JPWO2013172046A1 - Raw material charging method to blast furnace - Google Patents

Raw material charging method to blast furnace Download PDF

Info

Publication number
JPWO2013172046A1
JPWO2013172046A1 JP2013556696A JP2013556696A JPWO2013172046A1 JP WO2013172046 A1 JPWO2013172046 A1 JP WO2013172046A1 JP 2013556696 A JP2013556696 A JP 2013556696A JP 2013556696 A JP2013556696 A JP 2013556696A JP WO2013172046 A1 JPWO2013172046 A1 JP WO2013172046A1
Authority
JP
Japan
Prior art keywords
raw material
coke
blast furnace
ore
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013556696A
Other languages
Japanese (ja)
Other versions
JP5601426B2 (en
Inventor
和平 市川
和平 市川
渡壁 史朗
史朗 渡壁
石井 純
純 石井
寿幸 廣澤
寿幸 廣澤
明紀 村尾
明紀 村尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013556696A priority Critical patent/JP5601426B2/en
Application granted granted Critical
Publication of JP5601426B2 publication Critical patent/JP5601426B2/en
Publication of JPWO2013172046A1 publication Critical patent/JPWO2013172046A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • C21B7/20Bell-and-hopper arrangements with appliances for distributing the burden
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/007Conditions of the cokes or characterised by the cokes used
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0033Charging; Discharging; Manipulation of charge charging of particulate material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/10Charging directly from hoppers or shoots

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

焼結鉱、ペレット、塊状鉱石などの鉱石類原料及びコークスの高炉装入原料を、旋回シュートを用いて高炉内へ装入する高炉操業方法において、前記鉱石類原料と前記コークスとを混合した混合原料として高炉内へ装入することにより、高炉内の所定領域に混合層を形成するに際し、前記混合原料の高炉内への排出速度を1.5t/s以上とすることにより、混合層の均一性を向上させる。In the blast furnace operation method in which ore raw materials such as sintered ore, pellets and massive ore and blast furnace charging raw materials of coke are charged into the blast furnace using a rotating chute, mixing of the ore raw materials and the coke is mixed. When the mixed layer is formed in a predetermined region in the blast furnace by charging the raw material into the blast furnace as a raw material, the mixed layer is made uniform by setting the discharge rate of the mixed raw material into the blast furnace to 1.5 t / s or more. Improve sexiness.

Description

本発明は、炉内への原料装入を旋回シュートで行う高炉への原料装入方法に関し、特に鉱石類原料とコークスとの混合層の均一化を達成しようとするものである。   The present invention relates to a raw material charging method for a blast furnace in which a raw material is charged into a furnace with a swirl chute, and in particular, aims to achieve uniformization of a mixed layer of ore raw material and coke.

高炉は、一般的に焼結鉱、ペレット、塊状鉱石等の鉱石類原料とコークスとを炉頂から層状に装入し、羽口より燃焼ガスを流して、銑鉄を得る。装入された高炉装入原料であるコークスと鉱石類原料は炉頂より炉下部へと降下し、鉱石の還元と原料の昇温が起こる。鉱石類原料層は、昇温と上方からの荷重により鉱石類原料間の空隙を埋めながら徐々に変形して、高炉のシャフト部の下方においては非常に通気抵抗が大きくガスが殆ど流れない融着層を形成する。   In a blast furnace, generally, ore raw materials such as sintered ore, pellets and massive ore and coke are charged in layers from the top of the furnace, and combustion gas flows from the tuyere to obtain pig iron. The coke and ore raw material, which are the charged raw materials for the blast furnace, descend from the top of the furnace to the lower part of the furnace, and ore reduction and raw material temperature rise occur. The ore raw material layer is gradually deformed while filling the gaps between the ore raw materials due to the temperature rise and the load from above, and the lower part of the shaft part of the blast furnace has a very high resistance to gas and almost no gas flows. Form a layer.

従来、高炉への原料装入は、鉱石類原料とコークスを交互に装入しており、炉内では鉱石類原料層とコークス層が交互に層状となっている。また、高炉内下部には、融着帯と呼ばれる、鉱石が軟化融着した通気抵抗の大きな鉱石類原料層とコークス由来の比較的通気抵抗が小さいコークススリットとが混在する領域が存在する。
この融着帯の通気性が高炉全体の通気性に大きく影響を及ぼしており、高炉における生産性を律速している。低コークス操業を行う場合、使用されるコークス量が減少することからコークススリットが限りなく薄くなることが考えられる。
Conventionally, raw material charging into a blast furnace is performed by alternately charging ore raw materials and coke, and in the furnace, ore raw material layers and coke layers are alternately layered. Further, in the lower part of the blast furnace, there is a region called a cohesive zone where an ore raw material layer having a large ventilation resistance softened and fused with ore and a coke slit having a relatively small ventilation resistance derived from coke are mixed.
The air permeability of this cohesive zone has a great influence on the air permeability of the entire blast furnace, and the productivity in the blast furnace is limited. When a low coke operation is performed, it is considered that the coke slit becomes extremely thin because the amount of coke used is reduced.

融着帯の通気抵抗を改善するためには、鉱石類原料層にコークスを混合することが有効であることが知られており、適切な混合状態を得るために多くの研究が報告されている。
例えば、特許文献1においては、ベルレス高炉において、鉱石ホッパーのうち下流側の鉱石ホッパーにコークスを装入し、コンベア上で鉱石の上にコークスを積層し、炉頂バンカーに装入して、鉱石とコークスとを旋回シュートを介して高炉内に装入するようにしている。
しかしながら、特許文献1においては、炉頂バンカーにおいて鉱石とコークスとを混合させることから、炉頂バンカー内で偏析が生じてしまい、鉄鉱石とコークスとの混合比率を正確に維持することはできないという問題があった。
In order to improve the cohesive zone ventilation resistance, it is known that mixing coke into the ore raw material layer is effective, and many studies have been reported to obtain an appropriate mixing state. .
For example, in Patent Document 1, in a bell-less blast furnace, coke is charged into the ore hopper on the downstream side of the ore hopper, the coke is stacked on the ore on a conveyor, charged into the furnace top bunker, and the ore And coke are charged into the blast furnace through a turning chute.
However, in Patent Document 1, since ore and coke are mixed in the furnace top bunker, segregation occurs in the furnace top bunker, and the mixing ratio of iron ore and coke cannot be accurately maintained. There was a problem.

また、特許文献2では、炉頂のバンカーに鉱石とコークスとを別々に貯留して、コークスと鉱石を同時に混合装入することを提案している。
しかしながら、原料が炉内に装入された後のコークスと鉱石の分離については特に考慮が払われてなく、原料装入後の粗粒と細粒の偏析によるコークスと鉱石の分離が懸念される。
Patent Document 2 proposes that ore and coke are separately stored in a bunker at the top of the furnace, and coke and ore are mixed and charged simultaneously.
However, no particular consideration is given to the separation of coke and ore after the raw material is charged into the furnace, and there is concern about the separation of coke and ore due to segregation of coarse and fine particles after raw material charging. .

さらに、特許文献3では、高炉操業における融着帯形状の不安定化及び中心部付近におけるガス利用率の低下を防止し、安全操業と熱効率の向上を図るために、高炉における原料装入方法おいて、全鉱石と全コークスを完全混合した後、炉内に装入するようしている。
しかしながら、特許文献3に記載された技術では、コークススリットがない高炉については記載されているが、高炉における具体的な原料装入方法については言及されてなく、装入物混合率の制御法が不明である。
Furthermore, in Patent Document 3, in order to prevent the instability of the cohesive zone shape in the blast furnace operation and the decrease in the gas utilization rate near the center, and to improve the safe operation and thermal efficiency, the raw material charging method in the blast furnace is In addition, after all ore and all coke are thoroughly mixed, they are charged into the furnace.
However, in the technique described in Patent Document 3, although a blast furnace having no coke slit is described, a specific raw material charging method in the blast furnace is not mentioned, and a method for controlling the charge mixture rate is not described. It is unknown.

ところで、発明者らは、先に、特許文献4において、コークススリットを存在させることなく、通気抵抗を向上させる高炉への原料装入方法として、
「焼結鉱、ペレット、塊状鉱石などの鉱石類原料及びコークスの高炉装入原料の高炉内への装入を旋回シュートで行う高炉の操業方法であって、
前記高炉装入原料を前記高炉に装入する際に、軸心部に中心コークス層を形成し、該中心コークス層の外側にコークススリットを生じさせないように前記鉱石類原料及びコークスを混合させた混合層を形成するようにしたことを特徴とする高炉への原料装入方法。」
を提案した。
By the way, the inventors, in Patent Document 4, as a raw material charging method to improve the ventilation resistance without the presence of coke slits,
`` A method of operating a blast furnace in which ore raw materials such as sintered ore, pellets, massive ore and blast furnace charging raw materials of coke are charged into the blast furnace with a rotating chute,
When charging the blast furnace charging raw material into the blast furnace, a central coke layer was formed in the axial center portion, and the ore raw material and coke were mixed so as not to generate a coke slit outside the central coke layer. A raw material charging method for a blast furnace, wherein a mixed layer is formed. "
Proposed.

特開平3−211210号公報JP-A-3-211210 特開2004−107794号公報JP 2004-107794 A 特公昭59−10402号公報Japanese Patent Publication No.59-10402 特開2012−97301号公報JP 2012-97301 A

上掲特許文献4の開発により、高炉内における通気性は大幅に向上し、安定した高炉操業が可能になった。   Due to the development of the above-mentioned Patent Document 4, the air permeability in the blast furnace has been greatly improved, and stable blast furnace operation has become possible.

本発明は、上記した特許文献4に記載の技術の改良に係るもので、混合層の形成に際し、一層の均一化を達成し、もってより安定した高炉操業の実施を可能ならしめようとするものである。   The present invention relates to the improvement of the technique described in Patent Document 4 described above, and at the time of forming a mixed layer, it is intended to achieve further uniformization and thereby enable more stable blast furnace operation. It is.

さて、発明者らは、高炉内での混合層の形成に際し、一層の均一化を達成すべく種々検討を重ねた。
その結果、混合原料の高炉内への排出速度を上昇させることによって、混合層の均一化が大幅に向上するという新規な知見を得た。
本発明は、上記の知見に立脚するものである。
Now, the inventors have made various studies in order to achieve further uniformity in forming the mixed layer in the blast furnace.
As a result, the present inventors have obtained a novel finding that the uniformization of the mixed layer is greatly improved by increasing the discharge rate of the mixed raw material into the blast furnace.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.焼結鉱、ペレット、塊状鉱石などの鉱石類原料及びコークスの高炉装入原料を、旋回シュートを用いて高炉内へ装入する高炉操業方法において、
前記鉱石類原料と前記コークスとを混合した混合原料として高炉内へ装入することにより、高炉内の所定領域に混合層を形成するに際し、前記混合原料の高炉内への排出速度を1.5t/s以上とすることを特徴とする高炉への原料装入方法。
That is, the gist configuration of the present invention is as follows.
1. In the blast furnace operation method of charging ore raw materials such as sintered ore, pellets, massive ore and blast furnace charging raw materials of coke into the blast furnace using a rotating chute,
When a mixed layer is formed in a predetermined region in the blast furnace by charging the mixed raw material and the coke into the blast furnace, the discharge rate of the mixed raw material into the blast furnace is 1.5 t. / S or more, The raw material charging method to the blast furnace characterized by the above-mentioned.

2.前記高炉の炉頂に配設した少なくとも2つの炉頂バンカーと、各炉頂バンカーの排出口に配設され当該炉頂バンカーから排出される原料を混合して前記旋回シュートに供給する集合ホッパーとを備え、
前記炉頂バンカーの1つまたは2つに、前記鉱石類原料若しくは前記鉱石類原料と前記コークスとを混合させた混合原料のいずれかまたは両者をそれぞれ貯留し、残りの炉頂バンカーの1つに前記コークスを貯留して、前記混合層を形成する際に、前記炉頂バンカーから同時に、前記コークスと前記鉱石類原料及び/又は混合原料を排出し、前記集合ホッパーで混合して前記旋回シュートに供給する
ことを特徴とする前記1に記載の高炉への原料装入方法。
2. At least two furnace top bunkers disposed at the top of the blast furnace, and a collecting hopper disposed at a discharge port of each furnace top bunker and mixing raw materials discharged from the furnace top bunker to supply the swirl chute With
One or two of the furnace top bunker stores either or both of the ore raw material or the mixed raw material obtained by mixing the ore raw material and the coke, and stores them in one of the remaining furnace top bunkers. When the coke is stored and the mixed layer is formed, the coke and the ore raw material and / or mixed raw material are discharged simultaneously from the furnace top bunker, mixed with the collecting hopper, and mixed into the swivel chute. 2. The raw material charging method to the blast furnace as described in 1 above, wherein the raw material is supplied.

3.前記高炉装入原料を高炉内に装入するに際し、高炉の軸心部に中心コークス層を形成することを特徴とする前記1または2に記載の高炉への原料装入方法。 3. 3. The raw material charging method to the blast furnace according to 1 or 2 above, wherein a central coke layer is formed in the axial center portion of the blast furnace when charging the blast furnace raw material into the blast furnace.

本発明によれば、高炉内へ鉱石類原料とコークスとを混合した混合原料を装入して、高炉内に混合層を形成するに際し、混合層の一層の均一化を達成できるので、より安定した高炉操業の実施が可能になる。   According to the present invention, when the mixed raw material in which the ore raw material and coke are mixed into the blast furnace is charged and the mixed layer is formed in the blast furnace, it is possible to achieve further uniformization of the mixed layer, which is more stable It becomes possible to carry out the blast furnace operation.

炉頂バンカーを含む原料装入状態を示す模式図である。It is a schematic diagram which shows the raw material charging state containing a furnace top bunker. 鉱石類原料の高温性状を測定する実験装置を示す概略構成図である。It is a schematic block diagram which shows the experimental apparatus which measures the high temperature property of an ore raw material. コークス粒子径をパラメータとした鉱石類原料へのコークスの混合割合と最大圧力損失割合との関係を示すグラフである。It is a graph which shows the relationship between the mixing ratio of the coke to the ore raw material and the maximum pressure loss ratio which used the coke particle diameter as a parameter. バンカー内混合と同時排出混合の場合における、装入原料中のコークスの混合率の経時変化を比較して示したグラフである。It is the graph which showed the time-dependent change of the mixing rate of the coke in a charging raw material in the case of mixing in a bunker and simultaneous discharge mixing. 同時排出条件で排出速度を変化させたときの炉半径方向にわたるコークス混合率の変化を示したグラフである。It is the graph which showed the change of the coke mixing ratio over the furnace radial direction when changing discharge speed on simultaneous discharge conditions. 同時排出時における排出速度を種々に変化させた場合の混合率の変化を示したグラフである。It is the graph which showed the change of the mixing rate at the time of changing various discharge speeds at the time of simultaneous discharge.

以下、本発明の一実施形態を図面に基づいて説明する。
図1に基づき、特許文献4に従って鉱石類原料及びコークスを高炉内に装入する具体的な装入要領を説明する。
なお、この例で、炉頂バンカー12bには鉱石類原料及びコークスの混合原料が、また炉頂バンカー12aにはコークスのみが、さらに炉頂バンカー12cには鉱石類原料のみが、それぞれ貯留されている。
ここに、炉頂バンカー12bに貯留される混合原料において、コークス量は全コークス量の30質量%以下に調整することが好ましい。というのは、混合されるコークス量が全コークス量の30質量%以下であれば、炉頂バンカー12bに貯留された時点で、コークスと鉱石類原料とで大きな偏析を生じることがなく、旋回シュート16によって形成される鉱石類原料とコークスとの混合層の混合率を略均一にすることができるからである。
これに対して、コークス量が全コークス量の30質量%を超えると、比重差及び粒子径差による偏析が起こりやすくなり、炉頂バンカー12bに貯留された時点でコークスと鉱石類原料との偏析が大きくなり、局所的に鉱石類原料のみやコークスのみが存在する領域が発生してしまう。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
A specific charging procedure for charging the ore material and coke into the blast furnace will be described with reference to FIG.
In this example, the ore raw material and coke mixed raw material are stored in the furnace top bunker 12b, only the coke is stored in the furnace top bunker 12a, and only the ore raw material is stored in the furnace top bunker 12c. Yes.
Here, in the mixed raw material stored in the furnace top bunker 12b, the coke amount is preferably adjusted to 30% by mass or less of the total coke amount. This is because, if the amount of coke to be mixed is 30% by mass or less of the total amount of coke, when the coke is stored in the furnace top bunker 12b, there is no large segregation between the coke and the ore raw material, and the turning chute It is because the mixing rate of the mixed layer of the ore raw material and coke formed by 16 can be made substantially uniform.
On the other hand, when the amount of coke exceeds 30% by mass of the total amount of coke, segregation due to difference in specific gravity and particle size is likely to occur, and segregation between coke and ore raw material when stored in the furnace top bunker 12b. As a result, a region in which only the ore raw material or only coke exists locally is generated.

さて、炉頂バンカーからの原料を装入するには、炉頂バンカー12a〜12cから流量調整ゲート13により所定の流量に調整されて排出されたコークス、混合原料及び鉱石類原料を、集合ホッパー14で混合して直下のベルレス式装入装置15へ送り、このベルレス式装入装置15の旋回シュート16により高炉10内に装入する。
ここで、旋回シュート16は、高炉10の軸心を中心に旋回すると同時に高炉10の軸心部から炉壁側へ向かって傾動するように逆傾動制御される、いわゆる逆傾動制御方式で原料装入を行う場合について説明する。
また、高炉の軸心部に中心コークス層を形成する場合について説明する。
Now, in order to charge the raw material from the furnace bunker, the coke, mixed raw material and ore raw material discharged from the furnace top bunkers 12a to 12c after being adjusted to a predetermined flow rate by the flow rate adjusting gate 13 are collected into the collecting hopper 14. Then, the mixture is fed to the bellless type charging device 15 immediately below, and charged into the blast furnace 10 by the turning chute 16 of the bellless type charging device 15.
Here, the swirl chute 16 is revolved around the axis of the blast furnace 10 and at the same time is reversely tilted so as to tilt from the axial center of the blast furnace 10 toward the furnace wall. The case of making an input will be described.
The case where the central coke layer is formed in the axial center portion of the blast furnace will be described.

さて、旋回シュート16は、高炉10の中心軸を中心に旋回すると同時に高炉10の炉中心の軸心部側から炉壁側へ向かって傾動するように逆傾動制御され、炉頂バンカー12から排出された高炉装入原料が炉中心側から炉壁側へと逆方向に装入を行う逆傾動制御方式で原料装入を行う。
このとき、旋回シュート16が略垂直状態に傾動している初期装入状態では、炉頂バンカー12b及び12cの流量調整ゲート13を閉じ、炉頂バンカー12aのみの流量調整ゲート13を開いて、この炉頂バンカー12aに貯留されているコークスのみを旋回シュート16に供給し、図1に示すように、軸心部に中心コークス層12dを形成する。
Now, the turning chute 16 is controlled to reversely tilt so as to turn about the central axis of the blast furnace 10 and simultaneously tilt toward the furnace wall side from the axial center side of the furnace center of the blast furnace 10, and is discharged from the top bunker 12. Raw material charging is performed by a reverse tilt control method in which the charged blast furnace charging material is charged in the reverse direction from the furnace center side to the furnace wall side.
At this time, in the initial charging state where the turning chute 16 is tilted in a substantially vertical state, the flow rate adjusting gates 13 of the furnace top bunkers 12b and 12c are closed, and the flow rate adjusting gate 13 of only the furnace top bunker 12a is opened. Only the coke stored in the furnace top bunker 12a is supplied to the turning chute 16, and a central coke layer 12d is formed at the axial center as shown in FIG.

その後、旋回シュート16を徐々に水平方向側に傾動させて、中心コークス層12dの形成が終了すると、残りの2つの炉頂バンカー12b及び12cの流量調整ゲート13を所定比率で開口し、炉頂バンカー12aから排出されるコークスと、炉頂バンカー12bから排出される混合原料及び/又は炉頂バンカー12cから排出される鉱石類原料とを同時に集合ホッパー14へ供給する。このため、集合ホッパー14でコークスと鉱石類原料とが完全に混合されてから旋回シュート16に供給され、図1に示したように、高炉10内の中心コークス層12dの外側にコークスと鉱石類原料とが略均一な混合率となってコークススリットを生じない混合層12eが形成される。   Thereafter, the swiveling chute 16 is gradually tilted in the horizontal direction, and when the formation of the central coke layer 12d is completed, the flow rate adjusting gates 13 of the remaining two furnace top bunkers 12b and 12c are opened at a predetermined ratio, The coke discharged from the bunker 12a and the mixed raw material discharged from the top bunker 12b and / or the ore raw material discharged from the top bunker 12c are simultaneously supplied to the collecting hopper 14. Therefore, the coke and the ore raw material are completely mixed by the collecting hopper 14 and then supplied to the turning chute 16, and as shown in FIG. 1, the coke and the ore are outside the central coke layer 12 d in the blast furnace 10. The mixed layer 12e which does not produce a coke slit with a substantially uniform mixing ratio with the raw material is formed.

ここで、中心コークス層12d及び混合層12eのコークス量は、中心コークス層12dのコークス量が1チャージ当たりのコークス全装入量の5〜30質量%程度に、一方混合層12eのコークス量が全コークス量の70〜95質量%程度に設定されている。
なお、中心コークス層を形成する領域は、高炉軸心部を0、炉壁部を1とする高炉無次元半径において0以上、0.3以下とすることが望ましい。この理由は、コークスの一部を炉軸心部に集めることによって、軸心部での通気性ひいては高炉全体の通気性を効果的に改善することができるからである。
なお、中心コークス層を形成するために装入されるコークス量は、1チャージ当たりのコークス装入量の5〜30質量%程度とするのが好ましい。というのは、軸心部へのコークス装入量が5質量%に満たないと軸心部周辺の通気性の改善が十分でなく、一方30質量%より多いコークスを軸心部に集中させた場合には、混合層に使用するためのコークス量が低下するだけでなく、軸心部をガスが流れすぎてやはり炉体からの抜熱量が増加するからである。好ましくは10〜20質量%である。
Here, the coke amount of the central coke layer 12d and the mixed layer 12e is such that the coke amount of the central coke layer 12d is about 5 to 30% by mass of the total charge amount of coke per charge, while the coke amount of the mixed layer 12e is It is set to about 70 to 95% by mass of the total coke amount.
The region where the central coke layer is formed is preferably 0 or more and 0.3 or less in the dimensionless radius of the blast furnace where the blast furnace axial center part is 0 and the furnace wall part is 1. The reason for this is that by collecting a part of the coke in the core part of the furnace, the air permeability in the shaft part and thus the air permeability of the entire blast furnace can be effectively improved.
The amount of coke charged to form the central coke layer is preferably about 5 to 30% by mass of the amount of coke charged per charge. This is because if the amount of coke charged to the shaft center portion is less than 5% by mass, the air permeability around the shaft center portion is not sufficiently improved, while more than 30% by mass of coke is concentrated on the shaft center portion. In this case, not only the amount of coke for use in the mixed layer is reduced, but also the amount of heat removed from the furnace body is increased due to excessive gas flow in the axial center. Preferably it is 10-20 mass%.

そして、中心コークス層12d及び混合層12eで構成される層を順次高炉10内に下部から上部まで形成して行く。
このように中心コークス層12d及び混合層12eで構成される層を順次積層することにより、高炉10内の軸心部では通気抵抗の小さい中心コークス層12dが高炉下部から高炉上部に向かって形成され、その周囲にコークスと鉱石類原料とが混合された混合層12eが形成されるのである。
Then, layers composed of the central coke layer 12d and the mixed layer 12e are sequentially formed in the blast furnace 10 from the lower part to the upper part.
By sequentially laminating the layers composed of the central coke layer 12d and the mixed layer 12e in this way, the central coke layer 12d having a low ventilation resistance is formed from the lower portion of the blast furnace toward the upper portion of the blast furnace. The mixed layer 12e in which the coke and the ore raw material are mixed is formed around it.

そこで、発明者らは、上記効果を実証するために、図2に示す実験装置を用いて、高炉内での原料還元、昇温過程を模擬してその通気抵抗の変化を調べた。
この実験装置は、円筒状の炉体31の内周面に炉芯管32を配置し、この炉芯管32の外側に円筒状の加熱用ヒーター33を配置する。炉芯管32の内側には耐火物で構成された円筒体34の上端に黒鉛製るつぼ35を配置し、このるつぼ35内に装入原料36が装入されている。この装入原料36には、高炉下部の融着層と同程度の状態となるように、パンチ棒37を介して連結した荷重負荷装置38により上部から荷重を負荷する。円筒体34の下部には、滴下物サンプリング装置39が設けられている。
Therefore, in order to demonstrate the above-mentioned effect, the inventors investigated the change in the ventilation resistance by simulating the raw material reduction and the temperature raising process in the blast furnace using the experimental apparatus shown in FIG.
In this experimental apparatus, a furnace core tube 32 is disposed on the inner peripheral surface of a cylindrical furnace body 31, and a cylindrical heating heater 33 is disposed outside the furnace core tube 32. A graphite crucible 35 is disposed at the upper end of a cylindrical body 34 made of a refractory inside the furnace core tube 32, and a charging raw material 36 is charged into the crucible 35. A load is applied to the charged raw material 36 from above by a load loading device 38 connected via a punch bar 37 so as to be in the same level as the fused layer at the bottom of the blast furnace. A drop sampling device 39 is provided below the cylindrical body 34.

るつぼ35には、その下部の円筒体34を介してガス混合装置40によって調整したガスを送り、るつぼ35内の装入原料36を通過したガスはガス分析装置41で分析する。加熱用ヒーター33には加熱温度制御用の熱電対42が配設され、この熱電対42で温度を測定しながら図示しない制御装置で加熱用ヒーター33を制御することによって、るつぼ35を1200〜1500℃に加熱する。
ここで、るつぼ35内に装入された装入原料36の鉱石としては50〜100質量%の焼結鉱と、0〜50質量%の塊鉄鉱石を混合したものを用いた。
The gas adjusted by the gas mixing device 40 is sent to the crucible 35 through the lower cylindrical body 34, and the gas that has passed through the raw material 36 in the crucible 35 is analyzed by the gas analyzer 41. The heating heater 33 is provided with a thermocouple 42 for controlling the heating temperature, and the crucible 35 is set to 1200 to 1500 by controlling the heater 33 with a control device (not shown) while measuring the temperature with the thermocouple 42. Heat to ° C.
Here, as the ore of the charging raw material 36 charged in the crucible 35, a mixture of 50 to 100% by mass of sintered ore and 0 to 50% by mass of massive iron ore was used.

図3は、鉱石に対するコークスの混合量を変化させたときの最大圧力損失割合と混合量との関係を、コークスの大きさが異なる場合について調べたグラフである。
図3に示したように、コークスを混合しない場合は圧損が最も高かったのに対し、コークスを添加することによって通気抵抗は著しく低下し、しかもこの効果はコークス量の増加に伴って大きくなることが分かる。この理由は、コークスを混合することによって鉱石の変形が抑制され、また混合コークス近傍の空隙が維持されるため、鉱石の変形により粒子間の空隙が減少して通気抵抗が上昇する現象が抑制されたものと考えられる。
また、同図に示したとおり、塊コークスと小中塊コークスとを用いた場合では、融着層における通気抵抗値が異なり、小中塊コークスを用いた場合には、塊コークスを用いた場合と比較して同じ混合量でも圧力損失が小さくなることが判明した。
ここに、塊コークスとは粒径が30〜60mm程度のものを、また小中塊コークスとは粒径が10〜30mm程度のものをいう。一方、鉱石類原料は、通常、粒径が5〜25mm程度である。
ここに、鉱石類原料やコークスの粒径に起因した炉内通気性の悪化を回避するには、鉱石類原料の粒径は10〜30mm、コークスの粒径は30〜55mmとすることが好ましく、さらにこれらの粒径比(コークスの粒径/鉱石類原料の粒径)を1.0〜5.5程度とすることが好適である。
FIG. 3 is a graph in which the relationship between the maximum pressure loss ratio and the mixing amount when the mixing amount of coke with respect to the ore is changed in the case where the size of the coke is different.
As shown in FIG. 3, the pressure loss was highest when coke was not mixed, whereas the addition of coke significantly reduced the airflow resistance, and this effect increased as the amount of coke increased. I understand. The reason for this is that mixing the coke suppresses the deformation of the ore and maintains the voids in the vicinity of the mixed coke, which suppresses the phenomenon in which the voids between the particles decrease due to the deformation of the ore and the ventilation resistance increases. It is thought that.
In addition, as shown in the figure, when using lump coke and small medium coke, the airflow resistance value in the fusion layer is different, and when using small coke, when using lump coke It was found that the pressure loss was small even with the same mixing amount.
Here, the lump coke means a particle having a particle size of about 30 to 60 mm, and the small and medium lump coke means a particle having a particle size of about 10 to 30 mm. On the other hand, the ore raw material usually has a particle size of about 5 to 25 mm.
Here, in order to avoid deterioration of the air permeability in the furnace due to the particle size of the ore raw material and the coke, the particle size of the ore raw material is preferably 10 to 30 mm and the particle size of the coke is preferably 30 to 55 mm. Furthermore, it is preferable that the particle size ratio (coke particle size / ore material particle size) is about 1.0 to 5.5.

また、発明者らは、圧力損失の低減すなわち通気性の向上に好適な混合層中におけるコークスの割合(コークス量/鉱石類原料量)について調査したところ、質量比率で7〜25%程度とすることが好ましいことが判明した。より好ましくは10〜15%の範囲である。なお、混合層中におけるコークスの好適割合を全コークス量に対する比率に換算すると約20〜95%となる。   Moreover, when the inventors investigated the ratio of coke in the mixed layer suitable for reduction of pressure loss, that is, improvement of air permeability (amount of coke / amount of ore raw materials), the mass ratio was about 7 to 25%. It turned out to be preferable. More preferably, it is 10 to 15% of range. In addition, when the suitable ratio of the coke in a mixed layer is converted into the ratio with respect to the total amount of coke, it will be about 20 to 95%.

ところで、上記のような好適条件で模擬試験を行った場合でも、混合層の不均一さに起因すると考えられる通気抵抗の上昇が見られた。   By the way, even when the simulation test was performed under the preferable conditions as described above, an increase in the airflow resistance considered to be caused by the non-uniformity of the mixed layer was observed.

そこで、発明者らは、図1に示したような高炉炉頂部を模擬した実高炉の1/18スケールになる装入模型装置を用いて、鉱石原料中におけるコークスの混合率の評価試験を行った。
本模型装置において、原料の落下軌跡および堆積挙動を実炉と一致させるために、原料粒径を実高炉の1/18倍に、原料装入量は1/18倍に、また装入シュートの旋回速度は1/18倍とした。
Therefore, the inventors conducted an evaluation test of the mixing ratio of coke in the ore raw material using a charging model device that becomes 1/18 scale of an actual blast furnace simulating the top of the blast furnace as shown in FIG. It was.
In this model device, in order to make the material's fall trajectory and deposition behavior coincide with the actual furnace, the raw material particle size is 1/18 times that of the actual blast furnace, the raw material charging amount is 1/18 times, and the charging chute is The turning speed was 1/18 times.

図4に、バンカー内で鉱石とコークスを混合した場合、または2つのバンカーから鉱石とコークスを同時に排出した場合における、装入原料中のコークスの混合率の経時変化について調べた結果を示す。なお、いずれの場合も、鉱石量およびコークス量は一定とし、また目標混合率は0.05に設定した。
図4に示したとおり、バンカー内で鉱石とコークスを混合した場合は、排出の初期および後期で混合率が上昇し、排出中期では混合率は目標値(0.05)よりも減少している。これに対し、2つのバンカーから鉱石とコークスを同時に排出した場合は、鉱石中におけるコークスの混合率は目標値に対してほぼ一定の値を示した。従って、バンカー内混合よりも同時排出混合の方が、コークスの混合率を精度よく制御できることが分かる。
FIG. 4 shows the results of examining the change over time in the mixing ratio of coke in the charged raw material when ore and coke are mixed in a bunker or when ore and coke are discharged simultaneously from two bunker. In either case, the amount of ore and coke was constant, and the target mixing ratio was set to 0.05.
As shown in FIG. 4, when ore and coke are mixed in a bunker, the mixing rate increases in the early and late stages of discharge, and the mixing ratio decreases from the target value (0.05) in the middle of discharging. . On the other hand, when ore and coke were discharged from two bunkers at the same time, the mixing ratio of coke in the ore showed a substantially constant value with respect to the target value. Therefore, it can be seen that co-discharge mixing can control the mixing ratio of coke with higher accuracy than mixing in a bunker.

次に、同時排出条件で、排出速度をそれぞれ0.85t/s、1.27t/s(いずれも実機換算)と変化させたときの炉半径方向にわたるコークス混合率の変化について調べた結果を、図5に示す。
図5に示したとおり、排出速度が実機換算で0.85t/sのときと比較して、実機換算で1.27t/sのときの方がコークス混合率の最大値と最小値の差異が小さく、より均一に混合されていることが分かる。
Next, the results of investigating the change in the coke mixing ratio over the radial direction of the furnace when the discharge rate was changed to 0.85 t / s and 1.27 t / s (both converted to actual machine) under the simultaneous discharge conditions, As shown in FIG.
As shown in FIG. 5, the difference between the maximum value and the minimum value of the coke mixing ratio is greater when the discharge rate is 1.27 t / s in terms of actual equipment than when the discharge rate is 0.85 t / s in terms of actual equipment. It can be seen that it is smaller and more uniformly mixed.

そこで、発明者らは、次に、同時排出時における排出速度を種々に変化させた場合の混合率の変化について調査した。混合率の良否は、炉半径方向における最大混合率と最小混合率との差で判定した。得られた結果を図6に示す。なお、この差が、小さいほどより均一に混合されているといえる。
図6に示したとおり、原料の排出速度が大きくなるに従って最大混合率と最小混合率との差は小さくなっている。すなわち、原料の排出速度が大きくすることによって、鉱石とコークスをより均一に混合できることが分かる。
特に、排出速度を1.5t/s以上とすることによって、最大混合率と最小混合率との差は大幅に低減し、1.8t/s以上でほぼ一定になっている。
Therefore, the inventors next investigated the change in the mixing ratio when the discharging speed at the time of simultaneous discharging was variously changed. The quality of the mixing rate was judged by the difference between the maximum mixing rate and the minimum mixing rate in the furnace radial direction. The obtained result is shown in FIG. In addition, it can be said that it is mixed more uniformly so that this difference is small.
As shown in FIG. 6, the difference between the maximum mixing rate and the minimum mixing rate decreases as the material discharge rate increases. That is, it can be seen that the ore and coke can be mixed more uniformly by increasing the discharge rate of the raw material.
In particular, by setting the discharge speed to 1.5 t / s or more, the difference between the maximum mixing rate and the minimum mixing rate is greatly reduced, and is substantially constant at 1.8 t / s or more.

なお、従来の一般的な原料の排出速度は、0.8〜1.3t/s程度であり、また従来はこの排出速度には特に注意は払われていなかった。   The conventional general raw material discharge rate is about 0.8 to 1.3 t / s, and conventionally no particular attention has been paid to this discharge rate.

ここに、装入原料の排出速度を大きくすることによって、最大混合率と最小混合率との差が小さくなる、すなわち混合層の均一化が達成される理由は、まだ明確に解明されたわけではないが、発明者らは次のように推察している。
装入原料の偏析は、装入原料流れが、静止した原料堆積面を流れる際に、小粒径である鉱石が原料堆積面の凹凸の影響を受け静止しやすいために生じると考えられる。
この点、装入速度が増加すると、堆積面移動時の装入原料がもつ移動エネルギーが増加し、小粒径である鉱石の静止が抑制される。また、原料の排出速度を大きくすると、装入原料流れの層厚が増加する。さらに、装入原料流れの層厚が増加すると、下面と接する粒子の比率は相対的に減少し、下面の凹凸の影響が低減する。
以上から、装入速度が増加すると、装入原料の偏析が抑制され、混合層の均一化が達成されるものと推察される。
Here, the reason why the difference between the maximum mixing ratio and the minimum mixing ratio is reduced by increasing the discharge rate of the charged raw material, that is, the uniformity of the mixed layer is not yet clearly clarified. However, the inventors speculate as follows.
The segregation of the charged raw material is considered to occur because ore having a small particle size is easily affected by the unevenness of the raw material deposition surface when the flow of the charged raw material flows on the stationary raw material deposition surface.
In this regard, when the charging speed is increased, the kinetic energy of the charging raw material during the movement of the deposition surface is increased, and the ore having a small particle size is suppressed. Further, when the discharge rate of the raw material is increased, the layer thickness of the charged raw material flow increases. Furthermore, when the layer thickness of the charged raw material flow is increased, the ratio of particles in contact with the lower surface is relatively decreased, and the influence of unevenness on the lower surface is reduced.
From the above, it is presumed that when the charging speed is increased, segregation of the charging raw material is suppressed and the uniformization of the mixed layer is achieved.

なお、高炉操業中はシャフト圧力を注視しておき、本発明に従う高炉装入を継続して行っている際に、シャフト圧力に異常が検知されたときは、原料の装入方式を、通常の鉱石類原料層とコークススリットとを個別に形成する方式に切り替え、その後、シャフト圧力の異常が解消されたら、再度、本発明に従う装入方式に切り替えて操業を行うようにすることが有利である。   Note that during blast furnace operation, the shaft pressure is closely monitored, and when the blast furnace charging according to the present invention is continuously performed, if an abnormality is detected in the shaft pressure, the raw material charging method is changed to the normal charging method. It is advantageous to switch to a method in which the ore raw material layer and the coke slit are formed separately, and then after switching to the charging method according to the present invention, once the shaft pressure abnormality is resolved, it is advantageous to operate. .

10 高炉
12a〜12c 炉頂バンカー
12d 中心コークス層
12e 混合層
13 流量調整ゲート
14 集合ホッパー
15 ベルレス式装入装置
16 旋回シュート
31 円筒状の炉体
32 炉芯管
33 円筒状の加熱用ヒーター
34 円筒体
35 黒鉛製るつぼ
36 装入原料
37 パンチ棒
38 荷重負荷装置
40 混合装置
41 ガス分析装置
42 熱電対
DESCRIPTION OF SYMBOLS 10 Blast furnace 12a-12c Furnace top bunker 12d Center coke layer 12e Mixing layer 13 Flow control gate 14 Collective hopper 15 Bellless type charging device 16 Turning chute 31 Cylindrical furnace body 32 Furnace core tube 33 Cylindrical heater 34 Cylindrical heater Body 35 Graphite crucible 36 Charge raw material 37 Punch rod 38 Load loading device 40 Mixing device 41 Gas analyzer 42 Thermocouple

すなわち、本発明の要旨構成は次のとおりである。
1.焼結鉱、ペレット、塊状鉱石などの鉱石類原料及びコークスの高炉装入原料を、旋回シュートを用いて高炉内へ装入する高炉操業方法において、
炉頂バンカーから同時に、前記コークスと前記鉱石類原料及び/又は前記鉱石類原料と前記コークスとを混合させた混合原料を排出し、集合ホッパーで混合して前記旋回シュートに供給することによって、前記鉱石類原料と前記コークスとを混合した混合原料として高炉内へ装入することにより、高炉内の所定領域に混合層を形成するに際し、前記混合原料の高炉内への排出速度を1.5t/s以上とすることを特徴とする高炉への原料装入方法。
That is, the gist configuration of the present invention is as follows.
1. In the blast furnace operation method of charging ore raw materials such as sintered ore, pellets, massive ore and blast furnace charging raw materials of coke into the blast furnace using a rotating chute,
Simultaneously discharging the coke and the ore raw material and / or the mixed raw material obtained by mixing the ore raw material and the coke from the furnace top bunker, mixing them in a collecting hopper, and supplying the swirl chute, When a mixed layer is formed in a predetermined region in the blast furnace by charging it into the blast furnace as a mixed raw material in which the ore raw material and the coke are mixed, the discharge rate of the mixed raw material into the blast furnace is 1.5 t / A method of charging a raw material into a blast furnace, characterized in that it is s or more.

そこで、発明者らは、図1に示したような高炉炉頂部を模擬した実高炉の1/18スケールになる装入模型装置を用いて、鉱石原料中におけるコークスの混合率の評価試験を行った。
本模型装置において、原料の落下軌跡および堆積挙動を実炉と一致させるために、原料粒径を実高炉の1/18倍に、原料装入量は(1/18) 3 倍に、また装入シュートの旋回速度は(1/18) 0.5 倍とした。
Therefore, the inventors conducted an evaluation test of the mixing ratio of coke in the ore raw material using a charging model device that becomes 1/18 scale of an actual blast furnace simulating the top of the blast furnace as shown in FIG. It was.
In this model device, in order to match the material's dropping trajectory and deposition behavior with the actual furnace, the raw material particle size is 1/18 times that of the actual blast furnace, the raw material charge is (1/18) 3 times, The turning speed of the incoming chute was (1/18) 0.5 times.

Claims (3)

焼結鉱、ペレット、塊状鉱石などの鉱石類原料及びコークスの高炉装入原料を、旋回シュートを用いて高炉内へ装入する高炉操業方法において、
前記鉱石類原料と前記コークスとを混合した混合原料として高炉内へ装入することにより、高炉内の所定領域に混合層を形成するに際し、前記混合原料の高炉内への排出速度を1.5t/s以上とすることを特徴とする高炉への原料装入方法。
In the blast furnace operation method of charging ore raw materials such as sintered ore, pellets, massive ore and blast furnace charging raw materials of coke into the blast furnace using a rotating chute,
When a mixed layer is formed in a predetermined region in the blast furnace by charging the mixed raw material and the coke into the blast furnace, the discharge rate of the mixed raw material into the blast furnace is 1.5 t. / S or more, The raw material charging method to the blast furnace characterized by the above-mentioned.
前記高炉の炉頂に配設した少なくとも2つの炉頂バンカーと、各炉頂バンカーの排出口に配設され当該炉頂バンカーから排出される原料を混合して前記旋回シュートに供給する集合ホッパーとを備え、
前記炉頂バンカーの1つまたは2つに、前記鉱石類原料若しくは前記鉱石類原料と前記コークスとを混合させた混合原料のいずれかまたは両者をそれぞれ貯留し、残りの炉頂バンカーの1つに前記コークスを貯留して、前記混合層を形成する際に、前記炉頂バンカーから同時に、前記コークスと前記鉱石類原料及び/又は混合原料を排出し、前記集合ホッパーで混合して前記旋回シュートに供給する
ことを特徴とする請求項1に記載の高炉への原料装入方法。
At least two furnace top bunkers disposed at the top of the blast furnace, and a collecting hopper disposed at a discharge port of each furnace top bunker and mixing raw materials discharged from the furnace top bunker to supply the swirl chute With
One or two of the furnace top bunker stores either or both of the ore raw material or the mixed raw material obtained by mixing the ore raw material and the coke, and stores them in one of the remaining furnace top bunkers. When the coke is stored and the mixed layer is formed, the coke and the ore raw material and / or mixed raw material are discharged simultaneously from the furnace top bunker, mixed with the collecting hopper, and mixed into the swivel chute. The raw material charging method to the blast furnace according to claim 1, wherein the raw material is supplied.
前記高炉装入原料を高炉内に装入するに際し、高炉の軸心部に中心コークス層を形成することを特徴とする請求項1または2に記載の高炉への原料装入方法。   3. The method of charging a blast furnace with a raw material according to claim 1 or 2, wherein a central coke layer is formed at the axial center of the blast furnace when the blast furnace charging material is charged into the blast furnace.
JP2013556696A 2012-05-18 2013-05-17 Raw material charging method to blast furnace Active JP5601426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013556696A JP5601426B2 (en) 2012-05-18 2013-05-17 Raw material charging method to blast furnace

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012115055 2012-05-18
JP2012115055 2012-05-18
JP2013556696A JP5601426B2 (en) 2012-05-18 2013-05-17 Raw material charging method to blast furnace
PCT/JP2013/003172 WO2013172046A1 (en) 2012-05-18 2013-05-17 Method for loading raw material into blast furnace

Publications (2)

Publication Number Publication Date
JP5601426B2 JP5601426B2 (en) 2014-10-08
JPWO2013172046A1 true JPWO2013172046A1 (en) 2016-01-12

Family

ID=49583472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013556696A Active JP5601426B2 (en) 2012-05-18 2013-05-17 Raw material charging method to blast furnace

Country Status (6)

Country Link
EP (1) EP2851434B1 (en)
JP (1) JP5601426B2 (en)
KR (1) KR101630279B1 (en)
CN (1) CN104302788B (en)
TR (1) TR201903647T4 (en)
WO (1) WO2013172046A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018008267B1 (en) * 2015-10-28 2021-09-08 Jfe Steel Corporation METHOD OF LOADING RAW MATERIAL INTO THE BLAST FURNACE
KR102249774B1 (en) 2019-10-02 2021-05-07 김미경 Multifunctional crutches
CN115023508B (en) * 2020-01-29 2023-07-18 杰富意钢铁株式会社 Method for charging raw material into blast furnace
WO2021152989A1 (en) * 2020-01-29 2021-08-05 Jfeスチール株式会社 Method for charging raw material into blast furnace

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910402B2 (en) 1978-12-08 1984-03-08 川崎製鉄株式会社 How to operate a blast furnace with mixed charges
JPS5910402A (en) 1982-07-10 1984-01-19 Toshiba Corp Rolling mill and rolling method
KR950007781B1 (en) * 1986-08-26 1995-07-18 가와사끼 세이데쓰 가부시끼가이샤 Shaft furnace having means for charging and adjusting a premixture of ore and coke
JPH0254706A (en) * 1988-08-18 1990-02-23 Kawasaki Steel Corp Method for operating blast furnace
JP2820478B2 (en) 1990-01-16 1998-11-05 川崎製鉄株式会社 Feeding method for bellless blast furnace
JP2724063B2 (en) * 1990-11-30 1998-03-09 川崎製鉄株式会社 Raw material charging control method at the blast furnace top
JPH06208404A (en) * 1993-01-11 1994-07-26 Matsushita Electric Ind Co Ltd Automatic adjusting unit for feedback gain
JP3211210B2 (en) * 1993-07-30 2001-09-25 カヤバ工業株式会社 Suspension device
JP3284908B2 (en) * 1996-12-24 2002-05-27 住友金属工業株式会社 Blast furnace operation method
EP1445334A1 (en) * 2002-08-29 2004-08-11 JFE Steel Corporation Raw material charging method for bell-less blast furnace
JP4269847B2 (en) 2002-08-30 2009-05-27 Jfeスチール株式会社 Raw material charging method for bell-less blast furnace
JP2005060797A (en) * 2003-08-18 2005-03-10 Jfe Steel Kk Method for charging material to blast furnace
CN101275172A (en) * 2007-03-30 2008-10-01 鞍钢股份有限公司 Blast furnace burden mixed charging method
CN101476002B (en) * 2009-01-16 2012-06-20 北京中电华方科技有限公司 Blast furnace iron manufacturing process
CN102021255A (en) * 2009-12-31 2011-04-20 宝钢集团新疆八一钢铁有限公司 Distribution method of bell-free blast furnace with high proportion pellet ore burden structure
KR101175465B1 (en) * 2010-07-29 2012-08-20 인하대학교 산학협력단 method for calculating trajectory for dumping of charge of blast furnace
JP5754109B2 (en) 2010-10-29 2015-07-22 Jfeスチール株式会社 Raw material charging method to blast furnace

Also Published As

Publication number Publication date
EP2851434A1 (en) 2015-03-25
EP2851434B1 (en) 2019-02-20
JP5601426B2 (en) 2014-10-08
TR201903647T4 (en) 2019-06-21
KR101630279B1 (en) 2016-06-14
EP2851434A4 (en) 2015-12-09
KR20150004840A (en) 2015-01-13
CN104302788B (en) 2016-05-04
CN104302788A (en) 2015-01-21
WO2013172046A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5601426B2 (en) Raw material charging method to blast furnace
JP5522331B2 (en) Raw material charging method to blast furnace
JP5910735B2 (en) Raw material charging method to blast furnace
JP5574064B2 (en) Raw material charging method to blast furnace
WO2013172044A1 (en) Method for charging starting material into blast furnace
JP5754109B2 (en) Raw material charging method to blast furnace
JP2013095970A (en) Method for operating blast furnace
JP5515288B2 (en) Raw material charging method to blast furnace
JP5871062B2 (en) Raw material charging method to blast furnace
JPWO2013172043A1 (en) Raw material charging method to blast furnace
JP5338309B2 (en) Raw material charging method to blast furnace
JP5920459B2 (en) Raw material charging method to blast furnace
WO2019187997A1 (en) Method for loading raw materials into blast furnace
JPH06279818A (en) Operation of blast furnace
JP5966608B2 (en) Raw material charging method to blast furnace
JP5920012B2 (en) Raw material charging method to blast furnace
JP6558519B1 (en) Raw material charging method for blast furnace
JP6458807B2 (en) Raw material charging method to blast furnace
KR101510546B1 (en) Method for charging materials into blast furnace
JP2014037580A (en) Method for charging raw material into bell-type blast furnace
JPH08253802A (en) Operation of blast furnace

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R150 Certificate of patent or registration of utility model

Ref document number: 5601426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250