd mixed catalyst treatment, a pre-dip treatment was further performed after the conditioning treatment. In the pre-dip treatment, for example, by immersing in a sodium chloride aqueous solution, sodium ions and chlorine ions are adsorbed on the hydrophilic groups of the substrate 10 and the hydrophilic groups of the surfactant adsorbed on the surface by the conditioning treatment. For this reason, surface potential etc. are leveled more and a catalyst provides more uniformly. And in a catalyst process, the activation process (reducer process) immersed in 10% sulfuric acid is performed after being immersed in Pd / Sn colloid solution (Cataposit 44, manufactured by Rohm and Haas).

(b)酸性イオンアクチベーター処理では、コンディショニング処理の後に、0.3g/Lの塩化Pd溶液に浸漬し表面にPdイオンを吸着し、次に還元剤含有溶液、例えば、次亜リン酸塩溶液によりPdイオンを金属に還元するリデューサー処理が行われる。   (B) In the acidic ion activator treatment, after conditioning treatment, it is immersed in a 0.3 g / L Pd chloride solution to adsorb Pd ions on the surface, and then a reducing agent-containing solution such as a hypophosphite solution. Thus, a reducer process for reducing Pd ions to metal is performed.

(c)二段処理では、例えば、0.1g/Lの塩化第1Sn(すず)溶液に浸漬後、0.05g/Lの塩化Pd溶液に浸漬される。2価Snイオンが4価Snイオンに変化するため、基体に吸着したPdイオンは、金属に還元される。   (C) In the two-stage treatment, for example, after dipping in a 0.1 g / L first chloride chloride (tin) solution, it is dipped in a 0.05 g / L Pd chloride solution. Since divalent Sn ions change to tetravalent Sn ions, Pd ions adsorbed on the substrate are reduced to metal.

(d)アルカリ性アクチベーター処理は、ネオガントB(アトテック社製)によるコンディショニング処理、ネオガント834(アトテック社製)によるPdイオンを吸着するアクチベーター処理と、ネオガントWA(アトテック社製)によるPdイオンを金属に還元するリデューサー処理とが順に行われる。   (D) Alkaline activator treatment includes conditioning treatment with Neogant B (Atotech), activator treatment for adsorbing Pd ions with Neogant 834 (Atotech), and Pd ions with Neogant WA (Atotech) The reducer process to reduce to is performed in order.

なお、基体10を触媒溶液等と接触するには、浸積法に限られるものではなく、スプレー法等も用いることができる。   In addition, in order to contact the base | substrate 10 with a catalyst solution etc., it is not restricted to an immersion method, The spray method etc. can also be used.

各触媒処理後のPd吸着量を、基体10を王水に浸漬しPdを溶解させ、原子吸光分析装置(Thermo Fisher inc.製、Solaar S4)で測定した。参考のため、UV処理を行わない基体(未処理)についても同様に触媒処理を行い、Pd吸着量を測定した。   The Pd adsorption amount after each catalyst treatment was measured with an atomic absorption analyzer (Solaar S4, manufactured by Thermo Fisher Inc.) by immersing the substrate 10 in aqua regia to dissolve Pd. For reference, the substrate not subjected to UV treatment (untreated) was similarly subjected to catalyst treatment, and the Pd adsorption amount was measured.

表1に示すように、UV処理により、いずれの触媒処理でも、Pd吸着量(mg/dm)は大きく増加した。特に、(c)二段処理では、未処理の基体では極めて少ない吸着量であったが、UV処理後の基体では吸着量は処理前の10倍にまで増加した。As shown in Table 1, the amount of Pd adsorbed (mg / dm 2 ) was greatly increased by UV treatment in any catalyst treatment. In particular, in (c) the two-stage treatment, the amount of adsorption was very small for the untreated substrate, but the amount of adsorption for the substrate after UV treatment was increased to 10 times that before treatment.

(表1)

Figure 2014017291
表2にUV処理時間によるPd吸着量(mg/dm)の変化を、(c)二段処理において測定した結果を示す。(Table 1)
Figure 2014017291
Table 2 shows the results of measuring the change in Pd adsorption amount (mg / dm 2 ) with UV treatment time in (c) two-stage treatment.

(表2)

Figure 2014017291
以上の結果から、UV照射装置20を用い、照射距離D:30mm、照射強度:60mW/cmの条件の場合には、照射時間は、20分で十分なことが判明した。(Table 2)
Figure 2014017291
From the above results, it was found that the irradiation time of 20 minutes was sufficient when the UV irradiation apparatus 20 was used and the irradiation distance D was 30 mm and the irradiation intensity was 60 mW / cm 2 .

<ステップS15>導電化工程
導電化工程における無電解めっき膜の成膜には、以下の無電解NiPめっき浴を用いた。
<Step S15> Conduction Process The following electroless NiP plating bath was used for forming the electroless plating film in the conductivity process.

<無電解NiPめっき浴>
硫酸ニッケル・六水和物 0.10mol/dm
クエン酸 0.20mol/dm
塩化アンモニウム 0.75mol/dm
次亜リン酸ナトリウム1水和物 0.20mol/dm
チオ尿素 2.0mg/dm
pH調整剤 水酸化ナトリウム、硫酸
pH: 9.0
浴温: 45℃
めっき時間: 5分間
UV処理後に、上記(a)〜(d)の4種類の触媒処理を行った基体10に無電解ニッケルめっきを行った結果、いずれの触媒処理でも無電解反応が進行し、導電化処理が可能であった。しかし、(a)Sn/Pd混合触媒処理では、めっき膜に少し不均一な領域があった。また、(d)アルカリ性アクチベーター処理では、めっき膜の均一性が高くはなかった。これに対して、(c)二段処理では、非常に均一なめっき膜が成膜され、(b)酸性イオンアクチベーター処理では非常に均一で、かつ密着性の高いめっき膜が成膜された。
<Electroless NiP plating bath>
Nickel sulfate hexahydrate 0.10 mol / dm 3
Citric acid 0.20 mol / dm 3
Ammonium chloride 0.75 mol / dm 3
Sodium hypophosphite monohydrate 0.20 mol / dm 3
Thiourea 2.0 mg / dm 3
pH adjuster Sodium hydroxide, sulfuric acid pH: 9.0
Bath temperature: 45 ° C
Plating time: 5 minutes After the UV treatment, as a result of electroless nickel plating on the substrate 10 subjected to the four types of catalyst treatments (a) to (d) above, the electroless reaction proceeds in any catalyst treatment, Conductive treatment was possible. However, (a) in the Sn / Pd mixed catalyst treatment, the plating film had a slightly non-uniform region. In addition, in the (d) alkaline activator treatment, the uniformity of the plating film was not high. In contrast, (c) a two-stage treatment formed a very uniform plating film, and (b) an acidic ion activator treatment formed a very uniform and highly adhesive plating film. .

なお、UV処理を行わない基体では、(a)Sn/Pd混合触媒処理及び(b)酸性イオンアクチベーター処理では無電解反応が進行したが、密着性が弱く、めっき後の水洗により剥離した。また(c)二段処理及び(d)アルカリ性アクチベーター処理では、無電解反応が殆ど発生しなかった。   In the substrate not subjected to UV treatment, the electroless reaction proceeded in (a) Sn / Pd mixed catalyst treatment and (b) acidic ion activator treatment, but the adhesion was weak and was peeled off by washing with water after plating. Further, in (c) two-stage treatment and (d) alkaline activator treatment, almost no electroless reaction occurred.

なお、無電解めっき反応の触媒工程では、Pd触媒に替えて、Ag触媒又はCu触媒等を用いることもできる。   In the electroless plating reaction catalyst step, an Ag catalyst, a Cu catalyst, or the like can be used instead of the Pd catalyst.

<ステップS16>熱処理工程A
80℃、30min.の熱処理が行われた。
<Step S16> Heat treatment step A
Heat treatment was performed at 80 ° C. for 30 min.

<ステップS16>厚膜化工程
厚膜化工程における電解めっき膜の成膜には、以下の電解銅めっき浴を用いた。
<Step S16> Thickening Process The following electrolytic copper plating bath was used for forming the electrolytic plating film in the thickening process.

<電解銅めっき浴>
硫酸銅・五水和物 200g/L
硫酸 50g/L
光沢剤 適量
電流密度:2A/dm
浴温:室温
めっき膜厚:20μm
<ステップS17>熱処理工程B
再度、80℃、30min.の熱処理が行われた。
<Electrolytic copper plating bath>
Copper sulfate pentahydrate 200g / L
Sulfuric acid 50g / L
Brightener appropriate amount current density: 2 A / dm 2
Bath temperature: Room temperature Plating film thickness: 20 μm
<Step S17> Heat treatment step B
Again, heat treatment was performed at 80 ° C. for 30 min.

なお、無電解めっき法により金属皮膜付シリコーン樹脂が作製された後に行われる厚膜化工程は、必須の工程ではない。また、熱処理工程A、Bは、無電解めっき膜、電気めっき膜の結晶化促進等のために行われる処理であり省略してもよい。   Note that the thickening step performed after the metal film-coated silicone resin is produced by the electroless plating method is not an essential step. The heat treatment steps A and B are treatments performed for promoting crystallization of the electroless plating film and the electroplating film, and may be omitted.

電気めっきにより厚膜化された金属膜の密着強度を、ピール試験器を用いて測定した。   The adhesion strength of the metal film thickened by electroplating was measured using a peel tester.

二段処理を行ったシリコーン樹脂の密着強度は、0.4kN/mと高い値であった。そして剥離面は両方ともシリコーン樹脂であり、シリコーン樹脂とめっき膜との界面の剥離ではなく、シリコーン樹脂自体の剪断破壊による剥離であった。一方、他の3種類の処理を行ったシリコーン樹脂の密着強度は、二段処理を行ったシリコーン樹脂ほどは、高くなかった。しかし、従来は作製することができなかった、シリコーン樹脂からなる基体と、基体の上に成膜された無電解めっき膜と、からなる金属皮膜付シリコーン樹脂が、上記実施形態の方法により作製された。   The adhesion strength of the silicone resin subjected to the two-stage treatment was as high as 0.4 kN / m. And both peeling surfaces were silicone resins, and it was not peeling at the interface between the silicone resin and the plating film, but peeling due to shear fracture of the silicone resin itself. On the other hand, the adhesion strength of the silicone resin subjected to the other three types of treatment was not as high as that of the silicone resin subjected to the two-step treatment. However, a metal film-coated silicone resin comprising a base made of a silicone resin and an electroless plating film formed on the base, which could not be conventionally produced, is produced by the method of the above embodiment. It was.

触媒処理として二段処理が最も特性のよい膜が成膜された理由を解明するために、原子間力顕微鏡による表面形状の測定を行った。   In order to elucidate the reason why a film having the best characteristics by the two-stage treatment as a catalyst treatment was measured, the surface shape was measured by an atomic force microscope.

図6Aは、未処理基体、図6Bはアルカリ処理後の基体、図6Cは二段処理後の基体である。表面粗さRa(中心線平均粗さ:JIS 0601−1976)は、未処理基体では2.9nm、アルカリ処理後の基体では7.8nm、二段処理後の基体では1.6nmであった。   6A shows an untreated substrate, FIG. 6B shows a substrate after alkali treatment, and FIG. 6C shows a substrate after two-stage treatment. The surface roughness Ra (centerline average roughness: JIS 0601-1976) was 2.9 nm for the untreated substrate, 7.8 nm for the substrate after alkali treatment, and 1.6 nm for the substrate after two-stage treatment.

すなわち、基体10の表面粗さは、アルカリ処理により増加するが、二段処理工程により減少しアルカリ処理工程後よりも小さくなっている。更に、二段処理工程後の表面粗さは、未処理基体よりも小さい。   That is, the surface roughness of the substrate 10 is increased by the alkali treatment, but is decreased by the two-stage treatment process and is smaller than that after the alkali treatment process. Furthermore, the surface roughness after the two-stage treatment process is smaller than that of the untreated substrate.

以上の結果から、無電解めっきによる導電化が困難であったシリコーン樹脂に実施形態の方法により導電化が可能となった理由、特に、二段処理が好ましい結果となった理由は以下のように考えられる。   From the above results, the reason why the silicone resin, which has been difficult to conduct by electroless plating, can be made conductive by the method of the embodiment, in particular, the reason why the two-stage treatment is preferable is as follows. Conceivable.

UV処理により表面改質されたシリコーン樹脂からは劣化した成分が脱落し、表面にナノメータスケールの微少な凹部が形成される。光の波長未満のナノメータスケールの凹部は光学特性には大きな影響は及ぼさない。特に、凹部の内面は、UV処理により改質された親水基で覆われているため、触媒の吸着が進む。化学的吸着による密着性改善効果だけでなく、物理的アンカー効果による密着性改善効果が生じるため、触媒がシリコーン樹脂と固く結合する。このため、触媒上に析出した無電解めっき膜は、導電層として十分な密着強度を示す。   Deteriorated components fall off from the silicone resin surface-modified by UV treatment, and minute nanometer-scale recesses are formed on the surface. Nanometer-scale recesses below the wavelength of light do not have a significant effect on optical properties. In particular, since the inner surface of the recess is covered with a hydrophilic group modified by UV treatment, the adsorption of the catalyst proceeds. Not only the adhesion improvement effect due to chemical adsorption but also the adhesion improvement effect due to the physical anchor effect occurs, so the catalyst is firmly bonded to the silicone resin. For this reason, the electroless plating film deposited on the catalyst exhibits sufficient adhesion strength as a conductive layer.

特に、二段処理等では、触媒が、微少な凹部の内部にも多く入り込み凹部の内部を充填する。このため、二段処理後の基体では表面粗さが低下した。   In particular, in a two-stage process or the like, a large amount of the catalyst enters the inside of the minute recess and fills the inside of the recess. For this reason, the surface roughness of the substrate after the two-stage treatment was lowered.

なお、これに対して、Sn/Pd混合触媒処理では、コロイド触媒はサイズが大きいため、凹部の内部には侵入しにくい。このため混合触媒処理は、触媒吸着量は多いが、密着性が高くはなかった。   On the other hand, in the Sn / Pd mixed catalyst treatment, the colloidal catalyst is large in size, so that it is difficult to enter the inside of the recess. For this reason, the mixed catalyst treatment has a large amount of adsorption of the catalyst, but the adhesion is not high.

<変形例>
シリコーン樹脂に低分子量成分である、いわゆるシリコーンオイル等が含まれている場合がある。この場合には、撥水性が強く安定した成膜が容易ではないおそれがある。このため、UV処理工程の前に基体を、有機溶剤を用いて脱脂する脱脂工程を具備することが好ましい。有機溶剤としては、シリコーン樹脂を殆ど溶解しないが、シリコーンオイル等が溶解する溶剤、例えばトルエンを用いる。
<Modification>
The silicone resin may contain so-called silicone oil, which is a low molecular weight component. In this case, there is a possibility that stable film formation with strong water repellency is not easy. For this reason, it is preferable to provide the degreasing process which degreases a base | substrate using an organic solvent before a UV treatment process. As the organic solvent, a solvent that hardly dissolves the silicone resin but dissolves silicone oil or the like, such as toluene, is used.

有機溶剤による脱脂工程を具備するシリコーン樹脂の導電化方法では、シリコーンオイル等が含まれているシリコーン樹脂に対しても密着性のよい無電解めっき膜を成膜可能である。   In the method for electrically conducting a silicone resin comprising a degreasing step using an organic solvent, an electroless plating film having good adhesion can be formed even on a silicone resin containing silicone oil or the like.

<第2実施形態>
次に第2実施形態のシリコーン樹脂の導電化方法について説明する。第2実施形態のシリコーン樹脂の導電化方法は、第1実施形態のシリコーン樹脂の導電化方法と類似しているため、同じ工程の説明は省略する。
Second Embodiment
Next, a method for conducting a silicone resin according to the second embodiment will be described. Since the method for conducting a silicone resin according to the second embodiment is similar to the method for conducting a silicone resin according to the first embodiment, description of the same steps is omitted.

本実施形態の方法では、ステップS12のUV処理工程に替えて、ステップS12Aとして、基体10とオゾン水9と接触させるオゾン処理工程が行われる。基体10とオゾン水と接触させる方法には、スプレー法、又は、浸漬法などを用いる。   In the method of the present embodiment, an ozone treatment process in which the substrate 10 and the ozone water 9 are brought into contact is performed as step S12A instead of the UV treatment process in step S12. As a method of bringing the substrate 10 into contact with the ozone water, a spray method, an immersion method, or the like is used.

図7に示すように、実施形態のオゾン水9は、水の電気分解反応により直接作製される。すなわち、固体高分子電解質膜を、多孔質状又は網状の陽極と陰極で挟むことで電解セルを構成し、これを用いて水道水又は純水を電気分解する電解法によりオゾン水9が作製される。   As shown in FIG. 7, the ozone water 9 of the embodiment is directly produced by water electrolysis reaction. That is, an electrolytic cell is constructed by sandwiching a solid polymer electrolyte membrane between a porous or reticulated anode and cathode, and ozone water 9 is produced by an electrolytic method in which tap water or pure water is electrolyzed using this cell. The

図7に示す電解セル1は、陽極3と陰極5とを固体高分子電解質膜7(例えば「ナフィオン(登録商標)」:デュポン社製)を挟んで配設し、陽極3及び陰極5は固体高分子電解質膜7の互いに対向する面に密着して固定され、いわゆるゼロギャップセルを構成している。陽極3の表面には陽極室13が、陰極5の表面には陰極室15が、それぞれ形成され、陽極室13と陰極室15とは、それぞれ供給口13a、15aと取出口13b、15bとを有している。   In the electrolytic cell 1 shown in FIG. 7, an anode 3 and a cathode 5 are disposed with a solid polymer electrolyte membrane 7 (for example, “Nafion (registered trademark)” manufactured by DuPont) interposed therebetween, and the anode 3 and the cathode 5 are solid. The polymer electrolyte membrane 7 is fixed in close contact with the mutually facing surfaces to constitute a so-called zero gap cell. An anode chamber 13 is formed on the surface of the anode 3, and a cathode chamber 15 is formed on the surface of the cathode 5. The anode chamber 13 and the cathode chamber 15 have supply ports 13 a and 15 a and outlets 13 b and 15 b, respectively. Have.

陽極3は、例えば、マイクロ波プラズマCVD法で矩形板状に形成された自立体型導電性ダイヤモンド板に、孔をレーザ加工によって穿設したものである。また、陰極5としては、網状の白金電極が使用された。電解セル1では、陽極3と陰極5との間に直流電流を通電しながら各供給口13a、15aから水を供給すると、陽極室13の取出口13bからオゾン水9が排出される。   The anode 3 is formed by, for example, forming a hole in a self-stereoscopic conductive diamond plate formed in a rectangular plate shape by a microwave plasma CVD method by laser processing. As the cathode 5, a reticulated platinum electrode was used. In the electrolysis cell 1, when water is supplied from the supply ports 13 a and 15 a while applying a direct current between the anode 3 and the cathode 5, the ozone water 9 is discharged from the outlet 13 b of the anode chamber 13.

オゾン水9のオゾン濃度は、基体10の表面改質に大きく影響を及ぼすため、0.3ppm以上6.0ppm以下であることが好ましく、特に好ましくは、0.4ppm以上4.0ppm以下である。前記範囲以上であれば、効果が顕著で、前記範囲以下であれば、周囲の環境に悪影響を及ぼしたり、基体10の表面を過度に粗化することがない。   Since the ozone concentration of the ozone water 9 greatly affects the surface modification of the substrate 10, it is preferably 0.3 ppm or more and 6.0 ppm or less, and particularly preferably 0.4 ppm or more and 4.0 ppm or less. If it is more than the said range, an effect will be remarkable, and if it is less than the said range, it will not have a bad influence on the surrounding environment, or the surface of the base | substrate 10 will be excessively roughened.

なお、オゾン処理工程のオゾン水9の温度、処理時間等は、適宜、設定される。   In addition, the temperature of ozone water 9 of an ozone treatment process, the treatment time, etc. are set suitably.

ここで、無声放電法又は電解法で発生させたオゾンガスを、例えば、気液溶解塔に通じて水に溶解させることでオゾン水を作製することができる。しかし、前記方法で作製されたオゾン水を用いた場合には、オゾン濃度は、例えば、40ppm以上と非常に高濃度でなければ、効果が得られない。この原因は、明らかではないが、ナノバブルからなるオソンガスを用いた場合には、オゾン水9を用いた場合と同じ程度の低濃度でも効果が得られることから、水中でのオソンガスの分散状態等が影響しているものと考えられる。   Here, ozone water generated by a silent discharge method or an electrolytic method can be prepared by, for example, passing through a gas-liquid dissolution tower and dissolving it in water. However, when the ozone water produced by the above method is used, the effect cannot be obtained unless the ozone concentration is very high, for example, 40 ppm or more. The cause of this is not clear, but when using ozone gas composed of nanobubbles, the effect can be obtained even at the same low concentration as when ozone water 9 is used. It is thought to have influenced.

ナノバブルからなるオゾンガスを生成するには専用装置が必要であるが、水の電気分解反応により直接生成したオゾン水9は、安価で、かつ、大量生産が容易である。   A dedicated device is required to generate ozone gas composed of nanobubbles, but the ozone water 9 directly generated by water electrolysis reaction is inexpensive and easy to mass-produce.

なお、オゾン処理工程において、さらに紫外線を照射してもよい。すなわち、本発明の方法は、紫外線を照射するUV処理工程、及び基体とオゾン水と接触させるオゾン工程の少なくともいずれかの工程を具備していればよい。   In addition, you may irradiate an ultraviolet-ray further in an ozone treatment process. In other words, the method of the present invention only needs to include at least one of a UV treatment step of irradiating ultraviolet rays and an ozone step of bringing the substrate into contact with ozone water.

本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。   The present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the scope of the present invention.

本出願は、2012年7月26日に日本国に出願された特願2012−165903号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。   This application is filed on the basis of the priority claim of Japanese Patent Application No. 2012-165903 filed in Japan on July 26, 2012, and the above disclosed contents include the present specification, claims, It shall be cited in the drawing.

本発明の実施形態のシリコーン樹脂の導電化方法は、不飽和結合含有オルガノポリシロキサンを重合し、透明なシリコーン樹脂からなる基体を作製する基体作製工程と、前記基体に紫外線を照射するUV処理工程、及び前記基体とオゾン水と接触させるオゾン工程の少なくともいずれかの工程と、前記基体をアルカリ溶液に浸漬するアルカリ処理工程と、を含む、前記基体の表面に光の波長未満のナノメータスケールの凹部を形成する前処理工程と、塩化第1すず溶液と塩化パラジウム溶液とを順に用いて、無電解めっき反応の触媒であるパラジウムを、前記基体の前記凹部が形成された部分に付与する触媒工程と、前記基体の前記触媒が付与された部分に無電解めっき膜を成膜する導電化工程と、を順に具備する。 The method for electrically conducting a silicone resin according to an embodiment of the present invention includes a substrate preparation step for preparing a substrate made of a transparent silicone resin by polymerizing an unsaturated bond-containing organopolysiloxane, and a UV treatment step for irradiating the substrate with ultraviolet rays. And at least one of an ozone step for bringing the substrate into contact with ozone water, and an alkali treatment step for immersing the substrate in an alkaline solution. And a catalyst step of applying palladium , which is a catalyst for an electroless plating reaction, to a portion of the substrate where the recess is formed , using a first tin chloride solution and a palladium chloride solution in order. in turn comprises a conductive step of forming an electroless plating film on the portion where the catalyst is applied in the substrate, the.

また、別の実施形態の金属皮膜付シリコーン樹脂は、透明なシリコーン樹脂からなり、表面に光の波長未満のナノメータスケールの凹部を有する基体と、前記基体の凹部の内部に進入している金属パラジウムと、前記基体の上に成膜された金属皮膜である無電解めっき膜と、を有するFurther, the silicone resin with a metal film according to another embodiment is made of a transparent silicone resin, and has a base having a nanometer-scale recess having a wavelength less than the wavelength of light on the surface, and metal palladium entering the recess of the base. When, having a non-electrolytic plating film that is a film-forming metal coating on the substrate.

Claims (9)

不飽和結合含有オルガノポリシロキサンを重合し、シリコーン樹脂からなる基体を作製する基体作製工程と、
前記基体に紫外線を照射するUV処理工程、及び前記基体とオゾン水と接触させるオゾン工程の少なくともいずれかの工程と、
無電解めっき反応の触媒を前記基体に付与する触媒工程と、
無電解めっき膜を成膜する導電化工程と、を具備することを特徴とするシリコーン樹脂の導電化方法。
A substrate production step of polymerizing an unsaturated bond-containing organopolysiloxane to produce a substrate comprising a silicone resin;
At least one of a UV treatment step of irradiating the substrate with ultraviolet light, and an ozone step of contacting the substrate with ozone water;
A catalyst step of imparting a catalyst for electroless plating reaction to the substrate;
And a conductive process for forming an electroless plating film.
前記触媒工程が、塩化第1すず溶液と、塩化パラジウム溶液と、を順に用いて行われる二段法であることを特徴とする請求項1に記載のシリコーン樹脂の導電化方法。   2. The method for electrically conducting a silicone resin according to claim 1, wherein the catalyst step is a two-stage method in which a first tin chloride solution and a palladium chloride solution are sequentially used. 前記触媒工程が、塩化パラジウム溶液と、還元剤含有溶液と、を順に用いて行われる酸性イオンアクチベータ処理であることを特徴とする請求項1に記載のシリコーン樹脂の導電化方法。   2. The method for electrically conducting a silicone resin according to claim 1, wherein the catalytic step is an acidic ion activator treatment performed using a palladium chloride solution and a reducing agent-containing solution in order. 前記UV処理工程、又は前記オゾン工程の後にアルカリ溶液に浸漬するアルカリ処理工程を具備することを特徴とする請求項2または請求項3に記載のシリコーン樹脂の導電化方法。   4. The method for electrically conducting a silicone resin according to claim 2, further comprising an alkali treatment step of immersing in an alkaline solution after the UV treatment step or the ozone step. 5. 前記基体の表面粗さが、前記アルカリ処理工程により前記UV処理工程前よりも増加するが、前記触媒工程により減少し前記UV処理工程、又は前記オゾン工程の前よりも小さくなることを特徴とする請求項4に記載のシリコーン樹脂の導電化方法。   The surface roughness of the substrate is increased by the alkali treatment step than before the UV treatment step, but is reduced by the catalyst step and becomes smaller than before the UV treatment step or the ozone step. The method for electrically conducting a silicone resin according to claim 4. 前記UV処理工程、又は前記オゾン工程の前に前記基体を、有機溶剤を用いて脱脂する脱脂工程を具備することを特徴とする請求項5に記載のシリコーン樹脂の導電化方法。   6. The method of electrically conducting a silicone resin according to claim 5, further comprising a degreasing step of degreasing the substrate using an organic solvent before the UV treatment step or the ozone step. 前記オゾン水が、水の電気分解反応により直接、作製されることを特徴とする請求項1から請求項6のいずれか1項に記載のシリコーン樹脂の導電化方法。   The method for electrically conducting a silicone resin according to any one of claims 1 to 6, wherein the ozone water is directly produced by an electrolysis reaction of water. シリコーン樹脂からなる基体と、
前記基体の上に成膜された無電解めっき膜と、からなることを特徴とする金属皮膜付シリコーン樹脂。
A base made of silicone resin;
A silicone resin with a metal film, comprising: an electroless plating film formed on the substrate.
前記シリコーン樹脂が透明であることを特徴とする請求項8に記載の金属皮膜付シリコーン樹脂。   The silicone resin with a metal film according to claim 8, wherein the silicone resin is transparent.
JP2014526845A 2012-07-26 2013-07-09 Method for making silicone resin conductive and silicone resin with metal film Pending JPWO2014017291A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012165903 2012-07-26
JP2012165903 2012-07-26
PCT/JP2013/068747 WO2014017291A1 (en) 2012-07-26 2013-07-09 Method for imparting electrical conductivity to silicone resin, and silicone resin provided with metallic coating film

Publications (1)

Publication Number Publication Date
JPWO2014017291A1 true JPWO2014017291A1 (en) 2016-07-07

Family

ID=49997107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014526845A Pending JPWO2014017291A1 (en) 2012-07-26 2013-07-09 Method for making silicone resin conductive and silicone resin with metal film

Country Status (2)

Country Link
JP (1) JPWO2014017291A1 (en)
WO (1) WO2014017291A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155295A (en) * 2016-03-02 2017-09-07 日立化成株式会社 Production method of laminate, and laminate
EP3544099A1 (en) * 2018-03-21 2019-09-25 Borregaard AS Dispersant and binder for lithium ion batteries based on modified lignin and carboxymethyl cellulose
US20240360562A1 (en) * 2021-09-30 2024-10-31 Mitsui Chemicals, Inc. Method for manufacturing composite material to be plated and method for manufacturing anisotropic electroconductive sheet

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155681A (en) * 1984-01-26 1985-08-15 Asahi Chem Ind Co Ltd Method for sticking catalyst for electroless plating to polyamide resin
JP2002172789A (en) * 2000-12-04 2002-06-18 Konica Corp Method of manufacturing ink jet head
JP2002309377A (en) * 2001-04-12 2002-10-23 Toyota Motor Corp Pretreatment method for electroless plating material
JP2003027250A (en) * 2001-07-18 2003-01-29 Toyota Motor Corp Method for forming electroless plating film of resin
JP2004131804A (en) * 2002-10-10 2004-04-30 Toyota Motor Corp Pretreatment method for electroless plating workpiece and method for manufacturing plating coated member
JP2004332085A (en) * 2003-05-12 2004-11-25 Seiko Epson Corp Pattern forming method by transparent conductive film
JP2005042029A (en) * 2003-07-23 2005-02-17 Toyota Motor Corp Resin substrate having resin-metal composite layer and method for producing the same
US20070058975A1 (en) * 2000-06-29 2007-03-15 Hiroyuki Sasai Optical transmission system for radio access and high frequency optical transmitter
JP2008034686A (en) * 2006-07-31 2008-02-14 Toppan Printing Co Ltd Photoelectric conversion device and manufacturing method thereof
JP2010185085A (en) * 2010-04-30 2010-08-26 Masataka Murahara Method of photochemically reforming surface of solid material
JP2010254971A (en) * 2009-03-31 2010-11-11 Fujifilm Corp Novel copolymer, novel copolymer-containing composition, laminate body, method of producing metal film-surfaced material, metal film-surfaced material, method of producing metallic pattern material and metallic pattern material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155681A (en) * 1984-01-26 1985-08-15 Asahi Chem Ind Co Ltd Method for sticking catalyst for electroless plating to polyamide resin
US20070058975A1 (en) * 2000-06-29 2007-03-15 Hiroyuki Sasai Optical transmission system for radio access and high frequency optical transmitter
JP2002172789A (en) * 2000-12-04 2002-06-18 Konica Corp Method of manufacturing ink jet head
JP2002309377A (en) * 2001-04-12 2002-10-23 Toyota Motor Corp Pretreatment method for electroless plating material
JP2003027250A (en) * 2001-07-18 2003-01-29 Toyota Motor Corp Method for forming electroless plating film of resin
JP2004131804A (en) * 2002-10-10 2004-04-30 Toyota Motor Corp Pretreatment method for electroless plating workpiece and method for manufacturing plating coated member
JP2004332085A (en) * 2003-05-12 2004-11-25 Seiko Epson Corp Pattern forming method by transparent conductive film
JP2005042029A (en) * 2003-07-23 2005-02-17 Toyota Motor Corp Resin substrate having resin-metal composite layer and method for producing the same
JP2008034686A (en) * 2006-07-31 2008-02-14 Toppan Printing Co Ltd Photoelectric conversion device and manufacturing method thereof
JP2010254971A (en) * 2009-03-31 2010-11-11 Fujifilm Corp Novel copolymer, novel copolymer-containing composition, laminate body, method of producing metal film-surfaced material, metal film-surfaced material, method of producing metallic pattern material and metallic pattern material
JP2010185085A (en) * 2010-04-30 2010-08-26 Masataka Murahara Method of photochemically reforming surface of solid material

Also Published As

Publication number Publication date
WO2014017291A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
CN1481448A (en) Plating method of metal film on surface of polymer
JP2008031513A (en) Method for metallizing plastic surface
US20170067164A1 (en) Pretreatment solution for electroless plating and electroless plating method
WO2007116493A1 (en) Surface modification liquid for plastic and method of metallizing plastic surface therewith
US20210262095A1 (en) Electroless nickel plating of silicone rubber
WO2014017291A1 (en) Method for imparting electrical conductivity to silicone resin, and silicone resin provided with metallic coating film
JP2012046781A (en) Copper plating method of polytetrafluoroethylene substrate for high frequency circuit
JPWO2008132926A1 (en) Etching solution and method of metallizing plastic surface using the same
JP5149805B2 (en) Electroless copper plating method
JP5558549B2 (en) Manufacturing method of plating film
KR20130096613A (en) Surface treatment method of polyimide film for improved adhesion and polyimide having a metal layer
KR20200060613A (en) Substrate for electroless plating, method of manufacturing the same, and metal plating method using the same
JP2007231362A (en) Electroless plating method of resin product
Borris et al. Improvement of the adhesion of a galvanic metallization of polymers by surface functionalization using dielectric barrier discharges at atmospheric pressure
JP6671583B2 (en) Metal plating method
JP2013189661A (en) Method for producing laminate, and laminate
WO2007138795A1 (en) Catalytic agent for electroless plating
JP4081625B2 (en) Preparation method of transparent zinc oxide film
JP2010047828A (en) Pretreatment method for electroless plating and electroless plating method of substrate
JP7151673B2 (en) Method for forming metal plating film
JP5373477B2 (en) Plating method
JP4565181B2 (en) Metal coating method
JP2016121387A (en) Production method of resin product with plating film
JP4955274B2 (en) Plating wiring board and electroless plating method
JP2002302778A (en) Method of forming electroconductive part on anodic- oxidized film of aluminum alloy

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160607