JP3284908B2 - Blast furnace operation method - Google Patents

Blast furnace operation method

Info

Publication number
JP3284908B2
JP3284908B2 JP34289996A JP34289996A JP3284908B2 JP 3284908 B2 JP3284908 B2 JP 3284908B2 JP 34289996 A JP34289996 A JP 34289996A JP 34289996 A JP34289996 A JP 34289996A JP 3284908 B2 JP3284908 B2 JP 3284908B2
Authority
JP
Japan
Prior art keywords
coke
ore
furnace
particle size
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34289996A
Other languages
Japanese (ja)
Other versions
JPH10183210A (en
Inventor
公平 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP34289996A priority Critical patent/JP3284908B2/en
Publication of JPH10183210A publication Critical patent/JPH10183210A/en
Application granted granted Critical
Publication of JP3284908B2 publication Critical patent/JP3284908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高炉内に鉱石と
コークスを層別に繰り返し装入する際に、コ−クスにつ
いてはそれ単独で装入し、鉱石についてはコ−クスおよ
びMgO源副原料を混合して装入(同時装入)する高炉
操業方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method of charging ore and coke repeatedly into a blast furnace by stratification, wherein coke is charged alone, and ore is coke and MgO source auxiliary material. And a blast furnace operating method for mixing and charging (simultaneous charging).

【0002】[0002]

【従来の技術】高炉において、鉱石は、炉下部に設置さ
れた羽口から吹き込まれる熱風とコークスとの反応によ
って生成する還元性ガス(CO、H2 )の作用により、
炉内を降下しつつ徐々に加熱、還元され、軟化溶融帯
(鉱石が溶融し始めてから滴下するまでの領域)を形成
した後、炉芯コークス層の隙間を通過して溶銑として炉
底に溜まる。この溶銑は定期的にまたは連続的に出銑口
から抜き出される。
2. Description of the Related Art In a blast furnace, ore is produced by the action of a reducing gas (CO, H 2 ) generated by a reaction between hot air blown from tuyeres installed in the lower part of the furnace and coke.
Heated and reduced gradually while descending in the furnace, forming a softening and melting zone (the area from the start of ore melting to the dropping), then passes through the gap in the core coke layer and accumulates as hot metal at the furnace bottom . The hot metal is withdrawn from the taphole periodically or continuously.

【0003】この高炉の操業は、近年、コークス比を低
減させるため、羽口から熱風とともに微粉炭を吹き込む
高PCI操業へ移行しており、炉頂から装入する鉱石量
がコークスに比較して増加してきている。そのため、特
に鉱石の軟化溶融帯の通気抵抗が増加し易い状況にあ
る。
In recent years, the operation of this blast furnace has shifted to a high PCI operation in which pulverized coal is blown together with hot air from tuyeres in order to reduce the coke ratio, and the amount of ore charged from the furnace top is smaller than that of coke. It is increasing. Therefore, in particular, there is a situation in which the ventilation resistance of the ore softening and melting zone tends to increase.

【0004】このような状況下で高炉を安定にしかも効
率よく操業するには、炉内を上昇するガス流分布を適正
に制御することが重要であり、そのためには、鉱石軟化
溶融帯の通気性を良好に保つことが有効である。
Under these circumstances, in order to operate the blast furnace stably and efficiently, it is important to properly control the gas flow distribution rising in the furnace, and for that purpose, ventilation of the ore softening and melting zone is required. It is effective to maintain good properties.

【0005】鉱石軟化溶融帯の通気性を良好に保つため
には、一度に装入する鉱石量を減少させ、軟化溶融帯の
厚みを低減する方法がある。
[0005] In order to maintain good permeability of the ore softening zone, there is a method of reducing the amount of ore charged at a time and reducing the thickness of the softening zone.

【0006】また、鉱石にコークスを混合して装入する
方法も提案されている。例えば、特開昭59−4140
2号公報において、鉱石とコークスを交互に層別して装
入する際に、鉱石層に装入コークス量の20%までのコ
ークスもしくは石炭を混合して装入することにより通気
抵抗の高い軟化溶融帯へのガスの侵入を可能ならしめ、
炉況を改善する方法が開示されている。さらに、特開平
4−63212号公報では、鉱石に混合するコークス量
に応じて同コークスの粒径を増大させ、粒度の粗いコー
クスが炉中心に遍在する特性を利用して中心部のガス流
を確保し、炉内通気抵抗を低減させる方法が開示されて
いる。
[0006] A method of mixing and charging coke into ore has also been proposed. For example, JP-A-59-4140
In Japanese Unexamined Patent Publication No. 2, when ore and coke are alternately stratified and charged, coke or coal of up to 20% of the charged coke amount is mixed and charged into the ore layer, so that a softened molten zone having high ventilation resistance is charged. To allow gas to enter the
Methods for improving furnace conditions are disclosed. Further, in Japanese Patent Application Laid-Open No. 4-63212, the particle size of coke is increased in accordance with the amount of coke mixed into the ore, and the coke having a coarse particle size is ubiquitously used in the center of the furnace to utilize the gas flow in the center. And a method for reducing the ventilation resistance in the furnace is disclosed.

【0007】一方、コ−クスと鉱石との混合層内のコ−
クス粒径を鉱石粒径の1.4〜9.0倍とし、この混合
したコ−クスによって上部装入物の荷重を支持して、軟
化溶融帯における還元鉄とコ−クスとの緊密な接触を回
避し、これにより還元鉄への浸炭と、それに伴う還元鉄
へのSiの移行を抑制して低Siの溶銑を製造する方法
が特公昭63−65727号公報に開示されている。
On the other hand, the coke in the mixed layer of coke and ore
The mixed coke supports the load of the upper charge by 1.4 to 9.0 times the ore particle size, and the reduced iron and coke in the softening molten zone are tightly packed. Japanese Patent Publication No. 63-65727 discloses a method for producing hot metal with low Si by avoiding contact, thereby suppressing carburization of reduced iron and accompanying transfer of Si to reduced iron.

【0008】しかしながら、上述の方法にはそれぞれ次
のような問題点がある。すなわち、一度に装入する鉱石
量を減少させ、軟化溶融帯の厚みを低減する方法におい
ては、軟化溶融帯におけるコークス層の厚みも同時に減
少するので、逆に、通気性の悪化を伴い、また、一度に
装入する量が少ないことによる円周方向の分布偏差が生
じやすいという問題がある。
However, each of the above methods has the following problems. That is, in the method of reducing the amount of ore to be charged at a time and reducing the thickness of the softening zone, the thickness of the coke layer in the softening zone also decreases at the same time. However, there is a problem that the distribution deviation in the circumferential direction is apt to occur due to the small amount of charging at a time.

【0009】また、特開昭59−41402号公報に記
載の方法では、同時に装入する鉱石とコークスの粒径比
が規定されていないため、粒度に変動が生じると、鉱石
とコークスの密度差により粒子偏析現象が生じ、炉内半
径方向の粒度分布がそれによって支配されるため、炉内
におけるガス流分布が不安定になり、炉況が悪化する危
険性がある。
In the method described in JP-A-59-41402, the particle size ratio between the ore and coke charged at the same time is not specified. As a result, a particle segregation phenomenon occurs, and the particle size distribution in the radial direction in the furnace is governed by the particle segregation phenomenon, so that the gas flow distribution in the furnace becomes unstable, and there is a risk that the furnace condition may deteriorate.

【0010】前記特開平4−63212号公報記載の方
法には、鉱石に混合するコ−クスの粒度の粗い方から2
0重量%の平均粒度dp(mm)を、鉱石に混入するコ
−クスの装入量W(重量%)に応じて、dp>(W+2
0)の範囲に保つことが示されている。しかし、コ−ク
スと鉱石の粒径比が考慮されていないので、粒子間の粒
径比と密度比(これは、通常は一定である)で定まるコ
−クスと鉱石の偏在量の制御性は必ずしも良好とは言え
ない。
In the method described in the above-mentioned Japanese Patent Application Laid-Open No. 4-63212, the coke to be mixed with the ore has two particles from the coarser one.
The average particle size dp (mm) of 0% by weight is determined according to the charging amount W (% by weight) of coke mixed into the ore by dp> (W + 2
0). However, since the particle size ratio of coke and ore is not taken into account, the controllability of the uneven distribution of coke and ore is determined by the particle size ratio and density ratio between particles (which is usually constant). Is not always good.

【0011】また、特公昭63−65727号公報に記
載される方法では、コ−クスを混合した鉱石層における
コ−クス粒径と鉱石粒径との比を規定している。しか
し、この方法は、軟化溶融帯層に前記の混合したコ−ク
スを存在させ、上部装入物の荷重を支持して、還元鉄と
コ−クスとの緊密な接触を回避しようとするものであっ
て、軟化溶融帯内で混合コークスが完全に反応消滅せ
ず、細粒化した状態で炉芯部に供給されると、炉芯コー
クスの通気通液性が阻害され、炉況悪化を引き起こす可
能性がある。
In the method described in Japanese Patent Publication No. 63-65727, the ratio between the coke grain size and the ore grain size in the ore layer mixed with coke is defined. However, this method involves the presence of the mixed coke in the softening molten zone to support the load of the upper charge and avoid intimate contact between the reduced iron and the coke. However, when the mixed coke does not completely disappear in the softening and melting zone and is supplied to the furnace core in a finely divided state, the permeability of the core coke to the liquid is impaired, and the furnace condition deteriorates. Can cause.

【0012】[0012]

【発明が解決しようとする課題】本発明はこのような状
況に鑑みなされたもので、高炉炉内半径方向において鉱
石の溶融状態を良好かつ均一に保ち、高炉の通気性、通
液性を良好に保ち、炉況を安定に維持する高炉操業方法
を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation, and keeps the ore molten state in the blast furnace radial direction in a good and uniform state, thereby improving the air permeability and liquid permeability of the blast furnace. The purpose of the present invention is to provide a blast furnace operating method for maintaining the furnace condition stably.

【0013】[0013]

【課題を解決するための手段】本発明者は、上記の課題
を解決するため検討を重ねた結果、高炉内に装入する鉱
石にコークスおよびMgO源副原料を混合するに際し、
これら同時に装入する鉱石とコ−クスの粒径比率および
重量比率、ならびに同時装入する鉱石とMgO源副原料
の粒径比率を調整することによって、装入後の鉱石層内
の炉内半径方向におけるコークスに対する鉱石の重量比
(以下、O/C比と記す)の分布を制御し、同時装入し
た鉱石層中のコークスを鉱石が溶融し始めてから滴下す
るまでの領域(すなわち、軟化溶融帯)で反応消滅させ
ると同時に、鉱石の溶融状態を良好に保ち得ることを確
認した。これによって、高炉の通気性、通液性を良好に
維持し、炉況を安定化することができる。
Means for Solving the Problems As a result of repeated studies to solve the above-mentioned problems, the present inventor has found that when coke and MgO source auxiliary material are mixed with ore charged in a blast furnace,
By adjusting the particle size ratio and weight ratio of the ore and coke to be charged at the same time, and the particle size ratio of the ore and the MgO source auxiliary material to be charged at the same time, the furnace radius in the ore layer after the charging is adjusted. The distribution of the weight ratio of ore to coke in the direction (hereinafter, referred to as O / C ratio) is controlled, and the coke in the ore layer charged at the same time from the start of melting of the ore to the dropping of the coke (that is, softening melting). Band), it was confirmed that the ore could be maintained in a good molten state at the same time as the reaction disappeared. This makes it possible to maintain good air permeability and liquid permeability of the blast furnace and to stabilize the furnace condition.

【0014】本発明は上記の知見に基づいてなされたも
ので、その要旨は、下記の高炉操業方法にある。
The present invention has been made based on the above findings, and the gist of the invention resides in the following blast furnace operating method.

【0015】高炉内に鉱石とコークスを層別に繰り返し
装入して行う高炉操業方法であって、前記鉱石に、下記
(1)式、(2)式および(3)式を同時に満たすよう
にコークスおよびMgO源副原料を混合することを特徴
とする高炉操業方法。
A method for operating a blast furnace in which ore and coke are repeatedly charged into a blast furnace by layer, wherein the ore and the coke satisfy the following equations (1), (2) and (3) simultaneously. And a blast furnace operating method comprising mixing an MgO source auxiliary material.

【0016】 1.20<DO /DC <1.60 ・・・(1) 1.10<DO /DF <1.15 ・・・(2) X<3.2−{(DC −20)/25} ・・(3) ただし、DO :鉱石の加重平均粒径(mm) DC :コークスの加重平均粒径(mm) DF :MgO源副原料の加重平均粒径(mm) X :鉱石に混合するコークスの鉱石に対する重量比率
(%)
1.20 <D O / D C <1.60 (1) 1.10 <D O / D F <1.15 (2) X <3.2 − {(D (C- 20) / 25} (3) where D O : Weighted average particle size of ore (mm) D C : Weighted average particle size of coke (mm) D F : Weighted average particle size of MgO source auxiliary material (Mm) X: weight ratio of coke to ore mixed with ore (%)

【0017】[0017]

【発明の実施の形態】以下、本発明の高炉操業方法を図
に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a blast furnace operating method of the present invention will be described in detail with reference to the drawings.

【0018】図1は、原料装入実験に用いた実高炉(内
容積1850m3 )の1/7スケ−ルの高炉炉頂部を中
心で縦断した半裁模型を示す図で、(a)は立体斜視
図、(b)は半裁縦断面図である。
FIG. 1 is a view showing a half-cut model that is vertically cut around the top of a blast furnace of 1/7 scale of an actual blast furnace (internal volume: 1850 m 3 ) used in a raw material charging experiment. FIG. 4B is a perspective view, and FIG.

【0019】図1において、ベルカップ3とベル2間の
貯鉱部内の原料は、ベル2をベル昇降駆動装置4を用い
て降下させることにより切り出され、ア−マ−5に衝突
後炉内に装入され、数チャ−ジ分のコ−クス層6と、コ
ークス混合または単独鉱石層7とが積層される。
In FIG. 1, the raw material in the ore storage portion between the bell cup 3 and the bell 2 is cut out by lowering the bell 2 by using a bell lifting / lowering drive device 4 and colliding with an armor 5 after the collision in the furnace. The coke layer 6 for several charges and the coke mixed or single ore layer 7 are stacked.

【0020】密度の異なる2種類の粒子、すなわち、鉱
石とMgO源副原料、またはコークスと鉱石を用いた場
合について、上記の高炉炉頂部模型により原料装入実験
を行い、炉内で堆積した後の2種類の粒子の炉内半径方
向における分布を測定した。以下、密度差が大きいコー
クスと鉱石を用いた実験について述べる。
For two kinds of particles having different densities, that is, ore and MgO source auxiliary material, or coke and ore, a raw material charging experiment was performed using the above blast furnace top model, and the particles were deposited in the furnace. Were measured in the radial direction in the furnace. Hereinafter, an experiment using coke and ore having a large density difference will be described.

【0021】原料装入実験に用いた鉱石(粒径をDO
する)とコ−クス(粒径をDC とする)の見掛け密度
は、それぞれ3.2g/cm3 および1.08g/cm
3 であり、鉱石に混合して同時に装入するコ−クス量は
鉱石重量の2.7重量%で一定とした。なお、鉱石とコ
ークスの粒径比(DO /DC )は、0.6、1.0、
1.2、1.6および1.8の5ケースとした。
The apparent densities of the ore (particle size is D O ) and coke (particle size is D C ) used in the raw material charging experiment were 3.2 g / cm 3 and 1.08 g / cm 3 , respectively. cm
The amount of coke mixed with the ore and charged at the same time was constant at 2.7% by weight of the ore weight. The ore and coke particle size ratios (D O / D C ) were 0.6, 1.0,
There were five cases of 1.2, 1.6 and 1.8.

【0022】図2に、高炉炉内の半径方向における原料
の偏在状況と、鉱石およびコークスの粒径比(DO /D
C )の関係を示す(図中に●、○等の符号で表示)。縦
軸の(堆積O/C比)/(装入O/C比)における(装
入O/C比)は、装入コ−クスに対する装入鉱石の重量
比であり、(堆積O/C比)は炉内で堆積したコークス
に対する同じく堆積した鉱石の重量比である。装入鉱石
およびコ−クスが偏在することなく均一に混合された状
態で炉内に堆積したときは、(堆積O/C比)は(装入
O/C比)と同じ値になる。従って、図2の縦軸の(堆
積O/C比)/(装入O/C比)の値が1のときは原料
偏在がないことを示し、1を超えるときは鉱石の偏在、
1未満のときはコ−クスの偏在があることを示す。な
お、横軸は実験に用いた模型炉の炉中心と炉壁間の距離
を1.0として表した無次元距離である。
FIG. 2 shows the state of uneven distribution of the raw material in the blast furnace furnace in the radial direction and the ore and coke particle size ratios (D O / D).
C ) (represented by symbols such as ● and ○ in the figure). (Charged O / C ratio) in (Deposited O / C ratio) / (Charged O / C ratio) on the vertical axis is a weight ratio of charged ore to charged coke, and (Deposited O / C ratio) Ratio) is the weight ratio of similarly deposited ore to coke deposited in the furnace. When the charged ore and coke are deposited in the furnace in a state of being uniformly mixed without uneven distribution, the (deposited O / C ratio) becomes the same value as the (charged O / C ratio). Therefore, when the value of (deposition O / C ratio) / (charge O / C ratio) on the vertical axis of FIG. 2 is 1, it indicates that there is no uneven distribution of the raw material, and when it exceeds 1, the ore is unevenly distributed.
If it is less than 1, it indicates that coke is unevenly distributed. The horizontal axis is a dimensionless distance where the distance between the furnace center and the furnace wall of the model furnace used in the experiment is 1.0.

【0023】図2に示したように、DO /DC が小さい
場合(0.6および1.0の場合)は、炉中心側の領域
にコークスが偏在し、炉中間部から炉壁周辺部にかけて
鉱石が多く存在し、その偏在の度合いはDO /DC が小
さくなるほど強くなる。一方、DO /DC が大きい場合
(1.6および1.8の場合)は、上記とは逆に炉中心
領域に鉱石が遍在し、炉壁近傍領域にコ−クスが偏在し
ており、この逆偏析の度合いはDO /DC が大きくなる
ほど強くなる。
[0023] As shown in FIG. 2, (in the case of 0.6 and 1.0) D O / D when C is small, the coke is unevenly distributed in the region of the furnace center side, the furnace wall near the furnace middle portion There is a lot of ore throughout the part, and the degree of uneven distribution increases as D O / D C decreases. On the other hand, when D O / D C is large (in the cases of 1.6 and 1.8), conversely, ore is ubiquitous in the furnace center region and coke is unevenly distributed in the region near the furnace wall. Therefore, the degree of the reverse segregation increases as D O / D C increases.

【0024】しかし、DO /DC を1.2としたとき
は、コークスと鉱石のいずれの偏在もなく、高炉炉内の
半径方向にコークスと鉱石が均等に混合された状態にあ
る。これは、コークスと鉱石の密度差に起因する粒子偏
析効果が、粒度差による粒子偏析効果と相殺しあい、混
合しても両者が分離しない状態が実現されたことを示す
ものである。
However, when D O / D C is 1.2, there is no uneven distribution of coke and ore, and coke and ore are evenly mixed in the radial direction in the blast furnace. This indicates that the particle segregation effect caused by the density difference between coke and the ore cancels out the particle segregation effect caused by the particle size difference, and that a state where the two are not separated even when mixed is realized.

【0025】密度差および粒度差のある鉱石とコ−クス
を同時装入し、炉内で堆積させた後の堆積層中に上述し
たような原料偏在が生じるのは、次のような機構による
ものと考えられる。
The above-described uneven distribution of the raw materials in the deposited layer after the ore and the coke having the density difference and the particle size difference are simultaneously charged and deposited in the furnace is caused by the following mechanism. It is considered something.

【0026】図3は、粒径差または密度差がある混合粒
子の炉内堆積過程における分級堆積作用を説明するため
の概念図であり、(a)は粒径差がある場合、(b)は
密度差がある場合である。
FIGS. 3A and 3B are conceptual diagrams for explaining the classifying and depositing action in the process of depositing mixed particles having a difference in particle size or density in a furnace. FIG. Is the case where there is a density difference.

【0027】図3(a)に示すように、粒径の異なる粒
子が混合された状態で斜面を流下する際には、粒径の小
さな粒子Aが粒径の大きな粒子B間の空隙を通過し、下
層部へ移動する。この際、粒子Aが粒子B間の空隙を通
過する確率は、粒子Aに対する粒子B間の空隙の大きさ
と、斜面を流下中に粒子Aが粒子Bの空隙に遭遇する頻
度に比例し、前者は粒子Aと粒子Bの粒径差が大きいほ
ど、後者は流下中の混合粒子の斜面垂直方向における速
度勾配が大きいほど大となり、粒径差による分級が促進
される。したがって、粒径の小さな粒子Aが落下点近傍
で分級され、斜面上流の炉壁部近傍に堆積し、粒径の大
きな粒子Bは落下点近傍で浮上し、斜面下流へ運ばれる
結果、炉中心部に偏在することになる。
As shown in FIG. 3 (a), when the particles having different particle sizes flow down the slope in a mixed state, the small particles A pass through the gaps between the large particles B. Then move to the lower layer. At this time, the probability that the particles A pass through the gaps between the particles B is proportional to the size of the gaps between the particles B with respect to the particles A and the frequency at which the particles A encounter the gaps of the particles B while flowing down the slope. The larger the particle size difference between the particles A and the particles B, the larger the latter as the velocity gradient in the direction perpendicular to the slope of the mixed particles flowing down becomes larger, and the classification by the particle size difference is promoted. Therefore, the particles A having a small particle size are classified near the falling point and deposited near the furnace wall on the upstream of the slope, and the particles B having a large particle float near the falling point and are transported to the downstream of the slope. Will be unevenly distributed.

【0028】一方、図3(b)に示すように、密度の異
なる粒子が混合状態で斜面を流下する際には、流下中の
粒子間の衝突のうち、同密度の粒子同士が衝突する時の
反発に比較して、低密度粒子Bが高密度粒子Aに衝突す
る際の反発が大きいため、高密度の粒子Aの近傍には粒
子Bによる粗な空隙が生成される。その結果、粒子Aが
その空隙を通過し、下層部へ移動する確率が大きくな
る。したがって、高密度の粒子Aが、落下点近傍で分級
作用を受けて斜面上流の炉壁部近傍に堆積し、低密度の
粒子Bは落下点近傍で浮上し、斜面下流へ運ばれ、炉中
心部に偏在することになる。
On the other hand, as shown in FIG. 3B, when particles having different densities flow down the slope in a mixed state, when particles having the same density collide with each other among particles flowing down. The repulsion when the low-density particles B collide with the high-density particles A is greater than that of the high-density particles A, so that coarse voids due to the particles B are generated near the high-density particles A. As a result, the probability that the particles A pass through the gap and move to the lower layer increases. Therefore, the high-density particles A are subjected to the classification action near the drop point and accumulate near the furnace wall upstream of the slope, and the low-density particles B float near the drop point and are transported downstream of the slope to the furnace center. Will be unevenly distributed.

【0029】本発明者は、上述した混合原料の堆積層内
における特定の原料の偏在は、斜面上を流下する混合原
料粒子が堆積過程において分級堆積される確率によって
定まり、また、この確率は、混合粒子の密度差、粒度分
布を考慮した粒径比、装入量比、および装入速度によっ
て変化すると考えた。そして、これらを変化させた装入
模型実験における原料偏在実測値に基づいて分級堆積さ
れる確率を定量化し、堆積層の炉内半径方向における混
合原料偏在予測モデルを作成した。
The inventor of the present invention has determined that the above-mentioned uneven distribution of a specific raw material in the deposition layer of the mixed raw material is determined by the probability that the mixed raw material particles flowing down the slope are classified and deposited in the deposition process. It is considered that the ratio varies depending on the density difference of the mixed particles, the particle size ratio in consideration of the particle size distribution, the charging ratio, and the charging speed. Then, the probability of classification and deposition was quantified based on the measured values of the uneven distribution of the raw materials in the charging model experiment in which these were changed, and a mixed raw material uneven distribution prediction model in the radial direction of the furnace in the furnace was created.

【0030】この混合原料偏在予測モデルを用い、前記
の高炉炉頂部模型により行った原料装入実験の各ケース
について、原料粒子の炉内半径方向における分布を計算
した結果を前記の図2に併せて示す。
Using the mixed raw material uneven distribution prediction model, the results of calculating the distribution of the raw material particles in the radial direction in the furnace for each case of the raw material charging experiment performed with the above blast furnace furnace top model are shown in FIG. Shown.

【0031】図2に実線、破線等で示した計算値と前述
した実測値とはほぼ一致しており、高炉内に堆積する原
料の炉内半径方向における原料分布についてのシミュレ
−ションが可能であることが判った。
The calculated values indicated by the solid line and the broken line in FIG. 2 substantially coincide with the measured values described above, and it is possible to simulate the distribution of the raw materials deposited in the blast furnace in the radial direction inside the furnace. I found it to be.

【0032】そこで、上記の混合原料偏在予測モデルを
用い、実高炉(内容積2700m3、風量:4400N
3 /min)を対象とした数値シミュレ−ションを実
施した。このときの原料装入条件および原料粒径条件を
表1に示す。
Therefore, using the above mixed raw material uneven distribution prediction model, an actual blast furnace (internal volume 2700 m 3 , air flow: 4400 N
(m 3 / min). Table 1 shows the raw material charging conditions and raw material particle size conditions at this time.

【0033】[0033]

【表1】 [Table 1]

【0034】図4に、鉱石、コークス同時装入層内にお
けるコークス存在率の炉内半径方向分布の計算結果を示
す。横軸は炉中心と炉壁間の距離を1.0として表した
炉内半径である。
FIG. 4 shows the calculation results of the radial distribution in the furnace of the coke abundance ratio in the ore and coke simultaneous charging layers. The horizontal axis is the furnace radius, where the distance between the furnace center and the furnace wall is 1.0.

【0035】この図から明かなように、粒径の大きなコ
ークスAを鉱石と同時装入した場合(ケース1)、また
は粒径の小さなコークスBを鉱石と同時装入した場合
(ケース2)においては、前記の高炉炉頂部模型による
基礎実験の結果と同様、コークスAは炉内中心部から中
間部に、コークスBは炉壁周辺部にぞれぞれ偏在し、装
入時の鉱石に対する混合比率が3重量%であっても、局
所的には5重量%を超える部分が存在する。
As is apparent from this figure, in the case where coke A having a large particle size is simultaneously charged with ore (case 1), or in the case where coke B having a small particle size is simultaneously charged with ore (case 2). In the same manner as in the results of the basic experiment using the blast furnace top model described above, coke A was unevenly distributed from the center of the furnace to the middle, and coke B was unevenly distributed around the furnace wall. Even if the ratio is 3% by weight, there is a portion locally exceeding 5% by weight.

【0036】一方、DO /DC が1.23となる粒径の
コークスCを混合比率3重量%で鉱石と同時装入した場
合(ケース3)と、同じくコークスCを混合比率5重量
%で鉱石と同時装入した場合(ケース4)の装入後の炉
内半径方向におけるコークス存在率は、装入時の比率
(それぞれ3重量%および5重量%)とほぼ同じで、局
所的な偏在部は存在しない。
On the other hand, when coke C having a particle diameter D O / D C of 1.23 is simultaneously charged with ore at a mixing ratio of 3% by weight (case 3), similarly, coke C is mixed at a mixing ratio of 5% by weight. The coke abundance in the furnace in the radial direction after charging when the ore and the ore were charged simultaneously (case 4) was almost the same as the ratio at the time of charging (3% by weight and 5% by weight, respectively). There are no uneven parts.

【0037】また、ケース5は反応性の高いコークスD
を混合比率3重量%で鉱石と同時装入した場合である
が、粒径がコークスCと同じなので半径方向分布パター
ンは変化せず、混合比率が3重量%のケース3と同じ結
果となった。
Case 5 is a highly reactive coke D
Was mixed with ore at a mixing ratio of 3% by weight. However, since the particle size was the same as that of coke C, the distribution pattern in the radial direction did not change, and the same result as in Case 3 with a mixing ratio of 3% by weight was obtained. .

【0038】上記の数値的検討結果から、コークス(粒
径DC )と鉱石(粒径DO )の粒子偏析効果を相殺する
ためには、下記(1)式の条件を満たす必要があること
がわかる。ただし、この条件は、粒子密度比(鉱石とコ
ークスの見掛け密度の比)が3.0の場合に対応する条
件である。
From the above numerical study results, it is necessary to satisfy the condition of the following formula (1) in order to cancel the effect of segregation of particles between coke (particle diameter D C ) and ore (particle diameter D O ). I understand. However, this condition is a condition corresponding to a case where the particle density ratio (the ratio of the apparent density between ore and coke) is 3.0.

【0039】 1.20<DO /DC <1.60 ・・(1) 鉱石層内に混合された状態のコークスは、高炉内を降下
する間に、加熱され、鉱石の還元反応により生成する炭
酸ガス(CO2 )によるコークスガス化反応が生じ、そ
れに伴って強度が劣化(反応劣化)し、粉化するので、
粒径が徐々に減少していく。
1.20 <D O / D C <1.60 (1) The coke mixed in the ore layer is heated while descending in the blast furnace, and is generated by the ore reduction reaction. Coke gasification reaction due to carbon dioxide gas (CO 2 ) occurs, the strength is deteriorated (reaction deterioration) and powdered,
The particle size gradually decreases.

【0040】鉱石軟化溶融帯でコークスガス化反応はピ
ークに達するが、反応劣化により粒径が特に減少したコ
ークスが、炉下部に達すると、通気性および通液性を悪
化させ、炉況に悪影響を与える。したがって、粒径の比
較的小さな、鉱石と同程度の大きさのコークスについて
は、鉱石軟化溶融帯でガス化反応により完全に消滅させ
ることが通気性および通液性を高める上で有効である。
また、この鉱石軟化溶融帯でのコークスガス化反応を活
発化させることにより鉱石の還元反応も活発化するの
で、鉱石の溶け落ち性状が好転し、鉱石の融着による通
気抵抗の上昇を緩和することができる。
The coke gasification reaction reaches a peak in the ore softening and melting zone, but when the coke whose particle size is particularly reduced due to the reaction deterioration reaches the lower part of the furnace, it deteriorates gas permeability and liquid permeability, adversely affecting the furnace condition. give. Therefore, for coke having a relatively small particle size and the same size as ore, it is effective to completely extinguish the coke by the gasification reaction in the ore softening and melting zone in order to enhance gas permeability and liquid permeability.
In addition, by activating the coke gasification reaction in the ore softening and melting zone, the ore reduction reaction is also activated, so that the ore's burn-through properties are improved and the increase in airflow resistance due to fusion of the ore is moderated. be able to.

【0041】鉱石層内に混合されたコークスを鉱石融着
帯で反応により消滅させる条件は、コークスの初期粒径
と鉱石との混合比率により決定される。
The conditions under which the coke mixed in the ore layer is eliminated by the reaction in the ore cohesive zone are determined by the initial particle size of the coke and the mixing ratio of the ore.

【0042】コークスガス化反応によるコークスの粒径
劣化挙動は、岩永らによって明らかにされているので
(住友金属Vol.32、No.1、p1)、同文献で
提案されている数学モデルにより、前記表1の各ケース
で推定した炉内条件で、鉱石に混合して同時装入したコ
ークスが鉱石融着帯で反応消滅するかどうかの判定を行
った。
The behavior of particle size deterioration of coke due to the coke gasification reaction has been clarified by Iwanaga et al. (Sumitomo Metals, Vol. 32, No. 1, p1). Under the in-furnace conditions estimated in each case of Table 1 above, it was determined whether or not coke mixed with ore and charged at the same time would disappear in the ore cohesive zone.

【0043】図5にその結果を示す。図の横軸は鉱石層
内に混合されたコークスの粒径(DC )であり、縦軸は
鉱石とコークスを同時装入する際に許容できる最大コー
クス混合比率である。ケース1〜5は表1のケース1〜
5に対応する。図中の○と●、□と■、および△と▲は
それぞれ炉の中心部、中間部、および炉壁周辺部に存在
するコークスを表す。なお、コークスが反応消滅するか
どうかの判定は、ばらつきの程度を調べるため各ケース
とも2回行った。
FIG. 5 shows the result. The horizontal axis in the figure is the particle size (D C ) of coke mixed in the ore layer, and the vertical axis is the maximum coke mixing ratio allowable when charging the ore and coke simultaneously. Cases 1 to 5 correspond to cases 1 to 5 in Table 1.
Corresponding to 5. ○ and ○, □ and の, and △ and の in the figure represent coke existing at the center, the middle, and the periphery of the furnace wall of the furnace, respectively. The determination as to whether or not the coke reacted and disappeared was performed twice in each case to examine the degree of variation.

【0044】図5において、斜線を施した部分が、鉱石
軟化溶融帯で鉱石と同時装入したコークスがガス化反応
によって消滅する範囲であり、それ以外の部分ではコー
クスが残存する。なお、図中のCの値はコークスの反応
性を表す指標で、数値が大きいほど反応性が良好である
ことを示すが、Cの値が大きいほど(すなわち、コーク
スの反応性が大きいほど)斜線部が拡大し、コークスが
消滅しやすくなることがわかる。
In FIG. 5, the shaded portion is the range in which coke charged simultaneously with the ore in the ore softening and melting zone disappears due to the gasification reaction, and the coke remains in other portions. The value of C in the figure is an index representing the reactivity of coke, and the larger the value, the better the reactivity. The larger the value of C (ie, the greater the reactivity of coke). It can be seen that the shaded area is enlarged and the coke is easily extinguished.

【0045】同時装入に際して許容できる最大コークス
混合比率Xは、通常のコークスが有する反応性を考慮し
てC=27%とすると、下記の(2)式で表される。す
なわち、コークスの粒径DC が増大するほど許容混合比
率Xは低下する。
The maximum allowable coke mixing ratio X at the time of simultaneous charging is expressed by the following equation (2) when C = 27% in consideration of the reactivity of ordinary coke. That is, the allowable mixing ratio X as the coke particle size D C is increased is reduced.

【0046】 X<3.2−{(DC −20)/25} ・・(2) 図5から明かなように、ケース1の場合、粒径の大きい
コークスAが偏在する炉中心から炉中間部で、反応で消
滅しないコークスが存在する。ケース2では、コークス
Bの粒径が小さいにもかかわらず炉壁周辺での偏在量が
多いため、炉壁周辺部に未反応のコークスBが残ること
になる。ケース3では、コークスCが、前記(1)式を
満たしているため、装入後の炉内半径方向での偏在がな
く、最初の混合割合で均一に分布しており、鉱石層内に
混合された全てのコークスが、鉱石軟化溶融帯で反応消
滅する。しかし、ケース4では、コークスCを使用して
るため炉内半径方向でコークスの偏在部は存在しない
が、装入時の混合率が高いため、融着帯で反応消滅しな
い。
X <3.2 − {(D C −20) / 25} (2) As is apparent from FIG. 5, in case 1, the furnace is located from the center of the furnace where coke A having a large particle size is unevenly distributed. In the middle, there is coke that does not disappear in the reaction. In Case 2, unreacted coke B remains around the furnace wall because the amount of uneven distribution around the furnace wall is large despite the small particle size of coke B. In Case 3, since coke C satisfies the above formula (1), there is no uneven distribution in the furnace in the radial direction after charging, and the coke C is uniformly distributed at the initial mixing ratio and mixed in the ore layer. All the coke that has been reacted disappears in the ore softening and melting zone. However, in Case 4, although coke C is used, there is no uneven portion of coke in the radial direction in the furnace, but the mixing ratio at the time of charging is high, and the reaction does not disappear in the cohesive zone.

【0047】ケース5は、粒径および混合比率はケース
3と同じであるが、反応性の高いコークスD(C=3
3)を使用しているため、鉱石軟化溶融帯で消滅しうる
最大コークス混合比率Xが増加する。これは、反応性の
高いコークスを使用することにより、鉱石に混合できる
コークス量を増加させることが可能であることを意味す
る。
In case 5, the particle size and the mixing ratio were the same as in case 3, but coke D (C = 3) having high reactivity was used.
Since 3) is used, the maximum coke mixing ratio X that can be eliminated in the ore softening and melting zone increases. This means that by using highly reactive coke, it is possible to increase the amount of coke that can be mixed into the ore.

【0048】したがって、鉱石軟化溶融帯でコークスガ
ス化反応により鉱石と同時装入したコークスを消滅さ
せ、かつ通気性を良好に保つには、高炉半径方向の粒子
偏析効果の相殺条件である(1)式だけでなく、コーク
ス消滅量を規定する(2)式も同時に満たすことが必要
である。
Therefore, in order to extinguish coke charged together with ore by the coke gasification reaction in the ore softening and melting zone and to maintain good air permeability, the condition for canceling the particle segregation effect in the blast furnace radial direction is (1). ), It is necessary to simultaneously satisfy the expression (2) that defines the coke disappearance amount.

【0049】また、上記(1)式と同様にMgO源副原
料(粒径DF )と鉱石の粒子偏析効果を相殺する条件
は、粒子密度比(鉱石とMgO源副原料の見掛け密度の
比)を1.8とした場合、次式のようになる。
As in the case of the above equation (1), the condition for offsetting the particle segregation effect between the MgO source auxiliary material (particle diameter D F ) and the ore is determined by the particle density ratio (the ratio of the apparent density between the ore and the MgO source auxiliary material). ) Is 1.8, the following equation is obtained.

【0050】 1.10<DO /DF <1.15 ・・(3) この(3)式の条件を満たすことにより、MgO源副原
料を鉱石中に炉内半径方向で均一に分布させることがで
き、鉱石の軟化溶融時におけるMgOの滓化作用によ
り、融体の粘度を炉内半径方向において均一に低下させ
て鉱石の溶融状態を良好に保ち、スラグ滴下時の圧力損
失を低下させることができる。すなわち、(3)式を満
たす条件でMgO源副原料を鉱石と混合させて装入する
ことにより、鉱石の高温性状を炉内半径方向で均一にす
ることができ、炉内の通気抵抗を低減させ、高PCI操
業へ移行した際の装入O/C比の増加による通気抵抗の
増大を抑制することができる。
1.10 <D O / D F <1.15 (3) By satisfying the condition of the expression (3), the MgO source auxiliary material is uniformly distributed in the ore in the furnace radial direction. Due to the slagging action of MgO during softening and melting of the ore, the viscosity of the melt is reduced uniformly in the radial direction in the furnace, the ore's molten state is kept good, and the pressure loss at the time of dropping slag is reduced. be able to. That is, by mixing and charging the MgO source auxiliary material with the ore under the condition satisfying the expression (3), the high-temperature properties of the ore can be made uniform in the radial direction in the furnace, and the ventilation resistance in the furnace can be reduced. As a result, it is possible to suppress an increase in ventilation resistance due to an increase in the charged O / C ratio when the operation is shifted to the high PCI operation.

【0051】上記のように、高炉内に装入する鉱石に上
記(1)〜(3)式が同時に成り立つようにコークスお
よびMgO源副原料を混合することによって、コークス
と鉱石の炉内半径方向における偏析を防止し、鉱石層中
のコークスを軟化溶融帯で反応消滅させると同時に、鉱
石の高温性状を炉内半径方向で均一に好転させ、高炉の
通気性、通液性を良好に維持し、安定した操業を行うこ
とができる。
As described above, the coke and the MgO source auxiliary material are mixed with the ore charged into the blast furnace so that the above-mentioned equations (1) to (3) are simultaneously satisfied, whereby the coke and the ore in the furnace radial direction are mixed. At the same time, the coke in the ore layer reacts and disappears in the softening and melting zone, and at the same time, the high-temperature properties of the ore are uniformly improved in the radial direction inside the furnace, maintaining good air permeability and liquid permeability of the blast furnace. , Stable operation can be performed.

【0052】以下、実施例により本発明の効果を具体的
に説明する。
Hereinafter, the effects of the present invention will be specifically described with reference to examples.

【0053】[0053]

【実施例】炉内容積2700m3 の高炉を用いて本発明
の高炉操業方法を実施し、従来の操業方法、比較のため
に行った本発明の規定から外れる条件での操業方法を実
施した場合の炉内状況と比較した。
EXAMPLE A blast furnace operating method of the present invention was carried out using a blast furnace having a furnace inner volume of 2700 m 3 , and a conventional operating method and an operating method under conditions deviating from the provisions of the present invention for comparison were carried out. In the furnace.

【0054】実施例および比較例の操業では、コ−クス
単独装入と、鉱石とそれに混合したコークスおよびMg
O源副原料の同時装入とを交互に繰り返して炉内に積層
させ、従来例の操業ではコ−クス単独装入と鉱石単独装
入とを交互に繰り返して炉内に積層させた。なお、送風
量はいずれの場合も4400Nm3 /minとした。
In the operation of the example and the comparative example, the coke alone was charged, and the ore was mixed with coke and Mg mixed therewith.
The simultaneous charging of the O-source auxiliary material was alternately repeated and laminated in the furnace. In the operation of the conventional example, the coke-only charging and the ore-only charging were alternately repeated and laminated in the furnace. The air volume was 4400 Nm 3 / min in each case.

【0055】表2に、実施例、比較例1〜4および従来
例の原料装入条件および原料粒径条件を示す。また、操
業中の炉内状況、すなわち、送風圧変動、スリップ発生
回数、通気抵抗指数、溶銑Si濃度の変動率、炉芯コ−
クスの加重平均粒径(羽口コ−クスサンプルによる測定
値)および溶銑温度の変動幅も同表に示した。
Table 2 shows the raw material charging conditions and the raw material particle size conditions of the examples, comparative examples 1 to 4, and the conventional example. In addition, the conditions inside the furnace during operation, that is, blast pressure fluctuation, number of slip occurrences, ventilation resistance index, fluctuation rate of hot metal Si concentration, furnace core
The table also shows the weighted average particle size (measured value of tuyere coke sample) and fluctuation range of hot metal temperature.

【0056】[0056]

【表2】 [Table 2]

【0057】表2に示したように、鉱石とコークスおよ
びMgO源副原料の同時装入を行っているが、DO がD
C の0.35倍の比較例1では、鉱石へのコークスの混
合を行っていない従来例に比較しても、溶銑のSi濃度
および溶銑温度の変動がみられ、スリップ発生回数も増
加し、操業は不安定化に向かった。これは、同時装入し
たコ−クスに対する鉱石の粒径比が本発明における規定
よりも小さいため、コークスが炉中心領域へ偏在し、強
度の低下したコークスが炉下部へ供給されたため炉芯部
の通気通液性が悪化したことによるものと考えられる。
また、表示していないが、炉中心領域へのコ−クスの偏
在により、従来例に比べ、炉中心領域の炉頂ガス温度の
上昇とCOガス利用率の低下が認められた。
[0057] As shown in Table 2, is performed simultaneously charging of ore and coke and MgO sources adjuncts, D O is D
In Comparative Example 1, which is 0.35 times C , compared to the conventional example in which coke was not mixed into the ore, the Si concentration of the hot metal and the hot metal temperature fluctuated, and the number of slip occurrences also increased. Operations have turned to instability. The reason is that the coke is co-distributed to the furnace center region because the particle size ratio of the ore to the co-charged coke is smaller than the stipulation in the present invention, and the coke of reduced strength is supplied to the furnace lower part. This is considered to be due to the deterioration of the liquid permeability of the air.
Although not shown, due to the uneven distribution of coke in the furnace center region, an increase in the furnace top gas temperature and a decrease in the CO gas utilization rate in the furnace center region were observed as compared with the conventional example.

【0058】上記の比較例1の条件は、特開平4−63
212号公報に記載の方法に示されているコ−クス混合
率と混合コ−クス粒径の関係を満たしている。すなわ
ち、鉱石に対するコ−クスの混合比率は、3重量%で、
鉱石に混合する比較例のコ−クスの粗度の粗い方から2
0重量%の平均粒度は52.6mmであり、特開平4−
63212号公報記載の方法に示されている最小値、す
なわち、20+3.0=23.0mmを十分に上回って
いる。しかしながら、上述したように、操業安定化の改
善程度は不十分であった。このことは、特開平4−63
212号公報に記載の方法で定める範囲が安定な高炉操
業を維持するための装入条件としては不十分であること
を示すものである。
The conditions of Comparative Example 1 are as described in JP-A-4-63.
No. 212 satisfies the relationship between the coke mixing ratio and the mixed coke particle size described in the method described in JP-A-212. That is, the mixing ratio of coke to ore is 3% by weight,
From the coarser coke of the comparative example mixed with the ore,
The average particle size of 0% by weight is 52.6 mm.
This is well above the minimum value shown in the method described in JP-A-63212, that is, 20 + 3.0 = 23.0 mm. However, as described above, the degree of improvement in operation stabilization was insufficient. This is disclosed in Japanese Unexamined Patent Publication No. 4-63.
This shows that the range specified by the method described in Japanese Patent Publication No. 212 is insufficient as charging conditions for maintaining stable blast furnace operation.

【0059】DO がDC の1.7倍の比較例2の場合
も、通気性の悪化から特に炉壁側のガス抜けとスリップ
が発生し、炉況悪化に至った。この場合は、炉壁周辺部
で、鉱石に混合して同時装入したコークスが融着帯の下
方の領域でも残留し、細粒化したため、通気性の悪化と
ガス流れの変動をもたらしたことが原因であると考えら
れる。
Also in the case of Comparative Example 2 in which D O was 1.7 times as large as D C , gas leak and slip occurred particularly on the furnace wall side due to deterioration of air permeability, resulting in deterioration of the furnace condition. In this case, coke mixed with ore and co-charged around the furnace wall remained in the area below the cohesive zone and became finer, resulting in poor air permeability and fluctuations in gas flow. Is thought to be the cause.

【0060】これに対し、DO がDC の1.23倍であ
る実施例では、スリップ回数が減少し通気性が良好にな
り、送風圧変動が低下し、炉況は非常に安定化した。
On the other hand, in the embodiment in which D O is 1.23 times D C , the number of slips is reduced, the air permeability is improved, the blast pressure fluctuation is reduced, and the furnace condition is extremely stabilized. .

【0061】一方、比較例3のように、MgO源副原料
の粒径が鉱石に比較して小さい場合(DO /DF =1.
51)は、鉱石にコークスおよびMgO源副原料を混合
した混合原料装入時に、MgO源副原料が粒度偏析によ
り落下点付近の炉壁部近傍に堆積したため、その周辺部
の鉱石高温性状は好転したが、特にO/C比の高い炉内
半径方向の中間部において、鉱石融着時の通気抵抗が上
昇し、送風圧変動の増加に見られるような炉況の悪化が
生じた。
On the other hand, as in Comparative Example 3, when the particle size of the MgO source auxiliary material is smaller than that of the ore (D O / D F = 1.
In the case of 51), when the mixed raw material in which the coke and the MgO source auxiliary material were mixed into the ore was charged, the MgO source auxiliary material was deposited near the furnace wall near the drop point due to particle size segregation, so that the ore high-temperature properties in the peripheral portion improved. However, especially in the middle part of the furnace in the radial direction with a high O / C ratio, the ventilation resistance at the time of ore fusion increased, and the furnace condition deteriorated as seen in the increase in the blast pressure fluctuation.

【0062】また、これとは逆に、比較例4のように、
MgO源副原料の粒径が鉱石に対して大きい場合(DO
/DF =0.82)は、混合原料装入時に、MgO源副
原料が、粒度差と密度差の相乗効果により炉中心部に偏
在し、炉内半径方向の中間部から炉壁近傍にかけて、鉱
石融着時の通気抵抗が増加したため、荷下がりが変動
し、スリップ回数の増加による炉況悪化を招いた。
On the contrary, as in Comparative Example 4,
When the particle size of the MgO source auxiliary material is larger than the ore (D O
/ D F = 0.82) means that when the mixed raw material is charged, the MgO source auxiliary raw material is unevenly distributed in the center of the furnace due to the synergistic effect of the difference in particle size and the difference in density, and extends from the intermediate portion in the radial direction inside the furnace to the vicinity of the furnace wall. However, the increase in air flow resistance at the time of ore fusion caused fluctuations in load drop, leading to deterioration of the furnace condition due to an increase in the number of slips.

【0063】これに対し、DO /DF =1.12とした
実施例では、鉱石融着時の通気抵抗が炉内半径方向で均
一に低下したため、前記のように通気性を改善すること
ができた。
On the other hand, in the embodiment in which D O / D F = 1.12, the ventilation resistance at the time of ore fusion was uniformly reduced in the radial direction in the furnace. Was completed.

【0064】[0064]

【発明の効果】本発明の高炉操業方法によれば、鉱石層
内の炉内半径方向におけるO/C比の分布を制御し、同
時装入した鉱石層中のコークスを軟化溶融帯で反応消滅
させると同時に、鉱石融着時の高温性状を好転させ、高
炉の通気性、通液性を良好に保って炉況を安定に維持す
ることができる。
According to the blast furnace operating method of the present invention, the distribution of the O / C ratio in the furnace radial direction in the ore layer is controlled, and the coke in the ore layer charged at the same time reacts and disappears in the softening and melting zone. At the same time, the high-temperature properties at the time of ore fusion are improved, and the air permeability and liquid permeability of the blast furnace can be kept good, and the furnace condition can be stably maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】装入実験に用いた実高炉の1/7スケ−ルの高
炉炉頂部半裁模型を示す図で、(a)は立体斜視図、
(b)は半裁縦断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a half-cut model of a top blast furnace of 1/7 scale of an actual blast furnace used for a charging experiment, (a) is a perspective view in three dimensions,
(B) is a half-section vertical sectional view.

【図2】高炉内の半径方向における原料偏在状況と、コ
ークスに対する鉱石の粒径比との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a raw material uneven distribution state in a radial direction in a blast furnace and a particle size ratio of ore to coke.

【図3】混合原料粒子の炉内堆積過程における分級堆積
作用を説明する図で、(a)は粒径差による分級作用の
説明図、(b)は密度差による分級作用の説明図であ
る。
FIGS. 3A and 3B are diagrams illustrating a classification and deposition effect in a process of depositing mixed raw material particles in a furnace, wherein FIG. 3A is a diagram illustrating a classification effect due to a difference in particle diameter, and FIG. .

【図4】鉱石コークス同時装入後、炉内に堆積した層内
の炉内半径方向におけるコークス存在率の分布状態の推
定図である。
FIG. 4 is an estimation diagram of a distribution state of a coke abundance ratio in a furnace radial direction in a layer deposited in the furnace after simultaneous charging of ore coke.

【図5】鉱石と同時装入したコークスを軟化溶融帯で反
応により消滅させるための条件を説明するための図であ
る。
FIG. 5 is a view for explaining conditions for extinguishing coke simultaneously charged with ore by a reaction in a softening and melting zone.

【符号の説明】[Explanation of symbols]

1:高炉炉頂部半裁模型 2:ベル 3:ベルカップ 4:ベル昇降駆動装置 5:アーマー 6:コークス層 7:コークス混合または単独鉱石層 8:炉頂部側壁 9:アクリル板半裁面 10:装入原料 1: Blast furnace top half cut model 2: Bell 3: Bell cup 4: Bell lift drive unit 5: Armor 6: Coke layer 7: Coke mixed or single ore layer 8: Furnace top side wall 9: Acrylic plate half cut surface 10: Charge material

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高炉内に鉱石とコークスを層別に繰り返し
装入して行う高炉操業方法であって、前記鉱石に、下記
(1)式、(2)式および(3)式を同時に満たすよう
にコークスおよびMgO源副原料を混合することを特徴
とする高炉操業方法。 1.20<DO /DC <1.60 ・・・(1) 1.10<DO /DF <1.15 ・・・(2) X<3.2−{(DC −20)/25} ・・(3) ただし、DO :鉱石の加重平均粒径(mm) DC :コークスの加重平均粒径(mm) DF :MgO源副原料の加重平均粒径(mm) X :鉱石に混合するコークスの鉱石に対する重量比率
(%)
A blast furnace operating method in which ore and coke are repeatedly charged into a blast furnace by layer, wherein the ore satisfies the following expressions (1), (2) and (3) simultaneously. A blast furnace operating method comprising mixing coke and an MgO source auxiliary material into the blast furnace. 1.20 <D O / D C <1.60 (1) 1.10 <D O / D F <1.15 (2) X <3.2 − {(D C −20) ) / 25} · (3) where, D O: weighted average particle size of the ore (mm) D C: weighted average particle size of the coke (mm) D F: weighted average particle size (mm of MgO source auxiliary material) X: weight ratio of coke to ore mixed with ore (%)
JP34289996A 1996-12-24 1996-12-24 Blast furnace operation method Expired - Fee Related JP3284908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34289996A JP3284908B2 (en) 1996-12-24 1996-12-24 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34289996A JP3284908B2 (en) 1996-12-24 1996-12-24 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH10183210A JPH10183210A (en) 1998-07-14
JP3284908B2 true JP3284908B2 (en) 2002-05-27

Family

ID=18357384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34289996A Expired - Fee Related JP3284908B2 (en) 1996-12-24 1996-12-24 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP3284908B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488315B2 (en) * 2010-08-04 2014-05-14 新日鐵住金株式会社 How to operate the bell-less blast furnace
TR201903647T4 (en) * 2012-05-18 2019-06-21 Jfe Steel Corp The method for loading the raw material into the blast furnace.

Also Published As

Publication number Publication date
JPH10183210A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
JP3284908B2 (en) Blast furnace operation method
JP4899726B2 (en) Blast furnace operation method
JP3039354B2 (en) Blast furnace operation method
JP5515288B2 (en) Raw material charging method to blast furnace
JP5338309B2 (en) Raw material charging method to blast furnace
JP3841014B2 (en) Blast furnace operation method
JP5012138B2 (en) Blast furnace operation method
JP2933808B2 (en) Raw material charging method for moving bed type scrap melting furnace
JP2822862B2 (en) Blast furnace operation method
JP3642027B2 (en) Blast furnace operation method
JP3171066B2 (en) Blast furnace operation method
JP7180045B2 (en) Method for using raw material containing metallic iron containing Zn
JP2822861B2 (en) Blast furnace operation method
JP2000336412A (en) Operation of blast furnace
JPH06271906A (en) Method for charging briquetted coke into blast furnace
JP2008231511A (en) Method for protecting furnace bottom refractory in blast furnace
JPH07278634A (en) Operation of scrap melting furnace
JP2921374B2 (en) Blast furnace operation method
JP3700458B2 (en) Low Si hot metal manufacturing method
JP4317505B2 (en) Raw material charging method for bell-type blast furnace
JP2970452B2 (en) Blast furnace operation method
JP2921392B2 (en) Blast furnace operation method
JP5338311B2 (en) Raw material charging method to blast furnace
JPH08269507A (en) Low si operation method of blast furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees