JP4376575B2 - Method for producing plating-coated member - Google Patents

Method for producing plating-coated member Download PDF

Info

Publication number
JP4376575B2
JP4376575B2 JP2003300405A JP2003300405A JP4376575B2 JP 4376575 B2 JP4376575 B2 JP 4376575B2 JP 2003300405 A JP2003300405 A JP 2003300405A JP 2003300405 A JP2003300405 A JP 2003300405A JP 4376575 B2 JP4376575 B2 JP 4376575B2
Authority
JP
Japan
Prior art keywords
photocatalyst
electroless plating
plating
surfactant
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003300405A
Other languages
Japanese (ja)
Other versions
JP2005068496A (en
Inventor
基記 平岡
毅 別所
摂人 台座
晃 寺西
卓也 石田
英夫 本間
納親 雲林院
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Kasei Co Ltd
Toyota Motor Corp
Original Assignee
Kanto Kasei Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Kasei Co Ltd, Toyota Motor Corp filed Critical Kanto Kasei Co Ltd
Priority to JP2003300405A priority Critical patent/JP4376575B2/en
Publication of JP2005068496A publication Critical patent/JP2005068496A/en
Application granted granted Critical
Publication of JP4376575B2 publication Critical patent/JP4376575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、無電解めっき被膜を有するめっき被覆部材の製造方法に関する。本発明の製造方法は、装飾品、あるいは車両や情報機器などに用いられる回路基板などの製造に用いることができる。   The present invention relates to a method for producing a plating-coated member having an electroless plating film. The manufacturing method of the present invention can be used for manufacturing decorative articles, circuit boards used in vehicles, information equipment, and the like.

不導体である樹脂素材に導電性や金属光沢を付与する方法として、無電解めっき処理が知られている。この無電解めっきとは、溶液中の金属イオンを化学的に還元析出させ、素材表面に金属被膜を形成する方法をいい、電力によって電解析出させる電解めっきと異なり樹脂などの絶縁体にも金属被膜を形成することができる。また金属被膜が形成された樹脂素材には電解めっきすることもでき、用途が拡大される。そのため、自動車部品、家電製品などの分野に用いられる樹脂素材に金属光沢を付与したり、導電性を付与したりする方法として、無電解めっき処理は広く用いられている。   An electroless plating process is known as a method for imparting conductivity and metallic luster to a resin material that is a nonconductor. This electroless plating is a method in which metal ions in a solution are chemically reduced and deposited to form a metal film on the surface of the material. Unlike electrolytic plating in which electrolytic deposition is performed by electric power, metal such as resin is also applied to the insulator. A film can be formed. In addition, the resin material on which the metal coating is formed can be electroplated, and the application is expanded. For this reason, electroless plating is widely used as a method for imparting metallic luster or conductivity to resin materials used in fields such as automobile parts and home appliances.

ところが、無電解めっき処理によって形成されためっき被膜は、被膜形成までに時間がかかったり、被膜の樹脂素材に対する付着性が十分でないという問題がある。そのため、先ず樹脂素材に対して化学的エッチング処理を行って表面を粗面化し、その後無電解めっき処理する工程が一般に行われている。しかしエッチングによって粗面化する方法では、クロム酸、過マンガン酸、硫酸などの毒劇物を用いる必要があり、廃液処理などに問題が生じる。   However, the plating film formed by the electroless plating process has a problem that it takes time until the film is formed or the adhesion of the film to the resin material is insufficient. For this reason, first, a chemical etching process is first performed on the resin material to roughen the surface, and then a process of electroless plating is generally performed. However, in the method of roughening by etching, it is necessary to use poisonous and deleterious substances such as chromic acid, permanganic acid and sulfuric acid, which causes a problem in waste liquid treatment.

そこで例えばWO 03-021005号公報には、半導体粉末を懸濁させた液に不導体製品を浸漬した状態で光を照射することで、不導体製品の表面に極性基を形成させ、極性基が形成された表面に無電解めっきを施す方法が記載されている。この方法によれば、半導体粉末の光電気化学反応によって不導体表面が酸化され、懸濁液中の極性基が不導体製品表面に付与されそこに極性基が形成される。したがって不導体製品の表面との化学結合によって、めっき被膜の付着性が向上する。   Thus, for example, in WO 03-021005, a polar group is formed on the surface of a non-conductive product by irradiating light in a state where the non-conductive product is immersed in a liquid in which semiconductor powder is suspended. A method of applying electroless plating to the formed surface is described. According to this method, the non-conductive surface is oxidized by the photoelectrochemical reaction of the semiconductor powder, and the polar group in the suspension is imparted to the non-conductive product surface to form the polar group there. Therefore, the adhesion of the plating film is improved by the chemical bond with the surface of the non-conductor product.

しかしながらWO 03-021005号公報に記載の方法では、光の照射時間を長くしないと十分な付着強度が得られないという不具合があり、生産性に問題があった。
WO 03-021005号
However, the method described in WO 03-021005 has a problem in that sufficient adhesion strength cannot be obtained unless the light irradiation time is lengthened, resulting in a problem in productivity.
WO 03-021005

本発明はこのような事情に鑑みてなされたものであり、毒劇物を用いることなく、短時間の処理で無電解めっき被膜の強固な付着性を発現させ、生産性を向上させることを目的とする。   The present invention has been made in view of such circumstances, and it is an object to improve the productivity by developing strong adhesion of an electroless plating film in a short time without using poisonous and deleterious substances. And

上記課題を解決する本発明のめっき被覆部材の製造方法の特徴は、光触媒を含む光触媒液を、不導体表面を有する基材の不導体表面にスプレーしながら、少なくとも不導体表面に光を照射する光触媒処理工程と、
光触媒処理工程で処理された基材の少なくとも不導体表面に無電解めっきを施す無電解めっき工程と、を含むことにある。
A feature of the method for producing a plating-coated member of the present invention that solves the above-described problem is that light is applied to at least a non-conductive surface while spraying a photo-catalyst solution containing a photo-catalyst on the non-conductive surface of a substrate having a non-conductive surface. A photocatalyst treatment step;
And an electroless plating step of performing electroless plating on at least the non-conductor surface of the substrate treated in the photocatalyst treatment step.

さらに、光触媒処理工程と無電解めっき工程との間に、少なくとも不導体表面に少なくともアルカリ成分を含むアルカリ溶液を接触させるアルカリ処理工程を行うことが望ましい。またアルカリ溶液には、陰イオン性界面活性剤及び非イオン性界面活性剤の少なくとも一方をさらに含むことが好ましい。   Furthermore, it is desirable to perform an alkali treatment step in which an alkali solution containing at least an alkali component is brought into contact with at least the non-conductor surface between the photocatalyst treatment step and the electroless plating step. The alkaline solution preferably further contains at least one of an anionic surfactant and a nonionic surfactant.

すなわち本発明のめっき被覆部材の製造方法によれば、短時間の処理で無電解めっき被膜の強固な付着性を発現させることができるので、生産性が大きく向上する。また毒劇物によるエッチング処理が不要となるので、廃液処理の問題が回避され、基材の表面平滑性も向上する。   That is, according to the manufacturing method of the plating covering member of the present invention, since the strong adhesion of the electroless plating film can be expressed in a short time, productivity is greatly improved. Moreover, since the etching process with poisonous and deleterious substances becomes unnecessary, the problem of waste liquid treatment is avoided, and the surface smoothness of the base material is improved.

本発明のめっき被覆部材の製造方法では、先ず光触媒処理工程において、基材の不導体表面と、光触媒を含み少なくとも不導体表面で流動する光触媒液と、を接触させた状態で、少なくとも不導体表面に光を照射している。これによって不導体表面には常に新鮮な光触媒が接触するため、その光電気化学反応によって不導体表面が効果的に活性化され多くの極性基が形成されると考えられる。したがって短時間の処理でも、付着強度に優れた無電解めっき被膜を形成することができ、生産性が大きく向上する。   In the method for producing a plating-coated member of the present invention, first, in the photocatalyst treatment step, at least a non-conductive surface in a state where the non-conductive surface of the base material and the photo-catalyst liquid that contains the photocatalyst and flows at least on the non-conductive surface are brought into contact with each other. Is irradiating light. As a result, a fresh photocatalyst always comes into contact with the nonconductive surface, so that it is considered that the nonconductive surface is effectively activated by the photoelectrochemical reaction and many polar groups are formed. Therefore, an electroless plating film having excellent adhesion strength can be formed even in a short time, and productivity is greatly improved.

不導体としては、ポリオレフィン、エポキシ、ABSなどの樹脂、ゴム、セラミック、ガラスなどが例示される。そして基材は、この不導体が少なくとも一部に表出した不導体表面を有するものが用いられ、不導体表面以外の部分の材質は問わない。   Examples of the nonconductor include resins such as polyolefin, epoxy, and ABS, rubber, ceramic, and glass. And as for a base material, what has the nonconductor surface which this nonconductor exposed to at least one part is used, and the material of parts other than a nonconductor surface is not ask | required.

光触媒としては、二酸化チタン、酸化亜鉛、硫化カドミウム、リン化ガリウム、炭化ケイ素、酸化インジウム、酸化バナジウムなどから選択して用いることができる。二酸化チタンが特に好ましい。この光触媒は粉末とされ、液体中に懸濁した光触媒液として用いられる。光触媒液の溶媒は、水を標準的に用いることができるが、アルコール類などの有機溶媒を用いることも可能であり、水と有機溶媒との混合溶媒としてもよい。   As the photocatalyst, it can be selected from titanium dioxide, zinc oxide, cadmium sulfide, gallium phosphide, silicon carbide, indium oxide, vanadium oxide and the like. Titanium dioxide is particularly preferred. This photocatalyst is powdered and used as a photocatalyst liquid suspended in a liquid. Water can be used as a standard solvent for the photocatalyst solution, but organic solvents such as alcohols can also be used, and a mixed solvent of water and an organic solvent may be used.

光触媒粉末の粒径は、 0.1〜1000μmの範囲が好ましい。粒径が 0.1μmより小さいと取り扱いが困難となり、1000μmより大きくなると光照射時の活性化の程度が小さくなって実用的でない。   The particle size of the photocatalyst powder is preferably in the range of 0.1 to 1000 μm. When the particle size is smaller than 0.1 μm, handling becomes difficult, and when the particle size is larger than 1000 μm, the degree of activation at the time of light irradiation becomes small, which is not practical.

また、水中に光触媒粉末を懸濁させる場合には、水1リットルに対して光触媒粉末を0.01g以上懸濁させることが望ましい。0.01g未満では光照射時の光触媒の触媒作用による不導体表面の活性化の促進作用の発現が困難となる。   Moreover, when suspending photocatalyst powder in water, it is desirable to suspend 0.01g or more of photocatalyst powder with respect to 1 liter of water. If it is less than 0.01 g, it becomes difficult to develop an activation promoting effect on the surface of the nonconductor due to the catalytic action of the photocatalyst during light irradiation.

照射される光としては、可視光を用いることもできるが、光触媒の活性化に有効であり、また樹脂などの不導体を直接活性化することもできる紫外線を用いることが望ましい。この紫外線としては、 310nm以下の波長のものが好ましく、 260nm以下、さらには 150〜 200nm程度のものが望ましい。また紫外線照射量は、50mJ/cm2 以上とすることが望ましい。このような紫外線を照射できる光源としては、低圧水銀ランプ,高圧水銀ランプ,エキシマレーザー,バリア放電ランプ,マイクロ波無電極放電ランプなどを用いることができる。 Visible light can be used as the irradiated light, but it is desirable to use ultraviolet rays that are effective in activating the photocatalyst and can directly activate a nonconductor such as a resin. This ultraviolet ray preferably has a wavelength of 310 nm or less, preferably 260 nm or less, and more preferably about 150 to 200 nm. The amount of ultraviolet irradiation is desirably 50 mJ / cm 2 or more. As a light source capable of irradiating such ultraviolet rays, a low pressure mercury lamp, a high pressure mercury lamp, an excimer laser, a barrier discharge lamp, a microwave electrodeless discharge lamp, or the like can be used.

本発明の最大の特徴は、光触媒液が少なくとも不導体表面で流動している状態で、少なくとも不導体表面に光を照射することにある。これによって、常に新鮮な光触媒が光によって活性化された状態で不導体表面に接触し、不導体表面に多数の極性基が形成されると考えられる。   The greatest feature of the present invention resides in that at least the non-conductor surface is irradiated with light in a state where the photocatalyst solution is flowing at least on the non-conductor surface. As a result, it is considered that a fresh photocatalyst always contacts the nonconductive surface in a state activated by light, and a large number of polar groups are formed on the nonconductive surface.

すなわち実施例に示すように、少なくとも不導体表面に光触媒液をスプレーしながら光を照射する。このようにすれば、光触媒液の厚さが薄くなるため、不導体表面に到達するまでに光が減衰するのが抑制される。したがって光触媒液の流動による作用とともに、光触媒の活性化の程度が大きくなるため、より短時間の処理で無電解めっき被膜の付着性が向上する。
That is , as shown in the Examples, light is irradiated while spraying a photocatalyst solution at least on the surface of the nonconductor. In this way, the thickness of the photocatalyst solution is reduced, so that the attenuation of light before reaching the non-conductor surface is suppressed. Therefore, since the degree of activation of the photocatalyst increases along with the action of the flow of the photocatalyst solution, the adhesion of the electroless plating film is improved in a shorter time.

さらに、光触媒液をスプレーしながら、基材を高速で回転させることも好ましい。基材の回転によって光触媒液は基材表面に膜状に拡がり、光触媒液の厚さをさらに薄くすることができる。また光触媒液の流動速度も大きいため、新鮮な光触媒がより速やかに供給される。これらの相乗効果によって、さらに短時間の処理で無電解めっき被膜の付着性が向上する。   Furthermore, it is also preferable to rotate the substrate at high speed while spraying the photocatalyst solution. The photocatalyst liquid spreads in a film shape on the surface of the base material by the rotation of the base material, and the thickness of the photocatalyst liquid can be further reduced. Moreover, since the flow rate of the photocatalyst solution is high, fresh photocatalyst is supplied more quickly. Due to these synergistic effects, the adhesion of the electroless plating film can be improved in a shorter time.

無電解めっき工程では、先ず光触媒処理工程で処理された基材の少なくとも不導体表面に触媒が吸着される。この触媒としては、Pd2+など、従来の無電解めっき処理に用いられる触媒を用いることができる。触媒を不導体表面に吸着させるには、触媒イオンが溶解している溶液を少なくとも不導体表面に接触させればよい。また接触時間、温度などの条件も、従来と同様でよい。 In the electroless plating process, the catalyst is first adsorbed on at least the non-conductive surface of the base material treated in the photocatalyst treatment process. As this catalyst, a catalyst used in conventional electroless plating treatment such as Pd 2+ can be used. In order to cause the catalyst to be adsorbed on the nonconductive surface, a solution in which catalyst ions are dissolved may be brought into contact with at least the nonconductive surface. Moreover, conditions, such as contact time and temperature, may be the same as before.

その後、従来と同様に無電解めっき処理が行われる。無電解めっき処理の条件、析出させる金属種などもNi、Cu、Au、Agなど特に制限されず、従来の無電解めっき処理と同様に行うことができる。   Thereafter, an electroless plating process is performed as in the conventional case. The conditions of the electroless plating treatment, the metal species to be deposited, etc. are not particularly limited, such as Ni, Cu, Au, and Ag, and can be performed in the same manner as the conventional electroless plating treatment.

なお、無電解めっき工程後に、さらに電解めっきを施す電解めっき工程を行うことが望ましい。これにより金属光沢あるいは導電性などの機能を付与することができる。   In addition, it is desirable to perform the electroplating process which performs electroplating further after an electroless-plating process. Thereby, functions such as metallic luster or conductivity can be imparted.

光触媒処理工程と無電解めっき工程との間に、少なくとも不導体表面に少なくともアルカリ成分を含むアルカリ溶液を接触させるアルカリ処理工程をさらに行うことが望ましい。アルカリ成分は、不導体表面を分子レベルで水に可溶化する機能をもち、表面の脆化層を除去して極性基をより多く表出させるため、無電解めっき被膜の付着性がさらに向上する。このアルカリ成分としては、不導体表面を分子レベルで溶解して脆化層を除去できるものを用いることができ、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどを用いることができる。   It is desirable to further perform an alkali treatment step in which an alkali solution containing at least an alkali component is brought into contact with at least the non-conductor surface between the photocatalyst treatment step and the electroless plating step. Alkali component has the function of solubilizing non-conductor surface in water at the molecular level, and removes the brittle layer on the surface to expose more polar groups, further improving the adhesion of electroless plating film . As this alkali component, what can melt | dissolve a nonconductor surface in a molecular level and can remove an embrittlement layer can be used, and sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. can be used.

またアルカリ溶液には、陰イオン性界面活性剤及び非イオン性界面活性剤の少なくとも一方をさらに含むことが望ましい。この界面活性剤は、表面に表出する極性基にその疎水基が吸着しやすいと考えられ、極性基の大部分に吸着させることができる。そして無電解めっき工程では、界面活性剤が吸着した表面が触媒と接触されると、触媒が極性基に吸着している界面活性剤の親水基に吸着すると考えられる。そして触媒が十分に吸着している不導体表面に対して無電解めっき処理を施すことにより、界面活性剤が極性基から外れるとともにめっき金属が極性基と結合すると考えられ、より付着性に優れた無電解めっき被膜を形成することができる。   The alkaline solution preferably further contains at least one of an anionic surfactant and a nonionic surfactant. This surfactant is considered that the hydrophobic group is likely to be adsorbed to the polar group exposed on the surface, and can be adsorbed to most of the polar group. In the electroless plating step, when the surface on which the surfactant is adsorbed is brought into contact with the catalyst, the catalyst is considered to be adsorbed on the hydrophilic group of the surfactant adsorbed on the polar group. And by applying electroless plating treatment to the nonconductive surface where the catalyst is sufficiently adsorbed, it is considered that the surfactant is removed from the polar group and the plated metal is bonded to the polar group, and it has better adhesion An electroless plating film can be formed.

この界面活性剤としては、 C=O及びC-OHからなる少なくとも一方の極性基に対して疎水基が吸着しやすいものが用いられ、陰イオン性界面活性剤及び非イオン性界面活性剤の少なくとも一方が用いられる。陽イオン性界面活性剤及び中性界面活性剤では、無電解めっき被膜が形成できなかったり、効果の発現が困難となる。陰イオン性界面活性剤としては、ラウリル硫酸ナトリウム、ラウリル硫酸カリウム、ステアリル硫酸ナトリウム、ステアリル硫酸カリウムなどが例示される。また非イオン性界面活性剤としては、ポリオキシエチレンドデシルエーテルなどが例示される。   As this surfactant, those having a hydrophobic group easily adsorbed to at least one polar group consisting of C═O and C—OH are used, and at least one of an anionic surfactant and a nonionic surfactant is used. One is used. With a cationic surfactant and a neutral surfactant, an electroless plating film cannot be formed, and it is difficult to achieve an effect. Examples of the anionic surfactant include sodium lauryl sulfate, potassium lauryl sulfate, sodium stearyl sulfate, and potassium stearyl sulfate. Examples of the nonionic surfactant include polyoxyethylene dodecyl ether.

アルカリ溶液の溶媒としては、極性溶媒を用いることが望ましく、水を代表的に用いることができるが、場合によってはアルコール系溶媒あるいは水−アルコール混合溶媒を用いてもよい。またアルカリ溶液を少なくとも不導体表面と接触させるには、基材をアルカリ溶液中に浸漬する方法、少なくとも不導体表面にアルカリ溶液を塗布する方法、少なくとも不導体表面にアルカリ溶液をスプレーする方法などで行うことができる。   As the solvent of the alkaline solution, it is desirable to use a polar solvent, and water can be used as a representative, but an alcohol solvent or a water-alcohol mixed solvent may be used in some cases. In order to bring the alkaline solution into contact with at least the nonconductive surface, a method of immersing the base material in the alkaline solution, a method of applying the alkaline solution to at least the nonconductive surface, a method of spraying the alkaline solution on at least the nonconductive surface, etc. It can be carried out.

アルカリ溶液中の界面活性剤の濃度は、0.01〜10g/Lの範囲とすることが好ましい。界面活性剤の濃度が0.01g/Lより低いと無電解めっき被膜の付着性が低下し、10g/Lより高くなると、不導体表面に界面活性剤が会合状態となって余分な界面活性剤が不純物として残留するため、無電解めっき被膜の付着性が低下するようになる。この場合には、水洗して余分な界面活性剤を除去すればよい。   The concentration of the surfactant in the alkaline solution is preferably in the range of 0.01 to 10 g / L. When the concentration of the surfactant is lower than 0.01 g / L, the adhesion of the electroless plating film is reduced. When the surfactant concentration is higher than 10 g / L, the surfactant is in an associated state on the non-conductive surface, and excess surfactant is present. Since it remains as an impurity, the adhesion of the electroless plating film is lowered. In this case, the excess surfactant may be removed by washing with water.

またアルカリ溶液中のアルカリ成分の濃度は、pH値で12以上が望ましい。pH値が12未満であっても効果は得られるが、表出する極性基が少ないために、所定膜厚だけ無電解めっき被膜を形成するための時間が長大となってしまう。   The concentration of the alkali component in the alkaline solution is preferably 12 or more in terms of pH value. The effect can be obtained even if the pH value is less than 12, but since there are few polar groups to be exposed, it takes a long time to form the electroless plating film by a predetermined film thickness.

アルカリ溶液と不導体表面との接触時間は特に制限されないが、室温で1分以上とするのが好ましい。接触時間が短すぎると、極性基に吸着する界面活性剤量が不足して無電解めっき被膜の付着性が低下する場合がある。しかし接触時間が長くなり過ぎると、極性基が表出した層まで溶解して無電解めっきが困難となる場合がある。1〜5分間程度で十分である。また温度は高い方が望ましく、温度が高いほど接触時間を短縮することが可能であるが、室温〜60℃程度で十分である。   The contact time between the alkaline solution and the nonconductor surface is not particularly limited, but is preferably 1 minute or more at room temperature. If the contact time is too short, the amount of the surfactant adsorbed on the polar group may be insufficient and the adhesion of the electroless plating film may be reduced. However, if the contact time becomes too long, the layer in which the polar group is exposed may dissolve and electroless plating may be difficult. About 1 to 5 minutes is sufficient. A higher temperature is desirable, and the higher the temperature, the shorter the contact time can be. However, room temperature to about 60 ° C. is sufficient.

アルカリ処理工程では、アルカリ成分のみを含むアルカリ溶液で処理した後に界面活性剤を吸着させてもよいが、界面活性剤を吸着させるまでの間に再び脆化層が形成されてしまう場合があるので、陰イオン性界面活性剤及び非イオン性界面活性剤の少なくとも一方とアルカリ成分とが共存する状態で行うことが望ましい。   In the alkali treatment step, the surfactant may be adsorbed after treatment with an alkali solution containing only an alkali component, but an embrittlement layer may be formed again until the surfactant is adsorbed. It is desirable to carry out the reaction in a state where at least one of an anionic surfactant and a nonionic surfactant coexists with an alkali component.

また光触媒処理工程の後にアルカリ処理工程を行うのが好ましいが、場合によっては光触媒処理工程とアルカリ処理工程を同時に行うことも可能である。この場合には、光触媒粉末とアルカリ成分とを含む混合溶液を調製し、その混合溶液を用いて光触媒処理工程を行う。   Moreover, it is preferable to perform an alkali treatment process after a photocatalyst treatment process, but depending on the case, it is also possible to perform a photocatalyst treatment process and an alkali treatment process simultaneously. In this case, a mixed solution containing the photocatalyst powder and the alkali component is prepared, and the photocatalyst treatment step is performed using the mixed solution.

なおアルカリ処理工程後、水洗してアルカリ成分を除去する工程を行ってもよい。界面活性剤は極性基に強固に吸着しているので、水洗する程度では除去されず吸着した状態が維持されることがわかっている。したがって、無電解めっき工程までに時間が経過してもその効力が失われることがない。   In addition, you may perform the process of washing with water and removing an alkaline component after an alkali treatment process. Since the surfactant is strongly adsorbed on the polar group, it is known that the adsorbed state is maintained without being removed by washing with water. Therefore, even if time elapses before the electroless plating process, the effectiveness is not lost.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
図1に本実施例で用いた処理装置を示す。この処理装置は、モータ10によって回転駆動されるスピニングステージ1と、スピニングステージ1の上方に配置されたスプレーノズル2と、スピニングステージ1の上方に配置された紫外線ランプ3とから構成されている。
Example 1
FIG. 1 shows a processing apparatus used in this embodiment. This processing apparatus includes a spinning stage 1 that is rotationally driven by a motor 10, a spray nozzle 2 that is disposed above the spinning stage 1, and an ultraviolet lamp 3 that is disposed above the spinning stage 1.

(1)光触媒処理工程
先ず、ABS樹脂から形成された基板4をスピニングステージ1に載置する。そして平均粒径 1.0μmの二酸化チタン粉末(アナターゼ型) 1.0g/dm3 と、硝酸5重量%とを水に懸濁及び溶解した光触媒液5を25℃に調整し、ポンプ50を介してスプレーノズル2から基板4の表面に0.08〜0.2MPaの圧力で噴霧しながら、同時にスピニングステージ1とともに基板4を50〜1000 rpmで回転駆動し、紫外線ランプ3から照射強度 700μW/cm2 の紫外線を照射した。この光触媒処理は、1分、5分及び10分の3水準で行い、それぞれの処理基板を得た。
(1) Photocatalyst processing step First, the substrate 4 formed of ABS resin is placed on the spinning stage 1. Then, photocatalyst solution 5 in which 1.0 g / dm 3 of titanium dioxide powder having an average particle size of 1.0 μm (anatase type) and 5% by weight of nitric acid is suspended and dissolved in water is adjusted to 25 ° C. and sprayed through pump 50. While spraying from the nozzle 2 onto the surface of the substrate 4 at a pressure of 0.08 to 0.2 MPa, simultaneously rotating the substrate 4 together with the spinning stage 1 at 50 to 1000 rpm, the ultraviolet lamp 3 irradiates ultraviolet rays with an irradiation intensity of 700 μW / cm 2. did. This photocatalyst treatment was performed at three levels of 1 minute, 5 minutes, and 10 minutes to obtain respective treated substrates.

(2)アルカリ処理工程
次に、NaOH(アルカリ成分)50g/Lと、ラウリル硫酸ナトリウム(陰イオン性界面活性剤)1g/Lと、を溶解した混合水溶液を60℃に加熱し、そこへ乾燥された各処理基板をそれぞれ2分間浸漬した。
(2) Alkali treatment step Next, a mixed aqueous solution in which NaOH (alkali component) 50 g / L and sodium lauryl sulfate (anionic surfactant) 1 g / L are dissolved is heated to 60 ° C. and dried there. Each processed substrate was immersed for 2 minutes.

(3)触媒吸着工程
これらを水洗・乾燥後、3N塩酸水溶液に塩化パラジウムを 0.1重量%溶解し塩化錫を5重量%溶解して30℃に加熱された触媒溶液中に3分間浸漬し、次いでパラジウムを活性化するために、1.5N塩酸水溶液に3分間浸漬した。これにより触媒が吸着した基板を得た。
(3) Catalyst adsorption step After washing and drying these, 0.1% by weight of palladium chloride and 5% by weight of tin chloride were dissolved in 3N hydrochloric acid aqueous solution and immersed in a catalyst solution heated to 30 ° C. for 3 minutes, In order to activate palladium, it was immersed in a 1.5N hydrochloric acid aqueous solution for 3 minutes. As a result, a substrate on which the catalyst was adsorbed was obtained.

(4)無電解めっき工程及び電解めっき工程
その後、40℃に保温されたNi−P化学めっき浴中に触媒が吸着した基板を浸漬し、Ni−Pめっき被膜を1μm析出させた。続いて硫酸銅系Cu電解めっき浴にて、Ni−Pめっき被膜の表面に銅めっき被膜を20μm以上析出させた。
(4) Electroless Plating Step and Electrolytic Plating Step Thereafter, the substrate on which the catalyst was adsorbed was immersed in a Ni-P chemical plating bath kept at 40 ° C. to deposit 1 μm of the Ni—P plating film. Subsequently, a copper plating film was deposited to a thickness of 20 μm or more on the surface of the Ni-P plating film in a copper sulfate-based Cu electrolytic plating bath.

銅めっき被膜の形成後、70℃で2時間乾燥した。その後、得られた銅めっき被膜に基板に達する切り込みを1cm幅で入れ、引張り試験機にてめっき被膜の付着強度をそれぞれ測定した。結果を表1に示す。   After the formation of the copper plating film, it was dried at 70 ° C. for 2 hours. Then, the notch which reaches a board | substrate was made into the obtained copper plating film by 1 cm width, and the adhesion strength of the plating film was measured with the tension tester, respectively. The results are shown in Table 1.

(実施例2)
ABS樹脂から形成された基板4に代えて、エポキシ樹脂から形成された基板4を用いたこと以外は実施例1と同様にして、光触媒処理、アルカリ処理、触媒吸着、無電解めっき、電解めっきを行った。そして実施例1と同様にしてめっき被膜の付着強度をそれぞれ測定し、結果を表1に示す。
(Example 2)
Photocatalytic treatment, alkali treatment, catalyst adsorption, electroless plating, and electrolytic plating were performed in the same manner as in Example 1 except that the substrate 4 formed of epoxy resin was used instead of the substrate 4 formed of ABS resin. went. Then, the adhesion strength of the plating film was measured in the same manner as in Example 1, and the results are shown in Table 1.

(比較例1)
平均粒径 1.0μmの二酸化チタン粉末(アナターゼ型) 1.0g/dm3 と、硝酸5重量%とを含む水溶液を25℃に調整し、そこへ実施例1と同様のABS樹脂から形成された基板4を浸漬して、水溶液の外部に設けられた紫外線ランプ3から照射強度 700μW/cm2 の紫外線を基板1の表面に照射した。この光触媒処理は、1分、5分及び10分の3水準で行い、それぞれの処理基板を得た。
(Comparative Example 1)
An aqueous solution containing 1.0 g / dm 3 of titanium dioxide powder having an average particle size of 1.0 μm (anatase type) and 5% by weight of nitric acid was adjusted to 25 ° C., and a substrate formed from the same ABS resin as in Example 1 4 was immersed, and the surface of the substrate 1 was irradiated with ultraviolet rays having an irradiation intensity of 700 μW / cm 2 from an ultraviolet lamp 3 provided outside the aqueous solution. This photocatalyst treatment was performed at three levels of 1 minute, 5 minutes, and 10 minutes to obtain respective treated substrates.

その後、実施例1と同様にアルカリ処理、触媒吸着、無電解めっき、電解めっきを行った。そして実施例1と同様にしてめっき被膜の付着強度をそれぞれ測定し、結果を表1に示す。   Thereafter, alkali treatment, catalyst adsorption, electroless plating, and electrolytic plating were performed in the same manner as in Example 1. Then, the adhesion strength of the plating film was measured in the same manner as in Example 1, and the results are shown in Table 1.

(比較例2)
ABS樹脂から形成された基板4に代えて、エポキシ樹脂から形成された基板4を用いたこと以外は比較例1と同様にして、光触媒処理を行った。その後、実施例1と同様にアルカリ処理、触媒吸着、無電解めっき、電解めっきを行った。そして実施例1と同様にしてめっき被膜の付着強度をそれぞれ測定し、結果を表1に示す。
(Comparative Example 2)
Photocatalytic treatment was performed in the same manner as in Comparative Example 1 except that the substrate 4 formed of an epoxy resin was used instead of the substrate 4 formed of an ABS resin. Thereafter, alkali treatment, catalyst adsorption, electroless plating, and electrolytic plating were performed in the same manner as in Example 1. Then, the adhesion strength of the plating film was measured in the same manner as in Example 1, and the results are shown in Table 1.

<評価>   <Evaluation>

Figure 0004376575
Figure 0004376575

表1より、実施例の方法によれば、10分間の光触媒処理によって1000gf/cm以上の付着強度が得られているのに対し、比較例では付着強度が低く、特にエポキシ樹脂から形成された基板を用いた場合に付着強度が低い。したがって、基板表面で光触媒液を流動させながら光触媒処理を行うことがきわめて有効であることが明らかである。   From Table 1, according to the method of the example, the adhesion strength of 1000 gf / cm or more was obtained by the photocatalyst treatment for 10 minutes, whereas the adhesion strength was low in the comparative example, and the substrate formed from epoxy resin in particular. Adhesive strength is low when using. Therefore, it is clear that it is extremely effective to perform the photocatalytic treatment while flowing the photocatalytic liquid on the substrate surface.

本発明の一実施例のめっき被覆部材の製造方法に用いた処理装置の説明図である。It is explanatory drawing of the processing apparatus used for the manufacturing method of the plating covering member of one Example of this invention.

符号の説明Explanation of symbols

1:スピニングステージ 2:スプレーノズル 3:紫外線ランプ
4:基板(基材) 5:光触媒液
1: Spinning stage 2: Spray nozzle 3: UV lamp 4: Substrate (base material) 5: Photocatalyst solution

Claims (4)

光触媒を含む光触媒液を、不導体表面を有する基材の該不導体表面にスプレーしながら、少なくとも該不導体表面に光を照射する光触媒処理工程と、
該光触媒処理工程で処理された該基材の少なくとも該不導体表面に無電解めっきを施す無電解めっき工程と、を含むことを特徴とするめっき被覆部材の製造方法。
A photocatalyst treatment step of irradiating at least the nonconductor surface with light while spraying the photocatalyst solution containing the photocatalyst onto the nonconductor surface of the substrate having the nonconductor surface ;
An electroless plating step of performing electroless plating on at least the non-conductive surface of the substrate treated in the photocatalyst treatment step.
前記光触媒処理工程は前記基材を回転させながら行う請求項1に記載のめっき被覆部材の製造方法。The said photocatalyst processing process is a manufacturing method of the plating coating member of Claim 1 performed while rotating the said base material. 前記光触媒処理工程と前記無電解めっき工程との間に、少なくとも前記不導体表面に少なくともアルカリ成分を含むアルカリ溶液を接触させるアルカリ処理工程をさらに行う請求項1又は請求項2に記載のめっき被覆部材の製造方法。The plating covering member according to claim 1 or 2 which further performs an alkali treatment process which makes an alkaline solution containing at least an alkaline ingredient contact at least said non-conductor surface between said photocatalyst processing process and said electroless plating process. Manufacturing method. 前記アルカリ溶液には、陰イオン性界面活性剤及び非イオン性界面活性剤の少なくとも一方をさらに含む請求項3に記載のめっき被覆部材の製造方法。The method for producing a plating-coated member according to claim 3, wherein the alkaline solution further contains at least one of an anionic surfactant and a nonionic surfactant.
JP2003300405A 2003-08-25 2003-08-25 Method for producing plating-coated member Expired - Fee Related JP4376575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003300405A JP4376575B2 (en) 2003-08-25 2003-08-25 Method for producing plating-coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300405A JP4376575B2 (en) 2003-08-25 2003-08-25 Method for producing plating-coated member

Publications (2)

Publication Number Publication Date
JP2005068496A JP2005068496A (en) 2005-03-17
JP4376575B2 true JP4376575B2 (en) 2009-12-02

Family

ID=34405349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300405A Expired - Fee Related JP4376575B2 (en) 2003-08-25 2003-08-25 Method for producing plating-coated member

Country Status (1)

Country Link
JP (1) JP4376575B2 (en)

Also Published As

Publication number Publication date
JP2005068496A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4341333B2 (en) Resin substrate having resin-metal composite layer and method for producing the same
JP4843164B2 (en) Method for forming copper-resin composite material
JP4135459B2 (en) Method for pretreatment of electroless plating material and method for manufacturing plating coated member
KR100883726B1 (en) Method of plating nonconductor product
JP4449246B2 (en) Pretreatment method of electroless plating material
JP3999696B2 (en) Electroless plating method and plated parts
JP4314093B2 (en) Plating material, method for producing the same, and method for producing plated coating member
JP2007231362A (en) Electroless plating method of resin product
KR100759452B1 (en) A method for preparing aluminum nitride board having nickel pattern
JP2003193247A (en) Pretreatment method for electroless plating material
JP4464990B2 (en) Wiring board and manufacturing method thereof
JP4376575B2 (en) Method for producing plating-coated member
JP4900036B2 (en) Resin substrate ozone solution processing method and wiring substrate manufacturing method
JP5083005B2 (en) Resin substrate having a precious metal fixed on the surface layer, its manufacturing method, circuit board, and its manufacturing method
JP5617322B2 (en) Method for producing conductive particles
JP4332795B2 (en) Electroless plating method
WO2007043380A1 (en) Catalyst treatment method, electroless plating method, and method for formation of circuit by using the electroless plating method
JP2003183841A (en) Pretreatment process of electroless plating material
JP2005085900A (en) Printed circuit substrate and its manufacturing method
JP3675347B2 (en) Electroless plating method
JP2005248314A (en) Plating method for nonconducting plate
JPS6347993A (en) Formation of conductive circuit
JPH04180695A (en) Treatment method of copper circuit on circuit board for inner-layer use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees