JP2007231362A - Electroless plating method of resin product - Google Patents
Electroless plating method of resin product Download PDFInfo
- Publication number
- JP2007231362A JP2007231362A JP2006054270A JP2006054270A JP2007231362A JP 2007231362 A JP2007231362 A JP 2007231362A JP 2006054270 A JP2006054270 A JP 2006054270A JP 2006054270 A JP2006054270 A JP 2006054270A JP 2007231362 A JP2007231362 A JP 2007231362A
- Authority
- JP
- Japan
- Prior art keywords
- resin product
- electroless plating
- resin
- plating
- irradiating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacturing Of Printed Wiring (AREA)
- Chemically Coating (AREA)
Abstract
Description
本発明は、無電解めっきの際に前処理時間を短くすることができて、樹脂製品の表面と無電解めっき層との密着性が良好で、密着性のバラツキを改善することができる、樹脂製品の無電解めっき方法に関する。 The present invention is a resin that can shorten the pretreatment time during electroless plating, has good adhesion between the surface of the resin product and the electroless plating layer, and can improve variation in adhesion. The present invention relates to a method for electroless plating of products.
樹脂製品に導電性や金属光沢を付与する方法として、樹脂製品に真空中で金属を蒸着する方法、金属をスパッタリングする方法、あるいは無電解めっきする方法等が知られている。無電解めっきとは、溶液中の金属イオンを化学的に還元析出させ、素材表面に金属被膜を形成させる方法をいい、電力によって電解析出させる電気めっきと異なり樹脂等の絶縁体にも金属被膜を形成させることができる。 Known methods for imparting conductivity and metallic luster to resin products include a method of depositing a metal on a resin product in a vacuum, a method of sputtering a metal, a method of electroless plating, and the like. Electroless plating refers to a method in which metal ions in a solution are chemically reduced and deposited to form a metal film on the surface of the material. Unlike electroplating, which is electrolytically deposited by electric power, a metal film is also applied to an insulator such as a resin. Can be formed.
ところが、無電解めっき処理によって形成されためっき被膜は、素材表面に対する付着強度が十分でないという問題がある。そのため、無電解めっきをする場合、その前処理をする必要があり、例えば、樹脂製品の表面を化学的にエッチング処理を行う表面粗化、極性基付与、及び触媒化等の処理をして、無電解めっきを行うという方法が知られている。 However, the plating film formed by the electroless plating treatment has a problem that the adhesion strength to the material surface is not sufficient. Therefore, in the case of electroless plating, it is necessary to pre-treat, for example, surface roughening to chemically etch the surface of the resin product, imparting polar groups, and catalyzing, A method of performing electroless plating is known.
ところで、特許文献1には、半導体粉末を懸濁させた液に樹脂製品を浸漬し、該液中で光を照射することにより、樹脂製品の表面に極性基を形成させ、該極性基が形成された表面に無電解めっきを行う方法、及び水又は水溶液を介して紫外線を照射して処理を行った後に無電解めっきを行う方法が記載されている。この方法によれば、従来問題となっていた環境汚染や、廃液処理等の問題がなく、めっき層と樹脂製品表面とが良好に密着しているめっき製品が得られる。 By the way, in Patent Document 1, a resin group is immersed in a liquid in which a semiconductor powder is suspended, and light is irradiated in the liquid to form a polar group on the surface of the resin product. A method for performing electroless plating on the surface and a method for performing electroless plating after irradiating with ultraviolet rays through water or an aqueous solution are described. According to this method, there can be obtained a plated product in which the plating layer and the resin product surface are in good contact with each other without problems such as environmental pollution and waste liquid treatment, which have been problems in the past.
しかし、この方法において、前処理時間の短縮化、めっき層と樹脂製品表面との密着性のさらなる向上、めっき層と樹脂製品表面との密着性のバラツキを小さくすることができる樹脂製品の無電解めっき方法が望まれていた。 However, in this method, the pretreatment time can be shortened, the adhesion between the plating layer and the resin product surface can be further improved, and the variation in the adhesion between the plating layer and the resin product surface can be reduced. A plating method has been desired.
このような状況に鑑み、本発明の課題は、無電解めっきのための前処理時間が短縮できて、めっき層と樹脂製品表面との密着性が良好であり、めっき層と樹脂製品表面との密着性のバラツキを小さくすることができる樹脂製品の無電解めっき方法を提供することにある。 In view of such a situation, the problem of the present invention is that the pretreatment time for electroless plating can be shortened, and the adhesion between the plating layer and the resin product surface is good. An object of the present invention is to provide an electroless plating method for resin products, which can reduce the variation in adhesion.
上記課題を解決する本発明は、第1に、樹脂製品を大気下で紫外線を照射して処理を行った後、半導体粉末を懸濁させた液に浸漬し、該液中で光を照射することにより、前記樹脂製品の表面に極性基を形成させ、該極性基が形成された表面に無電解めっきを行うことを特徴とする樹脂製品の無電解めっき方法である。
第2に、樹脂製品を大気下で紫外線を照射して処理を行った後、水又は水溶液を介して紫外線を照射して処理を行い、その後に無電解めっきを行うことを特徴とする樹脂製品の無電解めっき方法である。
In the present invention for solving the above-mentioned problems, first, after a resin product is treated by irradiating ultraviolet rays in the atmosphere, it is immersed in a liquid in which semiconductor powder is suspended, and light is irradiated in the liquid. By this, a polar group is formed on the surface of the resin product, and electroless plating is performed on the surface on which the polar group is formed.
Second, the resin product is treated by irradiating the resin product with ultraviolet rays in the atmosphere, and then treated by irradiating with ultraviolet rays through water or an aqueous solution, and then electroless plating is performed. The electroless plating method.
本発明の無電解めっき方法によれば、無電解めっきのための前処理時間を短縮できて、めっき層と樹脂製品表面との密着性がさらに良好であり、めっき層と樹脂製品表面との密着性のバラツキを小さくすることができる。 According to the electroless plating method of the present invention, the pretreatment time for electroless plating can be shortened, the adhesion between the plating layer and the resin product surface is further improved, and the adhesion between the plating layer and the resin product surface is improved. The variation in sex can be reduced.
以下本発明について詳細に説明する。
(1)第1の発明においては、まず、樹脂製品に大気下で紫外線を照射して処理を行い、半導体粉末を懸濁させた液に浸漬し、該液中で光を照射して、前記樹脂製品の表面に極性基を形成させ、該極性基が形成された表面に無電解めっきを行う。
The present invention will be described in detail below.
(1) In the first invention, first, the resin product is treated by irradiating ultraviolet rays in the atmosphere, immersed in a liquid in which the semiconductor powder is suspended, and irradiated with light in the liquid. A polar group is formed on the surface of the resin product, and electroless plating is performed on the surface on which the polar group is formed.
この発明で樹脂製品を構成している樹脂としては、特に限定されず、例えば、アクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂)、ポリイミド樹脂、エポキシ樹脂、ポリエチレンテレフタレート樹脂(PET樹脂)及びポリスチレン樹脂(PS樹脂)等が挙げられる。また、その形状はなんら限定されないが、樹脂を成形したもの、例えば板状、球状、微粒子状等であってもよい。 The resin constituting the resin product in the present invention is not particularly limited. For example, acrylonitrile-butadiene-styrene resin (ABS resin), polyimide resin, epoxy resin, polyethylene terephthalate resin (PET resin), and polystyrene resin (PS) Resin) and the like. Moreover, the shape is not limited at all, but may be a resin-molded one, for example, a plate shape, a spherical shape, a fine particle shape, or the like.
紫外線照射は、大気下で20〜100℃、好ましくは40〜60℃で、波長400nm以下、好ましくは185〜260nmの紫外線を照射する。照射時間は0.1〜10分間、好ましくは0.5〜3分間行う。光源としては合成石英ランプ、普通石英ランプ、オゾンレスランプ等が用いられる。 The ultraviolet irradiation is performed at 20 to 100 ° C., preferably 40 to 60 ° C. in the atmosphere, and ultraviolet rays having a wavelength of 400 nm or less, preferably 185 to 260 nm. The irradiation time is 0.1 to 10 minutes, preferably 0.5 to 3 minutes. As a light source, a synthetic quartz lamp, a normal quartz lamp, an ozoneless lamp, or the like is used.
樹脂製品の紫外線照射処理を行った後、これを半導体粉末を懸濁させた液に浸漬し、該液中で光を照射することで樹脂製品表面に極性基を形成させ、極性基を形成させた表面に、定法により触媒付与及び活性化し、次いで無電解めっきを行う。 After the ultraviolet irradiation treatment of the resin product, it is immersed in a liquid in which the semiconductor powder is suspended, and a polar group is formed on the surface of the resin product by irradiating light in the liquid. Then, the catalyst is applied and activated by a conventional method, and then electroless plating is performed.
半導体粉末としては、光電極性を持つ半導体の粉末である。半導体の例としては、二酸化チタン、酸化亜鉛、硫化カドミウム、リン化ガリウム、炭化ケイ素、酸化インジウム及び酸化バナジウム等が好ましいものとして挙げられる。より好ましくは、アナターゼ型二酸化チタンである。 The semiconductor powder is a semiconductor powder having photoelectric polarity. Preferred examples of the semiconductor include titanium dioxide, zinc oxide, cadmium sulfide, gallium phosphide, silicon carbide, indium oxide, and vanadium oxide. More preferably, it is anatase type titanium dioxide.
また、半導体粉末はいずれの形状であっても用いることができる。粉末の粒径は、0.01〜1000μmのものが好ましく、0.01〜10μmがより好ましく、0.01〜5μmがさらに好ましい。特にアナターゼ型二酸化チタンの場合、粒径が0.01〜3μmであることが好ましい。 Further, the semiconductor powder can be used in any shape. The particle size of the powder is preferably 0.01 to 1000 μm, more preferably 0.01 to 10 μm, and still more preferably 0.01 to 5 μm. In particular, in the case of anatase type titanium dioxide, the particle size is preferably from 0.01 to 3 μm.
半導体粉末を縣濁させる液には、半導体粉末が0.005〜99重量%含まれることが好ましい。含まれる半導体粉末が0.005重量%未満であると、光照射処理の際に、不導体表面に極性基が十分に形成されない場合がある。半導体が99重量%を越えるとこれを均一に分散させることが困難となる場合がある。より好ましくは、0.01〜20重量%である。 The liquid for suspending the semiconductor powder preferably contains 0.005 to 99% by weight of the semiconductor powder. When the semiconductor powder contained is less than 0.005% by weight, polar groups may not be sufficiently formed on the non-conductor surface during the light irradiation treatment. If the semiconductor exceeds 99% by weight, it may be difficult to uniformly disperse the semiconductor. More preferably, it is 0.01 to 20% by weight.
さらに、半導体粉末には、白金、パラジウム等の金属を半導体に対して0.01〜10重量%担持させてもよい。半導体粉末に白金、パラジウム等の金属を担持させたものを用いると樹脂製品の表面に極性基がより効果的に付与される。 Further, the semiconductor powder may carry 0.01 to 10% by weight of a metal such as platinum or palladium with respect to the semiconductor. When a semiconductor powder carrying a metal such as platinum or palladium is used, a polar group is more effectively imparted to the surface of the resin product.
この発明で用いる半導体粉末を懸濁させるための液は、水性又は非水性の液であり、半導体粉末を懸濁させるための水性の液としては、水、硫酸水溶液、硝酸水溶液等が挙げられ、スルフォン基やニトロ基等を含むものが好ましい。硫酸水溶液又は硝酸水溶液の濃度は、0.01〜99重量%が好ましく、0.01〜20重量%がより好ましい。したがって、例えば、溶液中に硝酸が含まれると、ニトロ基が付与されることで、安定であった樹脂表面が不安定となり、その後形成されためっき層が強固に密着するので、好ましい。また、非水性の液としてはアルコール類、エーテル類が挙げられる。 The liquid for suspending the semiconductor powder used in this invention is an aqueous or non-aqueous liquid, and examples of the aqueous liquid for suspending the semiconductor powder include water, an aqueous sulfuric acid solution, an aqueous nitric acid solution, Those containing a sulfone group or a nitro group are preferred. The concentration of the sulfuric acid aqueous solution or nitric acid aqueous solution is preferably 0.01 to 99% by weight, and more preferably 0.01 to 20% by weight. Therefore, for example, when nitric acid is contained in the solution, the nitro group is imparted, and thus the stable resin surface becomes unstable, and the plating layer formed thereafter adheres firmly, which is preferable. Examples of non-aqueous liquids include alcohols and ethers.
また、半導体粉末を懸濁させるための液には、光増感剤を液全体に対して1〜50重量%となるように加えてもよい。光増感剤を加えることによって樹脂製品の表面に極性基が効果的に付与される。光増感剤としては、パラジウム、ニッケル、銅、鉄、金、白金等の各イオンが挙げられ、中でも鉄イオンが好ましい。 Moreover, you may add a photosensitizer to the liquid for suspending semiconductor powder so that it may become 1 to 50 weight% with respect to the whole liquid. By adding a photosensitizer, a polar group is effectively imparted to the surface of the resin product. Examples of the photosensitizer include ions of palladium, nickel, copper, iron, gold, platinum, etc. Among them, iron ions are preferable.
また、照射する光は、紫外光又は可視光が好ましく、特に紫外光の照射が好ましい。紫外光により樹脂表面の結合が開裂するのでめっき層が安定する。紫外光とは、紫外線とも呼ばれるもので、4〜400nmの波長の光を意味する。また、可視光とは、可視光線とも呼ばれるもので、400〜750nmの波長の光を意味する。光源の例としては、低圧水銀ランプ、高圧水銀ランプ、キセノンランプ、タングステンランプ、ハロゲンランプ、エキシマレーザー等の各種レーザー等、バリア放電ランプ、誘電体バリア放電ランプ、マイクロ波無電極放電ランプ、過度放電ランプ等を挙げることができる。 The light to be irradiated is preferably ultraviolet light or visible light, and particularly preferably irradiated with ultraviolet light. Since the bond on the resin surface is cleaved by the ultraviolet light, the plating layer is stabilized. Ultraviolet light is also called ultraviolet light and means light having a wavelength of 4 to 400 nm. Visible light is also called visible light and means light having a wavelength of 400 to 750 nm. Examples of light sources include low-pressure mercury lamps, high-pressure mercury lamps, xenon lamps, tungsten lamps, halogen lamps, excimer lasers, and other lasers, barrier discharge lamps, dielectric barrier discharge lamps, microwave electrodeless discharge lamps, excessive discharge A lamp etc. can be mentioned.
この方法では、半導体粉末を懸濁させた液に樹脂製品を浸漬し、光を照射することにより、樹脂製品表面に極性基が形成される。光照射時間は用いる樹脂製品や半導体粉末の種類により適宜選択されるが、1〜180分間であることが好ましい。この際、半導体粉末の光電気化学反応により、樹脂製品表面が酸化され、懸濁液中の極性基が樹脂製品表面に付与されて、そこに極性基が形成され、それにより化学結合が著しく増大し、めっき被膜との密着を強固にするものである。特に水銀灯を5〜30分間照射することが好ましい。光を照射する際に、樹脂製品表面に吸着した半導体粉末を除去するために、一定時間ごとに超音波振動等を行うことがより好ましい。 In this method, a polar group is formed on the surface of a resin product by immersing the resin product in a liquid in which semiconductor powder is suspended and irradiating light. The light irradiation time is appropriately selected depending on the type of resin product or semiconductor powder to be used, but is preferably 1 to 180 minutes. At this time, the surface of the resin product is oxidized by the photoelectrochemical reaction of the semiconductor powder, and the polar group in the suspension is added to the surface of the resin product to form the polar group, thereby significantly increasing the chemical bond. Thus, the adhesion with the plating film is strengthened. It is particularly preferable to irradiate a mercury lamp for 5 to 30 minutes. In order to remove the semiconductor powder adsorbed on the surface of the resin product when the light is irradiated, it is more preferable to perform ultrasonic vibration or the like at regular intervals.
樹脂製品表面に形成される極性基として、例えば、カルボニル基(C=O)、カルボキシル基(COOH)等が挙げられる。半導体粉末として、例えばアナターゼ型二酸化チタンを用いた場合には、水との化学反応により生じた水酸化物ラジカルから反応が進行し、親水性をもつカルボニル基が樹脂製品の表面に形成され、樹脂製品表面の濡れ性が向上する。極性基は、樹脂製品表面に常法により任意の層を形成させてその上に形成させてもよいが、樹脂製品表面に直接形成することが好ましい。
その後、極性基が形成された樹脂製品表面に、無電解めっきを従来の無電解めっき処理と同様に行う。
Examples of the polar group formed on the surface of the resin product include a carbonyl group (C═O) and a carboxyl group (COOH). For example, when anatase-type titanium dioxide is used as the semiconductor powder, the reaction proceeds from a hydroxide radical generated by a chemical reaction with water, and a hydrophilic carbonyl group is formed on the surface of the resin product. Improves the wettability of the product surface. The polar group may be formed on the resin product surface by forming an arbitrary layer on the resin product surface by a conventional method, but it is preferably formed directly on the resin product surface.
Thereafter, electroless plating is performed on the surface of the resin product on which the polar group is formed in the same manner as the conventional electroless plating treatment.
(2)第2の発明である樹脂製品の無電解めっき方法では、樹脂製品を大気下で紫外線を照射して処理を行った後、水又は水溶液を介して紫外線を照射して処理を行い、その後に従来の無電解めっき処理と同様にして無電解めっきを行う。 (2) In the electroless plating method of the resin product according to the second invention, the resin product is treated by irradiating the resin product with ultraviolet rays in the atmosphere, and then treated by irradiating ultraviolet rays through water or an aqueous solution. Thereafter, electroless plating is performed in the same manner as the conventional electroless plating treatment.
樹脂製品を大気下で紫外線を照射して処理を行うには、前記(1)に記載した樹脂製品を用い、前記(1)に記載したようにして行う。その後、樹脂製品に水又は水溶液を介して紫外線を照射する。樹脂製品に水又は水溶液を介して紫外線を照射する際、熱線は先ず水又水溶液に吸収され、あるいは水の蒸発によって樹脂製品が冷却されるので、樹脂製品の過熱が防止され熱変形を防止することができる。また、紫外線の照射量が多くなっても、めっき被膜の付着強度が低下するような不具合がない。これは、水の水酸基によって樹脂表面がある程度酸化されて活性化するためと考えられる。 In order to perform the treatment by irradiating the resin product with ultraviolet rays in the atmosphere, the resin product described in (1) is used as described in (1). Thereafter, the resin product is irradiated with ultraviolet rays through water or an aqueous solution. When the resin product is irradiated with ultraviolet rays through water or an aqueous solution, the heat rays are first absorbed by the water or the aqueous solution, or the resin product is cooled by evaporation of the water, thereby preventing overheating of the resin product and preventing thermal deformation. be able to. Moreover, even if the irradiation amount of ultraviolet rays increases, there is no problem that the adhesion strength of a plating film falls. This is presumably because the surface of the resin is oxidized to some extent by the hydroxyl groups of water and activated.
大気下で紫外線を照射して処理を行った後、樹脂製品に水又は水溶液を介して紫外線を照射するには、樹脂製品の少なくとも照射表面を水又は水溶液で濡らした状態として紫外線を照射することもできるが、樹脂製品を水又は水溶液中に浸漬した状態で、その容器の外部から紫外線を照射するのが好ましい。このようにすれば、十分な水量を確保できるので、樹脂製品の昇温をより抑制でき熱変形をさらに防止することができる。 In order to irradiate the resin product with water or an aqueous solution after irradiating with ultraviolet rays in the atmosphere, at least the irradiated surface of the resin product is wetted with water or an aqueous solution, and then irradiated with ultraviolet rays. However, it is preferable to irradiate ultraviolet rays from the outside of the container while the resin product is immersed in water or an aqueous solution. In this way, a sufficient amount of water can be secured, so that the temperature rise of the resin product can be further suppressed and thermal deformation can be further prevented.
水又は水溶液を介して照射される紫外線は、紫外領域にある電磁波であれば用いることができるが、樹脂製品の表面を活性化させるという観点からは、波長が50〜400nmの範囲の電磁波を用いることが好ましく、380nm以下、好ましくは300nm以下、さらに好ましくは150〜260nm程度である。また紫外線の照射量は10mW/cm2以上であることが好ましい。 The ultraviolet rays irradiated through water or an aqueous solution can be used as long as they are electromagnetic waves in the ultraviolet region, but from the viewpoint of activating the surface of the resin product, electromagnetic waves having a wavelength in the range of 50 to 400 nm are used. It is preferably 380 nm or less, preferably 300 nm or less, and more preferably about 150 to 260 nm. Moreover, it is preferable that the irradiation amount of an ultraviolet-ray is 10 mW / cm < 2 > or more.
このような紫外線を照射できる光源としては、低圧水銀ランプ、高圧水銀ランプ、エキシマレーザー、バリア放電ランプ、誘電体バリア放電ランプ、マイクロ波無電極放電ランプ、過度放電ランプなどを用いることができる。水又は水溶液中に樹脂製品を浸漬して紫外線を照射する場合には、紫外線を透過しやすい容器を用いることが好ましく、透明石英製の容器を用いることが特に好ましい。 As such a light source capable of irradiating ultraviolet rays, a low pressure mercury lamp, a high pressure mercury lamp, an excimer laser, a barrier discharge lamp, a dielectric barrier discharge lamp, a microwave electrodeless discharge lamp, an excessive discharge lamp, or the like can be used. When the resin product is immersed in water or an aqueous solution and irradiated with ultraviolet rays, it is preferable to use a container that easily transmits ultraviolet rays, and it is particularly preferable to use a container made of transparent quartz.
前記水溶液としては、酸化剤又はアルカリ物質が溶解した水溶液を用いることが好ましい。酸化剤又はアルカリ物質が溶解した水溶液を用いれば、紫外線照射による樹脂表面の活性化が促進されるため、紫外線の照射量を少なくしてもめっき被膜の付着強度が向上する。したがって樹脂製品の受ける熱量を低減することができ、熱変形をさらに防止することができる。なお紫外線の照射量を少なくするには、光源を少なくしてもよいし、照射時間を短くしてもよい。 As the aqueous solution, an aqueous solution in which an oxidizing agent or an alkaline substance is dissolved is preferably used. If an aqueous solution in which an oxidizing agent or an alkaline substance is dissolved is used, activation of the resin surface by ultraviolet irradiation is promoted, so that the adhesion strength of the plating film is improved even if the irradiation amount of ultraviolet rays is reduced. Therefore, the amount of heat received by the resin product can be reduced, and thermal deformation can be further prevented. In order to reduce the irradiation amount of ultraviolet rays, the number of light sources may be reduced or the irradiation time may be shortened.
酸化剤としては過塩素酸ナトリウム、過塩素酸カリウム、過酸化ナトリウム、過酸化カリウム、過酸化水素などが例示される。またアルカリ物質としては、水酸化ナトリウム、水酸化カリウム等が好ましいが、場合によってはアンモニア等も用いることができる。なお水溶液中の酸化剤又はアルカリ物質の濃度は特に制限されないが、酸化剤又はアルカリ物質の種類及び樹脂製品の種類に応じて試行錯誤的に決定するのが好ましい。 Examples of the oxidizing agent include sodium perchlorate, potassium perchlorate, sodium peroxide, potassium peroxide, and hydrogen peroxide. Moreover, as an alkaline substance, sodium hydroxide, potassium hydroxide, etc. are preferable, but ammonia etc. can also be used depending on the case. The concentration of the oxidizing agent or alkaline substance in the aqueous solution is not particularly limited, but is preferably determined by trial and error according to the type of oxidizing agent or alkaline substance and the type of resin product.
さらに、樹脂製品を水又は水溶液中に浸漬して紫外線を照射する場合には、気泡をバブリングしながら行うことが好ましい。このようにすれば、紫外線が気泡によって乱反射されるため、照射される紫外線光軸の死角となる樹脂製品の陰の部分にも紫外線を照射することが可能となり、その陰の部分にも高い付着強度をもつめっき被膜を形成することができる。この気泡としては空気でよいが、オゾン等の酸化性ガスを用いることも好ましい。 Furthermore, when the resin product is immersed in water or an aqueous solution and irradiated with ultraviolet rays, it is preferably performed while bubbling bubbles. In this way, since ultraviolet rays are diffusely reflected by bubbles, it is possible to irradiate the shaded part of the resin product, which is the blind spot of the irradiated ultraviolet optical axis, and high adhesion to the shaded part. A plating film having strength can be formed. The bubbles may be air, but it is also preferable to use an oxidizing gas such as ozone.
上記した紫外線処理後の樹脂製品は、そのまま無電解めっき処理してもよいが、陰イオン性界面活性剤及び非イオン性界面活性剤の少なくとも一方とアルカリ成分とを含む溶液を樹脂製品と接触させる処理を行うことが好ましい。この処理では、界面活性剤は、紫外線処理後の樹脂製品表面に表出する極性基にその疎水基が吸着すると考えられる。またアルカリ成分は、樹脂製品の表面を分子レベルで溶解する機能をもち、樹脂製品表面の脆化層を除去して極性基をより多く表出させる。したがって、脆化層の除去により表出した新たな極性基にも界面活性剤が吸着する。 The resin product after the ultraviolet treatment may be subjected to electroless plating as it is, but a solution containing at least one of an anionic surfactant and a nonionic surfactant and an alkali component is brought into contact with the resin product. It is preferable to perform processing. In this treatment, it is considered that the hydrophobic group is adsorbed on the polar group that appears on the surface of the resin product after the ultraviolet treatment. The alkali component has a function of dissolving the surface of the resin product at the molecular level, and removes the embrittlement layer on the surface of the resin product to expose more polar groups. Therefore, the surfactant is also adsorbed to the new polar group that is exposed by removing the embrittlement layer.
界面活性剤としては、C=O及びC−OHからなる少なくとも一方の極性基に対して疎水基が吸着しやすいものが用いられ、陰イオン性界面活性剤及び非イオン性界面活性剤の少なくとも一方が用いられる。陽イオン性界面活性剤及び両性界面活性剤を用いた場合、めっき被膜が形成されなかったり、効果の発現が困難となったりする。陰イオン性界面活性剤としては、ラウリル硫酸ナトリウム、ラウリル硫酸カリウム、ステアリル硫酸ナトリウム、ステアリル硫酸カリウム等が例示される。また非イオン性界面活性剤としては、ポリオキシエチレンドデシルエーテル、ポリエチレングリコールドデシルエーテル等が例示される。 As the surfactant, one having a hydrophobic group easily adsorbed to at least one polar group composed of C═O and C—OH is used, and at least one of an anionic surfactant and a nonionic surfactant is used. Is used. When a cationic surfactant and an amphoteric surfactant are used, a plating film may not be formed or it may be difficult to achieve the effect. Examples of the anionic surfactant include sodium lauryl sulfate, potassium lauryl sulfate, sodium stearyl sulfate, and potassium stearyl sulfate. Examples of the nonionic surfactant include polyoxyethylene dodecyl ether and polyethylene glycol dodecyl ether.
アルカリ成分としては、樹脂製品の表面を分子レベルで溶解して脆化層を除去できるものを用いることができ、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等を用いることができる。 As an alkali component, what can melt | dissolve the surface of a resin product in a molecular level and can remove an embrittlement layer can be used, and sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. can be used.
界面活性剤とアルカリ成分とを含む溶液の溶媒としては、極性溶媒を用いることが好ましく、水を代表的に用いることができるが、場合によってはアルコール系溶媒あるいは水−アルコール混合溶媒を用いてもよい。また溶液を樹脂製品と接触させるには、樹脂製品を溶液中に浸漬する方法、樹脂製品表面に溶液を塗布する方法、樹脂製品表面に溶液をスプレーする方法などで行うことができる。 As the solvent of the solution containing the surfactant and the alkali component, it is preferable to use a polar solvent, and water can be representatively used. However, depending on the case, an alcohol solvent or a water-alcohol mixed solvent may be used. Good. The solution can be brought into contact with the resin product by a method of immersing the resin product in the solution, a method of applying the solution on the surface of the resin product, a method of spraying the solution on the surface of the resin product, or the like.
溶液中の界面活性剤の濃度は、0.01〜10g/Lの範囲とすることが好ましい。界面活性剤の濃度が0.01g/Lより低いとめっき被膜の付着性が低下し、10g/Lより高くなると、樹脂製品表面に界面活性剤が会合状態となって余分な界面活性剤が不純物として残留するため、めっき被膜の付着性が低下するようになる。この場合には、処理後に樹脂製品を水洗して余分な界面活性剤を除去すればよい。 The concentration of the surfactant in the solution is preferably in the range of 0.01 to 10 g / L. When the concentration of the surfactant is lower than 0.01 g / L, the adhesion of the plating film is lowered. When the concentration is higher than 10 g / L, the surfactant is in an associated state on the surface of the resin product, and excess surfactant is an impurity. Therefore, the adhesion of the plating film is lowered. In this case, the resin product may be washed with water after the treatment to remove excess surfactant.
また溶液中のアルカリ成分の濃度は、pH値で12以上が好ましい。pH値が12未満であっても効果は得られるが、表出する極性基が少なくなり、触媒金属の付着性が低下してめっき被膜の形成が困難となる。溶液と樹脂製品との接触時間は特に制限されないが、室温で1分以上とするのが好ましい。接触時間が短すぎると、極性基に吸着する界面活性剤量が不足してめっき被膜の付着性が低下する場合がある。しかし接触時間が長くなり過ぎると、極性基が表出した層まで溶解して無電解めっきが困難となる場合があるので、1〜5分間程度で十分である。また温度は高い方が好ましく、温度が高いほど接触時間を短縮することが可能であるが、室温〜60℃程度で十分である。 Further, the concentration of the alkali component in the solution is preferably 12 or more in terms of pH value. Even if the pH value is less than 12, the effect can be obtained, but the number of polar groups to be exposed is reduced, the adhesion of the catalyst metal is lowered, and the formation of the plating film becomes difficult. The contact time between the solution and the resin product is not particularly limited, but is preferably 1 minute or longer at room temperature. If the contact time is too short, the amount of the surfactant adsorbed on the polar group may be insufficient and the adhesion of the plating film may be reduced. However, if the contact time is too long, the layer where the polar group is exposed may be dissolved and electroless plating may be difficult, so about 1 to 5 minutes is sufficient. The temperature is preferably higher, and the higher the temperature, the shorter the contact time can be, but room temperature to about 60 ° C is sufficient.
この発明では、アルカリ成分のみを含む水溶液で処理した後に界面活性剤を吸着させてもよいが、界面活性剤を吸着させるまでの間に再び脆化層が形成されてしまう場合があるので、陰イオン性界面活性剤及び非イオン性界面活性剤の少なくとも一方とアルカリ成分とが共存する状態で行うことが好ましい。 In this invention, the surfactant may be adsorbed after the treatment with the aqueous solution containing only the alkali component, but the embrittlement layer may be formed again until the surfactant is adsorbed. It is preferably carried out in a state where at least one of an ionic surfactant and a nonionic surfactant and an alkali component coexist.
なお、この発明では、処理後、水洗してアルカリ成分を除去する工程を行ってもよい。界面活性剤は極性基に強固に吸着しているので、水洗する程度では除去されず吸着した状態が維持されることがわかっている。したがって上記処理された樹脂製品は、無電解めっき処理までに時間が経過しても効果が失われることがない。 In addition, in this invention, you may perform the process of washing with water and removing an alkaline component after a process. Since the surfactant is strongly adsorbed on the polar group, it is known that the adsorbed state is maintained without being removed by washing with water. Therefore, the effect of the treated resin product is not lost even if time elapses before the electroless plating treatment.
そして無電解めっき処理では、界面活性剤が吸着した樹脂製品が先ず触媒と接触させられる。すると、極性基に吸着している界面活性剤の親水基に触媒が吸着すると考えられる。そして触媒が十分に吸着している樹脂製品に対して無電解めっき処理を施すことにより、界面活性剤が極性基から外れるとともにめっき金属が極性基と結合すると考えられ、特に付着強度に優れためっき被膜を形成することができる。 In the electroless plating process, the resin product to which the surfactant is adsorbed is first brought into contact with the catalyst. Then, it is considered that the catalyst is adsorbed on the hydrophilic group of the surfactant adsorbed on the polar group. By applying electroless plating to a resin product that has sufficiently adsorbed catalyst, it is thought that the surfactant is removed from the polar group and the plating metal is bonded to the polar group. A film can be formed.
触媒としては、Pd2+等、従来の無電解めっき処理に用いられる触媒を用いることができる。触媒を樹脂製品の表面に吸着させるには、触媒溶液を樹脂製品の表面に接触させればよく、上記した溶液の接触と同様に行うことができる。また接触時間、温度等の条件も、従来と同様でよい。また無電解めっき処理の条件、析出させる金属種等も制限されず、従来の無電解めっき処理と同様に行うことができる。 As the catalyst, a catalyst used for conventional electroless plating treatment such as Pd 2+ can be used. In order to cause the catalyst to be adsorbed on the surface of the resin product, the catalyst solution may be brought into contact with the surface of the resin product. The conditions such as the contact time and temperature may be the same as those in the conventional case. Further, the conditions for the electroless plating treatment, the metal species to be deposited, and the like are not limited, and can be performed in the same manner as in the conventional electroless plating treatment.
前記(1)及び(2)の発明によって形成された無電解めっき層上に、さらに定法により、無電解めっき又は電気めっきを行うと、耐久性がより優れためっき層を得ることができるので、無電解めっき層上に、さらに無電解めっき又は電気めっきを行うことが好ましい。ここでの、無電解めっき金属としては、例えば、ニッケル、銅、金、銀、及び、それらの金属化合物等で構成された群から選択された金属が挙げられ、好ましくは、ニッケル又は銅である。また、電気めっき金属の例としては、銅、ニッケル、クロム、スズ−ニッケル、金等が挙げられる。 On the electroless plating layer formed according to the inventions of the above (1) and (2), when electroless plating or electroplating is further performed by a regular method, a plating layer with more excellent durability can be obtained. It is preferable to further perform electroless plating or electroplating on the electroless plating layer. Here, examples of the electroless plating metal include metals selected from the group consisting of nickel, copper, gold, silver, and metal compounds thereof, preferably nickel or copper. . Examples of the electroplated metal include copper, nickel, chromium, tin-nickel, and gold.
上記のようにして得られためっきされた樹脂製品は、板状のものにめっきしたものはプリント配線板等として用いられ、微粒子状のものにめっきしたものは導電性微粒子として、これをビヒクル中に分散させたものは、導電性接着剤や塗料等として用いられる。またプリント配線板として用いる場合、製品上にめっき層と絶縁層を交互に積層した多層構造としてもよい。また、めっきされた樹脂製品は金属光沢を有していてめっき被膜は素材表面に強固に付着しており、密着性のバラツキも小さく、例えば、車輛、情報機器、事務機器等の部品や装飾品等にも用いることができる。 The plated resin product obtained as described above is used as a printed wiring board or the like when it is plated on a plate-like product, and as a conductive fine particle when it is plated on a fine-grained product in a vehicle. The material dispersed in is used as a conductive adhesive or paint. Moreover, when using as a printed wiring board, it is good also as a multilayer structure which laminated | stacked the plating layer and the insulating layer on the product alternately. In addition, the plated resin product has a metallic luster, and the plating film adheres firmly to the surface of the material, and there is little variation in adhesion. For example, parts and decorations such as vehicles, information equipment, office equipment, etc. Can also be used.
以下、本発明を実施例に基づいて具体的に説明する。しかし、本発明はこれらの実施例によりなんら限定されない。 Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to these examples.
(1)紫外線前処理
ABS樹脂で作成した樹脂基板(20×50mm)を大気下、60℃で、光源に合成石英ランプを用い、波長254nmの紫外線を1分間照射して、紫外線前処理を行った。
(2)表面の改質処理
次いで、半導体粉末である平均粒径0.5μmのアナターゼ型二酸化チタンを水に0.01g/Lとなるように加え、マグネチックスターラーで攪拌し、均一に分散させて懸濁液を得た。該液に前記紫外線処理を行ったABS樹脂基板を浸漬し、該液中で水銀灯を光源として波長380nm以下の紫外光を5分間照射し、ABS樹脂基板の表面の改質処理を行った。
(3)無電解NiPめっき及び銅めっき
上記のようにして得られた改質ABS樹脂基板を市販の無電解NiPめっき液、次いで市販の硫酸銅めっき液に浸漬し、厚さ約20μmに無電解めっきした。
前処理時間は従来の半分程度の時間であるにもかかわらず、得られためっき層と基板表面との密着力は1.0kgf/cm以上であり、バラツキも小さかった。密着力は、めっき後に、めっき層から基板に達する切り込みを1cm幅で入れ、引っ張り試験機にてめっき被膜の付着強度を測定した。
(1) Ultraviolet pretreatment An ultraviolet pretreatment was performed by irradiating a resin substrate (20 × 50 mm) made of ABS resin at 60 ° C. in the atmosphere with a synthetic quartz lamp as a light source for 1 minute with ultraviolet light having a wavelength of 254 nm. It was.
(2) Surface modification treatment Next, anatase-type titanium dioxide having an average particle size of 0.5 μm, which is a semiconductor powder, is added to water to 0.01 g / L, and stirred with a magnetic stirrer to uniformly disperse. To obtain a suspension. The ABS resin substrate subjected to the ultraviolet treatment was immersed in the liquid, and ultraviolet light having a wavelength of 380 nm or less was irradiated for 5 minutes in the liquid using a mercury lamp as a light source, thereby modifying the surface of the ABS resin substrate.
(3) Electroless NiP plating and copper plating The modified ABS resin substrate obtained as described above is immersed in a commercially available electroless NiP plating solution and then a commercially available copper sulfate plating solution, and electroless to a thickness of about 20 μm. Plated.
Despite the pretreatment time being about half of the conventional time, the adhesion between the obtained plating layer and the substrate surface was 1.0 kgf / cm or more, and the variation was small. For the adhesion, after the plating, a notch reaching the substrate from the plating layer was made with a width of 1 cm, and the adhesion strength of the plating film was measured with a tensile tester.
(比較例1)
紫外線前処理を行わない以外は実施例1と同様にして無電解めっき樹脂を作製した。得られためっき層と基板表面との密着力は1.0kgf/cmよりも低く、バラツキも大きかった。
(Comparative Example 1)
An electroless plating resin was produced in the same manner as in Example 1 except that no ultraviolet pretreatment was performed. The adhesion between the obtained plating layer and the substrate surface was lower than 1.0 kgf / cm, and the variation was large.
(1)紫外線前処理
ABS樹脂で作成した樹脂基板(20×50mm)を大気下、50℃で、光源に普通石英ランプを用い、波長254nmの紫外線を1分間照射して、紫外線前処理を行った。
(2)表面の改質処理
上記のように紫外線前処理した樹脂製品を、透明石英製の容器中に満たされた純水中に浸漬し、1kwの高圧水銀ランプを用いて容器の外部より樹脂基板に紫外線を5分間照射した。
次にNaOHを50g/Lとラウリル硫酸ナトリウムを1g/L溶解した混合水溶液を60℃に加熱し、そこへ紫外線処理後の各樹脂板を2分間浸漬して陰イオン性界面活性剤(ラウリル硫酸ナトリウム)を吸着させた。界面活性剤が吸着した各樹脂板を引き上げ、水洗・乾燥後、3N塩酸水溶液に塩化パラジウムを0.1重量%溶解するとともに塩化錫を5重畳%溶解し50℃に加熱された触媒溶液中に3分間浸漬し、次いでパラジウムを活性化するために、1N塩酸水溶液に3分間浸漬した。これにより触媒が吸着しためっき用の樹脂板を得た。
(1) Ultraviolet pretreatment An ultraviolet pretreatment was performed on a resin substrate (20 × 50 mm) made of ABS resin at 50 ° C. in the atmosphere using a normal quartz lamp as the light source and irradiating with ultraviolet light having a wavelength of 254 nm for 1 minute. It was.
(2) Surface modification treatment The resin product pre-treated with ultraviolet rays as described above is immersed in pure water filled in a transparent quartz container, and resin is applied from the outside of the container using a 1 kW high-pressure mercury lamp. The substrate was irradiated with ultraviolet rays for 5 minutes.
Next, a mixed aqueous solution in which 50 g / L of NaOH and 1 g / L of sodium lauryl sulfate are dissolved is heated to 60 ° C., and each resin plate after UV treatment is immersed therein for 2 minutes to anionic surfactant (lauryl sulfate). Sodium) was adsorbed. Each resin plate adsorbed with the surfactant is pulled up, washed with water and dried, and then dissolved in 0.1% by weight of palladium chloride in 3N aqueous hydrochloric acid solution and 5% by weight of tin chloride dissolved in the catalyst solution heated to 50 ° C. Immersion for 3 minutes and then immersion in 1N aqueous hydrochloric acid for 3 minutes to activate palladium. As a result, a resin plate for plating on which the catalyst was adsorbed was obtained.
(3)その後、40℃に保温された化学ニッケルめっき浴中に各めっき用樹脂板を浸漬し、10分間ニッケルめっき被膜を析出させた。析出したニッケルめっき被膜の厚さは0.5μmであった。続いて硫酸銅系Cu電気めっき浴にて、ニッケルめっき被膜の表面に銅めっきを40μm析出させた。
前処理時間は従来の半分程度の時間であるにもかかわらず、得られためっき層と基板表面との密着力はいずれも1.0kgf/cm以上であり、バラツキも小さかった。
(3) Then, each resin plate for plating was immersed in a chemical nickel plating bath kept at 40 ° C. to deposit a nickel plating film for 10 minutes. The deposited nickel plating film had a thickness of 0.5 μm. Subsequently, 40 μm of copper plating was deposited on the surface of the nickel plating film in a copper sulfate-based Cu electroplating bath.
Despite the pretreatment time being about half of the conventional time, the adhesion between the obtained plated layer and the substrate surface was 1.0 kgf / cm or more, and the variation was small.
(比較例2)
紫外線前処理を行わない以外は実施例2と同様にして、ニッケルめっき被膜を析出させた。続いて硫酸銅系Cu電気めっき浴にて、銅めっきを析出させた。
得られためっき層と基板表面との密着力は1.0kgf/cmより低く、バラツキも大きかった。
(Comparative Example 2)
A nickel plating film was deposited in the same manner as in Example 2 except that no ultraviolet pretreatment was performed. Subsequently, copper plating was deposited in a copper sulfate-based Cu electroplating bath.
The adhesion between the obtained plating layer and the substrate surface was lower than 1.0 kgf / cm, and the variation was large.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006054270A JP2007231362A (en) | 2006-03-01 | 2006-03-01 | Electroless plating method of resin product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006054270A JP2007231362A (en) | 2006-03-01 | 2006-03-01 | Electroless plating method of resin product |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007231362A true JP2007231362A (en) | 2007-09-13 |
Family
ID=38552251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006054270A Withdrawn JP2007231362A (en) | 2006-03-01 | 2006-03-01 | Electroless plating method of resin product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007231362A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011063854A (en) * | 2009-09-17 | 2011-03-31 | Toyota Industries Corp | Method for manufacturing base material to be electroless-plated |
JP2012162765A (en) * | 2011-02-04 | 2012-08-30 | Kanto Gakuin | Electroless plating method and method of manufacturing metal-clad laminated plate |
WO2015178101A1 (en) * | 2014-05-23 | 2015-11-26 | 学校法人関東学院 | Surface modification method for resin base, method for forming metal coating film, and laminate |
JP5830596B1 (en) * | 2014-12-25 | 2015-12-09 | キヤノン・コンポーネンツ株式会社 | Resin product with plating film, resin product, and method for producing resin product with plating film |
WO2016068184A1 (en) * | 2014-10-29 | 2016-05-06 | 学校法人関東学院 | Biocompatible laminate and biocompatible electronic part |
WO2016136537A1 (en) * | 2015-02-26 | 2016-09-01 | アルプス電気株式会社 | Member, manufacturing method of said member, and electronic component provided with said member |
-
2006
- 2006-03-01 JP JP2006054270A patent/JP2007231362A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011063854A (en) * | 2009-09-17 | 2011-03-31 | Toyota Industries Corp | Method for manufacturing base material to be electroless-plated |
US8563093B2 (en) | 2009-09-17 | 2013-10-22 | Toyota Jidosha Kabushiki Kaisha | Method for production of electroless plating material |
JP2012162765A (en) * | 2011-02-04 | 2012-08-30 | Kanto Gakuin | Electroless plating method and method of manufacturing metal-clad laminated plate |
WO2015178101A1 (en) * | 2014-05-23 | 2015-11-26 | 学校法人関東学院 | Surface modification method for resin base, method for forming metal coating film, and laminate |
JP2015221925A (en) * | 2014-05-23 | 2015-12-10 | 学校法人関東学院 | Method for treating surface modification of resin base material, method for forming metal film, and laminate |
TWI561674B (en) * | 2014-05-23 | 2016-12-11 | Kanto Gakuin School Corp | Method for modifying surface of resin substrate, method for forming metal coating film and laminate |
WO2016068184A1 (en) * | 2014-10-29 | 2016-05-06 | 学校法人関東学院 | Biocompatible laminate and biocompatible electronic part |
JP2016083918A (en) * | 2014-10-29 | 2016-05-19 | 学校法人関東学院 | Biocompatible laminate and biocompatible electronic component |
JP5830596B1 (en) * | 2014-12-25 | 2015-12-09 | キヤノン・コンポーネンツ株式会社 | Resin product with plating film, resin product, and method for producing resin product with plating film |
WO2016136537A1 (en) * | 2015-02-26 | 2016-09-01 | アルプス電気株式会社 | Member, manufacturing method of said member, and electronic component provided with said member |
JPWO2016136537A1 (en) * | 2015-02-26 | 2017-09-28 | アルプス電気株式会社 | Member, method for manufacturing the member, and electronic component including the member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4147317B2 (en) | Plating method for non-conductor products | |
TWI445068B (en) | A manufacture method of forming a circuit unit | |
JP4341333B2 (en) | Resin substrate having resin-metal composite layer and method for producing the same | |
JP4135459B2 (en) | Method for pretreatment of electroless plating material and method for manufacturing plating coated member | |
JP6317090B2 (en) | Method for electroless plating and solution used therefor | |
JP2007231362A (en) | Electroless plating method of resin product | |
EP0124452A1 (en) | Process for metallising electrically insulating pliable films, and products obtained | |
JP3999696B2 (en) | Electroless plating method and plated parts | |
JP5149805B2 (en) | Electroless copper plating method | |
JP4314093B2 (en) | Plating material, method for producing the same, and method for producing plated coating member | |
JP2003193247A (en) | Pretreatment method for electroless plating material | |
JP2008291288A (en) | Ozone solution treatment method of resin substrate, and wiring board manufacturing method | |
WO2012157135A1 (en) | Method for manufacturing molded circuit board | |
JP2003027250A (en) | Method for forming electroless plating film of resin | |
JP4332795B2 (en) | Electroless plating method | |
JP2007039547A (en) | Method for treating surface of resin board | |
WO2014017291A1 (en) | Method for imparting electrical conductivity to silicone resin, and silicone resin provided with metallic coating film | |
JP2005036292A (en) | Electroless plating method and plated component | |
JP4376575B2 (en) | Method for producing plating-coated member | |
JP2006240222A (en) | Metal-coated article, metal wiring board, and their manufacturing method | |
JP2009259900A (en) | Resin substrate with noble metal fixed to surface layer thereof, and manufacturing method therefor, and circuit board and manufacturing method therefor | |
WO2007043380A1 (en) | Catalyst treatment method, electroless plating method, and method for formation of circuit by using the electroless plating method | |
JP2005256118A (en) | Method for pretreating non-conductive article with the use of photocatalyst before plating | |
JP2016003370A (en) | Resin product with metal film and production method thereof | |
JP2005260171A (en) | Conductive film forming method and manufacturing method of wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090512 |