WO2007138795A1 - Catalytic agent for electroless plating - Google Patents
Catalytic agent for electroless plating Download PDFInfo
- Publication number
- WO2007138795A1 WO2007138795A1 PCT/JP2007/058313 JP2007058313W WO2007138795A1 WO 2007138795 A1 WO2007138795 A1 WO 2007138795A1 JP 2007058313 W JP2007058313 W JP 2007058313W WO 2007138795 A1 WO2007138795 A1 WO 2007138795A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- catalyst
- group
- acid
- plating
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2053—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
- C23C18/2066—Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2053—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
- C23C18/206—Use of metal other than noble metals and tin, e.g. activation, sensitisation with metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1646—Characteristics of the product obtained
- C23C18/165—Multilayered product
- C23C18/1653—Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1689—After-treatment
- C23C18/1692—Heat-treatment
Definitions
- the present invention relates to a metal compound, an alkali metal hydroxide, a water-soluble silane coupling agent,
- the present invention also relates to a catalyst agent for electroless plating using a mixture of at least one of an inorganic acid and an organic acid.
- Non-catalytic chemical reduction plating is a method of forming a metal film by chemical reduction that is controlled without using a deposited metal or alloy as a catalyst. Has been used.
- the reducing agent reduces the metal ions in the bath and deposits as a metal on the substrate.
- electroless nickel plating is a plating that deposits copper on a catalytic surface, and has been widely used as a printed wiring board formation technology such as through-hole plating, semi-additive method, additive method, and plastic plating.
- Electroless nickel plating is used for decorative purposes and electronic parts because nickel is deposited on the catalytic surface.
- nickel phosphorus alloy plating, nickel boron alloy plating, and ternary alloy plating baths to which tantasten and molybdenum are added have been developed to improve the characteristics.
- the method of plating deposited on these catalytic surfaces is a catalyst on the surface of a non-conductive material.
- a catalyst nucleus serving as an initiator for electroless plating such as palladium colloid or palladium ion is formed on a non-conductive material, and then a metal film is formed by a reduction reaction around the catalyst nucleus. It is the method of making it precipitate.
- the conventionally used palladium-tin colloidal catalyst has very good activity and colloidal stability, and the bath management is poor.
- a highly hydrochloric acid solution pH 1 or less
- a palladium-tin colloidal catalyst remains between the circuits, causing a decrease in insulation.
- a stripping agent has been developed to completely remove this residue, but it has not been fully effective.
- a treatment with a silane coupling agent is generally performed as a pretreatment.
- a silane coupling agent is adsorbed after irradiating a resin with far-ultraviolet rays having a wavelength of 350 ⁇ m or less, application of a palladium-tin catalyst is promoted, and electroless plating with stronger adhesion is obtained.
- the step of immersing a polyimide film in a 0.05 to 10 wt% aqueous solution of a water-soluble aminosilane coupling agent and washing the film surface with water at least once in the next step, and a palladium-tin colloid catalyst solution Dipping in metal, removing tin and removing metal It consists of a step of immersing in a catalytically active solution that changes into a volume, and a step of forming an electroless plating layer by performing electroless metal plating.
- Patent Document 6 after the surface treatment with a silane coupling agent obtained by the reaction of an azole compound and an epoxy silane compound is treated with a solution containing a noble metal ion such as palladium. , Copper or nickel electroless plating.
- Patent Document 7 after pretreatment of a covering material with an alkali metal salt, a silane coupling agent having a substituent having a metal-capturing ability in one molecule is converted into a nitrogen-containing heterocyclic azole compound and an epoxy group.
- Surface treatment is applied to the coating agent with a pre-mixed or reacted pre-metal compound (palladium chloride), which is a reaction product of the silane compound, and the electroless plating Has been given.
- a metal vapor deposition method As other methods for forming a conductive film on a non-conductive material, a metal vapor deposition method, a laminating method, a casting method, or the like is generally used.
- a laminating method is a method in which a double-sided adhesive layer is applied to a polyimide film and a copper foil is laminated. Since an adhesive layer is required on both sides, there is a limit to reducing the thickness.
- the casting method is a method in which a polyimide raw material is applied to an electrolytic copper foil, heat-treated, and then the copper foil is further bonded. Since copper foil with a large number of processes is used, there is a limit to reducing the thickness of the film.
- the sputtering method has a force of forming nickel-chromium sputter 0 ⁇ 003 to 0.03 / im and copper sputter 0 ⁇ 2 / im on a 25 ⁇ polyimide film.
- Equipment and running costs are expensive. Therefore, it is necessary to balance film tension avoidance, the conveyance tension, and the sputter output, which are difficult during sputtering, and there is a problem in low mass productivity.
- Patent Document 1 Japanese Patent No. 2622016
- Patent Document 2 JP 63-259083 A
- Patent Document 3 Japanese Patent Laid-Open No. 2005-116745
- Patent Document 4 JP-A-10-310873
- Patent Document 5 Japanese Unexamined Patent Application Publication No. 2005-116745
- Patent Document 6 Japanese Patent No. 3277463
- Patent Document 7 JP 2002-226972 A
- a palladium-seed colloid catalyst has been widely used for hitting through-holes in printed wiring boards, but the catalyst remains between the lines during circuit formation by the semi-additive method, and later electroless nickel In other words, the problem is that the substitutional gold plating is deposited between the lines and deteriorates the insulation.
- a catalyzing method that can be easily removed by acid treatment or the like, and an inexpensive catalyzing method that replaces the palladiumose colloidal catalyst solution.
- the present invention has been made in view of such circumstances, and includes a resin substrate and a conductive thin film.
- the purpose is to provide a new method for catalyzing on non-conductive surfaces, replacing the conventional electroless plating pre-treatment for obtaining high adhesion strength, and a relatively simple treatment by the wet method. It is an object of the present invention to provide a catalytic method for forming a conductive thin film on the surface of the non-conductive material that does not pollute the work environment or the global environment.
- the electroless plating catalyst of the present invention comprises a mixture of a metal compound, an alkali metal hydroxide, a water-soluble silane coupling agent, and at least one of an inorganic acid and an organic acid.
- the electroless plating catalyst of the present invention is a new catalyst on a non-conductive surface, replacing the conventional electroless plating pretreatment for obtaining high adhesion strength between a resin substrate and a conductive thin film.
- the agent is provided.
- the non-conductive substrate that can be used in the electroless plating catalyst of the present embodiment is a resin substrate having appropriate physical properties according to the purpose of use, such as strength, insulation, and corrosion resistance. It is not particularly limited. Further, the non-conductive substrate that can be used in the electroless plating catalyst of the present embodiment is not limited to a resin molded product, but may be a composite in which the resin is reinforced. It is also possible to use a base material made of various materials such as ceramics, glass, metal, etc., or a film formed from these with a resin.
- Arbitrary resins can be used for the non-conductive substrate, such as epoxy resin, polyimide resin, polyphenylene ether resin, fluorine resin, ABS resin, epoxy resin, and poly An imide resin is exemplified.
- the resin substrate may be composed of a single resin or a plurality of resins.
- the treatment process using the electroless plating catalyst of the present embodiment includes (1) a surface modification treatment of a non-conductive substrate, and (2) a non-electrolytic plating catalyst on the non-conductive substrate. It comprises the steps of forming nuclei, (3) a step of forming a metal conductive thin film layer by electroless plating, and (4) a step of heat treatment after electroless plating. ) Can be adjusted appropriately by changing each condition. In the case of a composite resin substrate with a metal, a metal etching treatment step and an acid activation step can be added as necessary. In addition, if necessary, the electroless reaction can be accelerated before the electroless connection.
- the electroless plating film may be subjected to degreasing treatment, descaling treatment, acid activation treatment, etc., and then electroplating. Heat treatment after electroplating can be applied as needed.
- the above-mentioned (1) surface modification treatment of the non-conductive substrate can be applied by a dry method such as general-purpose plasma treatment or a wet method using chemicals.
- the optimum method can be selected considering the chemical characteristics of the non-conductive substrate to be treated.
- the non-conductive substrate is subjected to surface roughening by etching, desorption of the resin constituent elements by high-energy active species, branch cross-linking and desaturation, and introduction of a group having ion exchange ability. Occurs and can impart hydrophilicity.
- the plasma processing apparatus include a room temperature plasma processing apparatus and a microwave low temperature oxygen plasma processing apparatus.
- An acidic solution such as sulfuric acid or an alkaline solution such as sodium hydroxide or potassium hydroxide can be used for surface modification of a non-conductive substrate by a wet method.
- an alkaline solution such as sodium hydroxide or potassium hydroxide
- 0.1 mol / L to 10 mol / L-NaOH solution or 0.1 mol / L to 10 mol / L-KOH solution can be used.
- the temperature is preferably in the range of 20 to 90 ° C, and the treatment time is preferably in the range of 10 seconds to 10 minutes.
- the step of forming a catalyst nucleus with electroless plating on a non-conductive substrate includes the step of forming a metal compound, an alkali metal hydroxide, a water-soluble silane coupling agent on the non-conductive substrate, This is a step of treating with the electroless plating catalyst of the present embodiment comprising a mixture of at least one of an inorganic acid and an organic acid. Metallization to be reacted depending on the type of electroless plating A compound can be selected.
- metal compounds of metals such as palladium, gold, silver and platinum can be used for electroless copper plating, and palladium, titanium, cobalt, tungsten, gold, Metal compounds of metals such as silver and platinum can be used. Concentration is 5 X 10 5 X 10 1 molZL, 3 X 10 5 X 10 2 molZL is preferred.
- the electroless plating catalyst according to the present embodiment develops the catalytic ability of metal compounds by metals such as titanium, cobalt, tungsten, etc. that have not been used as a catalyst as well as palladium, gold, silver, platinum. It becomes possible.
- an optimal water-soluble silane coupling agent can be selected depending on the type of non-conductive substrate.
- the epoxy resin polyimide resin, phenol resin, polyethylene resin, polypropylene resin, polystyrene resin, PET resin, acrylic resin
- the trialkoxysilane is trimethoxysilane, triethoxysilane, tripropoxysilane, triplicate.
- Toxisilane Diethoxymonomethoxysilane, Monomethoxydimethoxysilane, Monomethoxydipropoxysilane, Ptoxhetoxypropoxysilane, Dimethoxymonopropoxysilane, Diethoxymonopropoxysilane, Monobutoxydimethoxysilane, Tetraalkoxysilane Are tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetraethoxymonomethoxysilane, dimethoxydioxydipropoxysilane, Toximopropoxysilane, dibutoxydimethoxysilane, and monoalkyltrialkoxysilane include monomethyltrimethoxysilane, monoethyltrimethoxysilane, monopropyltriethoxysilane, monomethyltryptoxysilane, monoethyltribut
- the water-soluble silane coupling agent of this embodiment includes a vinyl group, an epoxy group, an amino group, a methacryloxy group, a mercapto group, a methoxy group chemically bonded to an inorganic material, and an ethoxy group. One or a plurality selected from a group having a group.
- Examples of the bur group possessed by the water-soluble silane coupling agent of the present embodiment include butyl trimethoxy silane, butyl triethoxy silane, butyl trichloro silane, butyl triacetoxy silane, burtris (methoxy ethoxy) silane, butyl triisopropoxy silane,
- the epoxy group possessed by the water-soluble silane coupling agent of the embodiment includes 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyljetoxysilane, and 3-glycidoxy.
- Propylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the amino group of the water-soluble silane coupling agent of this embodiment include N- (2-aminoethyl) 3 —Aminopropi
- Examples of mercapto groups possessed by 3-methacryloxypropylmethylmethoxysilane and the water-soluble silane coupling agent of this embodiment include 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltrisilane.
- the concentration of the inorganic acid used in the electroless plated catalyst agent of the present embodiment 3 is X 10 5mol / L, 2 10- 1 ⁇ 2111017 Mr. Shi favored I.
- the concentration of the alkali metal hydroxide used in the electroless plated catalyst agent of the present embodiment 2 10- 2-311101 / Shideari, IX 10 1 ⁇ 2 mol / L is preferred.
- the concentration of the organic acid used in the electroless plating catalyst of the present embodiment is 2 ⁇ 10 ⁇ 2 to 2 mol / L, preferably 3 ⁇ 10 ⁇ 1 to 1 mol / L.
- the alkali metal hydroxide used for the electroless plating catalyst of this embodiment is sodium hydroxide. Any alkali metal hydroxide selected from the group consisting of thorium and potassium hydroxide may be used.
- the inorganic acid used in the electroless plating catalyst of the present embodiment may be an inorganic acid selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, and carbonic acid.
- the organic acid used in the electroless plating catalyst of this embodiment is an organic acid selected from the group consisting of carboxylic acids, hydroxycarboxylic acids, and amino acids.
- the step (3) of forming a metal conductive thin film layer by electroless plating can be selected according to the purpose as long as it is an electroless plating having catalytic activity.
- electroless nickel plating, electroless copper plating, electroless cobalt plating, electroless palladium plating, electroless silver plating, electroless gold plating, electroless platinum plating, electroless ruthenium plating examples include electroless openings such as zinc plating, electroless indium plating, electroless tin plating, electroless lead plating, electroless antimony plating, and electroless bismuth plating.
- the heat treatment method is also related to the heat resistance of the resin. It is preferable that the heat treatment is performed within a range where the resin does not deteriorate or excessively oxidize. For example, in the case of an epoxy resin-based resin substrate, it is preferable to heat at about 80 to 150 ° C. In the case of a polyimide-based resin substrate, it is preferable to heat at about 80 to 180 ° C. The heating time is usually preferably about 30 to about 120 minutes.
- the heating atmosphere may be heat-treated in air with no particular limitation, but heating may be performed in a reducing atmosphere such as a nitrogen atmosphere or a hydrogen atmosphere so that oxidation of the formed conductive thin film does not proceed excessively.
- a heating atmosphere may be appropriately set according to the properties of the target component.
- the electroless plating catalyst of the present embodiment is a new alternative to the conventional electroless plating pretreatment for obtaining high adhesion strength between the resin substrate and the conductive thin film.
- the catalyst agent is provided on the surface of the non-conductor.
- a palladium-tin colloidal catalyst has been widely used to mate through holes in printed wiring boards, but this catalyst remains between lines during circuit formation by the semi-additive method, and later electroless nickel, substitutional gold A problem arises in that the metal deposits are deposited between the lines and the insulation is deteriorated.
- the electroless plating catalyst of the present embodiment solves this problem, It is possible to provide a catalytic method that can be easily removed by acid treatment or the like and a catalyst agent that replaces the palladiumose colloidal catalyst solution.
- the metal ion having catalytic ability to be mixed or reacted with the silane coupling agent is alone from the group consisting of cobalt ion, tungsten ion, titanium ion, silver ion, gold ion, platinum ion, Alternatively, since a plurality of options can be selected, it is possible to provide a low-cost electroless plating catalyst.
- the adhesion between the metal element-containing component and the resin substrate is improved.
- the adhesion can be judged by the peel strength of the film and the tape peeling test.
- a copper film of 10 to 20 ⁇ is formed on the electrolytic copper. It is formed by eye contact. After heat treatment at 200 ° C for 10 minutes, the film was cut into a lcm width and measured by a vertical peeling test (90 ° peel strength) at a rate of 5 OmmZ using a tensile tester.
- a 15 cm X 15 cm polyimide film (UPILEX-25R manufactured by Ube Industries) was placed in an atmospheric pressure plasma apparatus (manufactured by Nippon Paint Co., Ltd.) and treated at 80 kV for a distance of 2 cm between electrodes for 10 minutes.
- This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L, 60 ° C) for 1 minute, washed with water, and then in an activator (Technique ACT9600 50g / L) solution at room temperature for 30 seconds. Soak After washing with water, use a copper sulfate plating bath (Techni TECH2 CU2300) to perform copper plating at 15 / m, wash with water, and prevent oxidation of the copper film surface (Technics Corp. And then washed with water and dried for 20 seconds at room temperature. After that, when observed with a metallographic microscope, cracks did not occur and a uniform film was obtained. After heat treatment at 250 ° C. for 1 minute, the peel strength of the obtained film was measured to be 0.85 kN / m.
- a degreasing agent Techni FPD Cleaner 20mL / L, 60 ° C
- an activator Technique ACT9600 50g / L
- This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L 60 ° C) for 1 minute, washed with water, and then in an activating agent (Technique: ACT9600 50mL / L) solution at room temperature for 30 seconds. After soaking, washing with water, using a commercially available copper sulfate bath, wash the copper with 15 zm, wash with water, and prevent oxidation of the copper film surface (Technique: Tech. And then washed with water and dried for 20 seconds. After that, when observed with a metallurgical microscope, no cracks occurred, a uniform film was obtained, and heat treatment at 150 ° C for 5 minutes Later, when the peel strength of the obtained film was measured, it was 0.60 kN / m.
- a degreasing agent Techni FPD Cleaner 20mL / L 60 ° C
- an activating agent Technique: ACT9600 50mL / L
- This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L 60 ° C) for 1 minute, washed with water, and then immersed in an activator (Technique 50g / L ACT9600 solution, room temperature) for 30 seconds.
- a degreasing agent Techni FPD Cleaner 20mL / L 60 ° C
- an activator Technique 50g / L ACT9600 solution, room temperature
- This sample is immersed in a degreasing agent (Techni FPD Cleaner 20mL / L, 60 ° C) for 1 minute, washed with water, and then immersed in an activating agent (Technique: ACT9600 50mL / L, room temperature) for 30 seconds. After washing with water, use a copper sulfate bath (Technique: Cuprochic 84 A: 40mL / L, B: 30m LZL, additive: 30mLZL, F: 100mL / L 50 ° C).
- a degreasing agent Techni FPD Cleaner 20mL / L, 60 ° C
- an activating agent Technique: ACT9600 50mL / L, room temperature
- An epoxy resin (manufactured by Matsushita Electric Works Co., Ltd.) 100 / m was applied as an insulating layer to a 5cm x 10cm (plate thickness 1.6mm) substrate, cured at 150 ° C for 1 hour, and then micro vias with a carbon dioxide laser Formed.
- This sample was treated with an atmospheric pressure plasma apparatus at 80 kV for 10 minutes with an electrode distance of 2 cm.
- This sample was palladium acetate 3 X 10 _3 mol / L, diethoxymonomethoxysilane 0 3 mol / L, hydrochloric acid 3 X 10 _2 mol / L, sodium hydroxide 1 X 10 _2 mol / L, glycolic acid 0
- an electroless plating catalyst consisting of a 5 mol / L mixed solution at room temperature for 5 minutes, wash with water, and then wash this sample with an electroless copper plating bath (Technic Co., Ltd .: Cuprosic 84 A: 40 mL / L, B: 30 mL / L, additive: 30 mL / L, F: 100 mL / L 50 ° C) for 5 minutes to obtain a copper conductive thin film.
- Example 6 Preparation of electroless copper thin film on glass
- 6cm X 7.6cm slide glass Iwaki Glass Co., Ltd.
- 80g / L sodium hydroxide solution 80 ° C for 5 minutes
- washed with water washed with water, and activated (Techni ACT3500 lOOmL / L chamber) after immersion in temperature)
- the sample palladium sulfate 5 X 10- 3 mol / L, Jefferies chill dimethoxy silane-0.
- This sample is immersed in a degreasing agent (Techni FPD cleaner 20mL / L, 60 ° C) for 1 minute, washed with water, and then immersed in an activator (Technique: ACT9600 50mL / L, room temperature) for 30 seconds.
- a degreasing agent Techni FPD cleaner 20mL / L, 60 ° C
- an activator Technique: ACT9600 50mL / L, room temperature
- the surface was washed with water, washed with water, treated with a discoloration inhibitor (Technique: Techni Anti-Turnish) for 20 seconds at room temperature to prevent oxidation of the copper film surface, washed with water and dried. After that, when the surface was observed with a metallographic microscope, a uniform film with no cracks or scratches on the material was obtained. After heat treatment at 150 ° C for 1 minute, the peel strength of the obtained film was measured to be 0.65 kN / m.
- a discoloration inhibitor Technique: Techni Anti-Turnish
- This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L, 60 ° C) for 1 minute, washed with water, and then immersed in an activator (Technique: ACT9600 50mL / L, room temperature) for 30 seconds.
- a degreasing agent Techni FPD Cleaner 20mL / L, 60 ° C
- an activator Technique: ACT9600 50mL / L, room temperature
- Prosic 84 A 40 mL / L, B: 30 mL / L, additive: 30 mL / L, F: 100 mL / L) Dipped at 50 ° C for 5 minutes to obtain a copper plating film. Thereafter, heat treatment was performed at 200 ° C. for 10 minutes.
- 5cm X 10cm polyimide film (Ube Industries Upilex 25R) is immersed in 80g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and then activated (Techni ACT350 0 lOOmL / L room temperature) after, the sample, palladium chloride 5 X 10 _3 mol / L, salts of cobalt 5 X 10 _3 mol / L, triethoxy silane 0 ⁇ 5 mol / L, hydrochloric 6 X 10 "2 mol / L , sodium hydroxide Soak in water for 10 minutes at room temperature in a non-electrolytic agent consisting of a mixture of 2 X 10 _2 mol / L and lmol / L maleic acid, rinse with water, and electroless nickel plating bath (Techni AT-5000 A: A uniform nickel film was obtained when immersed in 60 mL / L, B: 150 mL / L 80
- 5 cm X 1 Ocm polyimide film (Ube Industries Upilex 25R) is immersed in 80 g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and activator (Techni ACT350 0 lOOmL / L room temperature) It immersed 5 minutes at after immersion silver nitrate 5 X 10- 3 mol / L, Jechi dimethoxysilane 0.
- This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L 60 ° C) for 1 minute, washed with water, and then in an activator (Technique: ACT9600 50mL / L) solution at room temperature for 30 seconds. After soaking, rinsing with water, use a commercially available copper sulfate messenger bath to perform copper plating at 15 / m, wash with water, and prevent oxidation of the copper film surface (anti-discoloration made by Technic Co., Ltd.). And room temperature) for 20 seconds, washed with water and dried. After that, when observed with a metallographic microscope, no cracks occurred and a uniform film was obtained. After heat treatment at 150 ° C for 10 minutes, the peel strength of the obtained film was measured to be 0.65 kN / m. showed that.
- 5cm X 10cm polyimide film (Ube Industries Upilex 25R) is immersed in 80g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and then activated (Techni ACT350 0 lOOmL / L room temperature) after, the sample, cobalt chloride l X 10_ 2 molZL, tetramethylene Tokishishiran 0.
- This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L 60 ° C) for 1 minute, After washing, immerse in an activating agent (Technique: ACT9600 50mL / L) solution at room temperature for 30 seconds, wash with water, and then use a commercially available copper sulfate bath to perform copper plating at 15 / m. Then, in order to prevent oxidation of the copper film surface, it was treated with a discoloration inhibitor (manufactured by Technic Co., Ltd .: Techni Anti-Tanisch, room temperature) for 20 seconds, washed with water and dried. Thereafter, when observed with a metallurgical microscope, cracks did not occur and a uniform film was obtained. After heat treatment at 250 ° C for 1 minute, the peel strength of the obtained film was measured to show 0.70 kNZm. It was.
- a degreasing agent Techni FPD Cleaner 20mL / L 60
- Conductive copper thin film by electroless copper plating (ATS Ad Power Par IW process manufactured by Okuno Seiyaku Co., Ltd.) using commercially available palladium-tin colloid on 5cm X 1 Ocm polyimide film (UPILEX-25R manufactured by Ube Industries) Formed.
- UPILEX-25R manufactured by Ube Industries
- the copper plating is washed at 15 zm, washed with water, and used to prevent oxidation of the copper film surface (Technic Co., Ltd.).
- Manufactured by Techni Anti-Turnish, room temperature washed for 20 seconds and dried. After heat treatment at 200 ° C for 10 minutes, when measuring the peel strength of the copper plating film, it showed 0.1 kN / m, and good adhesion could not be obtained.
- 5 cm x 1 Ocm polyimide film (UPILEX-25R manufactured by Ube Industries, Ltd.) is immersed in 80 g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and then a commercially available electroless copper plating pretreatment agent (Okuno) 100mL / L3 aminosilane (Torayda And immersing it at room temperature for 5 minutes to give a palladium-tin colloidal catalyst. After washing with water, immersed in an electroless nickel plating bath at 80 ° C for 5 minutes.After film formation, the surface was observed with a metallurgical microscope, and numerous cracks were formed on the nickel surface, and then at 200 ° C for 10 minutes. As a result of this heat treatment, the nickel film peeled off from the polyimide substrate. Further, the adhesion strength was not measurable.
- a 5cm x 10cm polyimide film (UPILEX-25R made by Ube Industries) is immersed in 80g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and then added to 0.05g / L stannous chloride solution at room temperature. After immersion for 5 minutes, it was immersed in 0.05 g ZL palladium chloride solution at room temperature for 5 minutes to give a palladium catalyst. After washing with water, a nickel thin film was formed by immersing in an electroless nickel plating bath (Techni AT-500 00 A: 60 mL / LB: 150 L / L 80 ° C) for 5 minutes, and then the surface was observed with a metallurgical microscope. However, innumerable cracks occurred, and when heat treatment was performed at 200 ° C. for 10 minutes, the nickel thin film peeled off from the polyimide base material. Further, the adhesion strength was not measurable.
- a 5cm x 10cm polyimide film (UPILEX 25R manufactured by Ube Industries) is immersed in 80g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and then a commercially available electroless copper plating pre-treatment agent (Okuno Pharmaceutical Co., Ltd.) 100 mL / L3 aminosilane (Toray Duco Co., Ltd. Z-6050) was added to OPC-80 KYATARISTO M), and immersed for 5 minutes at room temperature to give a palladium-tin colloid catalyst.
- UPILEX 25R manufactured by Ube Industries
- Tungstic acid paste sodium monomonoxide ⁇ 7X10 L 0, 70k / m actual fiber 8 sodium 1X10-1 ⁇ 2I / L methoxysilane maleic acid IX 10 "'
- Comparative example 1 S-free plating process using commercially available palladium-tin colloids Innumerable elephant cracks 0.1 k N / m Comparative example 2 Commercially available «Unwrapping pre-treatment agent Countless cracks; Impossible Comparative Example 3 Commercially available s »Pre-treatment agent for countless cracks; 3 ⁇ 4 Not determined Comparable example 4 0.05 s / L fermented * Sousse 3 ⁇ 4 solution at room temperature for 5 min, 0.05 s count & crack iJU Indefinite
- Tables 2 and 3 are tables showing the observation results and measurement results of the films obtained from the above Examples:! -12 and Comparative Examples 1-5. As can be seen from Tables 2 and 3, the film obtained with the electroless plating catalyst of this example has sufficient peel strength and surface properties, and is superior to the electroless plating catalyst of this example. Sex was confirmed.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemically Coating (AREA)
Abstract
[PROBLEMS] To provide a low-cost catalytic agent for electroless plating for obtaining high adhesion. [MEANS FOR SOLVING PROBLEMS] A catalytic agent is composed of a mixture of a metal compound, an alkali metal hydroxide, a water-soluble silane coupling agent, and at least one of inorganic acid and organic acid.
Description
明 細 書 Specification
無電解めつき用触媒剤 Catalyst agent for electroless plating
技術分野 Technical field
[0001] 本発明は、金属化合物と、アルカリ金属水酸化物と、水溶性シランカップリング剤と [0001] The present invention relates to a metal compound, an alkali metal hydroxide, a water-soluble silane coupling agent,
、無機酸および有機酸の少なくとも一方との混合物を使用する無電解めつき用触媒 剤に関する。 The present invention also relates to a catalyst agent for electroless plating using a mixture of at least one of an inorganic acid and an organic acid.
背景技術 Background art
[0002] 古くから、ガラス、セラミックス、プラスチック樹脂などの電気の不導体材料に無電解 めっき処理を行うことで、導電性を持たせた配線形成などの機能材料や装飾用材料 として用いることを可能としてきた。これら無電解めつきには、置換めつきおよび化学 還元めつき(非触媒型および自己触媒型)がある。置換めつきは、被めつき金属とめ つき浴中の金属イオンとのイオン化傾向の差により置換を行うことで、 目的の金属を 析出させるものである。これらはニッケノレ表面に金を析出させる置換金めつきや、銅 上にスズを析出させる置換スズめっきなどが実用化されている。また、非触媒型化学 還元めつきは、析出した金属または合金を触媒としないで制御される化学還元によつ て金属皮膜を形成する方法であり、古くから銀鏡反応を利用し電铸などに用いられて きた。 [0002] For a long time, it has been possible to use it as a functional material or a decorative material for the formation of conductive wiring by performing electroless plating on electrical non-conductive materials such as glass, ceramics and plastic resins. As These electroless plating include substitution plating and chemical reduction plating (non-catalytic and autocatalytic). Substitution plating is intended to deposit the target metal by performing substitution based on the difference in ionization tendency between the metal to be plated and the metal ion in the plating bath. For these, replacement gold plating for depositing gold on the surface of Nikkenore and substitution tin plating for depositing tin on copper have been put into practical use. Non-catalytic chemical reduction plating is a method of forming a metal film by chemical reduction that is controlled without using a deposited metal or alloy as a catalyst. Has been used.
[0003] 自己触媒型化学めつきは、還元剤が浴中の金属イオンを還元して被めつき物上に 金属として析出するものである。これらには無電解ニッケルめっき、無電解銅めつきな どが挙げられる。無電解銅めつきは、触媒作用のある面上に銅が析出するめつきで、 スルーホールめつきや、セミディティブ法、アディティブ法、プラスチックめっきなどの プリント配線板形成技術として汎用されてきた。また、無電解ニッケルめっきは、触媒 作用のある面上にニッケルが析出するめつきで、装飾用途や電子部品などに汎用さ れている。また、ニッケル リン合金めつき、ニッケル ホウ素合金めつきおよびタン ダステンやモリブデンが添加された三元合金めつき浴などが開発され、特性の向上 が図られている。 [0003] In autocatalytic chemical plating, the reducing agent reduces the metal ions in the bath and deposits as a metal on the substrate. These include electroless nickel plating and electroless copper plating. Electroless copper plating is a plating that deposits copper on a catalytic surface, and has been widely used as a printed wiring board formation technology such as through-hole plating, semi-additive method, additive method, and plastic plating. Electroless nickel plating is used for decorative purposes and electronic parts because nickel is deposited on the catalytic surface. In addition, nickel phosphorus alloy plating, nickel boron alloy plating, and ternary alloy plating baths to which tantasten and molybdenum are added have been developed to improve the characteristics.
[0004] これらの触媒作用のある面上に析出するめつき方法は、不導体物質表面上に触媒
を付与する工程として、不導体物質上に、パラジウムースズコロイド、またはパラジゥ ムイオン等の無電解めつきの開始剤となる触媒核を形成させ、次いで、該触媒核を 中心に還元反応により金属皮膜を析出させる方法である。 [0004] The method of plating deposited on these catalytic surfaces is a catalyst on the surface of a non-conductive material. As a step of imparting, a catalyst nucleus serving as an initiator for electroless plating such as palladium colloid or palladium ion is formed on a non-conductive material, and then a metal film is formed by a reduction reaction around the catalyst nucleus. It is the method of making it precipitate.
[0005] 従来用いられてきたパラジウム—スズコロイド触媒は、活性度とコロイドの安定性が 極めて良好であり、浴管理がしゃすい。一方で、高塩酸酸性溶液 (pHl以下)を使用 するため、装置を腐食させ、作業環境を悪化させる問題もある。また、セミアディティ ブ法による回路形成時に、回路間にパラジウム—スズコロイド触媒が残留し、絶縁性 を低下させる原因となっている。この残渣を完全に除去するための剥離剤も開発され ているが、十分な効果は得られていない。 [0005] The conventionally used palladium-tin colloidal catalyst has very good activity and colloidal stability, and the bath management is poor. On the other hand, since a highly hydrochloric acid solution (pH 1 or less) is used, there is a problem that the apparatus is corroded and the working environment is deteriorated. In addition, when a circuit is formed by the semi-additive method, a palladium-tin colloidal catalyst remains between the circuits, causing a decrease in insulation. A stripping agent has been developed to completely remove this residue, but it has not been fully effective.
[0006] これらの処理によって不導体物質上に金属皮膜を形成した場合には、一般的に、 不導体物質と金属皮膜間の密着性が低いため、密着性を向上させるための前処理 として、環境負荷の高いクロム酸や過マンガン酸塩等の薬剤で処理し、樹脂表面上 にアンカー効果が得られるエッチング処理がなされている。し力 ながら、樹脂がポリ イミド樹脂の場合には、アンカー効果を生じさせる凹凸が形成し難いので、他の樹脂 よりも充分な密着性を得るのが困難である。ポリイミド樹脂の化学的エッチング方法と して、 30wt%以上の硫酸を用いる方法や、ジァミンにより第 1段のエッチング処理を 施し、水酸化第 4アンモニゥムによって第 2段のエッチング処理を施す方法が提案さ れている(例えば特許文献 1参照)。また、 3〜15wt%のァミンと、 15〜40wt%のァ ルカリ金属水酸化物と、約 10〜50wt%の水混和性アルコールの混合物による方法 も提案されている (例えば特許文献 2参照)。また、サンドブラスト等による機械的粗ィ匕 も提案されてレ、る (例えば特許文献 3参照)。 [0006] When a metal film is formed on a non-conductive substance by these treatments, generally, since the adhesion between the non-conductive substance and the metal film is low, as a pretreatment for improving the adhesion, It is treated with chemicals such as chromic acid and permanganate, which have a high environmental impact, and an etching process is performed on the resin surface to obtain an anchor effect. However, when the resin is a polyimide resin, it is difficult to form irregularities that cause an anchor effect, so that it is difficult to obtain sufficient adhesion as compared with other resins. As chemical etching methods for polyimide resin, methods using 30 wt% or more of sulfuric acid and methods of performing the first-stage etching process with diamine and the second-stage etching process with 4th ammonium hydroxide are proposed. (See, for example, Patent Document 1). In addition, a method using a mixture of 3 to 15 wt% amine, 15 to 40 wt% alkali metal hydroxide, and about 10 to 50 wt% water-miscible alcohol has also been proposed (see, for example, Patent Document 2). In addition, mechanical roughing by sandblasting has been proposed (see, for example, Patent Document 3).
[0007] これらの樹脂とめっき間の密着性を向上させる方法として、一般的に、前処理として シランカップリング剤による処理が行われている。特許文献 4では、樹脂に波長 350η m以下の遠紫外線を照射した後に、シランカップリング剤を吸着させると、パラジウム —スズ系触媒の付与が促進され、より密着力の強い無電解めつきが得られるとしてい る。また、特許文献 5では、ポリイミドフィルムを水溶性アミノシランカップリング剤の 0. 05から 10wt%水溶液に浸漬し、次レ、でフィルム面を少なくとも 1回以上水洗するェ 程と、パラジウム—スズコロイド触媒溶液に浸漬する工程、スズを除去して金属パラジ
ゥムに変化する触媒活性溶液に浸漬する工程、及び無電解金属めつきを行って無 電解めつき層を形成する工程からなっている。 [0007] As a method for improving the adhesion between these resins and plating, a treatment with a silane coupling agent is generally performed as a pretreatment. According to Patent Document 4, if a silane coupling agent is adsorbed after irradiating a resin with far-ultraviolet rays having a wavelength of 350 ηm or less, application of a palladium-tin catalyst is promoted, and electroless plating with stronger adhesion is obtained. It is said that Further, in Patent Document 5, the step of immersing a polyimide film in a 0.05 to 10 wt% aqueous solution of a water-soluble aminosilane coupling agent and washing the film surface with water at least once in the next step, and a palladium-tin colloid catalyst solution Dipping in metal, removing tin and removing metal It consists of a step of immersing in a catalytically active solution that changes into a volume, and a step of forming an electroless plating layer by performing electroless metal plating.
[0008] 特許文献 6では、ァゾール系化合物とエポキシシラン系化合物との反応により得ら れたシランカップリング剤で表面処理した被めつき物を、パラジウム等の貴金属イオン を含む溶液で処理した後、銅又はニッケルの無電解めつきがなされている。特許文 献 7では、被めつき材をアルカリ金属塩で前処理した後に、 1分子中に金属補足能を 持つ置換基を有するシランカップリング剤が含窒素複素環式ァゾール化合物とェポ キシ基含有シラン化合物との反応生成物であるァゾール系シランカップリング剤と貴 金属化合物 (塩化パラジウム)とを予め混合または反応させた処理剤によって被めつ き剤を表面処理し、無電解めつきを施している。 [0008] In Patent Document 6, after the surface treatment with a silane coupling agent obtained by the reaction of an azole compound and an epoxy silane compound is treated with a solution containing a noble metal ion such as palladium. , Copper or nickel electroless plating. In Patent Document 7, after pretreatment of a covering material with an alkali metal salt, a silane coupling agent having a substituent having a metal-capturing ability in one molecule is converted into a nitrogen-containing heterocyclic azole compound and an epoxy group. Surface treatment is applied to the coating agent with a pre-mixed or reacted pre-metal compound (palladium chloride), which is a reaction product of the silane compound, and the electroless plating Has been given.
[0009] これらの不導体物質表面上に導電性を付与する方法は、強酸性で腐食性が高ぐ ランニングコストの高レ、触媒で吸着調整を行うことが重要である。キヤタリストの吸着が 過剰になると接続信頼性が悪くなり、密着性が低下する。このため、含窒素複素環式 ァゾール化合物とエポキシ基含有シラン化合物との反応生成物であるァゾール系シ ランカップリング剤と貴金属化合物 (塩化パラジウム)とを予め混合または反応させた 処理剤のような複雑な反応により得られるシランカップリング剤を用いている。また、ポ リイミド樹脂等への無電解めつきにおいても、実用上満足な密着強度が得られないと レ、う問題があった。 [0009] In order to impart conductivity to the surface of these non-conductive substances, it is important to adjust the adsorption with a catalyst that is strongly acidic and highly corrosive, has a high running cost, and a high catalyst. Excessive adsorption of the catalyst will reduce connection reliability and reduce adhesion. For this reason, such as a treatment agent in which an azole silane coupling agent, which is a reaction product of a nitrogen-containing heterocyclic azole compound and an epoxy group-containing silane compound, and a noble metal compound (palladium chloride) are mixed or reacted in advance. A silane coupling agent obtained by a complicated reaction is used. In addition, even in electroless bonding to a polyimide resin or the like, there was a problem that a practically satisfactory adhesion strength could not be obtained.
[0010] また、不導体物質に導電性皮膜を形成する他の方法には、金属蒸着法、ラミネート 法、キャスト法、等が一般に使用されている。 [0010] As other methods for forming a conductive film on a non-conductive material, a metal vapor deposition method, a laminating method, a casting method, or the like is generally used.
[0011] 例えば、ポリイミド樹脂に導電性を持たせる方法は、ラミネート法、キャスト法、スパッ タ法などが用いられている。ラミネート法はポリイミドフィルムに両面の接着層を塗布し 銅箔をはり合せた方法で、両面に接着層が必要なことから、厚みを薄くするためには 限界がある。キャスト法は電解銅箔にポリイミド原料を塗布し熱処理後、さらに銅箔を 接着させる方法で、工程数が多ぐ銅箔を使用するため、皮膜の厚みを薄くするには 限界がある。ハンドリングを考慮した場合には、 10 z m以上であるため、今後の微細 配線化の要求に対応することが困難となっている。湿式処理(めっき法)も考えられた 力 ポリイミドが耐薬品性高い物質のため困難であった。
[0012] スパッタ法は、 25 μ ΐηポリイミドフィルム上にニッケル一クロムスパッタ 0· 003〜0. 0 3 /i m、および銅スパッタ 0· 2 /i mなど形成したものがある力 設備やランニングコスト が高価であり、スパッタ時に力かるフィルムの変形の回避、搬送張力、スパッタ出力の バランスをとる必要があり、量産性の低さに問題がある。さらに、片面側のスパッタ処 理は可能である力 両面の処理はスパッタ装置を二度通す必要があるため、傷、皺 等の発生率が高くなり、処理コストが上昇するため量産化に問題がある。 [0011] For example, as a method for imparting conductivity to the polyimide resin, a laminating method, a casting method, a sputtering method, or the like is used. The laminating method is a method in which a double-sided adhesive layer is applied to a polyimide film and a copper foil is laminated. Since an adhesive layer is required on both sides, there is a limit to reducing the thickness. The casting method is a method in which a polyimide raw material is applied to an electrolytic copper foil, heat-treated, and then the copper foil is further bonded. Since copper foil with a large number of processes is used, there is a limit to reducing the thickness of the film. When handling is taken into consideration, it is 10 zm or more, making it difficult to meet future demands for fine wiring. Wet treatment (plating method) was also considered force. Polyimide was difficult because of its high chemical resistance. [0012] The sputtering method has a force of forming nickel-chromium sputter 0 · 003 to 0.03 / im and copper sputter 0 · 2 / im on a 25 μΐη polyimide film. Equipment and running costs are expensive. Therefore, it is necessary to balance film tension avoidance, the conveyance tension, and the sputter output, which are difficult during sputtering, and there is a problem in low mass productivity. In addition, it is possible to perform sputtering on one side. Since double-sided processing requires two passes through the sputtering device, the incidence of scratches and wrinkles increases, and the processing cost increases, causing problems in mass production. is there.
[0013] 近年、高周波特性維持のため、平滑な不導体表面に密着性の良いめっきを行う必 要があり、 UV処理や大気プラズマ処理等の方法が提案されている。しかしながら、 湿式法により平滑不導体表面上に密着性の良い導電性薄膜を形成する方法はまだ 見出されていない。 In recent years, in order to maintain high-frequency characteristics, it is necessary to perform plating with good adhesion on a smooth non-conductive surface, and methods such as UV treatment and atmospheric plasma treatment have been proposed. However, no method has yet been found to form a conductive thin film with good adhesion on a smooth non-conductive surface by a wet method.
特許文献 1 :特許第 2622016号公報 Patent Document 1: Japanese Patent No. 2622016
特許文献 2 :特開昭 63— 259083号公報 Patent Document 2: JP 63-259083 A
特許文献 3 :特開 2005— 116745号公報 Patent Document 3: Japanese Patent Laid-Open No. 2005-116745
特許文献 4 :特開平 10— 310873号公報 Patent Document 4: JP-A-10-310873
特許文献 5 :特開 2005— 116745号公報 Patent Document 5: Japanese Unexamined Patent Application Publication No. 2005-116745
特許文献 6:特許第 3277463号公報 Patent Document 6: Japanese Patent No. 3277463
特許文献 7 :特開 2002— 226972号公報 Patent Document 7: JP 2002-226972 A
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0014] このため、樹脂基体と導電性薄膜との高密着強度を得るために、従来の無電解め つき前処理に替わる新たな不導体表面上への触媒化方法が強く要望されている。 [0014] For this reason, in order to obtain high adhesion strength between the resin substrate and the conductive thin film, there is a strong demand for a new method for catalyzing a non-conductive surface in place of the conventional electroless plating pretreatment.
[0015] また、従来プリント配線基板のスルーホールめつきにはパラジウムースズコロイド触 媒が汎用されてきたが、セミアディティブ法による回路形成時にライン間に該触媒が 残留し、後の無電解ニッケル、置換金めつきがライン間に析出して絶縁性を劣化させ てしまう問題が発生する。このような問題を解決するため、酸処理等により容易に除 去できる触媒化方法やパラジウムースズコロイド触媒溶液に替わる安価な触媒化方 法が切望されている。 [0015] Also, a palladium-seed colloid catalyst has been widely used for hitting through-holes in printed wiring boards, but the catalyst remains between the lines during circuit formation by the semi-additive method, and later electroless nickel In other words, the problem is that the substitutional gold plating is deposited between the lines and deteriorates the insulation. In order to solve such problems, there is an urgent need for a catalyzing method that can be easily removed by acid treatment or the like, and an inexpensive catalyzing method that replaces the palladiumose colloidal catalyst solution.
[0016] 本発明は、このような事情に鑑みてなされたものであって、樹脂基体と導電性薄膜
との高密着強度を得るための従来の無電解めつき前処理に替わる、新たな不導体表 面上への触媒化方法を提供することを目的とし、さらに、湿式法による比較的簡単な 処理工程によって、作業環境や地球環境を汚染することなぐ上記不導体材料表面 に導電性薄膜を形成するための触媒化方法を提供することを目的とする。 [0016] The present invention has been made in view of such circumstances, and includes a resin substrate and a conductive thin film. The purpose is to provide a new method for catalyzing on non-conductive surfaces, replacing the conventional electroless plating pre-treatment for obtaining high adhesion strength, and a relatively simple treatment by the wet method. It is an object of the present invention to provide a catalytic method for forming a conductive thin film on the surface of the non-conductive material that does not pollute the work environment or the global environment.
課題を解決するための手段 Means for solving the problem
[0017] 本発明の無電解めつき用触媒剤は、金属化合物と、アルカリ金属水酸化物と、水溶 性シランカップリング剤と、無機酸および有機酸の少なくとも一方との混合物からなる ことを特徴とする。 [0017] The electroless plating catalyst of the present invention comprises a mixture of a metal compound, an alkali metal hydroxide, a water-soluble silane coupling agent, and at least one of an inorganic acid and an organic acid. And
発明の効果 The invention's effect
[0018] 本発明の無電解めつき用触媒剤は、樹脂基体と導電性薄膜との高密着強度を得る ための従来の無電解めつき前処理に替わる、新たな不導体表面上への触媒剤を提 供するものである。 [0018] The electroless plating catalyst of the present invention is a new catalyst on a non-conductive surface, replacing the conventional electroless plating pretreatment for obtaining high adhesion strength between a resin substrate and a conductive thin film. The agent is provided.
[0019] 従来プリント配線基板のスルーホールめつきにはパラジウム—スズコロイド触媒が汎 用されてきたが、セミアディティブ法による回路形成時にライン間に該触媒が残留し、 後の無電解ニッケル、置換金めつきがライン間に析出して絶縁性を劣化させてしまう 問題が発生する。本発明は、この問題を解決し、酸処理等により容易に除去できる触 媒化方法やパラジウムースズコロイド触媒溶液に替わる触媒剤を提供することを可能 としている。 [0019] Conventionally, palladium-tin colloidal catalysts have been widely used for through-hole plating of printed wiring boards, but the catalyst remains between the lines during circuit formation by the semi-additive method, and later electroless nickel, substitutional gold A problem arises in that the metal deposits are deposited between the lines and the insulation is deteriorated. The present invention solves this problem and makes it possible to provide a catalyzing method that can be easily removed by acid treatment or the like and a catalyst agent that replaces the palladiumose colloid catalyst solution.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の実施形態である無電解めつき用触媒剤について詳述する。 Hereinafter, the electroless plating catalyst agent according to an embodiment of the present invention will be described in detail.
[0021] 本実施形態の無電解めつき用触媒剤に使用可能な不導体基体は、使用目的に応 じた適度な物性、例えば、強度、絶縁性、耐食性等を有する樹脂基体であれば、特 に限定されるものではない。また、本実施形態の無電解めつき用触媒剤に使用可能 な不導体基体は、樹脂成型物に限定されず、樹脂間を補強した複合物であってもよ レ、。また、セラミックス、ガラス、金属等の各種の素材からなる基材や、それらを樹脂に より皮膜を形成したものであってもよレ、。 [0021] The non-conductive substrate that can be used in the electroless plating catalyst of the present embodiment is a resin substrate having appropriate physical properties according to the purpose of use, such as strength, insulation, and corrosion resistance. It is not particularly limited. Further, the non-conductive substrate that can be used in the electroless plating catalyst of the present embodiment is not limited to a resin molded product, but may be a composite in which the resin is reinforced. It is also possible to use a base material made of various materials such as ceramics, glass, metal, etc., or a film formed from these with a resin.
[0022] 不導体基体には任意の樹脂が使用可能であり、エポキシ樹脂、ポリイミド樹脂、ポリ フエ二レンエーテル樹脂、フッ素系樹脂、 ABS樹脂であり、エポキシ樹脂、およびポリ
イミド樹脂が例示される。また、樹脂基体は、単独または複数の樹脂からなるものであ つてもよい。 [0022] Arbitrary resins can be used for the non-conductive substrate, such as epoxy resin, polyimide resin, polyphenylene ether resin, fluorine resin, ABS resin, epoxy resin, and poly An imide resin is exemplified. The resin substrate may be composed of a single resin or a plurality of resins.
[0023] 本実施形態の無電解めつき用触媒剤を用いた処理工程は、 (1)不導体基体の表 面改質処理する工程と、 (2)不導体基体上に無電解めつきの触媒核を形成させるェ 程と、(3)無電解めつきにより金属の導電性薄膜層を形成する工程と、(4)無電解め つき後に熱処理する工程とからなり、工程(1)〜(4)の各条件を変えることによって、 適宜調節することが可能である。また、金属との複合樹脂基体の場合は、必要に応じ て金属のエッチング処理工程や酸活性化工程を付加できる。また、必要ならば無電 解めつき前に無電解反応の促進処理を行うこともできる。 [0023] The treatment process using the electroless plating catalyst of the present embodiment includes (1) a surface modification treatment of a non-conductive substrate, and (2) a non-electrolytic plating catalyst on the non-conductive substrate. It comprises the steps of forming nuclei, (3) a step of forming a metal conductive thin film layer by electroless plating, and (4) a step of heat treatment after electroless plating. ) Can be adjusted appropriately by changing each condition. In the case of a composite resin substrate with a metal, a metal etching treatment step and an acid activation step can be added as necessary. In addition, if necessary, the electroless reaction can be accelerated before the electroless connection.
[0024] 加熱処理後の無電解めつき皮膜上に脱脂処理、デスケール処理、酸活性化処理 等を行った後、電気めつきを施すことも可能である。電気めつき後の熱処理は、必要 に応じて適用できる。 [0024] After the heat treatment, the electroless plating film may be subjected to degreasing treatment, descaling treatment, acid activation treatment, etc., and then electroplating. Heat treatment after electroplating can be applied as needed.
[0025] 前述した(1)不導体基体の表面改質処理する工程は、汎用のプラズマ処理等の乾 式法や化学薬品を用いる湿式法による方法が適用できる。処理する不導体基体の 化学的特性を考慮して最適な方法を選択できる。 [0025] The above-mentioned (1) surface modification treatment of the non-conductive substrate can be applied by a dry method such as general-purpose plasma treatment or a wet method using chemicals. The optimum method can be selected considering the chemical characteristics of the non-conductive substrate to be treated.
[0026] プラズマ処理によって、不導体基体は、エッチングによる表面粗化、高エネルギー 活性種による樹脂構成元素の脱離と分岐架橋化や不飽和化され、さらにイオン交換 能を有する基の導入などが起こり、親水性を付与できる。プラズマ処理装置としては、 常温プラズマ処理装置やマイクロ波低温酸素プラズマ処理装置が例示される。 By the plasma treatment, the non-conductive substrate is subjected to surface roughening by etching, desorption of the resin constituent elements by high-energy active species, branch cross-linking and desaturation, and introduction of a group having ion exchange ability. Occurs and can impart hydrophilicity. Examples of the plasma processing apparatus include a room temperature plasma processing apparatus and a microwave low temperature oxygen plasma processing apparatus.
[0027] 湿式法による不導体基体の表面改質には、硫酸等の酸性溶液あるいは水酸化ナト リウム、水酸化カリウム等のアルカリ性溶液が使用できる。例えば、ポリイミド樹脂ゃェ ポキシ樹脂の場合には、 0. lmol/L〜10mol/L-NaOH溶液または 0. lmol/L 〜: 10mol/L -KOH溶液が使用できる。温度は、 20〜90°Cの範囲、処理時間は、 10秒〜 10分の範囲が好ましい。 [0027] An acidic solution such as sulfuric acid or an alkaline solution such as sodium hydroxide or potassium hydroxide can be used for surface modification of a non-conductive substrate by a wet method. For example, in the case of polyimide resin epoxy resin, 0.1 mol / L to 10 mol / L-NaOH solution or 0.1 mol / L to 10 mol / L-KOH solution can be used. The temperature is preferably in the range of 20 to 90 ° C, and the treatment time is preferably in the range of 10 seconds to 10 minutes.
[0028] 前述した(2)不導体基体上に無電解めつきの触媒核を形成させる工程は、不導体 基体上に、金属化合物と、アルカリ金属水酸化物と、水溶性シランカップリング剤と、 無機酸および有機酸の少なくとも一方と、の混合物からなる本実施形態の無電解め つき用触媒剤で処理する工程である。無電解めつきの種類により、反応させる金属化
合物を選定できる。 [0028] (2) The step of forming a catalyst nucleus with electroless plating on a non-conductive substrate includes the step of forming a metal compound, an alkali metal hydroxide, a water-soluble silane coupling agent on the non-conductive substrate, This is a step of treating with the electroless plating catalyst of the present embodiment comprising a mixture of at least one of an inorganic acid and an organic acid. Metallization to be reacted depending on the type of electroless plating A compound can be selected.
[0029] 例えば、無電解銅めつきには、パラジウム、金、銀および白金等の金属による金属 化合物が使用でき、また、無電解ニッケノレめつきには、パラジウム、チタン、コバルト、 タングステン、金、銀、白金等の金属による金属化合物が使用できる。濃度は、 5 X 1 0 5 X 10 1 molZLであり、 3 X 10 5 X 10 2 molZLが好ましレヽ。本実施形 態の無電解めつき用触媒により、パラジウム、金、銀、白金はもちろんのこと、かって 触媒として使用されていなかったチタン、コバルト、タングステン等の金属による金属 化合物の触媒能を発現させることが可能となる。 [0029] For example, metal compounds of metals such as palladium, gold, silver and platinum can be used for electroless copper plating, and palladium, titanium, cobalt, tungsten, gold, Metal compounds of metals such as silver and platinum can be used. Concentration is 5 X 10 5 X 10 1 molZL, 3 X 10 5 X 10 2 molZL is preferred. The electroless plating catalyst according to the present embodiment develops the catalytic ability of metal compounds by metals such as titanium, cobalt, tungsten, etc. that have not been used as a catalyst as well as palladium, gold, silver, platinum. It becomes possible.
[0030] 本実施形態の無電解めつき用触媒剤には、不導体基体の種類により、最適な水溶 性シランカップリング剤を選定できる。例えば、エポキシ樹脂、ポリイミド樹脂、フエノ ール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、 PET樹脂、ァ クリル樹脂等には、トリアルコキシシランとしてはトリメトキシシラン、トリエトキシシラン、 トリプロポキシシラン、トリプトキシシラン、ジエトキシモノメトキシシラン、モノメトキシジメ トキシシラン、モノメトキシジプロボキシシラン、プトキシェトキプロポキシシラン、ジメト キシモノプロポキシシラン、ジエトキシモノプロボキシシラン、モノブトキシジメトキシシ ラン、テトラアルコキシシランとしてはテトラメトキシシラン、テトラエトキシシラン、テトラ プロボキシシラン、テトラブトキシシラン、テトラエトキシモノメトキシシラン、ジメトキシジ キシジプロポキシシラン、トリメトキシモプロポキシシラン、ジブトキシジメトキシシラン、 モノアルキルトリアルコキシシランとしては、モノメチルトリメトキシシラン、モノェチルト リメトキシシラン、モノプロピルトリエトキシシラン、モノメチルトリプトキシシラン、モノエ チルトリブトキシシラン、モノプロピルトリブトキシシラン、また、ジアルキルジアルコキシ [0030] As the electroless plating catalyst of this embodiment, an optimal water-soluble silane coupling agent can be selected depending on the type of non-conductive substrate. For example, for the epoxy resin, polyimide resin, phenol resin, polyethylene resin, polypropylene resin, polystyrene resin, PET resin, acrylic resin, the trialkoxysilane is trimethoxysilane, triethoxysilane, tripropoxysilane, triplicate. As Toxisilane, Diethoxymonomethoxysilane, Monomethoxydimethoxysilane, Monomethoxydipropoxysilane, Ptoxhetoxypropoxysilane, Dimethoxymonopropoxysilane, Diethoxymonopropoxysilane, Monobutoxydimethoxysilane, Tetraalkoxysilane Are tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetraethoxymonomethoxysilane, dimethoxydioxydipropoxysilane, Toximopropoxysilane, dibutoxydimethoxysilane, and monoalkyltrialkoxysilane include monomethyltrimethoxysilane, monoethyltrimethoxysilane, monopropyltriethoxysilane, monomethyltryptoxysilane, monoethyltributoxysilane, monopropyltributoxysilane Dialkyl dialkoxy
。濃度は、 5 10 3〜311101/しでぁり、 2 10 4〜1 10 311101/しが好ましレ、。こ れらのアルコキシシランは単独で用いてもょレ、し、 2種類以上を組み合わせて用いて も良い。
[0031] また、本実施形態の水溶性シランカップリング剤は、有機質材料と化学結合するビ ニル基、エポキシ基、アミノ基、メタクリロキシ基、メルカプト基、無機質材料と化学結 合するメトキシ基、エトキシ基を有する群から単独もしくは複数選択されて有するもの である。本実施形態の水溶性シランカップリング剤が有するビュル基としては、ビュル トリメトキシシラン、ビュルトリエトキシシラン、ビュルトリクロルシラン、ビュルトリァセトキ シシラン、ビュルトリス(メトキシエトキシ)シラン、ビュルトリイソプロポキシシラン、本実 施形態の水溶性シランカップリング剤が有するエポキシ基としては、 3—グリシドキシ プロピルトリメトキシシラン、 3—グリシドキシプロピルトリエトキシシラン、 3—グリシドキ シプロピルメチルジェトキシシラン、 3—グリシドキシプロピルメチルジメトキシシラン、 2 - (3、 4_エポキシシクロへキシル)ェチルトリメトキシシラン、本実施形態の水溶性シ ランカップリング剤が有するアミノ基としては、 N- (2—アミノエチル) 3—ァミノプロピ . The concentration is 5 10 3 to 311101/210 4 to 1 10 3 11101 / is preferred. These alkoxysilanes may be used alone or in combination of two or more. [0031] In addition, the water-soluble silane coupling agent of this embodiment includes a vinyl group, an epoxy group, an amino group, a methacryloxy group, a mercapto group, a methoxy group chemically bonded to an inorganic material, and an ethoxy group. One or a plurality selected from a group having a group. Examples of the bur group possessed by the water-soluble silane coupling agent of the present embodiment include butyl trimethoxy silane, butyl triethoxy silane, butyl trichloro silane, butyl triacetoxy silane, burtris (methoxy ethoxy) silane, butyl triisopropoxy silane, The epoxy group possessed by the water-soluble silane coupling agent of the embodiment includes 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyljetoxysilane, and 3-glycidoxy. Propylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the amino group of the water-soluble silane coupling agent of this embodiment include N- (2-aminoethyl) 3 —Aminopropi
N- (2—アミノエチル) 3—ァミノプロピルトリエトキシシラン、 3—ァミノプロピルトリェトキ シシラン、 3—ァミノプロピルトリメトキシシラン、アミノシラン、 3— (-2-アミノエチル)ァ ノレ一 N— (1、 3—ジメチルブチリデン)プロピルァミン、 N—フエ二ルー 3—ァミノプロピ ノレトリメトキシシラン、本実施形態の水溶性シランカップリング剤が有するメタクリロキシ ジメトキシシラン、 3—メタクリロキシプロピルトリエトキシシラン、 3—メタクリロキシプロ ピルメチルジェトキシシラン、本実施形態の水溶性シランカップリング剤が有するメル カプト基としては、 3—メルカプトプロピルトリエトキシシラン、 3—メルカプトプロピルトリ N- (2-aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, aminosilane, 3-(-2-aminoethyl) anolene N — (1,3-dimethylbutylidene) propylamine, N-phenyl-3-triaminotrimethoxysilane, methacryloxy dimethoxysilane, 3-methacryloxypropyltriethoxysilane, which the water-soluble silane coupling agent of this embodiment has, Examples of mercapto groups possessed by 3-methacryloxypropylmethylmethoxysilane and the water-soluble silane coupling agent of this embodiment include 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltrisilane.
[0032] 本実施形態の無電解めつき用触媒剤に用いる無機酸の濃度は、 3 X 10 5mol /Lであり、 2 10—1〜2111017しが好ましぃ。本実施形態の無電解めつき用触媒剤 に用いるアルカリ金属水酸化物の濃度は、 2 10—2〜311101/しでぁり、 I X 10―1〜 2mol/Lが好ましい。本実施形態の無電解めつき用触媒剤に用いる有機酸の濃度 は、 2 X 10— 2〜2mol/Lであり、 3 X 10―1〜 lmol/Lが好ましい。 [0032] The concentration of the inorganic acid used in the electroless plated catalyst agent of the present embodiment 3 is X 10 5mol / L, 2 10- 1 ~2111017 Mr. Shi favored I. The concentration of the alkali metal hydroxide used in the electroless plated catalyst agent of the present embodiment, 2 10- 2-311101 / Shideari, IX 10 1 ~ 2 mol / L is preferred. The concentration of the organic acid used in the electroless plating catalyst of the present embodiment is 2 × 10−2 to 2 mol / L, preferably 3 × 10−1 to 1 mol / L.
[0033] 本実施形態の無電解めつき用触媒剤に用いるアルカリ金属水酸化物は、水酸化ナ
トリウム、および、水酸化カリウムからなる群から単独もしくは複数選択されたアルカリ 金属水酸化物であればよい。また、本実施形態の無電解めつき用触媒剤に用いる無 機酸は、塩酸、硫酸、硝酸、および、炭酸からなる群から単独もしくは複数選択され た無機酸であればよい。また、本実施形態の無電解めつき用触媒剤に用いる有機酸 は、カルボン酸、ヒドロキシカルボン酸、および、アミノ酸からなる群から単独もしくは 複数選択された有機酸であればょレ、。 [0033] The alkali metal hydroxide used for the electroless plating catalyst of this embodiment is sodium hydroxide. Any alkali metal hydroxide selected from the group consisting of thorium and potassium hydroxide may be used. In addition, the inorganic acid used in the electroless plating catalyst of the present embodiment may be an inorganic acid selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, and carbonic acid. The organic acid used in the electroless plating catalyst of this embodiment is an organic acid selected from the group consisting of carboxylic acids, hydroxycarboxylic acids, and amino acids.
[0034] 前述した(3)無電解めつきにより金属の導電性薄膜層を形成する工程には、触媒 活性を有する無電解めつきであれば目的に応じて選定できる。例えば、無電解二ッケ ノレめつき、無電解銅めつき、無電解コバルトめっき、無電解パラジウムめっき、無電解 銀めつき、無電解金めつき、無電解白金めつき、無電解ルテニウムめっき、無電解口 ジゥムめっき、無電解インジウムめっき、無電解スズめっき、無電解鉛めつき、無電解 アンチモンめつき、無電解ビスマスめつき等が例示される。 [0034] The step (3) of forming a metal conductive thin film layer by electroless plating can be selected according to the purpose as long as it is an electroless plating having catalytic activity. For example, electroless nickel plating, electroless copper plating, electroless cobalt plating, electroless palladium plating, electroless silver plating, electroless gold plating, electroless platinum plating, electroless ruthenium plating, Examples include electroless openings such as zinc plating, electroless indium plating, electroless tin plating, electroless lead plating, electroless antimony plating, and electroless bismuth plating.
[0035] 前述した (4)無電解めつき後に熱処理する工程は無くても十分な密着強度が得ら れる力 熱処理をすることにより密着強度が向上する。熱処理方法は樹脂の耐熱性と も関係する力 樹脂の劣化または過度の酸化が生じない範囲で処理することが好ま しい。例えば、エポキシ樹脂系の樹脂基体の場合には、 80〜150°C程度で加熱する ことが好ましぐポリイミド系の樹脂基体の場合には、 80〜180°C程度で加熱すること が好ましい。加熱時間は、通常、 30〜: 120分程度が好ましい。加熱雰囲気は、特に 限定はなぐ空気中で熱処理してもよいが、形成した導電性薄膜の酸化が進行しす ぎないように、窒素雰囲気、水素雰囲気等の還元性雰囲気下で加熱を行うことが好 ましぐ 目的とする成分の性質に応じて、適宜加熱雰囲気を設定すればよい。 [0035] (4) Force that can provide sufficient adhesion strength even if there is no heat treatment step after electroless plating. Adhesion strength is improved by heat treatment. The heat treatment method is also related to the heat resistance of the resin. It is preferable that the heat treatment is performed within a range where the resin does not deteriorate or excessively oxidize. For example, in the case of an epoxy resin-based resin substrate, it is preferable to heat at about 80 to 150 ° C. In the case of a polyimide-based resin substrate, it is preferable to heat at about 80 to 180 ° C. The heating time is usually preferably about 30 to about 120 minutes. The heating atmosphere may be heat-treated in air with no particular limitation, but heating may be performed in a reducing atmosphere such as a nitrogen atmosphere or a hydrogen atmosphere so that oxidation of the formed conductive thin film does not proceed excessively. A heating atmosphere may be appropriately set according to the properties of the target component.
[0036] 以上説明したように、本実施形態の無電解めつき用触媒剤は、樹脂基体と導電性 薄膜との高密着強度を得るための従来の無電解めつき前処理に替わる、新たな不導 体表面上への触媒剤を提供するものである。 As described above, the electroless plating catalyst of the present embodiment is a new alternative to the conventional electroless plating pretreatment for obtaining high adhesion strength between the resin substrate and the conductive thin film. The catalyst agent is provided on the surface of the non-conductor.
[0037] 従来、プリント配線基板のスルーホールめつきにはパラジウム—スズコロイド触媒が 汎用されてきたが、セミアディティブ法による回路形成時にライン間に該触媒が残留 し、後の無電解ニッケル、置換金めつきがライン間に析出して絶縁性を劣化させてし まう問題が発生する。本実施形態の無電解めつき用触媒剤は、この問題を解決し、
酸処理等により容易に除去できる触媒化方法やパラジウムースズコロイド触媒溶液に 替わる触媒剤を提供することを可能としている。 [0037] Conventionally, a palladium-tin colloidal catalyst has been widely used to mate through holes in printed wiring boards, but this catalyst remains between lines during circuit formation by the semi-additive method, and later electroless nickel, substitutional gold A problem arises in that the metal deposits are deposited between the lines and the insulation is deteriorated. The electroless plating catalyst of the present embodiment solves this problem, It is possible to provide a catalytic method that can be easily removed by acid treatment or the like and a catalyst agent that replaces the palladiumose colloidal catalyst solution.
[0038] また、シランカップリング剤に混合或いは反応させる触媒能を有する金属イオンは、 パラジウムイオン以外に、コバルトイオン、タングステンイオン、チタンイオン、銀イオン 、金イオン、白金イオンからなる群から単独、もしくは複数選択することができるため、 低価格の無電解めつき用触媒剤を提供することを可能としている。 [0038] In addition to the palladium ion, the metal ion having catalytic ability to be mixed or reacted with the silane coupling agent is alone from the group consisting of cobalt ion, tungsten ion, titanium ion, silver ion, gold ion, platinum ion, Alternatively, since a plurality of options can be selected, it is possible to provide a low-cost electroless plating catalyst.
実施例 Example
[0039] 次に、実施例を挙げて本発明の無電解めつき用触媒剤をより具体的に説明する。 [0039] Next, the electroless plating catalyst of the present invention will be described more specifically with reference to examples.
ただし、本発明はこれらの実施例のみに限定されるものではない。 However, the present invention is not limited to only these examples.
[0040] 本実施例の無電解めつき用触媒剤を用いて製造された樹脂複合材料においては 、金属元素含有成分と樹脂基体の間の密着性が改良されている。金属元素含有成 分が皮膜を形成する場合には、皮膜のピール強度およびテープ剥離試験等で密着 性を判断することができる。 [0040] In the resin composite material produced using the electroless plating catalyst of this example, the adhesion between the metal element-containing component and the resin substrate is improved. When the metal element-containing component forms a film, the adhesion can be judged by the peel strength of the film and the tape peeling test.
[0041] 本実施形態の無電解めつき用触媒剤に用いる製造された無電解めつき薄膜を 0. 1 力 0. 3 μ ΐη程度形成した後、 10ないし 20 μ ΐηの銅皮膜を電気銅めつきにより形成 する。 200°Cで 10分間熱処理後、皮膜を lcm幅にカットし、引張り試験機を用いて 5 OmmZ分の速度で垂直引き剥がし試験(90°ピール強度)により測定した。 [0041] After the produced electroless plating thin film used for the electroless plating catalyst of this embodiment is formed to about 0.1 force 0.3 μΐη, a copper film of 10 to 20 μΐη is formed on the electrolytic copper. It is formed by eye contact. After heat treatment at 200 ° C for 10 minutes, the film was cut into a lcm width and measured by a vertical peeling test (90 ° peel strength) at a rate of 5 OmmZ using a tensile tester.
[0042] (実施例 1:ポリイミド樹脂上ニッケル薄膜の作製) [Example 1] Preparation of nickel thin film on polyimide resin
15cm X 15cmのポリイミドフィルム(宇部興産社製ユーピレックス— 25R)を常圧プ ラズマ装置(日本ペイント株式会社製)に入れ、 80kVにて電極間距離 2cmで 10分 間処理した。その後、塩化パラジウム 5 X 10_3mol/L、トリエトキシシラン 0. 5mol /L、塩酸 5 X 10"2mol/L,水酸化ナトリウム 1 X 10"2mol/L,蟻酸 ImolZLの混 合溶液からなる無電解めつき用触媒剤に室温にて 1分間浸漬し、水洗後、この試料 を無電解ニッケルめっき浴(テクニック製、テク二ニッケル AT_ 5000A: 60mL/L、 B : 150mL/L)に、 80°Cにて 2分間浸漬し、ニッケルの導電性薄膜を得た。その後 、 200°Cにて 10分間熱処理を行った。 A 15 cm X 15 cm polyimide film (UPILEX-25R manufactured by Ube Industries) was placed in an atmospheric pressure plasma apparatus (manufactured by Nippon Paint Co., Ltd.) and treated at 80 kV for a distance of 2 cm between electrodes for 10 minutes. After that, from a mixed solution of palladium chloride 5 X 10_ 3 mol / L, triethoxysilane 0.5 mol / L, hydrochloric acid 5 X 10 " 2 mol / L, sodium hydroxide 1 X 10" 2 mol / L, formic acid ImolZL After immersing in an electroless plating catalyst at room temperature for 1 minute and washing with water, this sample was placed in an electroless nickel plating bath (Technic Nickel AT_ 5000A: 60 mL / L, B: 150 mL / L) Immersion was performed at 80 ° C for 2 minutes to obtain a nickel conductive thin film. Thereafter, heat treatment was performed at 200 ° C. for 10 minutes.
[0043] この試料を脱脂剤(テク二 FPDクリーナー 20mL/L、 60°C)に 1分間浸漬し、水 洗後、活性化剤(テクニック社製 ACT9600 50g/L)溶液に室温にて 30秒浸漬し
、水洗後、硫酸銅めつき浴(テクニック社製 テク二 CU2300)を用いて銅めつきを 15 / m行ない、水洗し、銅皮膜表面の酸化防止のために、変色防止剤 (テクニック社製 テク二アンチターニッシュ)により、室温で 20秒間処理し水洗乾燥させた。その後、 金属顕微鏡で観察を行ったところ、亀裂は発生しておらず、均一な皮膜が得られ、 2 50°C、 1分間の熱処理後、得られた皮膜のピール強度を測定すると 0.85kN/mを 示した。 [0043] This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L, 60 ° C) for 1 minute, washed with water, and then in an activator (Technique ACT9600 50g / L) solution at room temperature for 30 seconds. Soak After washing with water, use a copper sulfate plating bath (Techni TECH2 CU2300) to perform copper plating at 15 / m, wash with water, and prevent oxidation of the copper film surface (Technics Corp. And then washed with water and dried for 20 seconds at room temperature. After that, when observed with a metallographic microscope, cracks did not occur and a uniform film was obtained. After heat treatment at 250 ° C. for 1 minute, the peel strength of the obtained film was measured to be 0.85 kN / m.
[表 1] [table 1]
[0045] (実施例 2:ポリイミド樹脂上銅薄膜の作製) [0045] (Example 2: Preparation of copper thin film on polyimide resin)
15cm X 15cmのポリイミドフィルム(東レ .デュポン社製カプトン EN)を 80g/L水酸 化ナトリウム溶液に 80°Cにて 5分間浸漬し、活性化剤(テク二 ACT3500 lOOmL/ L)、硫酸パラジウム 5 X 10_3mol/L、ジェチルジメトキシシラン 0· 4mol/L、塩酸 6 X 10_2mol/L、水酸化ナトリウム 2 X 10_2mol/L、酢酸 lmol/Lの混合溶液か らなる無電解めつき用触媒剤に室温にて 2分間浸潰し、水洗後、 1分間浸潰し、水洗 後、この試料を無電解銅めつき浴 (テクニック社製:キュープロシック 84 A: 40mL/ L、 B:30mL/L、アディティブ: 30mL/L、 F : 100mL/L) 50°Cにて 5分間浸漬し 、銅めつき皮膜を得た。その後、 200°Cにて 10分間熱処理を行った。 15cm X 15cm polyimide film (Toray DuPont Kapton EN) is immersed in 80g / L sodium hydroxide solution at 80 ° C for 5 minutes, activator (Techni ACT3500 lOOmL / L), palladium sulfate 5 Electroless electrolysis consisting of a mixed solution of X 10 _3 mol / L, jetyl dimethoxysilane 0.4 mol / L, hydrochloric acid 6 X 10 _2 mol / L, sodium hydroxide 2 X 10 _2 mol / L, acetic acid lmol / L Soak in a catalyst for 2 minutes at room temperature, rinse with water, soak for 1 minute, rinse with water, and then wash this sample with an electroless copper bath (Technique: Cuprosic 84 A: 40 mL / L, B: (30 mL / L, additive: 30 mL / L, F: 100 mL / L) The film was immersed for 5 minutes at 50 ° C. to obtain a copper plating film. Thereafter, heat treatment was performed at 200 ° C. for 10 minutes.
[0046] この試料を脱脂剤(テク二 FPDクリーナー 20mL/L 60°C)に 1分間浸漬し、水 洗後、活性化剤(テクニック社製: ACT9600 50mL/L)溶液に室温にて 30秒浸 漬し、水洗後、市販の硫酸銅めつき浴を用いて銅めつきを 15 z m行なレ、、水洗し、銅 皮膜表面の酸化防止のために、変色防止剤(テクニック社製:テク二アンチターニッ シュ、室温)により、 20秒間処理し水洗乾燥させた。その後、金属顕微鏡で観察を行 つたところ、亀裂は発生しておらず、均一な皮膜が得られ、 150°C、 5分間の熱処理
後、得られた皮膜のピール強度を測定すると 0.60kN/mを示した。 [0046] This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L 60 ° C) for 1 minute, washed with water, and then in an activating agent (Technique: ACT9600 50mL / L) solution at room temperature for 30 seconds. After soaking, washing with water, using a commercially available copper sulfate bath, wash the copper with 15 zm, wash with water, and prevent oxidation of the copper film surface (Technique: Tech. And then washed with water and dried for 20 seconds. After that, when observed with a metallurgical microscope, no cracks occurred, a uniform film was obtained, and heat treatment at 150 ° C for 5 minutes Later, when the peel strength of the obtained film was measured, it was 0.60 kN / m.
[0047] (実施例 3:エポキシ樹脂上銅薄膜の作製) [0047] (Example 3: Production of copper thin film on epoxy resin)
5cm X 15cm (板厚 1 · 6mm)のエポキシ樹脂(松下電工社製)をマイクロ波低温酸 素プラズマ処理槽内のターンテーブル上に設置したのち、真空ポンプを作動させて 処理槽内を 0. 13Pa以下に減圧し、真空ポンプを作動させながら酸素ガスを 10mL /分の速度で導入し、エポキシ樹脂を放電電流 150 (mA)で 5分間照射することによ り、樹脂表面に親水基を形成した。その後、酢酸パラジウム 6 X 10— 3mol/L、ジェ チルジメトキシシラン 0. 5molZL、塩酸 5 X 10_2mol/L、水酸化ナトリウム 2 X 10 mol/L、酢酸 lmol/Lの混合溶液からなる無電解めつき用触媒剤に室温にて 3分 間浸漬し、水洗後、この試料を無電解銅めつき浴 (テクニック社製:キュープロシック 8 4 A: 40mL/L、 B:30mL/L、アディティブ: 30mL/L、 F : 100mL/L 50°C)、 に 5分間浸漬し、銅の導電性薄膜を得た。その後、 200°Cにて 10分間熱処理を行つ た。 After installing 5cm X 15cm (plate thickness 1 · 6mm) epoxy resin (Matsushita Electric Works Co., Ltd.) on the turntable in the microwave low-temperature oxygen plasma treatment tank, operate the vacuum pump to set the inside of the treatment tank to 0. Depressurize to 13 Pa or less, introduce oxygen gas at a rate of 10 mL / min while operating the vacuum pump, and irradiate the epoxy resin at a discharge current of 150 (mA) for 5 minutes to form hydrophilic groups on the resin surface. did. Thereafter, palladium acetate 6 X 10- 3 mol / L, Jefferies chill dimethoxysilane 0. 5MolZL, hydrochloride 5 X 10_ 2 mol / L, sodium hydroxide 2 X 10 mol / L, free of a mixed solution of acetic acid I mol / L After immersing in an electrocatalyst catalyst for 3 minutes at room temperature and washing with water, this sample is electroless copper bath (Technique: Cuprosic 8 4 A: 40 mL / L, B: 30 mL / L, Additive: 30 mL / L, F: 100 mL / L 50 ° C), and immersed for 5 minutes to obtain a copper conductive thin film. Thereafter, heat treatment was performed at 200 ° C for 10 minutes.
[0048] この試料を脱脂剤(テク二 FPDクリーナー 20mL/L 60°C)に 1分間浸漬し、水 洗後、活性化剤(テクニック社製 50g/L ACT9600溶液、室温)にて 30秒浸漬し、 水洗後、硫酸銅めつき浴(テクニック社製:キュープロシック 84 A: 40mL/L、 B:30 mL/L、アディティブ: 30mL/L、 F : 100mL/L 50°C)を用いて銅めつきを 15 μ m行ない、水洗し、銅皮膜表面の酸化防止のために、変色防止剤 (テクニック社製テ クニアンチターニッシュ)により、室温で 20秒間処理し水洗乾燥させた。金属顕微鏡 で表面観察を行ったところ、素材のヒビ割れや傷等はなぐ均一な皮膜が得られた。 その後、 150°C、 5分間の熱処理後、得られた皮膜のピール強度を測定すると 0.75k NZmを示した。 [0048] This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L 60 ° C) for 1 minute, washed with water, and then immersed in an activator (Technique 50g / L ACT9600 solution, room temperature) for 30 seconds. After washing with water, using a copper sulfate bath (Technique: Cuprochic 84 A: 40 mL / L, B: 30 mL / L, Additive: 30 mL / L, F: 100 mL / L 50 ° C) Copper plating was performed at 15 μm, washed with water, and treated with a discoloration inhibitor (Technic Anti-Turnish, Technic Co., Ltd.) for 20 seconds at room temperature to prevent oxidation of the copper film surface, and then washed with water and dried. When the surface was observed with a metallurgical microscope, a uniform film with no cracks or scratches on the material was obtained. Then, after heat treatment at 150 ° C for 5 minutes, the peel strength of the obtained film was measured and showed 0.75k NZm.
[0049] (実施例 4:エポキシ樹脂上ニッケル薄膜の作製) [0049] (Example 4: Preparation of nickel thin film on epoxy resin)
15cm X 15cm (板厚 1. 6mm)のエポキシ樹脂(松下電工社製)を 80gZL水酸化 ナトリウム溶液に 80°Cにて 5分間浸漬し、水洗後、塩化パラジウム 3 X 10— 3mol/L 、テトラエトキシシラン 0. 5molZL、塩酸 5 X 10_2mol/L、水酸化ナトリウム 2 X 10— 2mol/L、グリコール酸 lmol/Lの混合溶液からなる無電解めつき用触媒剤に室温 にて 1分間浸漬し、水洗後、この試料を無電解ニッケルめっき浴 (テクニック社製:テク
二ニッケル AT— 5000 A: 60mL/L B : 150mL/L80°C)に 2分間浸漬し、ニッ ケノレの導電性薄膜を得た。その後、 200°Cにて 10分間熱処理を行った。 15cm X 15cm (thickness 1. 6 mm) of an epoxy resin (Matsushita Electric Works Co., Ltd.) was immersed for 5 minutes at 80 ° C in 80gZL sodium hydroxide solution, washed with water, palladium chloride 3 X 10- 3 mol / L, Tetraethoxysilane 0.5 molZL, hydrochloric acid 5 X 10_ 2 mol / L, sodium hydroxide 2 X 10—2 mol / L, glycolic acid lmol / L mixed catalyst agent for electroless plating for 1 minute at room temperature After immersion and washing with water, this sample is electroless nickel plating bath (Technique: Tech. Ni-Nickel AT—5000 A: 60 mL / LB: 150 mL / L at 80 ° C.) for 2 minutes to obtain a nickel thin conductive film. Thereafter, heat treatment was performed at 200 ° C. for 10 minutes.
[0050] この試料を脱脂剤(テク二 FPDクリーナー 20mL/L、 60°C)に 1分間浸漬し、水 洗後、活性化剤(テクニック社製: ACT9600 50mL/L、室温)に 30秒浸漬し、水 洗後、硫酸銅めつき浴(テクニック社製:キュープロシック 84 A: 40mL/L, B:30m LZL、アディティブ: 30mLZL、 F : 100mL/L 50°C)を用いて銅めつきを 15 μ m 行ない、水洗し、銅皮膜表面の酸化防止のために、変色防止剤(テクニック社製:テ クニアンチターニッシュ)により、室温で 20秒間処理し水洗乾燥させた。その後、金属 顕微鏡で表面観察を行ったところ、素材のヒビ割れや傷等はなぐ均一な皮膜が得ら れた。 150°C、 10分間の熱処理後、得られた皮膜のピール強度を測定すると 0.85k NZmを示した。 [0050] This sample is immersed in a degreasing agent (Techni FPD Cleaner 20mL / L, 60 ° C) for 1 minute, washed with water, and then immersed in an activating agent (Technique: ACT9600 50mL / L, room temperature) for 30 seconds. After washing with water, use a copper sulfate bath (Technique: Cuprochic 84 A: 40mL / L, B: 30m LZL, additive: 30mLZL, F: 100mL / L 50 ° C). In order to prevent oxidation of the copper film surface, it was treated with a discoloration inhibitor (Technique: Techni Anti-Turnish) for 20 seconds at room temperature, and then washed with water and dried. After that, when the surface was observed with a metallographic microscope, a uniform film with no cracks or scratches on the material was obtained. After heat treatment at 150 ° C for 10 minutes, the peel strength of the obtained film was measured and found to be 0.85 k NZm.
[0051] (実施例 5:ビルドアップ基板の作製) [0051] (Example 5: Fabrication of build-up substrate)
5cm X 10cm (板厚 1. 6mm)の基板に、絶縁層としてエポキシ樹脂(松下電工社 製)を 100 / m塗布し、 150°Cで 1時間硬化させた後、炭酸ガスレーザーにてマイクロ ビアを形成した。この試料を常圧プラズマ装置で 80kVにて電極間距離 2cmで 10分 間処理した。この試料を酢酸パラジウム 3 X 10_3mol/L、ジエトキシモノメトキシシ ラン 0· 3mol/L、塩酸 3 X 10_2mol/L、水酸化ナトリウム 1 X 10_2mol/L、グリコ ール酸 0. 5mol/Lの混合溶液からなる無電解めつき用触媒剤に室温にて 5分間浸 漬し、水洗後、この試料を無電解銅めつき浴 (テクニック社製:キュープロシック 84 A : 40mL/L、 B:30mL/L、アディティブ: 30mL/L、 F : 100mL/L 50°C)に、 5 分間浸漬し、銅の導電性薄膜を得た。その後、 200°Cにて 10分間熱処理を行った。 その後、硫酸銅めつき浴(テクニック社製テク二 Cu— 2300)を用いて銅めつきを 15 z m行ない、水洗し、銅皮膜表面の酸化防止のために、変色防止剤(テクニック社製 テク二アンチターニッシュ室温)により、 20秒間処理し水洗乾燥させた。その後、金属 顕微鏡で観察したところ、表面上に亀裂がなぐ均一な皮膜が得られた。 150°C、 1 時間のアニーリング後、得られた皮膜のピール強度を測定すると、 0. 8kNZmを示 し、良好な密着性を有していた。 An epoxy resin (manufactured by Matsushita Electric Works Co., Ltd.) 100 / m was applied as an insulating layer to a 5cm x 10cm (plate thickness 1.6mm) substrate, cured at 150 ° C for 1 hour, and then micro vias with a carbon dioxide laser Formed. This sample was treated with an atmospheric pressure plasma apparatus at 80 kV for 10 minutes with an electrode distance of 2 cm. This sample was palladium acetate 3 X 10 _3 mol / L, diethoxymonomethoxysilane 0 3 mol / L, hydrochloric acid 3 X 10 _2 mol / L, sodium hydroxide 1 X 10 _2 mol / L, glycolic acid 0 Immerse in an electroless plating catalyst consisting of a 5 mol / L mixed solution at room temperature for 5 minutes, wash with water, and then wash this sample with an electroless copper plating bath (Technic Co., Ltd .: Cuprosic 84 A: 40 mL / L, B: 30 mL / L, additive: 30 mL / L, F: 100 mL / L 50 ° C) for 5 minutes to obtain a copper conductive thin film. Thereafter, heat treatment was performed at 200 ° C. for 10 minutes. After that, using a copper sulfate plating bath (Techni Tech-2 Cu-2300), perform copper plating at 15 zm, wash with water, and prevent oxidation of the copper film surface (technitech Techni). Anti-Turnish room temperature) for 20 seconds, washed with water and dried. Then, when observed with a metallographic microscope, a uniform film with no cracks on the surface was obtained. After annealing at 150 ° C for 1 hour, the peel strength of the obtained film was measured and found to be 0.8 kNZm, indicating good adhesion.
[0052] (実施例 6:ガラス上無電解銅薄膜の作成)
2. 6cm X 7. 6cmのスライドガラス (岩城硝子社製)を 80g/L水酸化ナトリウム溶 液に 80°Cにて 5分間浸漬し、水洗後、活性化剤(テク二 ACT3500 lOOmL/L 室 温)に浸漬後、この試料を、硫酸パラジウム 5 X 10— 3mol/L、ジェチルジメトキシシ ラン 0. 4mol/L、塩酸 6 X 10_2mol/L、水酸ィ匕ナトリウム 2 X 10— 2mol/L、酢酸 1 mol/Lの混合溶液からなる無電解めつき用触媒剤に室温にて 10分間浸漬し、水洗 後、無電解ニッケル浴(テク二 AT— 5000 A:60mLZL、 B: 150mL/L)に 5分間 浸漬し、水洗後乾燥をおこなった。テープ試験をおこなったところ、剥がれた箇所は 見つからなかった。また、金属顕微鏡で表面観察をおこなったところ、亀裂は発生せ ず、均一な皮膜が得られた。テープ試験の結果、剥離は観察されなかった。 [Example 6: Preparation of electroless copper thin film on glass] 2. 6cm X 7.6cm slide glass (Iwaki Glass Co., Ltd.) is immersed in 80g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and activated (Techni ACT3500 lOOmL / L chamber) after immersion in temperature), the sample, palladium sulfate 5 X 10- 3 mol / L, Jefferies chill dimethoxy silane-0. 4 mol / L, hydrochloric 6 X 10_ 2 mol / L, Mizusani匕sodium 2 X 10- Immerse it in a catalyst for electroless plating consisting of 2 mol / L and 1 mol / L acetic acid at room temperature for 10 minutes, wash with water, and then use an electroless nickel bath (Techni AT-5000 A: 60 mLZL, B: (150 mL / L) for 5 minutes, washed with water and dried. When the tape test was performed, no part was found. When the surface was observed with a metallographic microscope, no cracks occurred and a uniform film was obtained. As a result of the tape test, no peeling was observed.
[0053] この試料を脱脂剤(テク二 FPDクリーナー 20mL/L、 60°C)に 1分間浸漬し、水 洗後、活性化剤(テクニック社製: ACT9600 50mL/L、室温)に 30秒浸漬し、水 洗後、硫酸銅めつき浴(テクニック社製:キュープロシック 84 A: 40mL/L, B:30m L/L、アディティブ: 30mL/L、 F : 100mL/L 50°C)を用いて銅めつきを 15 /i m 行ない、水洗し、銅皮膜表面の酸化防止のために、変色防止剤(テクニック社製:テ クニアンチターニッシュ)により、室温で 20秒間処理し水洗乾燥させた。その後、金属 顕微鏡で表面観察を行ったところ、素材のヒビ割れや傷等はなぐ均一な皮膜が得ら れた。 150°C、 1分間の熱処理後、得られた皮膜のピール強度を測定すると 0.65kN / mを示した。 [0053] This sample is immersed in a degreasing agent (Techni FPD cleaner 20mL / L, 60 ° C) for 1 minute, washed with water, and then immersed in an activator (Technique: ACT9600 50mL / L, room temperature) for 30 seconds. After washing with water, use a copper sulfate bath (Technique: Cuprochic 84 A: 40 mL / L, B: 30 mL / L, Additive: 30 mL / L, F: 100 mL / L 50 ° C) Copper plating was performed at 15 / im, washed with water, and treated with a discoloration inhibitor (Technique: Techni Anti-Turnish) for 20 seconds at room temperature to prevent oxidation of the copper film surface, and then washed with water and dried. After that, when the surface was observed with a metallographic microscope, a uniform film with no cracks or scratches on the material was obtained. After heat treatment at 150 ° C for 1 minute, the peel strength of the obtained film was measured and found to be 0.65 kN / m.
[0054] (実施例 7:エポキシ樹脂上ニッケル薄膜の作製) [Example 7: Preparation of nickel thin film on epoxy resin]
10cm X 10cm (板厚 1 · 6mm)のエポキシ樹脂(松下電工社製)を 80g/L水酸化 ナトリウム溶液に 80°Cにて 5分間浸漬し、水洗後、硫酸チタン 3 X 10— 3mol/L、テ トラエトキシシラン 0. 5mol/L、塩酸 7 X 10_2mol/L、水酸化ナトリウム 1 X 10_3m ol/L、 EDTA-2Na3 X 10_2molZLの混合溶液からなる無電解めつき用触媒剤に 室温にて 1分間浸漬し、水洗後、この試料を無電解ニッケルめっき浴 (テクニック社製 :テクニニッケル AT— 5000 A: 60mL/L B : 150mLZL80°C)に 2分間浸漬し、 ニッケノレの導電性薄膜を得た。その後、 200°Cにて 10分間熱処理を行った。 10 cm X 10 cm (thickness 1 · 6 mm) of an epoxy resin (Matsushita Electric Works Co., Ltd.) was immersed for 5 minutes at 80 ° C in 80 g / L sodium hydroxide solution, washed with water, titanium sulfate 3 X 10- 3 mol / For electroless plating consisting of a mixed solution of L, tetraethoxysilane 0.5 mol / L, hydrochloric acid 7 X 10_ 2 mol / L, sodium hydroxide 1 X 10_ 3 mol / L, EDTA-2Na3 X 10_ 2 molZL After immersing in a catalyst agent at room temperature for 1 minute and washing with water, this sample is immersed in an electroless nickel plating bath (Techninickel AT—5000 A: 60mL / LB: 150mLZL80 ° C) for 2 minutes. A conductive thin film was obtained. Thereafter, heat treatment was performed at 200 ° C. for 10 minutes.
[0055] この試料を脱脂剤(テク二 FPDクリーナー 20mL/L、 60°C)に 1分間浸漬し、水 洗後、活性化剤(テクニック社製: ACT9600 50mL/L、室温)に 30秒浸漬し、水
洗後、硫酸銅めつき浴(テクニック社製:キュープロシック 84 A: 40mL/L、 B:30m L/L、アディティブ: 30mL/L、 F : 100mL/L 50°C)を用いて銅めつきを 15 /i m 行ない、水洗し、銅皮膜表面の酸化防止のために、変色防止剤(テクニック社製:テ クニアンチターニッシュ)により、室温で 20秒間処理し水洗乾燥させた。その後、金属 顕微鏡で表面観察を行ったところ、素材のヒビ割れや傷等はなぐ均一な皮膜が得ら れた。 150°C、 1分間の熱処理後、得られた皮膜のピール強度を測定すると 0.65kN /mを示した。 [0055] This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L, 60 ° C) for 1 minute, washed with water, and then immersed in an activator (Technique: ACT9600 50mL / L, room temperature) for 30 seconds. Water After washing, use a copper sulfate bath (Technique: Cuprochic 84 A: 40 mL / L, B: 30 mL / L, Additive: 30 mL / L, F: 100 mL / L 50 ° C). The surface was washed with water, washed with water, treated with a discoloration inhibitor (Technique: Techni Anti-Turnish) for 20 seconds at room temperature to prevent oxidation of the copper film surface, washed with water and dried. After that, when the surface was observed with a metallographic microscope, a uniform film with no cracks or scratches on the material was obtained. After heat treatment at 150 ° C for 1 minute, the peel strength of the obtained film was measured to be 0.65 kN / m.
[0056] (実施例 8:エポキシ樹脂上ニッケル薄膜の作製) [Example 8: Preparation of nickel thin film on epoxy resin]
10cm X 10cm (板厚 1. 6mm)のエポキシ樹脂(松下電工社製)を 80gZL水酸化 ナトリウム溶液に 80°Cにて 5分間浸漬し、水洗後、タングステン酸ナトリウム 3 X 10— 2mol/L、モノメトキシジメトキシシラン 0. 45mol/L、塩酸 7 X 10_2molZL、水酸 化ナトリウム 1 X 10_3mol/L、マレイン酸 1 X 10_ 1molZLの混合溶液からなる無電 解めつき用触媒剤に室温にて 1分間浸漬し、水洗後、この試料を無電解ニッケルめ つき浴(テクニック社製:テク二ニッケル AT— 5000A: 60mL/L B: 150mL/L80 °C)に 2分間浸漬し、ニッケルの導電性薄膜を得た。その後、 200°Cにて 10分間熱処 理を行った。 10cm X 10cm (plate thickness 1.6mm) epoxy resin (Matsushita Electric Works) immersed in 80gZL sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, sodium tungstate 3 X 10-2 mol / L, Monolithic dimethoxysilane 0.45 mol / L, hydrochloric acid 7 X 10 _2 molZL, sodium hydroxide 1 X 10 _3 mol / L, maleic acid 1 X 10 _ 1 molZL After immersing for 1 minute at room temperature and rinsing with water, this sample is immersed in an electroless nickel bath (Technic Nickel AT-5000A: 60mL / LB: 150mL / L80 ° C) for 2 minutes. A conductive thin film was obtained. Then, heat treatment was performed at 200 ° C for 10 minutes.
[0057] この試料を脱脂剤(テク二 FPDクリーナー 20mL/L、 60°C)に 1分間浸漬し、水 洗後、活性化剤(テクニック社製: ACT9600 50mL/L、室温)に 30秒浸漬し、水 洗後、硫酸銅めつき浴(テクニック社製:キュープロシック 84 A: 40mL/L、 B:30m L/L、アディティブ: 30mL/L、 F : 100mL/L 50°C)を用いて銅めつきを 15 /i m 行ない、水洗し、銅皮膜表面の酸化防止のために、変色防止剤(テクニック社製:テ クニアンチターニッシュ)により、室温で 20秒間処理し水洗乾燥させた。その後、金属 顕微鏡で表面観察を行ったところ、素材のヒビ割れや傷等はなぐ均一な皮膜が得ら れた。 200°C、 1分間の熱処理後、得られた皮膜のピール強度を測定すると 0.70kN /mを示した。 [0057] This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L, 60 ° C) for 1 minute, washed with water, and then immersed in an activator (Technique: ACT9600 50mL / L, room temperature) for 30 seconds. After washing with water, use a copper sulfate bath (Technique: Cuprochic 84 A: 40 mL / L, B: 30 mL / L, Additive: 30 mL / L, F: 100 mL / L 50 ° C) Copper plating was performed at 15 / im, washed with water, and treated with a discoloration inhibitor (Technique: Techni Anti-Turnish) for 20 seconds at room temperature to prevent oxidation of the copper film surface, and then washed with water and dried. After that, when the surface was observed with a metallographic microscope, a uniform film with no cracks or scratches on the material was obtained. After heat treatment at 200 ° C for 1 minute, the peel strength of the obtained film was measured and found to be 0.70 kN / m.
[0058] (実施例 9:ポリイミド樹脂上銅薄膜の作製) [Example 9: Preparation of copper thin film on polyimide resin]
15cm X 15cmのポリイミドフィルム(東レ .デュポン社製カプトン EN)を 80g/L水酸 化ナトリウム溶液に 80°Cにて 5分間浸漬し、活性化剤(テク二 ACT3500 lOOmL/
L)、塩化コバルト 4 X 10 mol/L、ジェチルジメトキシシラン 1 X 10 mol/L、塩 酸 7 X 10— 2mol/L、水酸化ナトリウム 2 X 10— 3mol/L、マレイン酸 lmol/Lの混 合溶液からなる無電解めつき用触媒剤に室温にて 2分間浸漬し、水洗後、 1分間浸 漬し、水洗後、この試料を無電解銅めつき浴 (テクニック社製:キュープロシック 84 A : 40mL/L, B:30mL/L、アディティブ: 30mL/L、 F : 100mL/L) 50°Cにて 5 分間浸漬し、銅めつき皮膜を得た。その後、 200°Cにて 10分間熱処理を行った。 15 cm X 15 cm polyimide film (Toray DuPont Kapton EN) is immersed in 80 g / L sodium hydroxide solution at 80 ° C for 5 minutes, and the activator (Techni ACT3500 lOOmL / L), cobalt chloride 4 X 10 mol / L, Jefferies chill dimethoxysilane 1 X 10 mol / L, hydrochloric acid 7 X 10- 2 mol / L, sodium hydroxide 2 X 10- 3 mol / L, maleic acid I mol / Immerse in a catalyst for electroless plating consisting of a mixed solution of L at room temperature for 2 minutes, rinse with water, soak for 1 minute, and rinse with water. Prosic 84 A: 40 mL / L, B: 30 mL / L, additive: 30 mL / L, F: 100 mL / L) Dipped at 50 ° C for 5 minutes to obtain a copper plating film. Thereafter, heat treatment was performed at 200 ° C. for 10 minutes.
[0059] この試料を脱脂剤(テク二 FPDクリーナー 20mL/L 60°C)に 1分間浸漬し、水 洗後、活性化剤(テクニック社製: ACT9600 50mL/L)溶液に室温にて 30秒浸 漬し、水洗後、市販の硫酸銅めつき浴を用いて銅めつきを 15 z m行なレ、、水洗し、銅 皮膜表面の酸化防止のために、変色防止剤(テクニック社製:テク二アンチターニッ シュ、室温)により、 20秒間処理し水洗乾燥させた。その後、金属顕微鏡で観察を行 つたところ、亀裂は発生しておらず、均一な皮膜が得られ、 150°C、 1分間の熱処理 後、得られた皮膜のピール強度を測定すると 0.65kN/mを示した。 [0059] This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L 60 ° C) for 1 minute, washed with water, and then in an activating agent (Technique: ACT9600 50mL / L) solution at room temperature for 30 seconds. After soaking, washing with water, using a commercially available copper sulfate bath, wash the copper with 15 zm, wash with water, and prevent oxidation of the copper film surface (Technique: Tech. And then washed with water and dried for 20 seconds. Thereafter, when observed with a metallurgical microscope, no cracks occurred and a uniform film was obtained. After heat treatment at 150 ° C for 1 minute, the peel strength of the obtained film was measured to be 0.65 kN / m. showed that.
[0060] (実施例 10:ポリイミド樹脂上ニッケル薄膜の作製) [0060] (Example 10: Preparation of nickel thin film on polyimide resin)
5cm X 10cmのポリイミドフィルム(宇部興産社製ユーピレックス 25R)を 80g/L 水酸化ナトリウム溶液に 80°Cにて 5分間浸漬し、水洗後、活性化剤(テク二 ACT350 0 lOOmL/L 室温)浸漬後、この試料を、塩化パラジウム 5 X 10_3mol/L、塩 化コバルト 5 X 10_3mol/L、トリエトキシシシラン 0· 5mol/L、塩酸 6 X 10"2mol/ L、水酸化ナトリウム 2 X 10_2mol/L、マレイン酸 lmol/Lの混合溶液からなる無電 解めつき用触媒剤に室温にて 10分間浸漬し、水洗後、無電解ニッケルめっき浴 (テ クニ AT-5000 A:60mL/L、 B:150mL/L 80°C)に 5分間浸漬すると均一な二 ッケル皮膜が得られた。その後、 200°Cにて 10分間熱処理を行った。 5cm X 10cm polyimide film (Ube Industries Upilex 25R) is immersed in 80g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and then activated (Techni ACT350 0 lOOmL / L room temperature) after, the sample, palladium chloride 5 X 10 _3 mol / L, salts of cobalt 5 X 10 _3 mol / L, triethoxy silane 0 · 5 mol / L, hydrochloric 6 X 10 "2 mol / L , sodium hydroxide Soak in water for 10 minutes at room temperature in a non-electrolytic agent consisting of a mixture of 2 X 10 _2 mol / L and lmol / L maleic acid, rinse with water, and electroless nickel plating bath (Techni AT-5000 A: A uniform nickel film was obtained when immersed in 60 mL / L, B: 150 mL / L 80 ° C. for 5 minutes, and then heat-treated at 200 ° C. for 10 minutes.
[0061] この試料を脱脂剤(テク二 FPDクリーナー 20mL/L 60°C)に 1分間浸漬し、水 洗後、活性化剤(テクニック社製: ACT9600 50mL/L)溶液に室温にて 30秒浸 漬し、水洗後、市販の硫酸銅めつき浴を用いて銅めつきを 15 z m行なレ、、水洗し、銅 皮膜表面の酸化防止のために、変色防止剤(テクニック社製:テク二アンチターニッ シュ、室温)により、 20秒間処理し水洗乾燥させた。その後、金属顕微鏡で観察を行 つたところ、亀裂は発生しておらず、均一な皮膜が得られ、 200°C、 5分間の熱処理
後、得られた皮膜のピール強度を測定すると 0.60kN/mを示した。 [0061] This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L 60 ° C) for 1 minute, washed with water, and then in an activating agent (Technique: ACT9600 50mL / L) solution at room temperature for 30 seconds. After soaking, washing with water, using a commercially available copper sulfate bath, wash the copper with 15 zm, wash with water, and prevent oxidation of the copper film surface (Technique: Tech. And then washed with water and dried for 20 seconds. After that, when observed with a metallurgical microscope, cracks did not occur and a uniform film was obtained, which was heat-treated at 200 ° C for 5 minutes. Later, when the peel strength of the obtained film was measured, it was 0.60 kN / m.
[0062] (実施例 11:ポリイミド樹脂上銅薄膜の作製) [Example 11: Preparation of copper thin film on polyimide resin]
5cm X 1 Ocmのポリイミドフィルム(宇部興産社製ユーピレックス 25R)を 80g/L 水酸化ナトリウム溶液に 80°Cにて 5分間浸漬し、水洗後、活性化剤(テク二 ACT350 0 lOOmL/L 室温)浸漬後にて 5分間浸漬し、硝酸銀 5 X 10— 3mol/L、ジェチ ルジメトキシシラン 0. 5mol/L、塩酸 6 X 10_2mol/L、水酸化ナトリウム 2 X 10_2m ol/ マレイン酸 ImolZLの混合溶液からなる無電解めつき用触媒剤に室温にて 5 分浸漬し、水洗後、無電解銅めつき浴 (テクニック社製:キュープロシック 84 A : 40m LZL、 B:30mL/L、アディティブ: 30mL/L、 F : 100mL/L 50°C)に 5分間浸 漬すると均一なニッケノレ皮膜が得られた。その後、 200°Cにて 10分間熱処理を行つ た。 5 cm X 1 Ocm polyimide film (Ube Industries Upilex 25R) is immersed in 80 g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and activator (Techni ACT350 0 lOOmL / L room temperature) It immersed 5 minutes at after immersion silver nitrate 5 X 10- 3 mol / L, Jechi dimethoxysilane 0. 5 mol / L, hydrochloric 6 X 10_ 2 mol / L, sodium hydroxide 2 X 10_ 2 m ol / maleic ImolZL Soaked in an electroless plating catalyst consisting of a mixture solution at room temperature for 5 minutes, washed with water, and then electroless copper plating bath (Technic Co., Ltd .: Cuprochic 84 A: 40m LZL, B: 30mL / L, (Additive: 30mL / L, F: 100mL / L 50 ° C) When immersed for 5 minutes, a uniform Nikkenore film was obtained. Thereafter, heat treatment was performed at 200 ° C for 10 minutes.
[0063] この試料を脱脂剤(テク二 FPDクリーナー 20mL/L 60°C)に 1分間浸漬し、水 洗後、活性化剤(テクニック社製: ACT9600 50mL/L)溶液に室温にて 30秒浸 漬し、水洗後、市販の硫酸銅めつき浴を用いて銅めつきを 15 / m行ない、水洗し、銅 皮膜表面の酸化防止のために、変色防止剤(テクニック社製:テク二アンチターニッ シュ、室温)により、 20秒間処理し水洗乾燥させた。その後、金属顕微鏡で観察を行 つたところ、亀裂は発生しておらず、均一な皮膜が得られ、 150°C、 10分間の熱処理 後、得られた皮膜のピール強度を測定すると 0.65kN/mを示した。 [0063] This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L 60 ° C) for 1 minute, washed with water, and then in an activator (Technique: ACT9600 50mL / L) solution at room temperature for 30 seconds. After soaking, rinsing with water, use a commercially available copper sulfate messenger bath to perform copper plating at 15 / m, wash with water, and prevent oxidation of the copper film surface (anti-discoloration made by Technic Co., Ltd.). And room temperature) for 20 seconds, washed with water and dried. After that, when observed with a metallographic microscope, no cracks occurred and a uniform film was obtained. After heat treatment at 150 ° C for 10 minutes, the peel strength of the obtained film was measured to be 0.65 kN / m. showed that.
[0064] (実施例 12:ポリイミド樹脂上ニッケル薄膜の作製) [0064] (Example 12: Preparation of nickel thin film on polyimide resin)
5cm X 10cmのポリイミドフィルム(宇部興産社製ユーピレックス 25R)を 80g/L 水酸化ナトリウム溶液に 80°Cにて 5分間浸漬し、水洗後、活性化剤(テク二 ACT350 0 lOOmL/L 室温)浸漬後、この試料を、塩化コバルト l X 10_2molZL、テトラメ トキシシラン 0. 5mol/L、塩酸 6 X 10— 2mol/L、水酸化ナトリウム 2 X 10— 2mol/L 、マレイン酸 lmol/Lの混合溶液からなる無電解めつき用触媒剤に室温にて 5分間 浸漬し、水洗後、無電解ニッケルめっき浴(テク二 AT- 5000 A:60mL/L、 B: 150m L/L 80°C)に 5分間浸漬すると均一なニッケル皮膜が得られた。その後、 200°Cに て 10分間熱処理を行った。 5cm X 10cm polyimide film (Ube Industries Upilex 25R) is immersed in 80g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and then activated (Techni ACT350 0 lOOmL / L room temperature) after, the sample, cobalt chloride l X 10_ 2 molZL, tetramethylene Tokishishiran 0. 5 mol / L, hydrochloric 6 X 10- 2 mol / L, sodium hydroxide 2 X 10- 2 mol / L, maleic acid I mol / L Immerse in an electroless plating catalyst consisting of a mixed solution at room temperature for 5 minutes, wash with water, and then electroless nickel plating bath (Techni AT-5000 A: 60 mL / L, B: 150 mL / L 80 ° C) When immersed for 5 minutes, a uniform nickel film was obtained. Thereafter, heat treatment was performed at 200 ° C. for 10 minutes.
[0065] この試料を脱脂剤(テク二 FPDクリーナー 20mL/L 60°C)に 1分間浸漬し、水
洗後、活性化剤(テクニック社製: ACT9600 50mL/L)溶液に室温にて 30秒浸 漬し、水洗後、市販の硫酸銅めつき浴を用いて銅めつきを 15 / m行ない、水洗し、銅 皮膜表面の酸化防止のために、変色防止剤(テクニック社製:テク二アンチターニッ シュ、室温)により、 20秒間処理し水洗乾燥させた。その後、金属顕微鏡で観察を行 つたところ、亀裂は発生しておらず、均一な皮膜が得られ、 250°C、 1分間の熱処理 後、得られた皮膜のピール強度を測定すると 0.70kNZmを示した。 [0065] This sample was immersed in a degreasing agent (Techni FPD Cleaner 20mL / L 60 ° C) for 1 minute, After washing, immerse in an activating agent (Technique: ACT9600 50mL / L) solution at room temperature for 30 seconds, wash with water, and then use a commercially available copper sulfate bath to perform copper plating at 15 / m. Then, in order to prevent oxidation of the copper film surface, it was treated with a discoloration inhibitor (manufactured by Technic Co., Ltd .: Techni Anti-Tanisch, room temperature) for 20 seconds, washed with water and dried. Thereafter, when observed with a metallurgical microscope, cracks did not occur and a uniform film was obtained. After heat treatment at 250 ° C for 1 minute, the peel strength of the obtained film was measured to show 0.70 kNZm. It was.
[0066] (比較例 1:ポリイミド樹脂上銅薄膜の作製) [0066] (Comparative Example 1: Preparation of copper thin film on polyimide resin)
5cm X 1 Ocmのポリイミドフィルム(宇部興産社製ユーピレックス― 25R)を市販のパ ラジウム—スズコロイドを用いた無電解銅めつき処理 (奥野製薬社製 ATSアド力パー I Wプロセス)により銅の導電性薄膜を形成した。その後、硫酸銅めつき浴 (テクニック社 製テク二 Cu_ 2300)を用いて銅めつきを 15 z m行なレ、、水洗し、銅皮膜表面の酸 化防止のために、変色防止剤(テクニック社製:テク二アンチターニッシュ、室温)によ り、 20秒間処理し水洗乾燥させた。 200°C、 10分間の熱処理後、銅めつき皮膜のピ ール強度を測定すると、 0.1kN/mを示し、良好な密着性を得ることができなかった Conductive copper thin film by electroless copper plating (ATS Ad Power Par IW process manufactured by Okuno Seiyaku Co., Ltd.) using commercially available palladium-tin colloid on 5cm X 1 Ocm polyimide film (UPILEX-25R manufactured by Ube Industries) Formed. After that, using a copper sulfate plating bath (Techni Cu_2300 manufactured by Technic Co., Ltd.), the copper plating is washed at 15 zm, washed with water, and used to prevent oxidation of the copper film surface (Technic Co., Ltd.). Manufactured by Techni Anti-Turnish, room temperature), washed for 20 seconds and dried. After heat treatment at 200 ° C for 10 minutes, when measuring the peel strength of the copper plating film, it showed 0.1 kN / m, and good adhesion could not be obtained.
[0067] (比較例 2:ポリイミド樹脂上ニッケル薄膜の作製) [0067] (Comparative Example 2: Preparation of nickel thin film on polyimide resin)
5cm X 1 Ocmのポリイミドフィルム(宇部興産社製ユーピレックス 25R)を 80g/L 水酸化ナトリウム溶液に 80°Cにて 5分間浸漬し、水洗後、市販の無電解銅めつき前 処理剤(奥野製薬社製 OPC— SALMおよび OPC— 80キヤタリスト M)によりパラジ ゥム—スズコロイド触媒を付与した。水洗後、無電解ニッケルめっき浴 (テクニック社製 :テクニ AT— 5000 A: 60mL/L B : 150mL/L 80°C)に 5分間浸漬し、成膜後 、金属顕微鏡により、表面観察を行ったところ、ニッケノレ表面上に無数の亀裂が生じ 、その後 200°Cで 10分の熱処理をおこなったところ、ニッケル皮膜がポリイミド基材か ら剥離した。また、密着強度は測定不能であった。 5 cm x 1 Ocm polyimide film (UPILEX 25R manufactured by Ube Industries, Ltd.) is immersed in 80 g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and then a commercially available electroless copper plating pretreatment agent (Okuno Pharmaceutical) Paradium-tin colloidal catalyst was applied by OPC-SALM and OPC-80 Catalyst M). After washing with water, immersed in an electroless nickel plating bath (Technic Corp .: Techni AT—5000 A: 60 mL / LB: 150 mL / L 80 ° C) for 5 minutes, after film formation, the surface was observed with a metal microscope Innumerable cracks were formed on the Nikkenore surface, and then after 10 minutes of heat treatment at 200 ° C., the nickel film peeled off from the polyimide substrate. Further, the adhesion strength was not measurable.
[0068] (比較例 3:ポリイミド樹脂上ニッケル薄膜の作製) [0068] (Comparative Example 3: Preparation of nickel thin film on polyimide resin)
5cm X 1 Ocmのポリイミドフィルム(宇部興産社製ユーピレックス― 25R)を 80g/L 水酸化ナトリウム溶液に 80°Cにて 5分間浸漬し、水洗後、市販の無電解銅めつき前 処理剤(奥野製薬社製 OPC— 80キヤタリスト M)に 100mL/L3アミノシラン (東レダ
ゥコ一二ング Z— 6050)を添加し、室温にて 5分間浸漬し、パラジウム—スズコロイド 触媒を付与した。水洗後、無電解ニッケルめっき浴に 80°Cにて 5分間浸漬し、成膜 後、金属顕微鏡で表面観察を行ったところ、ニッケル表面に無数の亀裂が生じ、その 後 200°Cで 10分の熱処理をおこなったところ、ニッケル皮膜がポリイミド基材から剥 離した。また、密着強度は、測定不能であった。 5 cm x 1 Ocm polyimide film (UPILEX-25R manufactured by Ube Industries, Ltd.) is immersed in 80 g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and then a commercially available electroless copper plating pretreatment agent (Okuno) 100mL / L3 aminosilane (Torayda And immersing it at room temperature for 5 minutes to give a palladium-tin colloidal catalyst. After washing with water, immersed in an electroless nickel plating bath at 80 ° C for 5 minutes.After film formation, the surface was observed with a metallurgical microscope, and numerous cracks were formed on the nickel surface, and then at 200 ° C for 10 minutes. As a result of this heat treatment, the nickel film peeled off from the polyimide substrate. Further, the adhesion strength was not measurable.
[0069] (比較例 4:ポリイミド樹脂上ニッケル薄膜の作製) [0069] (Comparative Example 4: Preparation of nickel thin film on polyimide resin)
5cm X 10cmのポリイミドフィルム(宇部興産社製ユーピレックス― 25R)を 80g/L 水酸化ナトリウム溶液に 80°Cにて 5分間浸漬し、水洗後、 0. 05g/L塩化第一スズ 溶液に室温にて 5分間浸漬後、 0. 05gZL塩化パラジウム溶液に室温にて 5分間浸 漬し、パラジウム触媒を付与した。水洗後、無電解ニッケルめっき浴 (テク二 AT— 50 00 A:60mL/L B:150L/L 80°C)に 5分間浸漬してニッケル薄膜を形成し、そ の後金属顕微鏡で表面を観察したところ、無数の亀裂が生じ、 200°C、 10分間の熱 処理をおこなったころ、ニッケル薄膜がポリイミド基材より剥離した。また、密着強度は 、測定不能であった。 A 5cm x 10cm polyimide film (UPILEX-25R made by Ube Industries) is immersed in 80g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and then added to 0.05g / L stannous chloride solution at room temperature. After immersion for 5 minutes, it was immersed in 0.05 g ZL palladium chloride solution at room temperature for 5 minutes to give a palladium catalyst. After washing with water, a nickel thin film was formed by immersing in an electroless nickel plating bath (Techni AT-500 00 A: 60 mL / LB: 150 L / L 80 ° C) for 5 minutes, and then the surface was observed with a metallurgical microscope. However, innumerable cracks occurred, and when heat treatment was performed at 200 ° C. for 10 minutes, the nickel thin film peeled off from the polyimide base material. Further, the adhesion strength was not measurable.
[0070] (比較例 5:ポリイミド樹脂上ニッケル薄膜の作製) [0070] (Comparative Example 5: Preparation of nickel thin film on polyimide resin)
5cm X 10cmのポリイミドフィルム(宇部興産社製ユーピレックス 25R)を 80g/L 水酸化ナトリウム溶液に 80°Cにて 5分間浸漬し、水洗後、市販の無電解銅めつき前 処理剤(奥野製薬社製 OPC— 80キヤタリスト M)に 100mL/L3アミノシラン (東レダ ゥコ一二ング Z— 6050)を添加し、室温にて 5分間浸漬し、パラジウム—スズコロイド触 媒を付与した。水洗後、無電解ニッケルめっき浴(テク二 AT-5000 A:60mL/L、 B : 150mL/L 80°C)にて 5分間浸漬するとニッケノレ皮膜を形成することはできた。 金属顕微鏡にて表面観察をおこなったところ、ニッケル表面に無数の亀裂が発生し た。その後、 200°C、 10分間の熱処理をおこなったころ、ニッケル薄膜がポリイミド基 材より剥離した。密着強度はこれらの無数の亀裂より、ニッケル面に剥離箇所があり、 測定不能であった。 A 5cm x 10cm polyimide film (UPILEX 25R manufactured by Ube Industries) is immersed in 80g / L sodium hydroxide solution at 80 ° C for 5 minutes, washed with water, and then a commercially available electroless copper plating pre-treatment agent (Okuno Pharmaceutical Co., Ltd.) 100 mL / L3 aminosilane (Toray Duco Co., Ltd. Z-6050) was added to OPC-80 KYATARISTO M), and immersed for 5 minutes at room temperature to give a palladium-tin colloid catalyst. After washing with water and dipping in an electroless nickel plating bath (Techni AT-5000 A: 60 mL / L, B: 150 mL / L 80 ° C) for 5 minutes, a Nikkenore film could be formed. When the surface was observed with a metallographic microscope, countless cracks occurred on the nickel surface. Thereafter, when heat treatment was performed at 200 ° C. for 10 minutes, the nickel thin film was peeled off from the polyimide base material. The adhesion strength was not measurable due to the infinite number of cracks on the nickel surface.
[0071] [表 2]
^^つき用 f ^j [0071] [Table 2] For ^^ f ^ j
アルカリ: ¾S ¾ シラン力 表面!^ ピー!^ ブリン Alkali: ¾S ¾ Silane force surface! ^ Brin
塩 it ラジウム 化ナトリウム 卜リエ卜キシシ igjg 5 10"½I/L 0.85k N/m Salt it radium sodium bromide igjg 5 10 "½I / L 0.85k N / m
5 I0-½1/L ラン 0.5nifllノ L 餓 1 /L 5 I0-½1 / L Run 0.5nifll No L Starvation 1 / L
ラジウム 續ヒナトリウム ジェチルジメト 讎 6 10"½I/L 0.60k N/m 列 2 5 10-¾iol/L 2X10- ½I/L キシシラン 職 ImolA Radium 續 Hysodium Jetyldimeth 讎 6 10 "½I / L 0.60k N / m Row 2 5 10-¾iol / L 2X10- ½I / L Xisilane Job ImolA
0. /L 0./L
¾ ΐラジウム 棚匕ナトリウム ジェチルジメト 繊 5X10"2ffiol/L 均一? 0.75k N/m ¾ ΐ Radium Shelf cocoon sodium Jetyl dimet fiber 5X10 " 2 ffiol / L uniform? 0.75k N / m
2X10-¾I/L キシシラン mi Imol/L 2X10-¾I / L Xisilane mi Imol / L
0.5mol/L 0.5mol / L
ラジウム 螨匕ナトリウム テトラエトキジ t 5 10"½I/L 0.8&k /m nasi列 4 Radium sodium acetal tetraethea t 5 10 "½I / L 0.8 & k / m nasi row 4
3X10-½ol L 2X10-½I/L シラン 0 グリコ— I mol/L 3X10-½ol L 2X10-½I / L Silane 0 Glyco- I mol / L
パラジウム 棚匕ナトリウム ジェトキシモノ 繊 3X10- ½)I/L 0.8kN/m ½)Ι/Ι_ 1X10-½I/L メトキシシラン グリコー ¾0 八 Palladium Shelf-sodium sodium ketoxymono fiber 3X10- ½) I / L 0.8kN / m ½) Ι / Ι_ 1X10-½I / L Methoxysilane Glyco ¾0 8
0.3mol/L 0.3mol / L
5¾¾パラジウム 魔ナトリウム ジ工チルジメ卜 離 6XlG-½ol/L 均一 ¾^ 0,65k N/m 実難 J 6 SXIO-WI L 2X10-emol/L キシシラン 職 1molノ L 5¾¾palladium Magic sodium Di-treated tilde separation 6XlG-½ol / L Uniform ¾ ^ 0,65k N / m Difficult J 6 SXIO-WI L 2X10- e mol / L
0. ½ol/L 0. ½ol / L
«i ^タン 棚ヒナトリウム テトラエトキシ tgjg 7X10-½I/L 0.fi5k Nl/m «I ^ Tan shelf sodium sodium tetraethoxy tgjg 7X10-½I / L 0.fi5k Nl / m
¾WJ7 ¾WJ7
3X10"¾ol 1 10-¾ シラン 几 E0TA-2Na 3X1fl-¾iQl/L 3X10 "¾ol 1 10-¾ Silane 几 E0TA-2Na 3X1fl-¾iQl / L
タングステン酸 糊匕ナトリウム モノメ卜キシジ 鹏 7X10 L 0, 70k /m 実繊 8 ナ卜リウム 1X10-½I/L メトキシシラン マレイン酸 IX 10"' Tungstic acid paste sodium monomonoxide 鹏 7X10 L 0, 70k / m actual fiber 8 sodium 1X10-½I / L methoxysilane maleic acid IX 10 "'
3 I0-½I/L D.45mol/L raol/L 3 I0-½I / L D.45mol / L raol / L
塩化コバル卜 纖匕ナトリウム ジェチルジメト iM 7XI0-½ol/L 0.65kN/m 4XI0-½ol/L 2X10"½I/L キシシラン IX マレイン酸 1mol L Cobalt chloride 纖 匕 Sodium Jetyl dimeth iM 7XI0-½ol / L 0.65kN / m 4XI0-½ol / L 2X10 "½I / L Xylsilane IX Maleic acid 1mol L
10- 'mo几 10- 'mo 几
i复ィ ラジウム 湖匕ナトリウム 卜リエ卜キシシ iS& exiC-'niol/L 均一 0.60kN/m 5X10— ¾I/L 2XI0-?mol/L ラン O.Sniol八 マレイン酸 tmol/L i 复 radium lake sodium 卜 rie xyxi iS &exiC-'niol / L uniform 0.60kN / m 5X10—¾I / L 2XI0- ? mol / L run O.Sniol octamaleic acid tmol / L
¾»Π 0 ¾ »Π 0
塩ヒコノヽ'レ卜 Shiohikono
5XlO^½ol/L 5XlO ^ ½ol / L
mm 雕ナトリウム ジェチルジメト 鹏 6X10-!mol/L 0.65k N/mmm 雕 Sodium Jetyldimeth 鹏 6X10- ! mol / L 0.65k N / m
1 5XlO-3mol/L 2XI0- L キシシラン マレイ i™l/L 1 5XlO- 3 mol / L 2XI0- L Xysilane Male i ™ l / L
0.5molA 0.5molA
塩化コバルト 娜匕ナトリウム テトラメトキシ 0.70 k N/m Cobalt chloride Sodium bromide Tetramethoxy 0.70 k N / m
¾56^Π 2 1X10—WL 2XI0½I/L シラン O.Sirol几 マレイン酸〗 ol/L ] 測定結果 処理剤 ¾56 ^ Π 2 1X10—WL 2XI0½I / L Silane O.Sirol 几 Maleic acid〗 ol / L] Measurement result Treatment agent
表面 η察 ピール強度 比較例 1 市販のパラジウム—スズコロイドを用いた無 S解钥めっき処理 無数の象裂 0.1 k N/m 比較例 2 市販の無 «解销めつき前処理剤 無数の亀裂 ; 定不能 比较例 3 市販の無 s» めつき前処理剤 無数の亀裂 ;¾定不能 比铰例 4 0.05s /L堪化 *ースズ ¾液に室温にて 5分 後, 0.05 s 無数の &裂 iJU定不能 Surface η observation Peel strength Comparative example 1 S-free plating process using commercially available palladium-tin colloids Innumerable elephant cracks 0.1 k N / m Comparative example 2 Commercially available «Unwrapping pre-treatment agent Countless cracks; Impossible Comparative Example 3 Commercially available s »Pre-treatment agent for countless cracks; ¾ Not determined Comparable example 4 0.05 s / L fermented * Sousse ¾ solution at room temperature for 5 min, 0.05 s count & crack iJU Indefinite
/L埴化パラジウム溶液に室温にて 5分 M«» / L in palladium halide solution at room temperature for 5 minutes M «»
比铰例 5 市販の無 B解銅めつき前処理剤 無数の亀裂 iH定不能
表 2、 3は、上記実施例:!〜 12、比較例 1〜5によりより得られた皮膜の観察結果お よび測定結果を示す表である。表 2、 3からわかるように、本実施例の無電解めつき用 触媒剤により得られた皮膜は十分なピール強度と表面性状を有し、本実施例の無電 解めつき用触媒剤の優秀性が確認された。
Specific example 5 Commercially available No B-Bopping pretreatment agent Countless cracks iH indeterminate Tables 2 and 3 are tables showing the observation results and measurement results of the films obtained from the above Examples:! -12 and Comparative Examples 1-5. As can be seen from Tables 2 and 3, the film obtained with the electroless plating catalyst of this example has sufficient peel strength and surface properties, and is superior to the electroless plating catalyst of this example. Sex was confirmed.
Claims
[1] 金属化合物と、 [1] a metal compound;
アルカリ金属水酸化物と、 An alkali metal hydroxide,
水溶†生シラン力ップリング剤と、 Water-soluble † raw silane pulling agent,
無機酸および有機酸の少なくとも一方と、 At least one of an inorganic acid and an organic acid;
の混合物からなることを特徴とする無電解めつき用触媒剤。 The catalyst agent for electroless plating characterized by comprising the mixture of these.
[2] 前記金属化合物は、 [2] The metal compound is
パラジウム、コバルト、タングステン、チタン、銀、金、および、白金からなる群から単 独もしくは複数選択された金属の化合物であることを特徴とする請求項 1に記載の無 電解めつき用触媒剤。 2. The electroless plating catalyst according to claim 1, which is a compound of a metal selected from the group consisting of palladium, cobalt, tungsten, titanium, silver, gold, and platinum.
[3] 前記アルカリ金属水酸化物は、 [3] The alkali metal hydroxide is
水酸化ナトリウム、および、水酸化カリウムからなる群から単独もしくは複数選択され たアルカリ金属水酸化物であることを特徴とする請求項 1に記載の無電解めつき用触 媒剤。 2. The electroless plating catalyst according to claim 1, wherein the catalyst is an alkali metal hydroxide selected from the group consisting of sodium hydroxide and potassium hydroxide.
[4] 前記水溶性シラン力ップリング剤は、 [4] The water-soluble silane power coupling agent is:
ビュル基、エポキシ基、アミノ基、メタクリロキシ基、メルカプト基、メトキシ基、および 、エトキシ基からなる群から単独もしくは複数選択された基を備えることを特徴とする 請求項 1に記載の無電解めつき用触媒剤。 2. The electroless plating according to claim 1, comprising a group selected from the group consisting of a bur group, an epoxy group, an amino group, a methacryloxy group, a mercapto group, a methoxy group, and an ethoxy group. Catalyst agent.
[5] 前記無機酸は、 [5] The inorganic acid is
塩酸、硫酸、硝酸、および、炭酸からなる群から単独もしくは複数選択された無機 酸であることを特徴とする請求項 1に記載の無電解めつき用触媒剤。 2. The electroless plating catalyst according to claim 1, wherein the catalyst is an inorganic acid selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, and carbonic acid.
[6] 前記有機酸は、 [6] The organic acid is
カルボン酸、ヒドロキシカルボン酸、および、アミノ酸からなる群から単独もしくは複 数選択された有機酸であることを特徴とする請求項 1に記載の無電解めつき用触媒 剤。
2. The electroless plating catalyst according to claim 1, wherein the catalyst is an organic acid selected from the group consisting of carboxylic acid, hydroxycarboxylic acid, and amino acid.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006151969A JP2007321189A (en) | 2006-05-31 | 2006-05-31 | Catalytic agent for electroless plating |
JP2006-151969 | 2006-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007138795A1 true WO2007138795A1 (en) | 2007-12-06 |
Family
ID=38778317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/058313 WO2007138795A1 (en) | 2006-05-31 | 2007-04-17 | Catalytic agent for electroless plating |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007321189A (en) |
WO (1) | WO2007138795A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11155924B2 (en) | 2017-03-31 | 2021-10-26 | Toyoda Gosei Co., Ltd. | Silver mirror film, decorative article, silver mirror film-forming liquid, and method for producing reducing liquid therefor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009173999A (en) * | 2008-01-24 | 2009-08-06 | Nippon Mining & Metals Co Ltd | Method for producing metal-coated polyimide resin substrate having excellent resistance to thermal aging |
JP5694265B2 (en) * | 2012-10-02 | 2015-04-01 | 学校法人関東学院 | Electroless plating method and electroless plating film |
JP6912773B2 (en) * | 2017-07-03 | 2021-08-04 | 大日本印刷株式会社 | Film-forming substrates, substrates, and their manufacturing methods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003105550A (en) * | 2001-09-26 | 2003-04-09 | Kyocera Corp | Catalyst liquid for electroless plating |
JP2003193245A (en) * | 2001-12-21 | 2003-07-09 | Nikko Materials Co Ltd | Pretreatment agent for planting and electroless plasting method using the same |
JP2004315895A (en) * | 2003-04-16 | 2004-11-11 | Hitachi Chem Co Ltd | Pretreatment liquid for electroless plating, and electroless plating method using it |
JP2005146372A (en) * | 2003-11-18 | 2005-06-09 | Meltex Inc | Catalyst-imparting solution for electroless plating |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2513270B2 (en) * | 1988-05-06 | 1996-07-03 | 日立化成工業株式会社 | Catalyst solution for electroless plating |
JP3758532B2 (en) * | 2001-06-28 | 2006-03-22 | 株式会社日鉱マテリアルズ | Pretreatment liquid for electroless nickel plating on copper or copper alloy and electroless nickel plating method |
-
2006
- 2006-05-31 JP JP2006151969A patent/JP2007321189A/en active Pending
-
2007
- 2007-04-17 WO PCT/JP2007/058313 patent/WO2007138795A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003105550A (en) * | 2001-09-26 | 2003-04-09 | Kyocera Corp | Catalyst liquid for electroless plating |
JP2003193245A (en) * | 2001-12-21 | 2003-07-09 | Nikko Materials Co Ltd | Pretreatment agent for planting and electroless plasting method using the same |
JP2004315895A (en) * | 2003-04-16 | 2004-11-11 | Hitachi Chem Co Ltd | Pretreatment liquid for electroless plating, and electroless plating method using it |
JP2005146372A (en) * | 2003-11-18 | 2005-06-09 | Meltex Inc | Catalyst-imparting solution for electroless plating |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11155924B2 (en) | 2017-03-31 | 2021-10-26 | Toyoda Gosei Co., Ltd. | Silver mirror film, decorative article, silver mirror film-forming liquid, and method for producing reducing liquid therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2007321189A (en) | 2007-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI314845B (en) | Conductive metal plated polyimide substrate and process for manufacturing the same | |
EP2823084B1 (en) | Method for promoting adhesion between dielectric substrates and metal layers | |
KR102035497B1 (en) | Stabilized silver catalysts and methods | |
US9914115B2 (en) | Catalysts for electroless metallization containing five-membered heterocyclic nitrogen compounds | |
CN104364421B (en) | Make the method for nonconductive plastic material surface metalation | |
TW201823511A (en) | Method for producing printed wiring board | |
WO2007138795A1 (en) | Catalytic agent for electroless plating | |
KR20130096613A (en) | Surface treatment method of polyimide film for improved adhesion and polyimide having a metal layer | |
JP5750009B2 (en) | Manufacturing method of laminate | |
KR100747627B1 (en) | Method for producing 2 layered conductive metal plated polyimide substrate | |
KR100798870B1 (en) | Conductive metal plated polyimide substrate including coupling agent and method for producing the same | |
JP2006104504A (en) | Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same | |
JP5129111B2 (en) | LAMINATE MANUFACTURING METHOD AND CIRCUIT WIRING BOARD MANUFACTURING METHOD | |
JP2013161928A (en) | Base material for printed wiring board and manufacturing method of the same | |
US9451707B2 (en) | Stabilized silver catalysts and methods | |
JP2008214503A (en) | Method for forming metallic thin film on surface of polyimide resin | |
JP2009076740A (en) | Method of manufacturing metal thin film on polyimide resin surface and metal thin film formed by same method, and manufacturing method of polyimide wiring board and polyimide wiring board manufactured by same method | |
JP2007077439A (en) | Method for metallizing surface of polyimide resin material | |
US20240360562A1 (en) | Method for manufacturing composite material to be plated and method for manufacturing anisotropic electroconductive sheet | |
JP2008294060A (en) | Composition for forming conductor layer, forming method of conductor layer, and manufacturing method of circuit board | |
JP7336170B1 (en) | Laminate manufacturing method | |
WO2012169074A1 (en) | Method for forming metallic film | |
WO2024162230A1 (en) | Cleaning liquid, method for producing material to be plated using same, and method for producing anisotropic conductive sheet | |
JP2008075146A (en) | METHOD FOR PRODUCING Ni THIN FILM | |
KR20110076448A (en) | Carbide ceramic heating plate and the manufacturing of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07741749 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07741749 Country of ref document: EP Kind code of ref document: A1 |