JPH06279818A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPH06279818A
JPH06279818A JP6675593A JP6675593A JPH06279818A JP H06279818 A JPH06279818 A JP H06279818A JP 6675593 A JP6675593 A JP 6675593A JP 6675593 A JP6675593 A JP 6675593A JP H06279818 A JPH06279818 A JP H06279818A
Authority
JP
Japan
Prior art keywords
furnace
coke
iron
charged
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6675593A
Other languages
Japanese (ja)
Other versions
JP2792382B2 (en
Inventor
Takanobu Inada
隆信 稲田
Michihiko Yamashita
道彦 山下
Kohei Sunahara
公平 砂原
Shinji Kamishiro
親司 上城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6675593A priority Critical patent/JP2792382B2/en
Publication of JPH06279818A publication Critical patent/JPH06279818A/en
Application granted granted Critical
Publication of JP2792382B2 publication Critical patent/JP2792382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To accelerate the temp. elevation of coke in a furnace core, prevent the deterioration in gas ventilation and liquid permeability in the furnace core and stabilize the blast furnace operation. CONSTITUTION:A part of iron source raw materials charged into the blast furnace is replaced with iron scrap and/or reduced iron and these are charged into the center part of the furnace preceding to the charge of the remaining iron source materials and a part of the coke to be charged is charged into mainly the center part of the furnace. The charges of the scrap and/or the remaining iron and the coke are desirable to execute through a charging device in the other route to the ordinary furnace top charging device. By this method, as the heat needed for the reduction in the center part of the furnace is reduced, high temp. molten iron is produced and the powdering caused by deterioration of the reaction of coke is not resulted. Therefore, the high temp. molten iron is obtd. and heat exchange between the molten iron and the produced gas in a raceway, the coke in the furnace core is promoted and the temp. elevation of the coke in the furnace core is quickly executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は高炉の操業方法に係わ
り、特に、操業中、炉下部を健全な状態に維持すること
により、高炉の安定操業を確保するための炉頂部におけ
る原料の半径方向分布を制御する高炉操業方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a blast furnace, and more particularly, to maintaining a lower part of the furnace in a healthy state during the operation to ensure a stable operation of the blast furnace in the radial direction of the raw material. It relates to a blast furnace operating method for controlling distribution.

【0002】[0002]

【従来の技術】高炉操業においては、鉄源原料を円滑に
還元・溶解し、課せられた量の銑鉄を安定に製造するこ
とが基本使命である。
2. Description of the Related Art In blast furnace operation, it is a basic mission to smoothly reduce and dissolve an iron source material and to stably produce a required amount of pig iron.

【0003】ところで、高炉内部は、鉄源原料が昇温に
より軟化溶解する領域(以下「融着帯」と称す)を境に
してそれより上部と下部(以下、それぞれ「炉上部」、
「炉下部」と記す)とではその状態が大きく異なってい
る。すなわち、炉上部においては、鉄源原料はコークス
とともに固体状態で存在し、下方に降下しつつその空隙
を通って上昇してくるガスによって還元・昇温される。
一方、炉下部においては、鉄源原料の還元・溶解によっ
て生成した溶銑滓は、コークス充填層内の空隙を通って
下方に滴下し、羽口から吹き込まれたガスは、コークス
充填層内の空隙を通って炉中心方向に広がりつつ上昇し
ている。炉下部コークスは、その大部分が羽口部燃焼帯
に向かって移動し消失するが、その一部は物流の極めて
緩慢な炉中心部に滞留していわゆる「炉芯コークス」と
なる。この炉芯コークスは、高炉内の物流の場において
「死領域(dead zone)」に相当する部分であり、燃焼に
よる熱の供給や還元ガスの生成には関係しないので、銑
鉄の生成過程に直接寄与するものではないが、高炉の安
定操業には重要な意味をもっている。
By the way, inside the blast furnace, a region (hereinafter referred to as "cohesive zone") in which the iron source material is softened and melted by a temperature rise is used as a boundary, and an upper part and a lower part (hereinafter, "furnace upper part", respectively)
The state is markedly different from that of the “furnace lower part”). That is, in the upper part of the furnace, the iron source raw material exists in the solid state together with the coke, and is reduced / heated by the gas rising downward through the void while descending.
On the other hand, in the lower part of the furnace, the molten pig iron produced by the reduction / melting of the iron source material drips downward through the voids in the coke packed bed, and the gas blown from the tuyere is the voids in the coke packed bed. It rises while spreading toward the center of the furnace. Most of the lower coke of the furnace moves toward the tuyere combustion zone and disappears, but a part of the coke stays in the central part of the furnace where the physical distribution is very slow, and becomes so-called “core coke”. This core coke is a part corresponding to the "dead zone" in the field of logistics in the blast furnace, and is not related to the heat supply by combustion or the generation of reducing gas, so it is directly related to the pig iron production process. Although it does not contribute, it has important meaning for the stable operation of the blast furnace.

【0004】すなわち、炉芯コークスは、羽口から炉内
を見たとき羽口前方の燃焼帯(以下「レースウェイ」と
称す)の奥に存在することから、炉芯コークスの通気性
が悪化すればレースウェイで発生したガスの流路が狭ま
り、送風圧力が上昇する。このことは、炉下部のコーク
スの降下不順や、甚だしい場合は吹き抜けを引き起こ
し、安定操業の阻害要因になる。このため、多くの高炉
においては、休風時にコークスサンプリングを行って炉
芯コークスの状態を定期的に監視することが行われてい
る。
That is, when the core coke is present in the combustion zone in front of the tuyere (hereinafter referred to as "raceway") when the inside of the furnace is seen from the tuyere, the air permeability of the coke is deteriorated. If so, the flow path of gas generated in the raceway is narrowed, and the blowing pressure increases. This causes irregular falling of coke in the lower part of the furnace and blowout in extreme cases, which hinders stable operation. For this reason, in many blast furnaces, coke sampling is performed during a blast, and the state of the core coke is regularly monitored.

【0005】コークスサンプリングの分析で検出される
コークス温度は、炉芯コークスの状態を評価するもっと
も重要な指標であり、これが低下すると炉況不調につな
がることが経験的に知られている。すなわち、炉芯コー
クスの温度がほぼ1400℃以上に保たれていれば、融着帯
から滴下してきた溶銑滓は、炉芯コークスの中を通過で
きるが、温度がこれより著しく低下すると、溶銑滓は、
その流動性が悪化して炉芯コークスの空隙に滞留するの
で、炉芯コークスの通気性が阻害される。このような炉
芯コークス温度の低下要因としては次のようなことが考
えられる。
The coke temperature detected by the coke sampling analysis is the most important index for evaluating the state of the core coke, and it is empirically known that a decrease in the coke temperature leads to a poor furnace condition. That is, if the temperature of the furnace core coke is maintained at approximately 1400 ° C. or higher, the molten pig iron dropping from the cohesive zone can pass through the inside of the furnace core coke, but if the temperature falls significantly below this, the molten pig iron Is
Since the fluidity is deteriorated and stays in the voids of the core coke, the air permeability of the core coke is hindered. The following factors can be considered as factors for lowering the core coke temperature.

【0006】 装入コークスの強度低下による粉化や
レースウェイでの粉化で発生した粉が炉芯コークスの周
辺部に蓄積してガスから炉芯コークスへの熱供給が阻害
される。
[0006] Powder generated by pulverization due to a decrease in the strength of the charging coke or pulverization in the raceway is accumulated in the peripheral portion of the core coke, and heat supply from the gas to the core coke is hindered.

【0007】 スリップなどにより低温の未還元物が
炉芯コークス内に浸入したり、吸熱反応である直接還元
量が急上昇したりして炉下部を滴下する溶銑滓の温度が
低下する。
[0007] A low-temperature unreduced substance penetrates into the furnace core coke due to a slip or the like, or the amount of direct reduction, which is an endothermic reaction, rapidly increases, and the temperature of the molten pig iron dropping in the lower part of the furnace lowers.

【0008】上述のように、高炉操業において炉芯コー
クス温度は重要な管理項目となっており、従来から炉芯
コークス温度の低下を抑止するため種々の方法がとられ
ている。
As described above, the core coke temperature is an important control item in the operation of the blast furnace, and various methods have heretofore been taken to prevent the core coke temperature from decreasing.

【0009】例えば、CO2 ガスとの反応によるコークス
強度の劣化を抑止して粉発生量を減らしたり、羽口前温
度や羽口風速を適正値に制御してレースウェイでの粉発
生量を減らすこと等により、炉芯コークスの通気性を確
保してガスとの熱交換を促進する方法がとられている。
For example, the amount of powder generation is reduced by suppressing the deterioration of coke strength due to the reaction with CO 2 gas, or the amount of powder generation on the raceway is controlled by controlling the pre-tuyere temperature and the tuyere wind speed to appropriate values. By reducing the amount, the air permeability of the core coke is secured and the heat exchange with the gas is promoted.

【0010】特公昭64−9373号公報の発明では、炉芯に
流入するコークスが主に層頂 (炉内の装入物の最上部の
層) の炉中心軸近傍に装入されたコークスであることに
注目して、炉中心部にコークスを装入できる専用の装入
ルートを設けて、炉中心部へのコークス堆積量を増やし
て同部の「鉄源/コークス」重量比(以下「O/C比」
と記す)を下げることにより炉芯コークスの空隙率を確
保して、いわゆる中心流を強める方法がとられている。
また、特開昭61−227109号公報では、コークスのみなら
ず鉱石をも専用の装入ルートから炉中心部に供給し炉中
心部のO/C比と堆積物の粒度とを自在に調整する発明
が開示されている。
According to the invention of Japanese Patent Publication No. 64-9373, the coke flowing into the core is mainly the coke charged near the center axis of the bed at the top of the bed (the top layer of the charge in the furnace). Noting that there is a special charging route for charging coke in the center of the furnace, the amount of coke deposited in the center of the furnace is increased to increase the "iron source / coke" weight ratio (hereinafter " O / C ratio "
(Hereinafter, referred to as)) is secured to secure the porosity of the core coke and the so-called central flow is strengthened.
Further, in Japanese Patent Application Laid-Open No. 61-227109, not only coke but also ore is supplied to the central part of the furnace through a dedicated charging route to freely adjust the O / C ratio and the grain size of the deposit in the central part of the furnace. The invention is disclosed.

【0011】[0011]

【発明が解決しようとする課題】炉中心部の通気性を上
げて、炉芯コークスの温度を高く保つのに、前記特開昭
61−227109号公報に開示される方法等、従来から知られ
る方法はそれぞれ効果がある。しかし、一旦、炉芯コー
クスの温度が低下した場合、炉芯コークスの動きは極め
て緩慢であることから、上述した従来の方法では、炉芯
コークスの望ましい状態を回復するにはかなりの時間が
必要であり、その間、高炉の不安定な操業を余儀なくさ
れる。
SUMMARY OF THE INVENTION In order to increase the air permeability of the center of the furnace and keep the temperature of the core coke high, the above-mentioned Japanese Patent Laid-Open No.
The conventionally known methods such as the method disclosed in JP-A-61-227109 are effective. However, once the temperature of the core coke decreases, the movement of the core coke is extremely slow. Therefore, in the conventional method described above, it takes a considerable time to restore the desired state of the core coke. During that time, the unstable operation of the blast furnace is forced.

【0012】本発明の目的は、上記の問題を解決し、低
下した炉芯コークス温度を速やかに上昇させて、短時間
のうちに炉況を回復させることができる高炉の操業方法
を提供することにある。
An object of the present invention is to solve the above problems and provide a method for operating a blast furnace capable of quickly raising the lowered core coke temperature and recovering the furnace condition in a short time. It is in.

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、「高炉
に装入する鉄源原料の一部を鉄系スクラップまたは/お
よび還元鉄に代え、これを残りの鉄源原料の装入に先立
って炉の中心部に装入すること、および装入すべきコー
クスの一部を炉の中心部に重点的に装入することを特徴
とする高炉の操業方法」にある。
The gist of the present invention is that "a part of the iron source material charged into the blast furnace is replaced with iron-based scrap and / or reduced iron, and this is used for charging the remaining iron source material. The method of operating a blast furnace is characterized in that it is charged into the center of the furnace in advance and that a part of the coke to be charged is mainly charged into the center of the furnace.

【0014】通常、高炉操業では、炉頂部に設けたベル
式装入装置またはベルレス式装入装置を用いてコークス
と鉄源原料を交互に装入し、炉内に層状に堆積させる。
鉄源原料としては、鉄鉱石および焼結鉱 (以下、これら
を「一般鉄源」という) が主体であるが、本発明方法で
は、その一部として鉄系スクラップまたは/および還元
鉄 (以下、これらを「スクラップ等」と記す) を使用す
る。そして、このスクラップ等を炉の中心部に重点的に
装入するのである。
Usually, in blast furnace operation, a coke and an iron source raw material are alternately charged using a bell-type charging device or a bell-less charging device provided at the top of the furnace, and they are deposited in layers in the furnace.
Iron ore and sinter (hereinafter referred to as "general iron source") are mainly used as the iron source raw material, but in the method of the present invention, iron-based scrap or / and reduced iron (hereinafter, These are referred to as "scraps"). Then, this scrap or the like is mainly loaded into the central portion of the furnace.

【0015】スクラップ等は、一般鉄源の装入に先立っ
て、例えば一般鉄源の装入ルートとは異なる装入ルート
から炉中心部に装入する。鉄源原料の1チャージ分を複
数回、例えば2回に分けて装入することもあるが、その
場合は、スクラップ等の装入を初回の装入の前に行うの
がよい。
Scrap or the like is charged into the central portion of the furnace prior to charging of the general iron source, for example, from a charging route different from the charging route of the general iron source. One charge of the iron source raw material may be charged a plurality of times, for example, twice, in which case it is preferable to charge scraps or the like before the first charging.

【0016】本発明方法では、炉中心部へのスクラップ
等の装入に加えて、炉中心部のO/Cを小さくする対策
を併用する。これは、炉の中心部のコークス層の厚みを
厚くすることによって実施できる。具体的には、コーク
スの1チャージ分の一部を、残りの分に先立って、また
は後から、炉の中心部に装入する。一般鉄源の1チャー
ジ分を複数回にわけて装入する場合には、その中間で炉
中心部へのコークスの装入を行ってもよい。この装入も
通常の装入装置とは別ルートの装入装置を用いるのが望
ましい。
In the method of the present invention, in addition to charging scraps and the like into the central part of the furnace, a measure for reducing the O / C in the central part of the furnace is also used. This can be done by increasing the thickness of the coke layer in the center of the furnace. Specifically, a part of one charge of coke is charged into the center of the furnace before or after the rest. When charging one charge of the general iron source in plural times, charging of coke into the center of the furnace may be performed in the middle. For this charging, it is desirable to use a charging device of a different route from the normal charging device.

【0017】[0017]

【作用】炉芯コークスへの熱供給は、レースウェイにお
けるコークスの燃焼で発生した高温ガスとの熱交換や滴
下する溶銑滓との熱交換によりなされていると考えられ
る。そこで、これらの熱供給要因のどちらがより有効に
炉芯コークスの昇温に作用するかを調べるため、高炉の
縮小模型を用いて実験的検討を行った。
It is considered that the heat supply to the core coke is performed by heat exchange with the high temperature gas generated by the combustion of the coke in the raceway or heat exchange with the dropping molten pig iron. Therefore, in order to investigate which of these heat supply factors more effectively affects the temperature rise of the core coke, an experimental study was conducted using a reduced model of the blast furnace.

【0018】図1に、炉芯コークスの昇温におよぼす熱
供給要因の影響度を検討する模型実験装置の概略断面図
を示す。この実験装置は、羽口より上部の高炉炉内を模
したもので、炉頂から装入物ホッパー8、ベル1および
ムーバブルアーマー2を介してコークスと擬似鉱石 (通
常「金属石鹸」と呼ばれるもの) を装入し、羽口下の切
り出し口から排出装置4を用いて装入物を排出物溜め6
に排出する。このようにして装入物を順次降下させる。
7は排ガス用配管である。
FIG. 1 is a schematic sectional view of a model experimental apparatus for examining the degree of influence of heat supply factors on the temperature rise of the core coke. This experimental device imitates the inside of a blast furnace above the tuyere, from the top of the furnace through the charging hopper 8, bell 1 and moveable armor 2 to coke and pseudo ore (usually called "metal soap"). ) Is charged, and the discharged material is collected from the cutout under the tuyere using the discharging device 4
To discharge. In this way, the charge is sequentially lowered.
Reference numeral 7 is an exhaust gas pipe.

【0019】一方、羽口3から温風を吹き込んで装入物
を加熱し、擬似鉱石は降下の途中で溶解し液体となって
装置底部に滴下するようになっており、反応を除く高炉
炉内の基本現象をシミュレートできるようになってい
る。また、炉内には多数の熱電対測温点5が設けられて
おり炉内温度の動きがわかるようになっている。
On the other hand, hot air is blown from the tuyere 3 to heat the charge, and the pseudo ore is melted and liquidized in the middle of the descent to be dropped at the bottom of the apparatus. You can simulate the basic phenomena in. Further, a large number of thermocouple temperature measuring points 5 are provided in the furnace so that the movement of the temperature in the furnace can be seen.

【0020】実験は表1に示す条件で行い、まず、炉内
をコークスで充填し、送風を開始した。そして羽口下か
らコークスを排出する一方、炉頂からコークスだけを装
入し、一定時間この装入・排出を継続した後、炉頂から
の装入をコークスと擬似鉱石との交互装入に切り替え、
さらにこの状態で実験を続け、羽口レベルの炉中心部、
すなわち炉芯コークスの温度の推移を調査した。
The experiment was carried out under the conditions shown in Table 1. First, the inside of the furnace was filled with coke, and air was blown. Then, while the coke is discharged from under the tuyere, only the coke is charged from the furnace top, and after this charging / discharging is continued for a certain period of time, the charging from the furnace top is changed to alternate charging of coke and pseudo ore. switching,
The experiment was continued in this state, and the central part of the furnace at the tuyere level,
That is, the transition of the temperature of the core coke was investigated.

【0021】[0021]

【表1】 [Table 1]

【0022】図2は、炉芯コークスの昇温におよぼす熱
供給要因の影響度を示す図である。
FIG. 2 is a diagram showing the influence of heat supply factors on the temperature rise of the core coke.

【0023】図中左半分は、コークス単独装入の時期
で、炉芯コークスの昇温は羽口からのガスとの熱交換だ
けで行われている。これに対し図中右半分は、コークス
と擬似鉱石との交互装入の時期に対応し、ここでは羽口
からのガスとの熱交換および溶解し滴下する擬似鉱石と
の熱交換によって炉芯コークスは加熱されている。
The left half of the figure is the time for charging the coke alone, and the temperature rise of the furnace core coke is performed only by heat exchange with the gas from the tuyere. On the other hand, the right half of the figure corresponds to the timing of alternating charging of coke and pseudo ore, where heat exchange with the gas from the tuyere and heat exchange with the molten or dripping pseudo ore are the core coke. Is heated.

【0024】図示のように、装入された擬似鉱石が溶解
を開始した時点から炉芯コークスの昇温速度は急激に上
昇しており、滴下する擬似鉱石の熱により炉芯コークス
の加熱が促進されることが明らかである。即ち、炉芯コ
ークスの昇温には滴下溶銑との熱交換の促進が有効であ
り、高温の溶銑を多量に炉芯部に滴下させることによ
り、速やかに炉芯コークスを加熱することができるので
ある。
As shown in the figure, the temperature rising rate of the furnace core coke rises sharply from the time when the charged pseudo ore starts to melt, and the heating of the furnace core coke is promoted by the heat of the dropping pseudo ore. It is obvious that That is, promotion of heat exchange with the dropping hot metal is effective for raising the temperature of the furnace core coke, and by dropping a large amount of high temperature hot metal into the furnace core portion, the furnace core coke can be rapidly heated. is there.

【0025】本発明は、上述の模型実験で得られた知見
を基にしてなされたものである。以下、実高炉において
本発明方法を実施する態様を説明する。
The present invention is based on the knowledge obtained in the above model experiment. Hereinafter, a mode for carrying out the method of the present invention in an actual blast furnace will be described.

【0026】実高炉において上述の効果を出すために
は、層状に装入された原料の炉中心部にある程度の量の
鉄源原料を堆積させこれを溶解・滴下させる必要があ
る。しかし、通常、鉄源原料中のFeは酸化鉄の形で含有
されており、これを還元しかつ溶解するためには多量の
熱が必要となり、高温の溶銑をつくるのは困難である。
さらに、還元により生成する CO2ガスおよび H2Oガスと
の反応によりコークスは劣化するので、炉芯部に到達し
たときの強度が低下する。即ち、炉中心部に堆積させる
鉄源原料が酸化鉄を主体とする鉄鉱石や焼結鉱である場
合は、かえって炉芯コークスの通気性を悪化させること
になる。
In order to obtain the above-mentioned effects in the actual blast furnace, it is necessary to deposit a certain amount of iron source raw material in the furnace center portion of the raw material charged in layers and melt and drop it. However, Fe in the iron source raw material is usually contained in the form of iron oxide, and a large amount of heat is required to reduce and dissolve the iron oxide, and it is difficult to produce high-temperature hot metal.
Further, the coke deteriorates due to the reaction with the CO 2 gas and H 2 O gas generated by the reduction, so that the strength of the coke when it reaches the core of the furnace decreases. That is, when the iron source material deposited in the center of the furnace is iron ore or sintered ore mainly composed of iron oxide, the air permeability of the furnace core coke is rather deteriorated.

【0027】本発明方法では、炉中心部に装入する鉄源
原料として、既に還元されたもの、すなわち鉄系スクラ
ップまたは予備還元を施した還元鉄を用いる。そうすれ
ば、還元に熱を奪われることなく、還元所要熱を溶銑の
加熱に回せるので、溶銑の温度を高めることができる。
また、 CO2、H2O ガスとの反応によるコークスの劣化も
生じないので、炉芯に供給されるコークスの強度を高め
に維持できる。
In the method of the present invention, as the iron source raw material to be charged in the central part of the furnace, the one already reduced, that is, the iron-based scrap or the pre-reduced reduced iron is used. Then, the heat required for the reduction can be used for heating the hot metal without being deprived of the heat for the reduction, so that the temperature of the hot metal can be increased.
Further, since the coke does not deteriorate due to the reaction with CO 2 and H 2 O gas, the strength of the coke supplied to the furnace core can be maintained at a high level.

【0028】さらに、炉中心部に装入するスクラップ等
の粒度をコークスの粒度と同等またはそれ以上にすれ
ば、炉中心部を通過するガス量が増し、炉中心部で生成
する溶銑の温度を一層速やかに上昇させることができ
る。
Further, if the grain size of scrap or the like charged into the furnace center portion is made equal to or larger than the grain size of coke, the amount of gas passing through the furnace center portion is increased, and the temperature of the hot metal produced in the furnace center portion is increased. It can be raised more quickly.

【0029】炉中心部に装入するスクラップ等の量は、
実用上鉄源原料全部に対し、生成銑鉄量に換算して2〜
10%程度とするのがよい。その理由は次のとおりであ
る。即ち、前述のコークスサンプリングによる計測か
ら、特に炉の中心軸から無次元数(実際の距離を炉の内
径で割って無次元化した量) にして概ね 0.3より内側
(炉中心側) の領域のコークス温度が炉芯状態評価の重
要な指標になること、および同領域での着熱が容易でな
いことが経験的に知られている。そして、炉内断面積に
対する同部の面積比から、炉中心部に装入するスクラッ
プ等の上限量の目安として約10%が得られる。一方、ス
クラップ等の量が約2%よりも少ないと、本発明の目的
である速やかな炉芯コークス温度の上昇が実現できな
い。
The amount of scrap, etc. charged in the center of the furnace is
Practically all iron source materials are converted to the amount of pig iron produced to 2 to
It should be about 10%. The reason is as follows. That is, from the measurement by the coke sampling described above, in particular, a dimensionless number from the center axis of the furnace (a dimensionless number obtained by dividing the actual distance by the inner diameter of the furnace) is within 0.3.
It is empirically known that the coke temperature in the (core side) region is an important index for core state evaluation, and that heat deposition in this region is not easy. Then, from the area ratio of the same part to the cross-sectional area in the furnace, about 10% can be obtained as a guideline for the upper limit amount of scrap and the like charged in the central part of the furnace. On the other hand, if the amount of scrap or the like is less than about 2%, the rapid increase of the core coke temperature, which is the object of the present invention, cannot be realized.

【0030】なお、炉中心部へのスクラップ等の装入を
一般鉄源の装入に先立って行うのは、炉中心部の鉄源を
できるだけスクラップ等だけにするためである。一般鉄
源を先に装入すると、これが炉中心部を含めて全体に層
状に堆積し、その上にスクラップ等が堆積することにな
り、中心部のスクラップ等の比率が低下するだけでな
く、O/C比も高くなってしまう。
The reason why the scrap or the like is charged into the center of the furnace prior to the charging of the general iron source is to limit the scrap and the like to the iron source in the center of the furnace. If the general iron source is charged first, this will be deposited in layers over the entire area including the center of the furnace, and scrap etc. will be deposited on it, and not only the ratio of scrap etc. in the center will decrease, The O / C ratio also becomes high.

【0031】本発明方法においては、炉中心部にコーク
スを多めに装入して炉中心部のO/C比を下げる技術を
併用する。即ち、コークスの1チャージ分の一部 (その
量は5〜16%程度が望ましい) を、炉中心部に装入する
ことにより、炉中心部のO/C比を精度良く制御するこ
とができ、炉芯の通気性を高めて炉中心部の溶銑滴下量
およびその温度を的確に制御することができる。
In the method of the present invention, a technique is used in which a large amount of coke is charged in the center of the furnace to lower the O / C ratio in the center of the furnace. That is, by charging a part of one coke charge (the amount is preferably about 5 to 16%) into the central part of the furnace, the O / C ratio in the central part of the furnace can be controlled accurately. In addition, the air permeability of the furnace core can be enhanced to accurately control the amount of hot metal dropped and the temperature thereof in the center of the furnace.

【0032】上述のように、本発明方法によれば、操業
中に炉芯コークスの温度が下がっても、これを速やかに
昇温させることができ、迅速に炉況を回復させて安定操
業を維持することできる。
As described above, according to the method of the present invention, even if the temperature of the core coke decreases during the operation, it can be quickly raised, and the furnace condition can be quickly recovered to ensure stable operation. Can be maintained.

【0033】[0033]

【実施例】以下、本発明の実施例を説明する。実施例で
は、炉容 2700m3 でベル式装入装置を備えた高炉を用い
た。
EXAMPLES Examples of the present invention will be described below. In the examples, a blast furnace having a furnace capacity of 2700 m 3 and equipped with a bell-type charging device was used.

【0034】図3は、その高炉の上部の装入装置を説明
する断面図である。図示のように、通常のベル式装入装
置の外に、炉中心部に装入を行うための別ルートの装入
装置14が設けられている。原料は、バケットコンベアー
15で上部ホッパー16に一旦貯蔵され、下部ホッパー19内
の排圧が完了した後、上部シール弁18、続いて上部ゲー
ト17を開操作して下部ホッパー19に移される。次に、上
部ゲート17、上部シール弁18を閉操作した後、下部ホッ
パー19内を炉内圧に均圧して炉内装入準備が完了する。
FIG. 3 is a sectional view for explaining the charging device in the upper part of the blast furnace. As shown in the figure, in addition to the usual bell-type charging device, a charging device 14 of another route for charging the central part of the furnace is provided. Raw material is bucket conveyor
After being temporarily stored in the upper hopper 16 at 15, and after the exhaust pressure in the lower hopper 19 is completed, the upper seal valve 18 and then the upper gate 17 are opened and transferred to the lower hopper 19. Next, after closing the upper gate 17 and the upper seal valve 18, the inside of the lower hopper 19 is pressure-equalized to the furnace internal pressure, and the preparation for entering the furnace interior is completed.

【0035】炉中心部への装入タイミングが来たところ
で下部シール弁21、続いて下部ゲート20を開操作して原
料を装入シュート23を介して炉中心部に落下させ、24の
ように堆積させる。25は通常の装入ルートから装入され
た原料で、図示のように中央部が窪んだ層状に堆積させ
るのが普通である。
When the charging timing to the central part of the furnace comes, the lower seal valve 21 and then the lower gate 20 are opened to drop the raw materials into the central part of the furnace through the charging chute 23, and Deposit. 25 is a raw material charged through a normal charging route, and is usually deposited in a layered shape with a depressed central portion as shown in the figure.

【0036】表2に実施例の主な操業諸元を示す。ここ
で原料装入は次のように実施した。
Table 2 shows the main operating specifications of the embodiment. Here, charging of raw materials was carried out as follows.

【0037】(a) コークスの装入 1チャージ分 (16トン) の中、14トンを2等分し、2回
に分けて通常ルートで炉頂から装入し、残り2トンを別
ルート装入装置14から炉中心部へ装入。
(A) Charging of coke In one charge (16 tons), 14 tons are divided into two equal parts, which are divided into two and charged from the furnace top by the normal route, and the remaining 2 tons are charged by another route. Charged from the charging device 14 to the center of the furnace.

【0038】(b) 鉄源原料の装入 一般鉄源 (鉄鉱石および焼結鉱) の1チャージ分 (63ト
ン) を2等分して、2回に分けて通常ルートで炉頂から
装入し、スクラップ等 (その量は表3に示すように変化
させた) を別ルート装入装置14から炉中心部へ装入。
(B) Charging of iron source material One charge (63 tons) of a general iron source (iron ore and sinter) is divided into two equal parts, which are divided into two parts and charged from the furnace top by a normal route. Then, scrap, etc. (the amount of which was changed as shown in Table 3) was charged from the separate route charging device 14 to the center of the furnace.

【0039】(c) 装入の順序 1. コークス(1回目) 2. コークス(2回目) 3. 別ルートからのスクラップ等の中心装入 4. 一般鉄源(1回目) 5. 別ルートからのコークスの中心装入 6. 一般鉄源(2回目) とし、これを1サイクルとして繰り返した。(C) Order of charging 1. Coke (first time) 2. Coke (second time) 3. Central charging of scrap etc. from another route 4. General iron source (first time) 5. From another route Central charge of coke 6. The general iron source (second time) was used, and this was repeated as one cycle.

【0040】表3に別ルート装入装置14からの原料装入
条件を示す。別ルートからの中心装入原料に鉄系スクラ
ップを用いた場合は、装入量および粒径を変化させ、還
元鉄を用いた場合は、その還元率を変化させて操業を行
った。
Table 3 shows the raw material charging conditions from the separate route charging device 14. When iron-based scrap was used as the central charging material from another route, the charging amount and particle size were changed, and when reduced iron was used, the reduction rate was changed to carry out the operation.

【0041】実施例の操業は、本発明を適用しない通常
装入操業(比較例)の間にはさんで実施し、各操業期間
を約3週間とした。そして、各操業期間終了後の休風時
に羽口からコークスのサンプリングを行った。
The operation of the examples was carried out between normal charging operations (comparative examples) to which the present invention was not applied, and each operation period was about 3 weeks. Then, the coke was sampled from the tuyere when the wind was off after the end of each operation period.

【0042】操業中における炉芯コークスの粉化状態お
よび昇温状態を評価するため、羽口レベルの炉中心近傍
で採取された炉芯コークスの平均粒径と黒鉛化度の測定
データから推定される炉芯コークスの履歴温度(最高到
達温度)を調査した。
In order to evaluate the pulverization state and temperature rising state of the core coke during the operation, it was estimated from the measured data of the average particle size and the graphitization degree of the core coke collected near the center of the furnace at the tuyere level. The history temperature (maximum temperature reached) of the furnace core coke was investigated.

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】図4は実施例と比較例の炉芯コークスの粉
化、昇温状態を対比して示す図で、(a)図は炉芯コー
クス平均粒径、(b)図は炉芯コークス履歴温度を示
す。
FIGS. 4A and 4B are views showing the pulverization and temperature rising states of the core coke of the example and the comparative example in comparison. FIG. 4A shows the average particle size of the core coke, and FIG. 4B shows the core coke. Indicates the history temperature.

【0046】図示のように、実施例では、いずれも炉芯
コークスの平均粒径および履歴温度が通常装入を行った
比較例より高くなっており、炉芯コークスの通気性の改
善と炉芯コークス温度の上昇が見られる。これは、炉中
心部に鉄系スクラップまたは還元鉄が堆積されているた
め還元熱が少なくてすみ、その分高温の溶銑が生成し、
滴下中に炉芯コークスとの熱交換が促進されたからであ
る。また、鉄酸化物の還元時に生成する CO2、H2O との
反応によるコークス劣化がないので炉芯コークスの粉化
が抑制され、炉芯コークスの通気性が改善されて、レー
スウェイ発生ガスとの熱交換が促進されていると考えら
れる。このため、実施例では比較例より高い炉芯コーク
ス温度が維持され、安定操業が行われた。
As shown in the figure, in each of the examples, the average particle diameter and the hysteresis temperature of the core coke are higher than those of the comparative example in which the charging is usually performed, and the air permeability of the core coke is improved and the core temperature is improved. A rise in coke temperature is seen. This is because iron-based scrap or reduced iron is deposited in the center of the furnace, so less heat of reduction is required, and high-temperature hot metal is generated accordingly.
This is because the heat exchange with the core coke was promoted during the dropping. In addition, since there is no deterioration of coke due to the reaction with CO 2 and H 2 O generated during the reduction of iron oxides, the crushing of the core coke is suppressed, the air permeability of the core coke is improved, and the raceway gas It is considered that the heat exchange with is promoted. Therefore, in the example, the core coke temperature higher than that of the comparative example was maintained and stable operation was performed.

【0047】別ルート装入装置から炉中心部に鉄系スク
ラップを装入した実施例1、2、3を比較すると、装入
量が少ない実施例2では、炉芯コークスの昇温におよぼ
す効果が実施例1より弱まり、粒径を粗くした実施例3
では、炉中心部のガス流量が増加してガスによる熱交換
が促進されるので溶銑の昇温がさらに進み、炉芯コーク
スの昇温におよぼす効果が実施例1より高まっている。
Comparing Examples 1, 2 and 3 in which iron-based scrap was charged into the center of the furnace from another route charging apparatus, in Example 2 in which the charging amount was small, the effect on the temperature rise of the core coke was obtained. Is weaker than in Example 1, and the particle size is made coarse in Example 3.
In the above, since the gas flow rate in the central part of the furnace is increased and the heat exchange by the gas is promoted, the temperature of the hot metal is further increased, and the effect of increasing the temperature of the furnace core coke is higher than in Example 1.

【0048】一方、還元鉄を炉中心部に装入した実施例
4、5では、還元鉄の還元率が低い実施例5が、実施例
4より炉芯コークスの粉化の程度は高まり、炉芯コーク
スの昇温におよぼす効果が弱まっている。
On the other hand, in Examples 4 and 5 in which reduced iron was charged in the center of the furnace, Example 5 in which the reduction rate of reduced iron was low was higher than Example 4, and the degree of pulverization of the furnace core coke was higher. The effect of raising the temperature of the core coke is weakened.

【0049】[0049]

【発明の効果】本発明方法によれば、炉芯コークスと高
温溶銑及びレースウェイ発生ガスとの熱交換を促進する
ことができ、操業中の炉芯コークス温度を高めに維持で
きる。
According to the method of the present invention, the heat exchange between the core coke and the hot metal and the gas generated in the raceway can be promoted, and the core coke temperature during operation can be kept high.

【0050】また、炉芯コークスの冷え込みが発生した
時にも炉芯コークスの昇温が速やかに行われ、炉況をす
ばやく正常に回復させることができる。したがって高炉
の安定操業維持が容易になり、大きな経済的効果が得ら
れる。
Further, even when the core coke cools down, the temperature of the core coke is rapidly raised, and the furnace condition can be quickly and normally restored. Therefore, it becomes easy to maintain stable operation of the blast furnace, and a great economic effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】炉芯コークスの昇温におよぼす熱供給要因の影
響度を検討する模型実験装置の概略断面図である。
FIG. 1 is a schematic cross-sectional view of a model experimental device for examining the degree of influence of heat supply factors on the temperature rise of core coke.

【図2】炉芯コークスの昇温におよぼす熱供給要因の影
響度を示す図である。
FIG. 2 is a diagram showing the degree of influence of heat supply factors on the temperature rise of furnace core coke.

【図3】本発明の実施に用いた炉中心部への別ルート装
入装置を有する高炉上部の概略断面図である。
FIG. 3 is a schematic cross-sectional view of an upper portion of a blast furnace having another route charging device into the central portion of the furnace used for implementing the present invention.

【図4】実施例と比較例の炉芯コークスの粉化・昇温状
態を対比して示す図で、(a)図は炉芯コークス平均粒
径、(b)図は炉芯コークス履歴温度を示す図である。
4A and 4B are diagrams showing the states of pulverization and temperature rise of furnace coke in Examples and Comparative Examples, in which FIG. 4A is an average particle diameter of core coke, and FIG. 4B is a history temperature of core coke. FIG.

【符号の説明】[Explanation of symbols]

1:ベル、 2:ムーバブルアーマ、3:羽
口、4:装入物排出装置、 5:熱電対測温点、
6:排出物溜め、7:排ガス配管、 8:装入物ホ
ッパー、9:ベル式装入装置、 10:小ベル、
11:大ベル、12:ムーバブルアーマ、13:高炉炉内、
14:別ルート装入装置、15:バケットコンベア
ー、16:上部ホッパー、 17:上部ゲート、18:上部シ
ール弁、 19:下部ホッパー、 20:下部ゲート、
21:下部シール弁、 22:均圧管、 23:装
入シュート、24:別ルート装入原料 25:通常ルート装
入原料。
1: Bell, 2: Movable armor, 3: Tuyere, 4: Charge discharge device, 5: Thermocouple temperature measuring point,
6: Effluent storage, 7: Exhaust gas piping, 8: Charge hopper, 9: Bell type charging device, 10: Small bell,
11: Large bell, 12: Movable armor, 13: Inside blast furnace,
14: Another route charging device, 15: Bucket conveyor, 16: Upper hopper, 17: Upper gate, 18: Upper sealing valve, 19: Lower hopper, 20: Lower gate,
21: Lower seal valve, 22: Pressure equalizing pipe, 23: Charging chute, 24: Raw material for another route, 25: Raw material for normal route.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上城 親司 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinji Ueshiro Sumitomo Metal Industries, Ltd. 4-53-3 Kitahama, Chuo-ku, Osaka-shi, Osaka

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高炉に装入する鉄源原料の一部を鉄系スク
ラップまたは/および還元鉄に代え、これを残りの鉄源
原料の装入に先立って炉の中心部に装入すること、およ
び装入すべきコークスの一部を炉の中心部に重点的に装
入することを特徴とする高炉の操業方法。
1. A method for replacing part of an iron source material charged into a blast furnace with iron-based scrap and / or reduced iron, and charging the iron source material into the central portion of the furnace prior to charging the remaining iron source material. , And a method for operating a blast furnace, wherein a part of the coke to be charged is mainly charged into the central part of the furnace.
JP6675593A 1993-03-25 1993-03-25 Blast furnace operation method Expired - Fee Related JP2792382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6675593A JP2792382B2 (en) 1993-03-25 1993-03-25 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6675593A JP2792382B2 (en) 1993-03-25 1993-03-25 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH06279818A true JPH06279818A (en) 1994-10-04
JP2792382B2 JP2792382B2 (en) 1998-09-03

Family

ID=13325023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6675593A Expired - Fee Related JP2792382B2 (en) 1993-03-25 1993-03-25 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2792382B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226073A (en) * 2004-02-09 2005-08-25 Hewlett-Packard Development Co Lp Ink composition for ink-jet printing
JP2006124803A (en) * 2004-10-29 2006-05-18 Jfe Steel Kk Method for charging raw material into blast furnace
JP2014047397A (en) * 2012-08-31 2014-03-17 Nippon Steel & Sumitomo Metal Method for operating blast furnace
JP2014142337A (en) * 2012-12-25 2014-08-07 Jfe Steel Corp Reactor simulating blast furnace fusion zone
JP2015190047A (en) * 2014-03-28 2015-11-02 新日鐵住金株式会社 Quarry gate control method of raw material sub discharge equipment in blast furnace operation and raw material sub discharge equipment
JP2020148451A (en) * 2019-03-06 2020-09-17 Jfeスチール株式会社 Charge bucket, melting facility, and method for producing molten iron using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256819A (en) * 1993-03-04 1994-09-13 Nippon Steel Corp Method for charging scrap in blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256819A (en) * 1993-03-04 1994-09-13 Nippon Steel Corp Method for charging scrap in blast furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226073A (en) * 2004-02-09 2005-08-25 Hewlett-Packard Development Co Lp Ink composition for ink-jet printing
JP4521292B2 (en) * 2004-02-09 2010-08-11 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Ink composition for inkjet printing
US8492456B2 (en) 2004-02-09 2013-07-23 Hewlett-Packard Development Company, L.P. Ink compositions for ink-jet printing
JP2006124803A (en) * 2004-10-29 2006-05-18 Jfe Steel Kk Method for charging raw material into blast furnace
JP2014047397A (en) * 2012-08-31 2014-03-17 Nippon Steel & Sumitomo Metal Method for operating blast furnace
JP2014142337A (en) * 2012-12-25 2014-08-07 Jfe Steel Corp Reactor simulating blast furnace fusion zone
JP2015190047A (en) * 2014-03-28 2015-11-02 新日鐵住金株式会社 Quarry gate control method of raw material sub discharge equipment in blast furnace operation and raw material sub discharge equipment
JP2020148451A (en) * 2019-03-06 2020-09-17 Jfeスチール株式会社 Charge bucket, melting facility, and method for producing molten iron using the same

Also Published As

Publication number Publication date
JP2792382B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JP5034189B2 (en) Raw material charging method to blast furnace
EP2851437B1 (en) Method for loading raw material into blast furnace
JP5910735B2 (en) Raw material charging method to blast furnace
EP2851436B1 (en) Method for charging starting material into blast furnace
JPH06279818A (en) Operation of blast furnace
EP2851434B1 (en) Method for loading raw material into blast furnace
JP2725595B2 (en) Blast furnace charging method
JP2970460B2 (en) Blast furnace operation method
JP3171066B2 (en) Blast furnace operation method
JPH08134517A (en) Operation of blast furnace
JPS59153815A (en) Feeding device of raw material to melt-reducing furnace
JP2853557B2 (en) Blast furnace operation method
JP7180045B2 (en) Method for using raw material containing metallic iron containing Zn
EP4317462A1 (en) Pig iron production method
JPH08269508A (en) Operation method of blast furnace
JP5966608B2 (en) Raw material charging method to blast furnace
JPH0826368B2 (en) A method for estimating the deviation of the filling state of the solid reducing agent layer in the core
JPH07138623A (en) Operation of blast furnace
JP2921392B2 (en) Blast furnace operation method
TOYOTA et al. Decreasing Coke Rate under All-Pellet Operation in Kobe No. 3 Blast Furnace
JP2000178617A (en) Method for charging charging material for activating furnace core part in blast furnace
JPH02259005A (en) Method for charging raw material in blast furnace
JPH0987710A (en) Operation of blast furnace for producing low si molten iron
JP2000144218A (en) Method for charging raw material into blast furnace
JP2000336409A (en) Operation of blast furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees