KR20130096613A - Surface treatment method of polyimide film for improved adhesion and polyimide having a metal layer - Google Patents
Surface treatment method of polyimide film for improved adhesion and polyimide having a metal layer Download PDFInfo
- Publication number
- KR20130096613A KR20130096613A KR1020120018201A KR20120018201A KR20130096613A KR 20130096613 A KR20130096613 A KR 20130096613A KR 1020120018201 A KR1020120018201 A KR 1020120018201A KR 20120018201 A KR20120018201 A KR 20120018201A KR 20130096613 A KR20130096613 A KR 20130096613A
- Authority
- KR
- South Korea
- Prior art keywords
- film
- treatment
- polyimide film
- surface treatment
- polyimide
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/14—Chemical modification with acids, their salts or anhydrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/16—Chemical modification with polymerisable compounds
- C08J7/18—Chemical modification with polymerisable compounds using wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Toxicology (AREA)
- Materials Engineering (AREA)
- Chemically Coating (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
본 발명은 폴리이미드 필름의 표면처리 방법 및 금속층이 형성된 폴리이미드 필름에 관한 것으로, 더욱 상세하게는 폴리이미드 필름에 습식 공정 후 UV 또는 플라즈마 건식처리를 하여 금속과의 접착력이 향상된 폴리이미드 필름을 제조하는 방법 및 이를 통해 표면개질 된 폴리이미드 필름 표면에 금속층이 형성된 폴리이미드 필름에 관한 것이다.
The present invention relates to a surface treatment method of a polyimide film and a polyimide film having a metal layer. More specifically, the polyimide film is subjected to UV or plasma dry treatment after a wet process to prepare a polyimide film having improved adhesion to metal. The present invention relates to a polyimide film in which a metal layer is formed on a surface-modified polyimide film surface.
현재 연성회로기판, 패키지용 유전체로 사용되는 폴리머 필름 소재상에 금속회로 패턴을 형성하는 기술로서는, 얇은 구리필름(copper foil)이 적층 혹은 증착된 폴리머의 표면에 포토레지스터 공정을 이용하여 일정한 형태의 회로패턴을 형성하고 구리를 식각(etching) 처리하여 금속회로 패턴을 제조하는 방법이 일반적으로 널리 사용되고 있다.
As a technology for forming a metal circuit pattern on a polymer film material currently used as a flexible circuit board and a package dielectric, a photoresist process is formed on a surface of a polymer in which a thin copper foil is laminated or deposited. BACKGROUND OF THE INVENTION A method of manufacturing a metal circuit pattern by forming a circuit pattern and etching copper is generally widely used.
폴리머 소재상의 금속층 형성은 플라즈마 이온에 의한 폴리머 소재의 표면개질(surface modification) 처리 후 스퍼터링 혹은 금속증착 등 건식표면처리기술을 이용하여 전도성 금속 접합 층을 폴리머 표면에 형성시키고, 제품조건에 따라 전기도금기술을 이용하여 금속피막층을 형성하거나 구리필름을 폴리머 표면에 직접 결합시키는 라미네이트(laminate)법과 캐스팅(casting)법을 사용하고 있다.
Formation of the metal layer on the polymer material is performed by surface modification of the polymer material by plasma ions, and then a conductive metal bonding layer is formed on the polymer surface using dry surface treatment techniques such as sputtering or metal deposition. Laminate and casting methods are used to form metal coating layers using technology or to bond copper films directly to polymer surfaces.
최근에는 습십표면처리에 의한 폴리머 필름소재의 금속화 공정이 개발되고 있으나, 이 또한 폴리머 소재상에 금속층을 형성한 후 포토레지스터 공정을 이용 구리 식각하여 금속회로를 형성하고 있다. 이러한 방법은 상대적으로 균일한 금속층 형성이 쉽지 않고 고가의 제조 비용이 요구되는 문제점이 있다.
Recently, a metallization process of polymer film material by wet-cross surface treatment has been developed, but also a metal circuit is formed by forming a metal layer on a polymer material and then etching copper using a photoresist process. This method has a problem in that it is not easy to form a relatively uniform metal layer and expensive manufacturing cost is required.
한편, 무전해 도금은 전기도금과는 달리 직류 전원을 사용하지 않고 용액에 포함되어 있는 환원제의 산화반응으로 유리되는 전자에 의하여 금속이온을 환원하여 금속피막을 석출하는 방법으로, 도금액의 조성 및 처리조건의 선정뿐 아니라 전처리 또한 매우 중요하다. 다단계의 무전해도금 과정에서 부도체인 고분자 표면을 활성화시켜 고분자 기질 표면에 금속을 석출시킬 수 있게 하는 촉매화 단계는 고분자와 금속간의 물성 및 접착력을 좌우하는 가장 중요한 과정이라 할 수 있다.
On the other hand, electroless plating, unlike electroplating, is a method of depositing a metal film by reducing metal ions by electrons liberated by oxidation reaction of a reducing agent contained in a solution without using a DC power source. In addition to the selection of conditions, pretreatment is also very important. In the multi-step electroless plating process, the catalyzing step of activating the surface of the polymer, which is a nonconductor, to deposit metal on the surface of the polymer substrate is the most important process that determines the physical properties and adhesion between the polymer and the metal.
그러나 고분자 소재의 경우, 낮은 젖음 특성과 가공 시 발생하는 첨가제 오염에 의하여 촉매처리 및 도금공정에서 물리적·화학적인 방해를 받게되며, 그 결과 고분자와 금속간의 밀착성이 매우 낮아진다. 이를 해결하기 위하여 많은 표면처리 기법이 행해지고 있으며, 대표적으로는 수산화칼륨 등의 용액을 이용하여 고분자 표면에 관능기의 화학적 결합을 유도하고 표면요철에 의한 표면적을 증가시키는 방법이 사용되고 있다.
However, in the case of the polymer material, physical wetness and low chemical properties are impaired in the catalytic treatment and plating process due to the additive contamination generated during processing. As a result, the adhesion between the polymer and the metal is very low. In order to solve this problem, many surface treatment techniques have been performed. Typically, a method of inducing chemical bonding of functional groups on the surface of a polymer using a solution such as potassium hydroxide and increasing the surface area due to surface irregularities has been used.
이러한 배경 하에서, 본 발명자들은 종래의 고분자와 금속층 간의 밀착성의 한계를 극복하는 새로운 고분자 표면처리 방법을 개발하였으며, 상기 표면처리를 통해 접착력이 향상된 고분자 필름에 금속층을 형성시켜 향상된 전착율을 확인함으로써 본 발명을 완성하였다.
Under this background, the present inventors have developed a new polymer surface treatment method that overcomes the limitations of the adhesion between the conventional polymer and the metal layer, by forming a metal layer on the polymer film with improved adhesion through the surface treatment to confirm the improved electrodeposition rate The invention was completed.
본 발명의 목적은 접착력 향상을 위한 폴리이미드 필름의 표면처리 방법을 제공하는 것이다. It is an object of the present invention to provide a surface treatment method of a polyimide film for improving adhesion.
본 발명의 다른 목적은 상기 표면처리 방법으로 접착력이 향상된 폴리이미드 필름 표면에 금속층을 형성한 금속층을 갖는 폴리이미드 필름을 제공하는 것이다.
Another object of the present invention is to provide a polyimide film having a metal layer having a metal layer formed on the surface of the polyimide film having improved adhesion by the surface treatment method.
상기 과제를 해결하기 위해, 폴리이미드 필름을 습식탈지 처리하는 단계(단계 1); 상기 필름을 알칼리용액에 침적한 후 건조시키는 단계(단계 2); 및 상기 건조된 필름을 건식 처리하는 단계(단계 3)를 포함하는 폴리이미드 필름의 표면처리 방법을 제공한다.
In order to solve the above problems, the step of wet degreasing the polyimide film (step 1); Immersing the film in an alkaline solution and then drying (step 2); And dry treating the dried film (step 3).
상기 단계 1은, 폴리이미드 필름의 표면세척을 위하여 폴리이미드 필름을 에탄올, 이소프로필알코올, 2-프로판올, 황산 또는 이들 혼합 용액으로 1 내지 10분 동안 침적하여 세척시키는 습식탈지 처리하는 단계이다. 상기 침적시간은 2분간 시행하는 것이 바람직하나 이에 제한되는 것은 아니다.
상기 단계 2는, 폴리이미드 필름의 표면 요철의 증가 및 표면 젖음성 향상, 관능기의 화학적 결합 유도를 위하여 알칼리용액에 침적시킨 후 건조시키는 단계이다. 상기 알칼리용액은 수산화칼륨 또는 수산화나트륨으로 이루어진 군으로부터 선택되는 1종 이상의 용액을 사용할 수 있으며, 이에 한정되는 것은 아니다. 바람직하게는 수산화칼륨을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 단계 3은, 건조된 폴리이미드 필름의 접합력을 향상시키기 위해 UV 또는 플라즈마를 이용한 건식처리 단계이다.
상기 UV 표면처리는 분자와 광자간의 광화학적(photo-chemical) 분해를 이용한 것으로 표면의 거칠기를 증가시키고 고분자 체인을 절단시키거나 새로운 화학 결합을 형성하여 친수성 기능기를 증가시키는 표면개질 방법이다. 상기 UV 표면처리는 수평광 모드가 바람직하며, 200 내지 420 nm의 파장을 사용할 수 있으며, 바람직하게는 300 내지 420 nm이며, 365 nm 파장에서 처리하는 것이 가장 바람직하나 이에 제한되는 것은 아니다. 또한, 상기 UV 표면처리의 UV 조사세기는 10 내지 30 mW/cm2이며, 바람직하게는 15 내지 25 mW/cm2을 사용할 수 있고, 조사시간은 1분 내지 20분일 수 있으며, 바람직하게는 5분 내지 10분이나 이에 제한되는 것은 아니다.
The UV surface treatment uses photo-chemical decomposition between molecules and photons, and is a surface modification method of increasing surface roughness and cutting polymer chains or forming new chemical bonds to increase hydrophilic functional groups. The UV surface treatment is preferably in the horizontal light mode, it is possible to use a wavelength of 200 to 420 nm, preferably 300 to 420 nm, the treatment at 365 nm wavelength is most preferred, but not limited thereto. In addition, the UV irradiation intensity of the UV surface treatment is 10 to 30 mW / cm 2 , preferably 15 to 25 mW / cm 2 can be used, the irradiation time may be 1 to 20 minutes, preferably 5 Minutes to 10 minutes, but is not limited thereto.
또한, 상기 플라즈마 표면처리는 이온화되어 있으면서 전체적으로는 전기적 중성을 띠고 있는 기체인 플라즈마를 이용한 표면처리방법으로, 친수성 기능기를 증가시키는 표면개질 방법이다. 상기 플라즈마 처리는 질소 플라즈마 또는 산소플라즈마로 이루어지 군으로부터 선택되는 1종 이상인 것을 사용할 수 있으나, 이제 제한되는 것은 아니다. 상기 플라즈마 표면처리는 각각 비활성 질소가스 및 반응성 산소가스 주입 분위기에서 50 내지 300 W 출력으로 이루어 지며, 100 내지 150 W 출력을 갖는 것이 바람직하나 이에 제한 되는 것은 아니다. 또한, 상기 플라즈마 표면처리는 150 내지 300 mTorr 이하의 공정압력을 갖으며, 바람직하게는 150 내지 200 mTorr이다. 처리시간은 3분 내지 10분일 수 있으며, 바람직하게는 5분이나 이에 제한되는 것은 아니다.
In addition, the plasma surface treatment is a surface treatment method using plasma, which is an ionized and generally electrically neutral gas, and is a surface modification method for increasing hydrophilic functional groups. The plasma treatment may be one or more selected from the group consisting of nitrogen plasma or oxygen plasma, but is not limited thereto. The plasma surface treatment is composed of 50 to 300 W output in an inert nitrogen gas and reactive oxygen gas injection atmosphere, respectively, but preferably having a 100 to 150 W output, but is not limited thereto. In addition, the plasma surface treatment has a process pressure of 150 to 300 mTorr or less, and preferably 150 to 200 mTorr. The treatment time may be 3 to 10 minutes, preferably 5 minutes, but is not limited thereto.
본 발명의 폴리이미드 필름의 표면처리 방법은 상기와 같이 습식처리 후 UV 또는 플라즈마를 이용한 건식처리를 함으로써, 접착력이 향상된 폴리이미드 필름을 제조할 수 있다.
The surface treatment method of the polyimide film of the present invention can produce a polyimide film having improved adhesion by performing a dry treatment using UV or plasma after the wet treatment as described above.
또한, 본 발명은 상기의 표면처리 방법으로 접착력이 향상된 폴리이미드 필름을 제공한다. 본 발명에 따른 접착력이 향상된 폴리이미드 필름은 표면에 귀금속 촉매를 흡착시켜 금속층을 형성할 수 있다.
In addition, the present invention provides a polyimide film having improved adhesion by the surface treatment method. The polyimide film having improved adhesion according to the present invention may form a metal layer by adsorbing a noble metal catalyst on a surface thereof.
상기 귀금속 촉매는 주석, 팔라듐, 티타늄, 몰리브덴, 텅스텐, 은, 금 또는 백금으로 이루어진 군으로부터 선택되는 1종 이상인 것을 사용할 수 있으며, 이에 한정되는 것은 아니다. 바람직하게는 주석 및 팔라듐으로 이루어진 군으로부터 선택되는 1종 이상인 것을 사용할 수 있으며, 이에 한정되는 것은 아니다.
The precious metal catalyst may be one or more selected from the group consisting of tin, palladium, titanium, molybdenum, tungsten, silver, gold or platinum, but is not limited thereto. Preferably, at least one selected from the group consisting of tin and palladium may be used, but is not limited thereto.
상기 흡착방법의 일예로 귀금속 촉매를 포함하는 산성액에 폴리이미드 필름을 침지하는 방법을 들수 있다. 구체적으로, 주석을 포함한 산성액상에 1 내지 10분간, 바람직하게는 3 내지 5분간 처리하고, 팔라듐을 포함한 산성액상에 10초 내지 5분, 바람직하게는 20초 내지 120초 처리한다. 또는, 주석 및 팔라듐을 모두 포함한 산성액상에서 2분 내지 10분 처리한다.
One example of the adsorption method is a method of immersing a polyimide film in an acidic liquid containing a noble metal catalyst. Specifically, the acidic liquid containing tin is treated for 1 to 10 minutes, preferably 3 to 5 minutes, and the acidic liquid containing palladium is treated for 10 seconds to 5 minutes, preferably 20 seconds to 120 seconds. Alternatively, the solution is treated for 2 to 10 minutes in an acidic liquid solution containing both tin and palladium.
본 발명은 습식 후 건식 공정을 폴리이미드 필름 표면처리에 사용하여 폴리이미드 필름과 금속층 간의 접착력을 증대시킬 수 있으며, 우수한 밀착력을 보이는 금속회로 패턴으로 용이하게 사용될 수 있는 효과가 있다.
The present invention can increase the adhesive strength between the polyimide film and the metal layer by using a wet process after the dry process for the polyimide film surface, there is an effect that can be easily used as a metal circuit pattern showing excellent adhesion.
도 1은, 본 발명의 일실시예에 따른 표면처리 방법별 표면성분분석장비(XPS)를 통한 산소와 탄소 결합 구조변화 그래프를 나타낸 것이다.
도 2는, 본 발명의 일실시예에 따른 표면처리 방법별 표면성분분석장비(XPS)를 통한 질소의 결합 구조변화 그래프를 나타낸 것이다.
도 3은, 본 발명의 일실시예에 따른 UV 처리 후의 표면성분분석장비(XPS)를 통한 (a) 주석(Sn) 및 (b) 팔라듐(Pd)의 전착량 결과를 나타낸 것이다. 1 is a graph illustrating a structure change of oxygen and carbon bonds through surface composition analysis equipment (XPS) for each surface treatment method according to an embodiment of the present invention.
Figure 2 shows a graph of the change in the binding structure of nitrogen through the surface composition analysis equipment (XPS) for each surface treatment method according to an embodiment of the present invention.
Figure 3 shows the results of electrodeposition amount of (a) tin (Sn) and (b) palladium (Pd) through the surface component analysis equipment (XPS) after UV treatment according to an embodiment of the present invention.
이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 그러나 하기이 실시예는 오로지 본 발명을 설명하기 위한 것으로 이들 실시예에 의해 본 발명의 범위가 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only for illustrating the present invention and the scope of the present invention is not limited by these examples.
비교예Comparative Example : : KOHKOH 용액을 통한 표면처리 Surface treatment through solution
Du Pont Chemical Company에서 제조된 Kapton 폴리이미드 필름을 탈지한 후 1 mol KOH 용액을 이용하여 필름의 표면을 개질처리 하였다.
After degreasing the Kapton polyimide film manufactured by Du Pont Chemical Company, the surface of the film was modified by using a 1 mol KOH solution.
실시예Example 1: 폴리이미드 필름 표면 처리 1: polyimide film surface treatment
1) UV 건식처리를 통한 표면처리1) Surface treatment through UV dry treatment
Du Pont Chemical Company에서 제조된 Kapton 폴리이미드 필름을 탈지한 후 1 mol KOH 용액을 이용하여 필름의 표면을 1차 개질처리 하였으며, 건조 후 건조 후 파장 365 nm, 세기 20 mW/cm2로 4분간 UV 처리하여 필름의 표면을 2차 개질처리 하였다.
After degreasing the Kapton polyimide film manufactured by Du Pont Chemical Company, the surface of the film was first modified by using 1 mol KOH solution, and after drying, UV for 4 minutes at a wavelength of 365 nm and an intensity of 20 mW / cm 2 . The surface of the film was subjected to secondary modification treatment.
2) O2 플라즈마 건식처리를 통한 표면처리2) Surface treatment through O 2 plasma dry treatment
Du Pont Chemical Company에서 제조된 Kapton 폴리이미드 필름을 탈지한 후 3 mol KOH 용액을 이용하여 필름의 표면을 1차 개질처리 하였으며, 건조 후 출력 100 W, 공정압력 150 mTorr로 5분씩 산소 활성가스를 주입하여 필름의 표면을 개질 처리 하였다.
After degreasing Kapton polyimide film manufactured by Du Pont Chemical Company, the surface of the film was first modified by using 3 mol KOH solution, and after drying, oxygen active gas was injected for 5 minutes at 100 W of output pressure and 150 mTorr process pressure. The surface of the film was modified.
3) N2 플라즈마 건식처리를 통한 표면처리3) Surface treatment through N 2 plasma dry treatment
Du Pont Chemical Company에서 제조된 Kapton 폴리이미드 필름을 탈지한 후 3 mol KOH 용액을 이용하여 필름의 표면을 1차 개질처리 하였으며, 건조 후 출력 100 W, 공정압력 150 mTorr로 5분씩 질소가스 주입하여 필름의 표면을 개질 처리 하였다.
After degreasing the Kapton polyimide film manufactured by Du Pont Chemical Company, the surface of the film was first modified using a 3 mol KOH solution, and after drying, the film was injected with nitrogen gas at an output of 100 W and a process pressure of 150 mTorr for 5 minutes. The surface of was modified.
실시예Example 2: 폴리이미드 표면에 2: on polyimide surface 금속층Metal layer 형성 formation
상기 실시예 1에서 표면처리되어 제조된 폴리이미드 필름들을 SnCl2를 이용하여 5분 동안 민감화 처리하고 PdCl2로 120초 동안 활성화 처리하였다.
The polyimide films prepared by surface treatment in Example 1 were subjected to sensitization for 5 minutes using SnCl 2 and activated for 120 seconds with PdCl 2 .
실험예Experimental Example
1) KOH 표면처리 XPS 분석1) KOH surface treatment XPS analysis
상기 비교예에서 제조된 표면개질 폴리이미드의 XPS(X-ray photoelectron spectroscopy, Thermo Scientific) 분석을 통하여 구조 및 구성 성분을 측정하였다. 구체적인 분석결과는 하기 표 1과 같다. The structure and the components of the surface-modified polyimide prepared in Comparative Example were measured by X-ray photoelectron spectroscopy (thermo scientific) analysis. Specific analysis results are shown in Table 1 below.
(C-C)C1s
(CC)
(C-N,C)C1s
(CN, C)
(C-O)C1s
(CO)
(C=O)C1s
(C = O)
(O=C)O1s
(O = C)
(O-C)O1s
(OC)
(O-N)O1s
(ON)
(N-C)N1s
(NC)
(N-O)N1s
(NO)
2) UV 표면처리 XPS 분석2) UV surface treatment XPS analysis
상기 실시예 1의 1)에서 제조된 표면개질 폴리이미드의 XPS 분석을 통하여 구조 및 구성성분을 분석하였다. 구체적인 분석결과는 하기 표 2에 나타내었다. The structure and components were analyzed by XPS analysis of the surface modified polyimide prepared in Example 1). Specific analysis results are shown in Table 2 below.
(C-C)C1s
(CC)
(C-N,C)C1s
(CN, C)
(C-O)C1s
(CO)
(C=O)C1s
(C = O)
(O=C)O1s
(O = C)
(O-C)O1s
(OC)
(O-N)O1s
(ON)
(N-C)N1s
(NC)
(N-O)N1s
(NO)
상기 표 1 및 표 2에 나타난 바와 같이, UV 처리를 하지 않은 표 1 보다 UV 처리를 한 표 2의 C-O 결합이 증가하는 것을 확인하였으며, 높은 Sn-O 친화도로 인하여 민감화 물질인 주석(Sn)의 전착효율을 증가시키고, 이에 따라 팔라듐(Pd) 적착효율이 증가되는 것을 확인할 수 있었다.
As shown in Table 1 and Table 2, it was confirmed that the CO bond of the UV treated Table 2 is increased than the non-UV treated Table 1, due to the high Sn-O affinity of the tin (Sn) It was confirmed that the electrodeposition efficiency was increased, thereby increasing the palladium (Pd) deposition efficiency.
3) O2 플라즈마 표면처리 XPS 분석3) O 2 plasma surface treatment XPS analysis
상기 실시예 1의 2)에서 제조된 표면개질 폴리이미드의 XPS 분석을 통하여 구조 및 구성성분을 분석하였다. 구체적인 분석결과는 하기 표 3에 나타내었다.The structure and components were analyzed by XPS analysis of the surface modified polyimide prepared in Example 1 2). Specific analysis results are shown in Table 3 below.
(C-C)C1s
(CC)
(C-N,C)C1s
(CN, C)
(C-O)C1s
(CO)
(C=O)C1s
(C = O)
(O=C)O1s
(O = C)
(O-C)O1s
(OC)
(O-N)O1s
(ON)
(N-C)N1s
(NC)
(N-O)N1s
(NO)
상기 표 3에서 나타난 바와 같이, O2 플라즈마를 처리하지 않은 표 1보다 O-C 결합이 증가하는 것을 확인하였으며, 높은 Sn-O 친화도로 인하여 민감화 물질인 주석(Sn)의 전착효율을 증가시키며, 이에 따라 팔라듄(Pd) 전착효율이 증가되는 것을 확인할 수 있었다.
As shown in Table 3, it was confirmed that the OC bond is increased than that of Table 1 not treated with O 2 plasma, and the electrodeposition efficiency of tin (Sn), which is a sensitizer, is increased due to the high Sn-O affinity. It was confirmed that the deposition effect of Palladium (Pd) was increased.
4) N2 플라즈마 표면처리 XPS 분석4) N 2 plasma surface treatment XPS analysis
상기 실시예 1의 3)에서 제조된 표면개질 폴리이미드의 XPS를 통하여 구조 및 구성성분을 분석하였다. 구체적인 분석결과는 하기 표 4에 나타내었다.The structure and components were analyzed through XPS of the surface modified polyimide prepared in Example 1, 3). Specific analysis results are shown in Table 4 below.
(C-C)C1s
(CC)
(C-N,C)C1s
(CN, C)
(C-O)C1s
(CO)
(C=O)C1s
(C = O)
(O=C)O1s
(O = C)
(O-C)O1s
(OC)
(O-N)O1s
(ON)
(N-C)N1s
(NC)
(N-O)N1s
(NO)
상기 표 4에서 나타난 바와 같이, N2 플라즈마를 처리하지 않은 표 1보다 N 함유량이 증가하는 것을 확인하였다. 이에 따라, N-C 결합의 증가는 높은 N-Pd 친화력으로 인하여 Pd 전착량이 증가하는 것을 확인 할 수 있었다.
As shown in Table 4, it was confirmed that the N content is increased than Table 1 not treated with N 2 plasma. Accordingly, the increase in NC binding was confirmed to increase the amount of Pd electrodeposition due to high N-Pd affinity.
5) 금속 이온 전착량 XPS 분석5) Metal ion deposition amount XPS analysis
상기 비교예 및 실시예에서 제조된 폴리이미드 표면에 귀금속을 흡착시킨 금속층이 형성된 폴리이미드 필름의 XPS를 통하여 전착량을 분석하였다. 도 3에 금속층이 형성된 폴리이미드 필름의 금속 이온 전착량 비교 결과를 나타내었다. 도 3에 나타낸 바와 같이, UV 또는 플라즈마 처리를 한 폴리이미드 필름에서 전체적으로 높은 전착량을 보이는 것을 확인할 수 있었다. The electrodeposition amount was analyzed through XPS of the polyimide film having a metal layer adsorbed a noble metal on the polyimide surface prepared in Comparative Examples and Examples. The comparison result of the metal ion electrodeposition amount of the polyimide film in which the metal layer was formed in FIG. As shown in FIG. 3, it was confirmed that a high electrodeposition amount was observed in the polyimide film subjected to UV or plasma treatment.
Claims (9)
상기 필름을 알칼리용액에 침적한 후 건조시키는 단계; 및
상기 건조된 필름을 건식 처리하는 단계를 포함하는 폴리이미드 필름의 표면처리 방법.
Wet degreasing the polyimide film;
Immersing the film in an alkaline solution and drying the film; And
Dry treatment of the dried film method of surface treatment of a polyimide film.
The surface treatment method of a polyimide film according to claim 1, wherein the alkaline solution is at least one selected from the group consisting of potassium hydroxide and sodium hydroxide.
The method of claim 1, wherein the dry treatment is UV or plasma treatment.
The method of claim 3, wherein the UV treatment has a wavelength of 300 to 420 nm, an intensity of 15 to 25 mW / cm 2 , and an irradiation time of 5 minutes to 10 minutes.
The method of claim 3, wherein the plasma treatment is at least one selected from the group consisting of nitrogen plasma and oxygen plasma.
The method of claim 5, wherein the nitrogen plasma surface treatment is 100 to 150 W output, 150 to 200 mTorr process pressure, the treatment time is 3 to 10 minutes.
The method of claim 5, wherein the oxygen plasma surface treatment is 100 to 150 W output, 150 to 200 mTorr process pressure, and the treatment time is 3 to 10 minutes.
A polymer film having a metal layer, characterized by adsorbing a noble metal catalyst on the surface of the polymer film having improved adhesion by the surface treatment method of any one of claims 1 to 7.
The polymer film having a metal layer according to claim 8, wherein the noble metal catalyst is at least one selected from the group consisting of tin, palladium, titanium, molybdenum, tungsten, silver, gold or platinum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120018201A KR20130096613A (en) | 2012-02-22 | 2012-02-22 | Surface treatment method of polyimide film for improved adhesion and polyimide having a metal layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120018201A KR20130096613A (en) | 2012-02-22 | 2012-02-22 | Surface treatment method of polyimide film for improved adhesion and polyimide having a metal layer |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20130096613A true KR20130096613A (en) | 2013-08-30 |
Family
ID=49219459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120018201A KR20130096613A (en) | 2012-02-22 | 2012-02-22 | Surface treatment method of polyimide film for improved adhesion and polyimide having a metal layer |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20130096613A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101537258B1 (en) * | 2014-05-15 | 2015-07-20 | 한국생산기술연구원 | Method for forming metal patterns of printed circuit board |
WO2017043848A1 (en) * | 2015-09-09 | 2017-03-16 | 한국생산기술연구원 | Method for treating inner layer of printed circuit board |
KR20210154320A (en) * | 2020-06-12 | 2021-12-21 | 한국과학기술연구원 | Method for treating surface of polymer or composite material using low-pressure plasma and Method for adhesion comprising the same |
KR102575657B1 (en) * | 2022-10-26 | 2023-09-07 | 주식회사 옥스 | Surface treatment and metal pattern formation method on polymer film substrate |
KR20240085772A (en) | 2022-12-08 | 2024-06-17 | 강원대학교산학협력단 | Thermal-curing modified polyimide film for bonding polyimide materials materials and preparing thereof |
-
2012
- 2012-02-22 KR KR1020120018201A patent/KR20130096613A/en not_active Application Discontinuation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101537258B1 (en) * | 2014-05-15 | 2015-07-20 | 한국생산기술연구원 | Method for forming metal patterns of printed circuit board |
WO2017043848A1 (en) * | 2015-09-09 | 2017-03-16 | 한국생산기술연구원 | Method for treating inner layer of printed circuit board |
KR20210154320A (en) * | 2020-06-12 | 2021-12-21 | 한국과학기술연구원 | Method for treating surface of polymer or composite material using low-pressure plasma and Method for adhesion comprising the same |
KR102575657B1 (en) * | 2022-10-26 | 2023-09-07 | 주식회사 옥스 | Surface treatment and metal pattern formation method on polymer film substrate |
KR20240085772A (en) | 2022-12-08 | 2024-06-17 | 강원대학교산학협력단 | Thermal-curing modified polyimide film for bonding polyimide materials materials and preparing thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6040487B2 (en) | Surface treatment method and fabricated apparatus for promoting metal plating | |
JP2014019947A (en) | Insulating base plated with metal layer, plating method thereof, and transparent electrode including the insulating base | |
JPS6133077B2 (en) | ||
TWI415680B (en) | Palladium complex and the use of the catalyst to impart treatment liquid | |
KR20130096613A (en) | Surface treatment method of polyimide film for improved adhesion and polyimide having a metal layer | |
JP5360963B2 (en) | Catalyst-free metallization method on dielectric substrate surface and dielectric substrate with metal film | |
JP2008031513A (en) | Method for metallizing plastic surface | |
JPH04232278A (en) | Conditioning of substrate for electroless plating onto substrate | |
EP1558786B1 (en) | Pretreatment method for electroless plating material and method for producing member having plated coating | |
US9914115B2 (en) | Catalysts for electroless metallization containing five-membered heterocyclic nitrogen compounds | |
TW201720956A (en) | Environmentally friendly stable catalysts for electroless metallization of printed circuit boards and through-holes | |
JP5149805B2 (en) | Electroless copper plating method | |
EP1236760B1 (en) | Solvent swell for texturing resinous material and desmearing and removing resinous material | |
EP1241209B1 (en) | Solvent swell composition containing heterocyclic nitrogen compounds and glycols for texturing resinous material and desmearing and removing resinous material | |
EP2937447B1 (en) | Conductive coating film forming bath | |
CN101974741B (en) | Method for performing chemical plating on surface of polytetrafluoroethylene thin film | |
JP2006104504A (en) | Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same | |
Charbonnier et al. | New approaches for electroless plating processes by activation of polymer surfaces using low pressure plasma and dielectric-barrier discharge devices | |
JP2000073170A (en) | Production of metallized substrate material | |
JP4314093B2 (en) | Plating material, method for producing the same, and method for producing plated coating member | |
KR100747627B1 (en) | Method for producing 2 layered conductive metal plated polyimide substrate | |
WO2007138795A1 (en) | Catalytic agent for electroless plating | |
JPH03170680A (en) | Direct metal covering of nonconductive supporting body | |
JP3925724B2 (en) | Surface treatment method for non-conductive materials | |
JP2006274176A (en) | Method for modification of surface of plastics, plating method for surface of plastics, plastics, and plastics surface modification device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |