JP2006219715A - Method for plating metal on heat-resistant and insulative resin - Google Patents

Method for plating metal on heat-resistant and insulative resin Download PDF

Info

Publication number
JP2006219715A
JP2006219715A JP2005033164A JP2005033164A JP2006219715A JP 2006219715 A JP2006219715 A JP 2006219715A JP 2005033164 A JP2005033164 A JP 2005033164A JP 2005033164 A JP2005033164 A JP 2005033164A JP 2006219715 A JP2006219715 A JP 2006219715A
Authority
JP
Japan
Prior art keywords
heat
plating
metal plating
resistant insulating
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005033164A
Other languages
Japanese (ja)
Inventor
Hideo Honma
英夫 本間
Shuhei Miura
修平 三浦
Shinji Hayashi
伸治 林
Ryoichi Kimizuka
亮一 君塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Udylite Co Ltd
Original Assignee
Ebara Udylite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Udylite Co Ltd filed Critical Ebara Udylite Co Ltd
Priority to JP2005033164A priority Critical patent/JP2006219715A/en
Publication of JP2006219715A publication Critical patent/JP2006219715A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a metallic layer in a desired portion of a heat-resistant and insulative resin such as a polyimide resin, which gives little load to the environment, needs few production steps and can reduce a treatment cost. <P>SOLUTION: The method for plating a metal on the desired portion of the heat-resistant and insulative resin comprises the steps of: (a) irradiating the desired portion of the heat-resistant and insulative resin with ultra-violet rays having wavelengths of 300 nm or shorter; (b) immersing the resin in an alkaline solution containing nonionic and/or anionic surfactants; (c) immersing the resin in a catalyst solution of an acidic colloid; and (d) plating a metal on the resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐熱性絶縁樹脂の金属めっき方法に関し、更に詳細には耐熱性絶縁樹脂の所望の部位に金属めっきを施すことのできる金属めっき方法に関する。   The present invention relates to a metal plating method for a heat resistant insulating resin, and more particularly to a metal plating method capable of performing metal plating on a desired portion of the heat resistant insulating resin.

近年、電子機器の小型化、高速化により、フレキシブルプリント基板材料として、誘電率が小さく、絶縁抵抗値が高く、さらには耐熱性が良好なポリイミド樹脂フィルムが汎用されている。   In recent years, due to the downsizing and speeding up of electronic devices, polyimide resin films having a low dielectric constant, high insulation resistance, and good heat resistance have been widely used as flexible printed circuit board materials.

一般的にフレキシブルプリント基板は、ポリイミド樹脂フィルムの少なくとも片面に導電層として主に銅を被覆した基板が使用されている。この様なフレキシブルプリント基板は、従来はポリイミド樹脂フィルムと銅箔とを接着剤を介して接合したラミネート法による3層基材が用いられてきたが、接着剤が基板の絶縁性、耐熱性に悪影響を与えるため、最近では、ポリイミド樹脂フィルム上へ直接金属層を形成した2層基材が用いられてきている。そして、このようなポリイミド樹脂フィルム上に金属層を形成した2層基材の作製には乾式法や湿式法が用いられている。   Generally, a flexible printed circuit board is used in which at least one surface of a polyimide resin film is mainly coated with copper as a conductive layer. Conventionally, such a flexible printed circuit board has been used a three-layer base material by a laminate method in which a polyimide resin film and a copper foil are bonded via an adhesive. However, the adhesive makes the insulating and heat resistant of the substrate. In order to give an adverse effect, recently, a two-layer base material in which a metal layer is directly formed on a polyimide resin film has been used. And the dry method and the wet method are used for preparation of the two-layer base material which formed the metal layer on such a polyimide resin film.

上記2層基材の作成における乾式法としては、金属層をポリイミド樹脂フィルム上に形成するスパッタリング法、真空蒸着法、イオンプレーティング法や金属箔にポリイミド樹脂を成膜するキャスティング法が挙げられる。   Examples of the dry method for producing the two-layer base material include a sputtering method for forming a metal layer on a polyimide resin film, a vacuum deposition method, an ion plating method, and a casting method for forming a polyimide resin film on a metal foil.

一方、湿式法としては、無電解めっきおよび電気めっきを利用する方法が挙げられる。具体的には、ポリイミド樹脂フィルム表面をヒドラジンとアルカリ金属水酸化物の混合水溶液を用いて親水化した後、ニッケルやコバルト等を無電解めっきし、450℃程度の高温で熱処理した後、電気銅めっきする方法が報告されている(特許文献1)。   On the other hand, examples of the wet method include a method using electroless plating and electroplating. Specifically, the polyimide resin film surface is hydrophilized using a mixed aqueous solution of hydrazine and alkali metal hydroxide, then electrolessly plated with nickel, cobalt, etc., and heat treated at a high temperature of about 450 ° C. A method of plating has been reported (Patent Document 1).

また、湿式法によるめっきに先立ち、ポリイミド樹脂フィルム表面を短波長紫外線処理した後、当該処理表面を、アルカリ金属水酸化物を用いて活性化することにより、銅の接着力等が増強されることも報告されている(特許文献2)。   Prior to plating by wet method, after the polyimide resin film surface is treated with short wavelength ultraviolet rays, the treated surface is activated with an alkali metal hydroxide to enhance the adhesive strength of copper, etc. Has also been reported (Patent Document 2).

しかしながら、従来の乾式法や湿式法によりポリイミド樹脂フィルム上に金属層を形成して2層基材を作製する場合、片面側のみに金属層を形成させるには次のような問題点がある。例えば、乾式法を用いた場合には、片面側に金属層を形成することは容易であるが、装置が大型化し、コストがかかる。一方、上記のような湿式法では、毒性の高いヒドラジンを使用することや、高温処理が必要なため環境負荷が高く、更に、片面側のみに金属層を形成するためにはめっきの不必要な側への金属の析出を防止するためマスキング工程およびマスク除去工程が必要となり、工程が多くなる。   However, when forming a two-layer base material by forming a metal layer on a polyimide resin film by a conventional dry method or wet method, there are the following problems in forming a metal layer only on one side. For example, when the dry method is used, it is easy to form a metal layer on one side, but the apparatus becomes large and expensive. On the other hand, the wet method as described above uses a highly toxic hydrazine and requires high temperature treatment, so the environmental load is high. Furthermore, in order to form a metal layer only on one side, plating is unnecessary. In order to prevent metal deposition on the side, a masking step and a mask removing step are required, and the number of steps is increased.

特開平5−114779号公報Japanese Patent Application Laid-Open No. 5-114779 特開2004−186661号公報JP 2004-186661 A

従って、本発明は、上記技術の問題点を解決することのできる、環境負荷が小さく、工程数が短く、コストを低減可能とする、ポリイミド樹脂等の耐熱性絶縁樹脂の所望の部位に金属層を形成させる方法を提供することにある。   Therefore, the present invention can solve the above-mentioned technical problems, has a small environmental load, has a short number of steps, and can reduce costs. It is in providing the method of forming.

発明者らは上記課題を達成するために、鋭意研究を行った結果、耐熱性絶縁樹脂の所望の部位に波長300nm以下の紫外線を照射し、次いで、ノニオン系および/またはアニオン系界面活性剤を含有するアルカリ溶液に浸漬し、更に、酸性コロイド触媒溶液に浸漬することにより、耐熱性絶縁樹脂の所望の部位に金属めっきができることを見出した。   As a result of intensive studies to achieve the above-mentioned problems, the inventors have irradiated a desired portion of the heat-resistant insulating resin with ultraviolet rays having a wavelength of 300 nm or less, and then applied a nonionic and / or anionic surfactant. It has been found that metal plating can be performed on a desired portion of the heat-resistant insulating resin by immersing in an alkaline solution contained and further immersing in an acidic colloid catalyst solution.

すなわち、本発明は 次の工程(a)〜(d)
(a)耐熱性絶縁樹脂の所望の部位に波長300nm以下の紫外線を照射する工程
(b)ノニオン系および/またはアニオン系界面活性剤を含有するアルカリ溶液に浸漬
する工程
(c)酸性コロイド触媒溶液に浸漬する工程
(d)金属めっきを施す工程
を含むことを特徴とする耐熱性絶縁樹脂の所望の部位への金属めっき方法を提供するものである。
That is, the present invention provides the following steps (a) to (d)
(A) A step of irradiating a desired part of the heat-resistant insulating resin with ultraviolet rays having a wavelength of 300 nm or less (b) A step of immersing in an alkaline solution containing a nonionic and / or anionic surfactant (c) An acidic colloid catalyst solution (D) The metal plating method to the desired site | part of the heat resistant insulating resin characterized by including the process of performing metal plating is provided.

また、本発明は上記金属めっき方法により得られる表面の所望の部位に金属めっきが施された耐熱性絶縁樹脂を提供するものである。   Moreover, this invention provides the heat resistant insulating resin by which metal plating was given to the desired site | part of the surface obtained by the said metal plating method.

本発明の金属めっき方法によれば、耐熱性絶縁樹脂の所望の部位のみに金属めっきを施すことができるので、例えば、片面のみや、表面上に所定のパターンでのめっきが要求されるフレキシブルプリント配線板等の製造に好適に用いることができる。   According to the metal plating method of the present invention, metal plating can be performed only on a desired portion of the heat-resistant insulating resin. For example, flexible printing that requires plating on only one side or a predetermined pattern on the surface is possible. It can use suitably for manufacture of a wiring board etc.

また、本発明の金属めっき方法は、従来法と比べてマスキングや高温の熱処理を必要とせず、かつ、環境負荷の高い物質を用いることがないことから、金属めっきにかかるコストも低減させることができる。   In addition, the metal plating method of the present invention does not require masking or high-temperature heat treatment as compared with the conventional method, and does not use a substance having a high environmental load, so that the cost for metal plating can be reduced. it can.

本発明の金属めっき方法で被めっき物となる耐熱性絶縁樹脂としては、特に限定されるものではなく、例えば、ポリアミド、ポリアリレート、ポリイミド、ポリエーテルケトン、ポリエーテルイミド、ポリフェニレンスルフィド等の紫外線照射工程によって、樹脂の一部が破壊され、水酸基、カルボニル基、カルボキシル基等の親水性基が生成される樹脂が挙げられる。これらの耐熱性絶縁樹脂の中でも、耐熱性、電気的、機械的および化学的特性に優れたポリイミド樹脂が好ましい。また、これらの樹脂の形態も特に限定されるものではないが、フレキシブルプリント配線板の製造に用いられるフィルム状のものが好ましい。   The heat-resistant insulating resin to be plated by the metal plating method of the present invention is not particularly limited, and for example, UV irradiation such as polyamide, polyarylate, polyimide, polyetherketone, polyetherimide, polyphenylene sulfide, etc. Resins in which a part of the resin is destroyed by the process and a hydrophilic group such as a hydroxyl group, a carbonyl group, or a carboxyl group is generated. Among these heat resistant insulating resins, a polyimide resin excellent in heat resistance, electrical, mechanical and chemical properties is preferable. Moreover, although the form of these resin is not specifically limited, the film-like thing used for manufacture of a flexible printed wiring board is preferable.

上記耐熱性絶縁樹脂は、次の工程(a)〜(d)で処理することにより所望の部位への金属めっきをすることができる。以下に、各工程を詳細に説明する。
(a)耐熱性絶縁樹脂の所望の部位に波長300nm以下の紫外線を照射する工程
(b)ノニオン系および/またはアニオン系界面活性剤を含有するアルカリ溶液に浸漬
する工程
(c)酸性コロイド触媒溶液に浸漬する工程
(d)金属めっきを施す工程
The heat-resistant insulating resin can be subjected to metal plating on a desired site by processing in the following steps (a) to (d). Below, each process is demonstrated in detail.
(A) A step of irradiating a desired part of the heat-resistant insulating resin with ultraviolet rays having a wavelength of 300 nm or less (b) A step of immersing in an alkaline solution containing a nonionic and / or anionic surfactant
(C) Step of immersing in acidic colloid catalyst solution (d) Step of applying metal plating

工程(a)の耐熱性絶縁樹脂の所望の部位に波長300nm以下の紫外線を照射する工程(以下、「紫外線照射工程」という)は、紫外線の光源として低圧水銀ランプやエキシマランプを用い、紫外線を耐熱性絶縁樹脂の所望の部位に照射することにより行われる。この紫外線照射工程により耐熱性絶縁樹脂の表面分子が切断され、水酸基、カルボニル基、カルボキシル基等の親水性基が生成される。上記紫外線照射工程においては、波長180〜290nmで、その強度が5mW/cm以上の紫外線を照射することが好ましく、特に波長が254nmで、その強度が10mW/cm以上の紫外線を照射することが好ましい。 In the step (a) of irradiating a desired part of the heat-resistant insulating resin with ultraviolet rays having a wavelength of 300 nm or less (hereinafter referred to as “ultraviolet ray irradiation step”), a low-pressure mercury lamp or excimer lamp is used as the ultraviolet light source. This is performed by irradiating a desired part of the heat-resistant insulating resin. By this ultraviolet irradiation process, the surface molecules of the heat-resistant insulating resin are cleaved to generate hydrophilic groups such as hydroxyl groups, carbonyl groups, and carboxyl groups. In the ultraviolet irradiation step, it is preferable to irradiate ultraviolet rays having a wavelength of 180 to 290 nm and an intensity of 5 mW / cm 2 or more, and particularly irradiating ultraviolet rays having a wavelength of 254 nm and an intensity of 10 mW / cm 2 or more. Is preferred.

上記工程(a)を施した耐熱性絶縁樹脂は、次に、工程(b)のノニオン系および/またはアニオン系界面活性剤を含有するアルカリ溶液に浸漬する工程(以下、「アルカリ処理工程」という)に付される。前記ノニオン系および/またはアニオン系界面活性剤としては、ドデシル硫酸ナトリウム、ラウリン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム等のアニオン系界面活性剤またはポリエチレングリコール、ポリオキシエチレンドデシルエーテル等のノニオン系界面活性剤が挙げられ、これらは1種または2種以上を用いることができる。これらの界面活性剤の中でもアニオン系界面活性剤が好ましい。界面活性剤としてカチオン系界面活性剤が好ましくない理由は、これを用いると絶縁樹脂の紫外線非照射面にも触媒が吸着しやすくなり、両面に無電解めっきされるため、マスキングを用いずに片面側のみをめっきするのが困難となるためである。   The heat resistant insulating resin subjected to the step (a) is then immersed in an alkaline solution containing a nonionic and / or anionic surfactant in the step (b) (hereinafter referred to as “alkali treatment step”). ) Examples of the nonionic and / or anionic surfactant include anionic surfactants such as sodium dodecyl sulfate, sodium laurate, sodium dodecylbenzenesulfonate, and nonionic surfactants such as polyethylene glycol and polyoxyethylene dodecyl ether. These may be used alone or in combination of two or more. Among these surfactants, anionic surfactants are preferable. The reason why cationic surfactants are not preferred as surfactants is that if they are used, the catalyst will be easily adsorbed even on the non-irradiated surface of the insulating resin and electroless plating will be performed on both sides. This is because it is difficult to plate only the side.

また、前記界面活性剤を含有するアルカリ溶液としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ成分で、pH8以上、好ましくはpH10〜14に調整されたものが好ましい。アルカリ溶液のpHが8未満であると触媒吸着量が低下して後の無電解めっきが困難になることがあるため好ましくない。   The alkaline solution containing the surfactant is preferably an alkaline component such as sodium hydroxide, potassium hydroxide, lithium hydroxide, etc., adjusted to pH 8 or more, preferably pH 10-14. When the pH of the alkaline solution is less than 8, it is not preferable because the amount of catalyst adsorption is lowered and subsequent electroless plating may be difficult.

このようにアルカリ処理工程を経た耐熱性絶縁樹脂の表面粗さ(Ra)は紫外線照射前と比較して2倍以上、好ましくは3〜10倍に増大するので触媒吸着量および銅めっき層の密着性が向上する。なお、本発明において表面粗さとはJIS B0601に記載の算術平均粗さのことをいう。   As described above, the surface roughness (Ra) of the heat-resistant insulating resin that has undergone the alkali treatment step is increased by 2 times or more, preferably 3 to 10 times that before the ultraviolet irradiation, so that the catalyst adsorption amount and the adhesion of the copper plating layer are increased. Improves. In the present invention, the surface roughness means the arithmetic average roughness described in JIS B0601.

上記工程(b)で処理された耐熱性絶縁樹脂は、更に、工程(c)の酸性コロイド触媒溶液に浸漬する工程(以下、「触媒吸着工程」という)に付される。前記酸性コロイド触媒溶液としては、スズ−パラジウム、スズ−ロジウム、スズ−ルテニウム、スズ−白金、スズ−銀、スズ−ニッケル、スズ−銅、スズ−コバルト等を含有したものが挙げられる。触媒としてアルカリ性の触媒溶液を用いた場合には、紫外線の照射面(所望の部位)以外にも触媒が吸着し、めっきされてしまうので好ましくない。この触媒吸着工程における触媒の吸着は処理温度20〜40℃、処理時間1〜10分の条件で行えば良い。   The heat-resistant insulating resin treated in the step (b) is further subjected to a step of immersing in the acidic colloid catalyst solution in the step (c) (hereinafter referred to as “catalyst adsorption step”). Examples of the acidic colloid catalyst solution include tin-palladium, tin-rhodium, tin-ruthenium, tin-platinum, tin-silver, tin-nickel, tin-copper, tin-cobalt and the like. When an alkaline catalyst solution is used as the catalyst, it is not preferable because the catalyst is adsorbed and plated other than the ultraviolet irradiation surface (desired portion). The adsorption of the catalyst in this catalyst adsorption step may be performed under conditions of a treatment temperature of 20 to 40 ° C. and a treatment time of 1 to 10 minutes.

上記工程(c)を施した耐熱性絶縁樹脂は、必要により、活性化処理を施した後、工程(d)として金属めっきが行われる。この活性化処理において使用される活性化処理液としては、特に限定されるものではなく、通常の活性化処理に用いられる塩酸溶液や硫酸溶液が挙げられる。また、活性化に、ヒドラジン、塩化スズ、ホルマリン、次亜リン酸ナトリウム、水酸化ホウ素化合物、アミンボラン化合物を使用しても良い。   The heat-resistant insulating resin subjected to the step (c) is subjected to an activation treatment, if necessary, and then subjected to metal plating as a step (d). The activation treatment liquid used in this activation treatment is not particularly limited, and examples thereof include a hydrochloric acid solution and a sulfuric acid solution used for normal activation treatment. In addition, hydrazine, tin chloride, formalin, sodium hypophosphite, a boron hydroxide compound, or an amine borane compound may be used for activation.

また、工程(d)の金属めっき工程(以下、「金属めっき工程」という)では、まず、無電解めっきを行い、次いで電気めっきを行うことが好ましいが、無電解めっきだけであっても良い。めっきされる金属としては、特に限定されるものではなく、ニッケル、コバルト、銅等が挙げられる。また、めっき条件も、めっきする金属および膜厚に応じて適宜決定すればよい。例えば、フレキシブルプリント配線を製造するための金属めっき工程であれば、無電解ニッケルめっきを0.05〜0.3μm、電気銅めっきを5〜35μm程度の膜厚となるような条件で行えばよい。   In the metal plating step (hereinafter referred to as “metal plating step”) in the step (d), it is preferable to first perform electroless plating and then perform electroplating, but only electroless plating may be used. The metal to be plated is not particularly limited and includes nickel, cobalt, copper and the like. Also, the plating conditions may be appropriately determined according to the metal to be plated and the film thickness. For example, in the case of a metal plating process for manufacturing a flexible printed wiring, the electroless nickel plating may be performed under such a condition that the film thickness is about 0.05 to 0.3 μm and the electrolytic copper plating is about 5 to 35 μm. .

本発明の金属めっき方法には、その効果を損なわない程度で、適宜、乾燥等の工程を追加することができる。   In the metal plating method of the present invention, a process such as drying can be appropriately added as long as the effect is not impaired.

以下に、本発明の実施例および比較例によって、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples and comparative examples of the present invention, but the present invention is not limited thereto.

実 施 例 1
10×10cmのポリイミド樹脂フィルム(カプトン100EN:東レデュポン社製)を紫外線照射装置(センエンジニアリング社製)にセットし、ポリイミド樹脂フィルムの被めっき面の上部より紫外線(波長254nm、紫外線強度20mW/cm)を60秒間照射した。
Example 1
A 10 × 10 cm polyimide resin film (Kapton 100EN: manufactured by Toray DuPont) is set in an ultraviolet irradiation device (manufactured by Sen Engineering Co., Ltd.). 2 ) was irradiated for 60 seconds.

次に、ドデシル硫酸ナトリウムを0.5g/L、水酸化ナトリウムを50g/L含む混合水溶液(pH13)を50℃に加熱し、そこへ紫外線照射したポリイミド樹脂フィルムを3分間浸漬した後、十分に水洗した。これらの処理によりポリイミド樹脂フィルムの表面粗さ(Ra)は、紫外線照射前の0.9692nmから3.282nmに増大した。なお、表面粗さはプローブ顕微鏡(SPA−400:エスエスアイ・ナノテクノロジー社製)を用いて測定した。   Next, a mixed aqueous solution (pH 13) containing 0.5 g / L of sodium dodecyl sulfate and 50 g / L of sodium hydroxide was heated to 50 ° C., and the polyimide resin film irradiated with ultraviolet rays was immersed therein for 3 minutes. Washed with water. With these treatments, the surface roughness (Ra) of the polyimide resin film increased from 0.99692 nm before UV irradiation to 3.282 nm. The surface roughness was measured using a probe microscope (SPA-400: manufactured by SSI Nano Technology).

つづいて、これを、25℃のスズ−パラジウム混合触媒溶液(PB−318:荏原ユージライト社製)で5分間触媒化処理をした後、同じく25℃の活性化処理液(PB−445:荏原ユージライト社製)を用いて5分間活性化処理を行った。   Subsequently, this was subjected to a catalytic treatment for 5 minutes with a 25 ° C. tin-palladium mixed catalyst solution (PB-318: manufactured by Ebara Eugleite Co., Ltd.), and then an activation treatment solution (PB-445: Ebara, also at 25 ° C.). The activation treatment was performed for 5 minutes.

更に、これを無電解ニッケルめっき浴(エニレックスNI−100:荏原ユージライト社製)により、35℃で2分間処理を行い、膜厚0.1μmのニッケル層を形成した。つづいて、乾燥機を用いて80℃で15分間乾燥させた後、硫酸銅75g/L、硫酸180g/L、塩酸40mg/L、光沢剤(キューブライト21MU:荏原ユージライト社製)5ml/Lの硫酸銅めっき浴を用いて25℃、2A/dmで50分間電気めっきを行い、上記ニッケル層上に20μmの銅層を形成し、フレキシブルプリント基板を作製した。 Further, this was treated at 35 ° C. for 2 minutes with an electroless nickel plating bath (Enilex NI-100: manufactured by Ebara Eugene Corporation) to form a nickel layer having a thickness of 0.1 μm. Subsequently, after drying at 80 ° C. for 15 minutes using a dryer, copper sulfate 75 g / L, sulfuric acid 180 g / L, hydrochloric acid 40 mg / L, brightener (Cubelight 21MU: manufactured by Ebara Eugene Corporation) 5 ml / L Was electroplated at 25 ° C. and 2 A / dm 2 for 50 minutes to form a 20 μm copper layer on the nickel layer, and a flexible printed circuit board was produced.

実 施 例 2
上記実施例1において波長254nmの紫外線強度を10mW/cmとして紫外線照射を行ったこと以外は実施例1と同様にフレキシブルプリント基板を作製した。
Example 2
A flexible printed circuit board was produced in the same manner as in Example 1 except that ultraviolet irradiation was performed with the ultraviolet intensity at a wavelength of 254 nm set to 10 mW / cm 2 in Example 1.

実 施 例 3
上記実施例1において波長254nmの紫外線強度を5mW/cmとして紫外線照射を行ったこと以外は実施例1と同様にフレキシブルプリント基板を作製した。
Example 3
A flexible printed circuit board was produced in the same manner as in Example 1 except that in Example 1 above, ultraviolet irradiation was performed with an ultraviolet intensity of 254 nm at a wavelength of 5 mW / cm 2 .

実 施 例 4
上記実施例1においてドデシル硫酸ナトリウムをノニオン系界面活性剤であるポリエチレングリコール(分子量1000)を同量用いたこと以外は実施例1と同様にフレキシブルプリント基板を作製した。
Example 4
A flexible printed circuit board was produced in the same manner as in Example 1 except that the same amount of sodium glycol dodecyl sulfate (molecular weight 1000) as nonionic surfactant was used.

比 較 例 1
上記実施例1において紫外線照射を行わなかったこと以外は実施例1と同様にポリイミド樹脂フィルムを処理した。
しかし、本比較例では無電解ニッケルめっきの成膜は認められず、したがって電気銅めっきはできなかった。
Comparative Example 1
A polyimide resin film was treated in the same manner as in Example 1 except that ultraviolet irradiation was not performed in Example 1 above.
However, in this comparative example, film formation of electroless nickel plating was not recognized, and therefore, electrolytic copper plating could not be performed.

比 較 例 2
上記実施例1においてドデシル硫酸ナトリウムをカチオン系界面活性剤である塩化ドデシルトリメチルアンモニウムを同量用いたこと以外は実施例1と同様にポリイミド樹脂フィルムを処理した。
しかし、本比較例では無電解ニッケルめっきの成膜がポリイミド樹脂フィルムの両面、すなわち紫外線非照射面にも認められた。
Comparative Example 2
A polyimide resin film was treated in the same manner as in Example 1 except that the same amount of sodium dodecyl sulfate and dodecyltrimethylammonium chloride as a cationic surfactant was used in Example 1 above.
However, in this comparative example, electroless nickel plating was observed on both sides of the polyimide resin film, that is, on the non-irradiated surface.

比 較 例 3
上記実施例においてドデシル硫酸ナトリウム0.5g/Lのみを用い、アルカリ成分を含まない水溶液(pH6)を用いたこと以外は実施例1と同様にしてポリイミド樹脂フィルムを処理した。
しかし、本比較例では無電解ニッケルめっきの成膜は認められず、したがって電気銅めっきではなかった。
Comparative Example 3
A polyimide resin film was treated in the same manner as in Example 1 except that only 0.5 g / L of sodium dodecyl sulfate was used in the above example and an aqueous solution (pH 6) containing no alkali component was used.
However, in this comparative example, film formation of electroless nickel plating was not recognized, and thus it was not electrolytic copper plating.

比 較 例 4
上記実施例1においてスズ−パラジウム混合触媒溶液の代わりに、アルカリイオン触媒(ActivatorPC−65H(処理条件:50℃、5分):荏原ユージライト社製)を使用し、活性化処理液(PB−445:荏原ユージライト社製)での活性化処理の代わりに還元処理液(AcceleratorPC−66H(処理条件:35℃、5分):荏原ユージライト社製)で活性化処理したこと以外は実施例1と同様にポリイミド樹脂フィルムを処理した。
しかし、本比較例では無電解ニッケルめっきの成膜がポリイミド樹脂フィルムの両面、すなわち紫外線非照射面にも認められた。
Comparative Example 4
In Example 1 above, instead of the tin-palladium mixed catalyst solution, an alkali ion catalyst (Activator PC-65H (treatment conditions: 50 ° C., 5 minutes): manufactured by Ebara Eugilite) was used, and the activation treatment liquid (PB- 445: Example except that the activation treatment was carried out with a reduction treatment solution (Accelerator PC-66H (treatment conditions: 35 ° C., 5 minutes): produced by Ebara Eugelite) instead of the activation treatment with Ebara Eugene Light). The polyimide resin film was processed in the same manner as in 1.
However, in this comparative example, electroless nickel plating was observed on both sides of the polyimide resin film, that is, on the non-irradiated surface.

試 験 例 1
密着強度試験:
実施例1〜4および比較例1〜4のフレキシブルプリント基板について、めっきの析出状態を下記の評価基準で評価した。また、めっきが析出したものについては、銅めっき層に耐熱性絶縁樹脂まで達する切込みを1cm幅で入れ、引っ張り試験機にて銅めっき層の密着力を測定した。これら結果を表1に示した。
Test example 1
Adhesion strength test:
About the flexible printed circuit board of Examples 1-4 and Comparative Examples 1-4, the depositing state of plating was evaluated on the following evaluation criteria. Moreover, about what the plating deposited, the notch which reaches to a heat resistant insulating resin was made into the copper plating layer by 1 cm width, and the adhesive force of the copper plating layer was measured with the tension tester. These results are shown in Table 1.

<めっき析出状態の評価基準>
(評価) (内容)
○ : 片面にのみめっきされている
△ : 両面にめっきされている
× : めっきがされてない
<Evaluation criteria for plating deposition state>
(Evaluation) (Content)
○: Plated on one side only △: Plated on both sides ×: Not plated

Figure 2006219715
Figure 2006219715

本発明の金属めっき方法は、耐熱性絶縁樹脂の所望の部位に金属めっきを行うことができるため、特にフレキシブルプリント配線板の製造に好適である。
以 上
Since the metal plating method of the present invention can perform metal plating on a desired portion of the heat-resistant insulating resin, it is particularly suitable for manufacturing a flexible printed wiring board.
more than

Claims (5)

次の工程(a)〜(d)
(a)耐熱性絶縁樹脂の所望の部位に波長300nm以下の紫外線を照射する工程
(b)ノニオン系および/またはアニオン系界面活性剤を含有するアルカリ溶液に浸漬
する工程
(c)酸性コロイド触媒溶液に浸漬する工程
(d)金属めっきを施す工程
を含むことを特徴とする耐熱性絶縁樹脂の所望の部位への金属めっき方法。
Next steps (a) to (d)
(A) A step of irradiating a desired part of the heat-resistant insulating resin with ultraviolet rays having a wavelength of 300 nm or less (b) A step of immersing in an alkaline solution containing a nonionic and / or anionic surfactant
(C) The process of immersing in an acidic colloid catalyst solution (d) The metal plating method to the desired site | part of the heat resistant insulating resin characterized by including the process of performing metal plating.
工程(a)に記載の波長300nm以下の紫外線が、波長180〜290nmで、その強度が5mW/cm以上の紫外線である請求項第1項記載の金属めっき方法。 The metal plating method according to claim 1, wherein the ultraviolet ray having a wavelength of 300 nm or less described in step (a) is an ultraviolet ray having a wavelength of 180 to 290 nm and an intensity of 5 mW / cm 2 or more. 工程(b)に記載のアルカリ溶液のpHが8以上である請求項第1項または第2項記載の金属めっき方法。   The metal plating method according to claim 1 or 2, wherein the pH of the alkaline solution described in step (b) is 8 or more. 耐熱性絶縁樹脂が、ポリイミド樹脂である請求項第1項ないし第3項の何れかの項記載の金属めっき方法。   The metal plating method according to any one of claims 1 to 3, wherein the heat-resistant insulating resin is a polyimide resin. 請求項第1項ないし第4項の何れかの金属めっき方法により得られる表面の所望の部位に金属めっきが施された耐熱性絶縁樹脂。

A heat-resistant insulating resin obtained by applying metal plating to a desired portion of a surface obtained by the metal plating method according to any one of claims 1 to 4.

JP2005033164A 2005-02-09 2005-02-09 Method for plating metal on heat-resistant and insulative resin Pending JP2006219715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033164A JP2006219715A (en) 2005-02-09 2005-02-09 Method for plating metal on heat-resistant and insulative resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033164A JP2006219715A (en) 2005-02-09 2005-02-09 Method for plating metal on heat-resistant and insulative resin

Publications (1)

Publication Number Publication Date
JP2006219715A true JP2006219715A (en) 2006-08-24

Family

ID=36982227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033164A Pending JP2006219715A (en) 2005-02-09 2005-02-09 Method for plating metal on heat-resistant and insulative resin

Country Status (1)

Country Link
JP (1) JP2006219715A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469214B1 (en) * 2014-05-19 2014-12-09 (주)오알켐 Plating method for manufacturing multi layer pcb
WO2022202184A1 (en) * 2021-03-22 2022-09-29 東レ株式会社 Plated molded article, method for producing plated molded article, and case component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088361A (en) * 1996-09-18 1998-04-07 Furukawa Electric Co Ltd:The Method for electroless-plating polymer molding
JP2004131807A (en) * 2002-10-10 2004-04-30 Toyota Motor Corp Pretreatment method for electroless plating workpiece and method for manufacturing plating coated member
JP2004186661A (en) * 2002-10-07 2004-07-02 Tokai Rubber Ind Ltd Method of producing flexible printed circuit board
JP2004263224A (en) * 2003-02-28 2004-09-24 Toyota Motor Corp Pretreatment method for material to be electroless plated, method for manufacturing plated member, and plated parts
JP2004315894A (en) * 2003-04-16 2004-11-11 Toyota Motor Corp Electroless plating method and plated parts
JP2005113236A (en) * 2003-10-09 2005-04-28 Toyota Motor Corp Plating article and plating coated member and method for manufacturing the same
JP2005281762A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Electroless plating method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088361A (en) * 1996-09-18 1998-04-07 Furukawa Electric Co Ltd:The Method for electroless-plating polymer molding
JP2004186661A (en) * 2002-10-07 2004-07-02 Tokai Rubber Ind Ltd Method of producing flexible printed circuit board
JP2004131807A (en) * 2002-10-10 2004-04-30 Toyota Motor Corp Pretreatment method for electroless plating workpiece and method for manufacturing plating coated member
JP2004263224A (en) * 2003-02-28 2004-09-24 Toyota Motor Corp Pretreatment method for material to be electroless plated, method for manufacturing plated member, and plated parts
JP2004315894A (en) * 2003-04-16 2004-11-11 Toyota Motor Corp Electroless plating method and plated parts
JP2005113236A (en) * 2003-10-09 2005-04-28 Toyota Motor Corp Plating article and plating coated member and method for manufacturing the same
JP2005281762A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Electroless plating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469214B1 (en) * 2014-05-19 2014-12-09 (주)오알켐 Plating method for manufacturing multi layer pcb
WO2022202184A1 (en) * 2021-03-22 2022-09-29 東レ株式会社 Plated molded article, method for producing plated molded article, and case component

Similar Documents

Publication Publication Date Title
WO2005120142A1 (en) Multilayer wiring board and method for manufacturing the same
TW201126619A (en) Substrate for mounting semiconductor chip and method for producing same
CN109252148B (en) Method for forming metal layer on surface of photosensitive resin
JP2008108791A (en) Multilayer printed wiring board and method of manufacturing the same
JP2015201658A (en) Method of manufacturing flexible printed circuit board
JP3999696B2 (en) Electroless plating method and plated parts
US20050238812A1 (en) Method for electroless metalisation of polymer substrate
US8563093B2 (en) Method for production of electroless plating material
JP4769209B2 (en) Insulating resin conditioning method and use thereof
WO2003102267A1 (en) Method for electroless metalisation of polymer substrate
JP2006219715A (en) Method for plating metal on heat-resistant and insulative resin
JP2004186661A (en) Method of producing flexible printed circuit board
JP4900036B2 (en) Resin substrate ozone solution processing method and wiring substrate manufacturing method
TW200902605A (en) Resin board to be subjected to ozone treatment, wiring board, and method of manufacturing the wiring board
JP2013189661A (en) Method for producing laminate, and laminate
JP2006104504A (en) Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same
JP2009173999A (en) Method for producing metal-coated polyimide resin substrate having excellent resistance to thermal aging
JP2003218499A (en) Surface conductive resin, method of manufacturing thereof and wiring board
JPH0472070A (en) Copper polyimide substrate and production of printed wiring board formed by using this substrate
WO2021193679A1 (en) Plated object having pattern-shaped electroless plating layer
JP4505284B2 (en) Manufacturing method of multilayer wiring board
JP2007077439A (en) Method for metallizing surface of polyimide resin material
JP2021136450A (en) Manufacturing method for printed wiring board, printed wiring board, manufacturing method for seed layer, seed layer, and semiconductor package
JP5083005B2 (en) Resin substrate having a precious metal fixed on the surface layer, its manufacturing method, circuit board, and its manufacturing method
JP2018195599A (en) Wiring board and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070926

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20070926

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101102

Free format text: JAPANESE INTERMEDIATE CODE: A02